1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_generic.c Generic packet scheduler routines. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 7 * - Ingress support 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/module.h> 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/netdevice.h> 18 #include <linux/skbuff.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/init.h> 21 #include <linux/rcupdate.h> 22 #include <linux/list.h> 23 #include <linux/slab.h> 24 #include <linux/if_vlan.h> 25 #include <linux/skb_array.h> 26 #include <linux/if_macvlan.h> 27 #include <net/sch_generic.h> 28 #include <net/pkt_sched.h> 29 #include <net/dst.h> 30 #include <net/hotdata.h> 31 #include <trace/events/qdisc.h> 32 #include <trace/events/net.h> 33 #include <net/xfrm.h> 34 35 /* Qdisc to use by default */ 36 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 37 EXPORT_SYMBOL(default_qdisc_ops); 38 39 static void qdisc_maybe_clear_missed(struct Qdisc *q, 40 const struct netdev_queue *txq) 41 { 42 clear_bit(__QDISC_STATE_MISSED, &q->state); 43 44 /* Make sure the below netif_xmit_frozen_or_stopped() 45 * checking happens after clearing STATE_MISSED. 46 */ 47 smp_mb__after_atomic(); 48 49 /* Checking netif_xmit_frozen_or_stopped() again to 50 * make sure STATE_MISSED is set if the STATE_MISSED 51 * set by netif_tx_wake_queue()'s rescheduling of 52 * net_tx_action() is cleared by the above clear_bit(). 53 */ 54 if (!netif_xmit_frozen_or_stopped(txq)) 55 set_bit(__QDISC_STATE_MISSED, &q->state); 56 else 57 set_bit(__QDISC_STATE_DRAINING, &q->state); 58 } 59 60 /* Main transmission queue. */ 61 62 /* Modifications to data participating in scheduling must be protected with 63 * qdisc_lock(qdisc) spinlock. 64 * 65 * The idea is the following: 66 * - enqueue, dequeue are serialized via qdisc root lock 67 * - ingress filtering is also serialized via qdisc root lock 68 * - updates to tree and tree walking are only done under the rtnl mutex. 69 */ 70 71 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL) 72 73 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q) 74 { 75 const struct netdev_queue *txq = q->dev_queue; 76 spinlock_t *lock = NULL; 77 struct sk_buff *skb; 78 79 if (q->flags & TCQ_F_NOLOCK) { 80 lock = qdisc_lock(q); 81 spin_lock(lock); 82 } 83 84 skb = skb_peek(&q->skb_bad_txq); 85 if (skb) { 86 /* check the reason of requeuing without tx lock first */ 87 txq = skb_get_tx_queue(txq->dev, skb); 88 if (!netif_xmit_frozen_or_stopped(txq)) { 89 skb = __skb_dequeue(&q->skb_bad_txq); 90 if (qdisc_is_percpu_stats(q)) { 91 qdisc_qstats_cpu_backlog_dec(q, skb); 92 qdisc_qstats_cpu_qlen_dec(q); 93 } else { 94 qdisc_qstats_backlog_dec(q, skb); 95 q->q.qlen--; 96 } 97 } else { 98 skb = SKB_XOFF_MAGIC; 99 qdisc_maybe_clear_missed(q, txq); 100 } 101 } 102 103 if (lock) 104 spin_unlock(lock); 105 106 return skb; 107 } 108 109 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q) 110 { 111 struct sk_buff *skb = skb_peek(&q->skb_bad_txq); 112 113 if (unlikely(skb)) 114 skb = __skb_dequeue_bad_txq(q); 115 116 return skb; 117 } 118 119 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q, 120 struct sk_buff *skb) 121 { 122 spinlock_t *lock = NULL; 123 124 if (q->flags & TCQ_F_NOLOCK) { 125 lock = qdisc_lock(q); 126 spin_lock(lock); 127 } 128 129 __skb_queue_tail(&q->skb_bad_txq, skb); 130 131 if (qdisc_is_percpu_stats(q)) { 132 qdisc_qstats_cpu_backlog_inc(q, skb); 133 qdisc_qstats_cpu_qlen_inc(q); 134 } else { 135 qdisc_qstats_backlog_inc(q, skb); 136 q->q.qlen++; 137 } 138 139 if (lock) 140 spin_unlock(lock); 141 } 142 143 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 144 { 145 spinlock_t *lock = NULL; 146 147 if (q->flags & TCQ_F_NOLOCK) { 148 lock = qdisc_lock(q); 149 spin_lock(lock); 150 } 151 152 while (skb) { 153 struct sk_buff *next = skb->next; 154 155 __skb_queue_tail(&q->gso_skb, skb); 156 157 /* it's still part of the queue */ 158 if (qdisc_is_percpu_stats(q)) { 159 qdisc_qstats_cpu_requeues_inc(q); 160 qdisc_qstats_cpu_backlog_inc(q, skb); 161 qdisc_qstats_cpu_qlen_inc(q); 162 } else { 163 q->qstats.requeues++; 164 qdisc_qstats_backlog_inc(q, skb); 165 q->q.qlen++; 166 } 167 168 skb = next; 169 } 170 171 if (lock) { 172 spin_unlock(lock); 173 set_bit(__QDISC_STATE_MISSED, &q->state); 174 } else { 175 __netif_schedule(q); 176 } 177 } 178 179 static void try_bulk_dequeue_skb(struct Qdisc *q, 180 struct sk_buff *skb, 181 const struct netdev_queue *txq, 182 int *packets) 183 { 184 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len; 185 186 while (bytelimit > 0) { 187 struct sk_buff *nskb = q->dequeue(q); 188 189 if (!nskb) 190 break; 191 192 bytelimit -= nskb->len; /* covers GSO len */ 193 skb->next = nskb; 194 skb = nskb; 195 (*packets)++; /* GSO counts as one pkt */ 196 } 197 skb_mark_not_on_list(skb); 198 } 199 200 /* This variant of try_bulk_dequeue_skb() makes sure 201 * all skbs in the chain are for the same txq 202 */ 203 static void try_bulk_dequeue_skb_slow(struct Qdisc *q, 204 struct sk_buff *skb, 205 int *packets) 206 { 207 int mapping = skb_get_queue_mapping(skb); 208 struct sk_buff *nskb; 209 int cnt = 0; 210 211 do { 212 nskb = q->dequeue(q); 213 if (!nskb) 214 break; 215 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) { 216 qdisc_enqueue_skb_bad_txq(q, nskb); 217 break; 218 } 219 skb->next = nskb; 220 skb = nskb; 221 } while (++cnt < 8); 222 (*packets) += cnt; 223 skb_mark_not_on_list(skb); 224 } 225 226 /* Note that dequeue_skb can possibly return a SKB list (via skb->next). 227 * A requeued skb (via q->gso_skb) can also be a SKB list. 228 */ 229 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate, 230 int *packets) 231 { 232 const struct netdev_queue *txq = q->dev_queue; 233 struct sk_buff *skb = NULL; 234 235 *packets = 1; 236 if (unlikely(!skb_queue_empty(&q->gso_skb))) { 237 spinlock_t *lock = NULL; 238 239 if (q->flags & TCQ_F_NOLOCK) { 240 lock = qdisc_lock(q); 241 spin_lock(lock); 242 } 243 244 skb = skb_peek(&q->gso_skb); 245 246 /* skb may be null if another cpu pulls gso_skb off in between 247 * empty check and lock. 248 */ 249 if (!skb) { 250 if (lock) 251 spin_unlock(lock); 252 goto validate; 253 } 254 255 /* skb in gso_skb were already validated */ 256 *validate = false; 257 if (xfrm_offload(skb)) 258 *validate = true; 259 /* check the reason of requeuing without tx lock first */ 260 txq = skb_get_tx_queue(txq->dev, skb); 261 if (!netif_xmit_frozen_or_stopped(txq)) { 262 skb = __skb_dequeue(&q->gso_skb); 263 if (qdisc_is_percpu_stats(q)) { 264 qdisc_qstats_cpu_backlog_dec(q, skb); 265 qdisc_qstats_cpu_qlen_dec(q); 266 } else { 267 qdisc_qstats_backlog_dec(q, skb); 268 q->q.qlen--; 269 } 270 } else { 271 skb = NULL; 272 qdisc_maybe_clear_missed(q, txq); 273 } 274 if (lock) 275 spin_unlock(lock); 276 goto trace; 277 } 278 validate: 279 *validate = true; 280 281 if ((q->flags & TCQ_F_ONETXQUEUE) && 282 netif_xmit_frozen_or_stopped(txq)) { 283 qdisc_maybe_clear_missed(q, txq); 284 return skb; 285 } 286 287 skb = qdisc_dequeue_skb_bad_txq(q); 288 if (unlikely(skb)) { 289 if (skb == SKB_XOFF_MAGIC) 290 return NULL; 291 goto bulk; 292 } 293 skb = q->dequeue(q); 294 if (skb) { 295 bulk: 296 if (qdisc_may_bulk(q)) 297 try_bulk_dequeue_skb(q, skb, txq, packets); 298 else 299 try_bulk_dequeue_skb_slow(q, skb, packets); 300 } 301 trace: 302 trace_qdisc_dequeue(q, txq, *packets, skb); 303 return skb; 304 } 305 306 /* 307 * Transmit possibly several skbs, and handle the return status as 308 * required. Owning qdisc running bit guarantees that only one CPU 309 * can execute this function. 310 * 311 * Returns to the caller: 312 * false - hardware queue frozen backoff 313 * true - feel free to send more pkts 314 */ 315 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 316 struct net_device *dev, struct netdev_queue *txq, 317 spinlock_t *root_lock, bool validate) 318 { 319 int ret = NETDEV_TX_BUSY; 320 bool again = false; 321 322 /* And release qdisc */ 323 if (root_lock) 324 spin_unlock(root_lock); 325 326 /* Note that we validate skb (GSO, checksum, ...) outside of locks */ 327 if (validate) 328 skb = validate_xmit_skb_list(skb, dev, &again); 329 330 #ifdef CONFIG_XFRM_OFFLOAD 331 if (unlikely(again)) { 332 if (root_lock) 333 spin_lock(root_lock); 334 335 dev_requeue_skb(skb, q); 336 return false; 337 } 338 #endif 339 340 if (likely(skb)) { 341 HARD_TX_LOCK(dev, txq, smp_processor_id()); 342 if (!netif_xmit_frozen_or_stopped(txq)) 343 skb = dev_hard_start_xmit(skb, dev, txq, &ret); 344 else 345 qdisc_maybe_clear_missed(q, txq); 346 347 HARD_TX_UNLOCK(dev, txq); 348 } else { 349 if (root_lock) 350 spin_lock(root_lock); 351 return true; 352 } 353 354 if (root_lock) 355 spin_lock(root_lock); 356 357 if (!dev_xmit_complete(ret)) { 358 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 359 if (unlikely(ret != NETDEV_TX_BUSY)) 360 net_warn_ratelimited("BUG %s code %d qlen %d\n", 361 dev->name, ret, q->q.qlen); 362 363 dev_requeue_skb(skb, q); 364 return false; 365 } 366 367 return true; 368 } 369 370 /* 371 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 372 * 373 * running seqcount guarantees only one CPU can process 374 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 375 * this queue. 376 * 377 * netif_tx_lock serializes accesses to device driver. 378 * 379 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 380 * if one is grabbed, another must be free. 381 * 382 * Note, that this procedure can be called by a watchdog timer 383 * 384 * Returns to the caller: 385 * 0 - queue is empty or throttled. 386 * >0 - queue is not empty. 387 * 388 */ 389 static inline bool qdisc_restart(struct Qdisc *q, int *packets) 390 { 391 spinlock_t *root_lock = NULL; 392 struct netdev_queue *txq; 393 struct net_device *dev; 394 struct sk_buff *skb; 395 bool validate; 396 397 /* Dequeue packet */ 398 skb = dequeue_skb(q, &validate, packets); 399 if (unlikely(!skb)) 400 return false; 401 402 if (!(q->flags & TCQ_F_NOLOCK)) 403 root_lock = qdisc_lock(q); 404 405 dev = qdisc_dev(q); 406 txq = skb_get_tx_queue(dev, skb); 407 408 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate); 409 } 410 411 void __qdisc_run(struct Qdisc *q) 412 { 413 int quota = READ_ONCE(net_hotdata.dev_tx_weight); 414 int packets; 415 416 while (qdisc_restart(q, &packets)) { 417 quota -= packets; 418 if (quota <= 0) { 419 if (q->flags & TCQ_F_NOLOCK) 420 set_bit(__QDISC_STATE_MISSED, &q->state); 421 else 422 __netif_schedule(q); 423 424 break; 425 } 426 } 427 } 428 429 unsigned long dev_trans_start(struct net_device *dev) 430 { 431 unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start); 432 unsigned long val; 433 unsigned int i; 434 435 for (i = 1; i < dev->num_tx_queues; i++) { 436 val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start); 437 if (val && time_after(val, res)) 438 res = val; 439 } 440 441 return res; 442 } 443 EXPORT_SYMBOL(dev_trans_start); 444 445 static void netif_freeze_queues(struct net_device *dev) 446 { 447 unsigned int i; 448 int cpu; 449 450 cpu = smp_processor_id(); 451 for (i = 0; i < dev->num_tx_queues; i++) { 452 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 453 454 /* We are the only thread of execution doing a 455 * freeze, but we have to grab the _xmit_lock in 456 * order to synchronize with threads which are in 457 * the ->hard_start_xmit() handler and already 458 * checked the frozen bit. 459 */ 460 __netif_tx_lock(txq, cpu); 461 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 462 __netif_tx_unlock(txq); 463 } 464 } 465 466 void netif_tx_lock(struct net_device *dev) 467 { 468 spin_lock(&dev->tx_global_lock); 469 netif_freeze_queues(dev); 470 } 471 EXPORT_SYMBOL(netif_tx_lock); 472 473 static void netif_unfreeze_queues(struct net_device *dev) 474 { 475 unsigned int i; 476 477 for (i = 0; i < dev->num_tx_queues; i++) { 478 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 479 480 /* No need to grab the _xmit_lock here. If the 481 * queue is not stopped for another reason, we 482 * force a schedule. 483 */ 484 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 485 netif_schedule_queue(txq); 486 } 487 } 488 489 void netif_tx_unlock(struct net_device *dev) 490 { 491 netif_unfreeze_queues(dev); 492 spin_unlock(&dev->tx_global_lock); 493 } 494 EXPORT_SYMBOL(netif_tx_unlock); 495 496 static void dev_watchdog(struct timer_list *t) 497 { 498 struct net_device *dev = from_timer(dev, t, watchdog_timer); 499 bool release = true; 500 501 spin_lock(&dev->tx_global_lock); 502 if (!qdisc_tx_is_noop(dev)) { 503 if (netif_device_present(dev) && 504 netif_running(dev) && 505 netif_carrier_ok(dev)) { 506 unsigned int timedout_ms = 0; 507 unsigned int i; 508 unsigned long trans_start; 509 unsigned long oldest_start = jiffies; 510 511 for (i = 0; i < dev->num_tx_queues; i++) { 512 struct netdev_queue *txq; 513 514 txq = netdev_get_tx_queue(dev, i); 515 trans_start = READ_ONCE(txq->trans_start); 516 if (!netif_xmit_stopped(txq)) 517 continue; 518 if (time_after(jiffies, trans_start + dev->watchdog_timeo)) { 519 timedout_ms = jiffies_to_msecs(jiffies - trans_start); 520 atomic_long_inc(&txq->trans_timeout); 521 break; 522 } 523 if (time_after(oldest_start, trans_start)) 524 oldest_start = trans_start; 525 } 526 527 if (unlikely(timedout_ms)) { 528 trace_net_dev_xmit_timeout(dev, i); 529 netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n", 530 raw_smp_processor_id(), 531 i, timedout_ms); 532 netif_freeze_queues(dev); 533 dev->netdev_ops->ndo_tx_timeout(dev, i); 534 netif_unfreeze_queues(dev); 535 } 536 if (!mod_timer(&dev->watchdog_timer, 537 round_jiffies(oldest_start + 538 dev->watchdog_timeo))) 539 release = false; 540 } 541 } 542 spin_unlock(&dev->tx_global_lock); 543 544 if (release) 545 netdev_put(dev, &dev->watchdog_dev_tracker); 546 } 547 548 void __netdev_watchdog_up(struct net_device *dev) 549 { 550 if (dev->netdev_ops->ndo_tx_timeout) { 551 if (dev->watchdog_timeo <= 0) 552 dev->watchdog_timeo = 5*HZ; 553 if (!mod_timer(&dev->watchdog_timer, 554 round_jiffies(jiffies + dev->watchdog_timeo))) 555 netdev_hold(dev, &dev->watchdog_dev_tracker, 556 GFP_ATOMIC); 557 } 558 } 559 EXPORT_SYMBOL_GPL(__netdev_watchdog_up); 560 561 static void dev_watchdog_up(struct net_device *dev) 562 { 563 __netdev_watchdog_up(dev); 564 } 565 566 static void dev_watchdog_down(struct net_device *dev) 567 { 568 netif_tx_lock_bh(dev); 569 if (del_timer(&dev->watchdog_timer)) 570 netdev_put(dev, &dev->watchdog_dev_tracker); 571 netif_tx_unlock_bh(dev); 572 } 573 574 /** 575 * netif_carrier_on - set carrier 576 * @dev: network device 577 * 578 * Device has detected acquisition of carrier. 579 */ 580 void netif_carrier_on(struct net_device *dev) 581 { 582 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 583 if (dev->reg_state == NETREG_UNINITIALIZED) 584 return; 585 atomic_inc(&dev->carrier_up_count); 586 linkwatch_fire_event(dev); 587 if (netif_running(dev)) 588 __netdev_watchdog_up(dev); 589 } 590 } 591 EXPORT_SYMBOL(netif_carrier_on); 592 593 /** 594 * netif_carrier_off - clear carrier 595 * @dev: network device 596 * 597 * Device has detected loss of carrier. 598 */ 599 void netif_carrier_off(struct net_device *dev) 600 { 601 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 602 if (dev->reg_state == NETREG_UNINITIALIZED) 603 return; 604 atomic_inc(&dev->carrier_down_count); 605 linkwatch_fire_event(dev); 606 } 607 } 608 EXPORT_SYMBOL(netif_carrier_off); 609 610 /** 611 * netif_carrier_event - report carrier state event 612 * @dev: network device 613 * 614 * Device has detected a carrier event but the carrier state wasn't changed. 615 * Use in drivers when querying carrier state asynchronously, to avoid missing 616 * events (link flaps) if link recovers before it's queried. 617 */ 618 void netif_carrier_event(struct net_device *dev) 619 { 620 if (dev->reg_state == NETREG_UNINITIALIZED) 621 return; 622 atomic_inc(&dev->carrier_up_count); 623 atomic_inc(&dev->carrier_down_count); 624 linkwatch_fire_event(dev); 625 } 626 EXPORT_SYMBOL_GPL(netif_carrier_event); 627 628 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 629 under all circumstances. It is difficult to invent anything faster or 630 cheaper. 631 */ 632 633 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 634 struct sk_buff **to_free) 635 { 636 dev_core_stats_tx_dropped_inc(skb->dev); 637 __qdisc_drop(skb, to_free); 638 return NET_XMIT_CN; 639 } 640 641 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 642 { 643 return NULL; 644 } 645 646 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 647 .id = "noop", 648 .priv_size = 0, 649 .enqueue = noop_enqueue, 650 .dequeue = noop_dequeue, 651 .peek = noop_dequeue, 652 .owner = THIS_MODULE, 653 }; 654 655 static struct netdev_queue noop_netdev_queue = { 656 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc), 657 RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc), 658 }; 659 660 struct Qdisc noop_qdisc = { 661 .enqueue = noop_enqueue, 662 .dequeue = noop_dequeue, 663 .flags = TCQ_F_BUILTIN, 664 .ops = &noop_qdisc_ops, 665 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 666 .dev_queue = &noop_netdev_queue, 667 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 668 .gso_skb = { 669 .next = (struct sk_buff *)&noop_qdisc.gso_skb, 670 .prev = (struct sk_buff *)&noop_qdisc.gso_skb, 671 .qlen = 0, 672 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock), 673 }, 674 .skb_bad_txq = { 675 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 676 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 677 .qlen = 0, 678 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock), 679 }, 680 .owner = -1, 681 }; 682 EXPORT_SYMBOL(noop_qdisc); 683 684 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt, 685 struct netlink_ext_ack *extack) 686 { 687 /* register_qdisc() assigns a default of noop_enqueue if unset, 688 * but __dev_queue_xmit() treats noqueue only as such 689 * if this is NULL - so clear it here. */ 690 qdisc->enqueue = NULL; 691 return 0; 692 } 693 694 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 695 .id = "noqueue", 696 .priv_size = 0, 697 .init = noqueue_init, 698 .enqueue = noop_enqueue, 699 .dequeue = noop_dequeue, 700 .peek = noop_dequeue, 701 .owner = THIS_MODULE, 702 }; 703 704 const u8 sch_default_prio2band[TC_PRIO_MAX + 1] = { 705 1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 706 }; 707 EXPORT_SYMBOL(sch_default_prio2band); 708 709 /* 3-band FIFO queue: old style, but should be a bit faster than 710 generic prio+fifo combination. 711 */ 712 713 #define PFIFO_FAST_BANDS 3 714 715 /* 716 * Private data for a pfifo_fast scheduler containing: 717 * - rings for priority bands 718 */ 719 struct pfifo_fast_priv { 720 struct skb_array q[PFIFO_FAST_BANDS]; 721 }; 722 723 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv, 724 int band) 725 { 726 return &priv->q[band]; 727 } 728 729 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 730 struct sk_buff **to_free) 731 { 732 int band = sch_default_prio2band[skb->priority & TC_PRIO_MAX]; 733 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 734 struct skb_array *q = band2list(priv, band); 735 unsigned int pkt_len = qdisc_pkt_len(skb); 736 int err; 737 738 err = skb_array_produce(q, skb); 739 740 if (unlikely(err)) { 741 if (qdisc_is_percpu_stats(qdisc)) 742 return qdisc_drop_cpu(skb, qdisc, to_free); 743 else 744 return qdisc_drop(skb, qdisc, to_free); 745 } 746 747 qdisc_update_stats_at_enqueue(qdisc, pkt_len); 748 return NET_XMIT_SUCCESS; 749 } 750 751 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 752 { 753 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 754 struct sk_buff *skb = NULL; 755 bool need_retry = true; 756 int band; 757 758 retry: 759 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 760 struct skb_array *q = band2list(priv, band); 761 762 if (__skb_array_empty(q)) 763 continue; 764 765 skb = __skb_array_consume(q); 766 } 767 if (likely(skb)) { 768 qdisc_update_stats_at_dequeue(qdisc, skb); 769 } else if (need_retry && 770 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) { 771 /* Delay clearing the STATE_MISSED here to reduce 772 * the overhead of the second spin_trylock() in 773 * qdisc_run_begin() and __netif_schedule() calling 774 * in qdisc_run_end(). 775 */ 776 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 777 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 778 779 /* Make sure dequeuing happens after clearing 780 * STATE_MISSED. 781 */ 782 smp_mb__after_atomic(); 783 784 need_retry = false; 785 786 goto retry; 787 } 788 789 return skb; 790 } 791 792 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 793 { 794 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 795 struct sk_buff *skb = NULL; 796 int band; 797 798 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 799 struct skb_array *q = band2list(priv, band); 800 801 skb = __skb_array_peek(q); 802 } 803 804 return skb; 805 } 806 807 static void pfifo_fast_reset(struct Qdisc *qdisc) 808 { 809 int i, band; 810 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 811 812 for (band = 0; band < PFIFO_FAST_BANDS; band++) { 813 struct skb_array *q = band2list(priv, band); 814 struct sk_buff *skb; 815 816 /* NULL ring is possible if destroy path is due to a failed 817 * skb_array_init() in pfifo_fast_init() case. 818 */ 819 if (!q->ring.queue) 820 continue; 821 822 while ((skb = __skb_array_consume(q)) != NULL) 823 kfree_skb(skb); 824 } 825 826 if (qdisc_is_percpu_stats(qdisc)) { 827 for_each_possible_cpu(i) { 828 struct gnet_stats_queue *q; 829 830 q = per_cpu_ptr(qdisc->cpu_qstats, i); 831 q->backlog = 0; 832 q->qlen = 0; 833 } 834 } 835 } 836 837 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 838 { 839 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 840 841 memcpy(&opt.priomap, sch_default_prio2band, TC_PRIO_MAX + 1); 842 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 843 goto nla_put_failure; 844 return skb->len; 845 846 nla_put_failure: 847 return -1; 848 } 849 850 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt, 851 struct netlink_ext_ack *extack) 852 { 853 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len; 854 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 855 int prio; 856 857 /* guard against zero length rings */ 858 if (!qlen) 859 return -EINVAL; 860 861 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 862 struct skb_array *q = band2list(priv, prio); 863 int err; 864 865 err = skb_array_init(q, qlen, GFP_KERNEL); 866 if (err) 867 return -ENOMEM; 868 } 869 870 /* Can by-pass the queue discipline */ 871 qdisc->flags |= TCQ_F_CAN_BYPASS; 872 return 0; 873 } 874 875 static void pfifo_fast_destroy(struct Qdisc *sch) 876 { 877 struct pfifo_fast_priv *priv = qdisc_priv(sch); 878 int prio; 879 880 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 881 struct skb_array *q = band2list(priv, prio); 882 883 /* NULL ring is possible if destroy path is due to a failed 884 * skb_array_init() in pfifo_fast_init() case. 885 */ 886 if (!q->ring.queue) 887 continue; 888 /* Destroy ring but no need to kfree_skb because a call to 889 * pfifo_fast_reset() has already done that work. 890 */ 891 ptr_ring_cleanup(&q->ring, NULL); 892 } 893 } 894 895 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch, 896 unsigned int new_len) 897 { 898 struct pfifo_fast_priv *priv = qdisc_priv(sch); 899 struct skb_array *bands[PFIFO_FAST_BANDS]; 900 int prio; 901 902 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 903 struct skb_array *q = band2list(priv, prio); 904 905 bands[prio] = q; 906 } 907 908 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len, 909 GFP_KERNEL); 910 } 911 912 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 913 .id = "pfifo_fast", 914 .priv_size = sizeof(struct pfifo_fast_priv), 915 .enqueue = pfifo_fast_enqueue, 916 .dequeue = pfifo_fast_dequeue, 917 .peek = pfifo_fast_peek, 918 .init = pfifo_fast_init, 919 .destroy = pfifo_fast_destroy, 920 .reset = pfifo_fast_reset, 921 .dump = pfifo_fast_dump, 922 .change_tx_queue_len = pfifo_fast_change_tx_queue_len, 923 .owner = THIS_MODULE, 924 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS, 925 }; 926 EXPORT_SYMBOL(pfifo_fast_ops); 927 928 static struct lock_class_key qdisc_tx_busylock; 929 930 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 931 const struct Qdisc_ops *ops, 932 struct netlink_ext_ack *extack) 933 { 934 struct Qdisc *sch; 935 unsigned int size = sizeof(*sch) + ops->priv_size; 936 int err = -ENOBUFS; 937 struct net_device *dev; 938 939 if (!dev_queue) { 940 NL_SET_ERR_MSG(extack, "No device queue given"); 941 err = -EINVAL; 942 goto errout; 943 } 944 945 dev = dev_queue->dev; 946 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue)); 947 948 if (!sch) 949 goto errout; 950 __skb_queue_head_init(&sch->gso_skb); 951 __skb_queue_head_init(&sch->skb_bad_txq); 952 gnet_stats_basic_sync_init(&sch->bstats); 953 lockdep_register_key(&sch->root_lock_key); 954 spin_lock_init(&sch->q.lock); 955 lockdep_set_class(&sch->q.lock, &sch->root_lock_key); 956 957 if (ops->static_flags & TCQ_F_CPUSTATS) { 958 sch->cpu_bstats = 959 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync); 960 if (!sch->cpu_bstats) 961 goto errout1; 962 963 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue); 964 if (!sch->cpu_qstats) { 965 free_percpu(sch->cpu_bstats); 966 goto errout1; 967 } 968 } 969 970 spin_lock_init(&sch->busylock); 971 lockdep_set_class(&sch->busylock, 972 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 973 974 /* seqlock has the same scope of busylock, for NOLOCK qdisc */ 975 spin_lock_init(&sch->seqlock); 976 lockdep_set_class(&sch->seqlock, 977 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 978 979 sch->ops = ops; 980 sch->flags = ops->static_flags; 981 sch->enqueue = ops->enqueue; 982 sch->dequeue = ops->dequeue; 983 sch->dev_queue = dev_queue; 984 sch->owner = -1; 985 netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL); 986 refcount_set(&sch->refcnt, 1); 987 988 return sch; 989 errout1: 990 lockdep_unregister_key(&sch->root_lock_key); 991 kfree(sch); 992 errout: 993 return ERR_PTR(err); 994 } 995 996 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 997 const struct Qdisc_ops *ops, 998 unsigned int parentid, 999 struct netlink_ext_ack *extack) 1000 { 1001 struct Qdisc *sch; 1002 1003 if (!try_module_get(ops->owner)) { 1004 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter"); 1005 return NULL; 1006 } 1007 1008 sch = qdisc_alloc(dev_queue, ops, extack); 1009 if (IS_ERR(sch)) { 1010 module_put(ops->owner); 1011 return NULL; 1012 } 1013 sch->parent = parentid; 1014 1015 if (!ops->init || ops->init(sch, NULL, extack) == 0) { 1016 trace_qdisc_create(ops, dev_queue->dev, parentid); 1017 return sch; 1018 } 1019 1020 qdisc_put(sch); 1021 return NULL; 1022 } 1023 EXPORT_SYMBOL(qdisc_create_dflt); 1024 1025 /* Under qdisc_lock(qdisc) and BH! */ 1026 1027 void qdisc_reset(struct Qdisc *qdisc) 1028 { 1029 const struct Qdisc_ops *ops = qdisc->ops; 1030 1031 trace_qdisc_reset(qdisc); 1032 1033 if (ops->reset) 1034 ops->reset(qdisc); 1035 1036 __skb_queue_purge(&qdisc->gso_skb); 1037 __skb_queue_purge(&qdisc->skb_bad_txq); 1038 1039 qdisc->q.qlen = 0; 1040 qdisc->qstats.backlog = 0; 1041 } 1042 EXPORT_SYMBOL(qdisc_reset); 1043 1044 void qdisc_free(struct Qdisc *qdisc) 1045 { 1046 if (qdisc_is_percpu_stats(qdisc)) { 1047 free_percpu(qdisc->cpu_bstats); 1048 free_percpu(qdisc->cpu_qstats); 1049 } 1050 1051 kfree(qdisc); 1052 } 1053 1054 static void qdisc_free_cb(struct rcu_head *head) 1055 { 1056 struct Qdisc *q = container_of(head, struct Qdisc, rcu); 1057 1058 qdisc_free(q); 1059 } 1060 1061 static void __qdisc_destroy(struct Qdisc *qdisc) 1062 { 1063 const struct Qdisc_ops *ops = qdisc->ops; 1064 struct net_device *dev = qdisc_dev(qdisc); 1065 1066 #ifdef CONFIG_NET_SCHED 1067 qdisc_hash_del(qdisc); 1068 1069 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 1070 #endif 1071 gen_kill_estimator(&qdisc->rate_est); 1072 1073 qdisc_reset(qdisc); 1074 1075 1076 if (ops->destroy) 1077 ops->destroy(qdisc); 1078 1079 lockdep_unregister_key(&qdisc->root_lock_key); 1080 module_put(ops->owner); 1081 netdev_put(dev, &qdisc->dev_tracker); 1082 1083 trace_qdisc_destroy(qdisc); 1084 1085 call_rcu(&qdisc->rcu, qdisc_free_cb); 1086 } 1087 1088 void qdisc_destroy(struct Qdisc *qdisc) 1089 { 1090 if (qdisc->flags & TCQ_F_BUILTIN) 1091 return; 1092 1093 __qdisc_destroy(qdisc); 1094 } 1095 1096 void qdisc_put(struct Qdisc *qdisc) 1097 { 1098 if (!qdisc) 1099 return; 1100 1101 if (qdisc->flags & TCQ_F_BUILTIN || 1102 !refcount_dec_and_test(&qdisc->refcnt)) 1103 return; 1104 1105 __qdisc_destroy(qdisc); 1106 } 1107 EXPORT_SYMBOL(qdisc_put); 1108 1109 /* Version of qdisc_put() that is called with rtnl mutex unlocked. 1110 * Intended to be used as optimization, this function only takes rtnl lock if 1111 * qdisc reference counter reached zero. 1112 */ 1113 1114 void qdisc_put_unlocked(struct Qdisc *qdisc) 1115 { 1116 if (qdisc->flags & TCQ_F_BUILTIN || 1117 !refcount_dec_and_rtnl_lock(&qdisc->refcnt)) 1118 return; 1119 1120 __qdisc_destroy(qdisc); 1121 rtnl_unlock(); 1122 } 1123 EXPORT_SYMBOL(qdisc_put_unlocked); 1124 1125 /* Attach toplevel qdisc to device queue. */ 1126 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 1127 struct Qdisc *qdisc) 1128 { 1129 struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1130 spinlock_t *root_lock; 1131 1132 root_lock = qdisc_lock(oqdisc); 1133 spin_lock_bh(root_lock); 1134 1135 /* ... and graft new one */ 1136 if (qdisc == NULL) 1137 qdisc = &noop_qdisc; 1138 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1139 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1140 1141 spin_unlock_bh(root_lock); 1142 1143 return oqdisc; 1144 } 1145 EXPORT_SYMBOL(dev_graft_qdisc); 1146 1147 static void shutdown_scheduler_queue(struct net_device *dev, 1148 struct netdev_queue *dev_queue, 1149 void *_qdisc_default) 1150 { 1151 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1152 struct Qdisc *qdisc_default = _qdisc_default; 1153 1154 if (qdisc) { 1155 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1156 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default); 1157 1158 qdisc_put(qdisc); 1159 } 1160 } 1161 1162 static void attach_one_default_qdisc(struct net_device *dev, 1163 struct netdev_queue *dev_queue, 1164 void *_unused) 1165 { 1166 struct Qdisc *qdisc; 1167 const struct Qdisc_ops *ops = default_qdisc_ops; 1168 1169 if (dev->priv_flags & IFF_NO_QUEUE) 1170 ops = &noqueue_qdisc_ops; 1171 else if(dev->type == ARPHRD_CAN) 1172 ops = &pfifo_fast_ops; 1173 1174 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL); 1175 if (!qdisc) 1176 return; 1177 1178 if (!netif_is_multiqueue(dev)) 1179 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1180 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1181 } 1182 1183 static void attach_default_qdiscs(struct net_device *dev) 1184 { 1185 struct netdev_queue *txq; 1186 struct Qdisc *qdisc; 1187 1188 txq = netdev_get_tx_queue(dev, 0); 1189 1190 if (!netif_is_multiqueue(dev) || 1191 dev->priv_flags & IFF_NO_QUEUE) { 1192 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1193 qdisc = rtnl_dereference(txq->qdisc_sleeping); 1194 rcu_assign_pointer(dev->qdisc, qdisc); 1195 qdisc_refcount_inc(qdisc); 1196 } else { 1197 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL); 1198 if (qdisc) { 1199 rcu_assign_pointer(dev->qdisc, qdisc); 1200 qdisc->ops->attach(qdisc); 1201 } 1202 } 1203 qdisc = rtnl_dereference(dev->qdisc); 1204 1205 /* Detect default qdisc setup/init failed and fallback to "noqueue" */ 1206 if (qdisc == &noop_qdisc) { 1207 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n", 1208 default_qdisc_ops->id, noqueue_qdisc_ops.id); 1209 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1210 dev->priv_flags |= IFF_NO_QUEUE; 1211 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1212 qdisc = rtnl_dereference(txq->qdisc_sleeping); 1213 rcu_assign_pointer(dev->qdisc, qdisc); 1214 qdisc_refcount_inc(qdisc); 1215 dev->priv_flags ^= IFF_NO_QUEUE; 1216 } 1217 1218 #ifdef CONFIG_NET_SCHED 1219 if (qdisc != &noop_qdisc) 1220 qdisc_hash_add(qdisc, false); 1221 #endif 1222 } 1223 1224 static void transition_one_qdisc(struct net_device *dev, 1225 struct netdev_queue *dev_queue, 1226 void *_need_watchdog) 1227 { 1228 struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1229 int *need_watchdog_p = _need_watchdog; 1230 1231 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 1232 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 1233 1234 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 1235 if (need_watchdog_p) { 1236 WRITE_ONCE(dev_queue->trans_start, 0); 1237 *need_watchdog_p = 1; 1238 } 1239 } 1240 1241 void dev_activate(struct net_device *dev) 1242 { 1243 int need_watchdog; 1244 1245 /* No queueing discipline is attached to device; 1246 * create default one for devices, which need queueing 1247 * and noqueue_qdisc for virtual interfaces 1248 */ 1249 1250 if (rtnl_dereference(dev->qdisc) == &noop_qdisc) 1251 attach_default_qdiscs(dev); 1252 1253 if (!netif_carrier_ok(dev)) 1254 /* Delay activation until next carrier-on event */ 1255 return; 1256 1257 need_watchdog = 0; 1258 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 1259 if (dev_ingress_queue(dev)) 1260 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 1261 1262 if (need_watchdog) { 1263 netif_trans_update(dev); 1264 dev_watchdog_up(dev); 1265 } 1266 } 1267 EXPORT_SYMBOL(dev_activate); 1268 1269 static void qdisc_deactivate(struct Qdisc *qdisc) 1270 { 1271 if (qdisc->flags & TCQ_F_BUILTIN) 1272 return; 1273 1274 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 1275 } 1276 1277 static void dev_deactivate_queue(struct net_device *dev, 1278 struct netdev_queue *dev_queue, 1279 void *_qdisc_default) 1280 { 1281 struct Qdisc *qdisc_default = _qdisc_default; 1282 struct Qdisc *qdisc; 1283 1284 qdisc = rtnl_dereference(dev_queue->qdisc); 1285 if (qdisc) { 1286 qdisc_deactivate(qdisc); 1287 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1288 } 1289 } 1290 1291 static void dev_reset_queue(struct net_device *dev, 1292 struct netdev_queue *dev_queue, 1293 void *_unused) 1294 { 1295 struct Qdisc *qdisc; 1296 bool nolock; 1297 1298 qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1299 if (!qdisc) 1300 return; 1301 1302 nolock = qdisc->flags & TCQ_F_NOLOCK; 1303 1304 if (nolock) 1305 spin_lock_bh(&qdisc->seqlock); 1306 spin_lock_bh(qdisc_lock(qdisc)); 1307 1308 qdisc_reset(qdisc); 1309 1310 spin_unlock_bh(qdisc_lock(qdisc)); 1311 if (nolock) { 1312 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 1313 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 1314 spin_unlock_bh(&qdisc->seqlock); 1315 } 1316 } 1317 1318 static bool some_qdisc_is_busy(struct net_device *dev) 1319 { 1320 unsigned int i; 1321 1322 for (i = 0; i < dev->num_tx_queues; i++) { 1323 struct netdev_queue *dev_queue; 1324 spinlock_t *root_lock; 1325 struct Qdisc *q; 1326 int val; 1327 1328 dev_queue = netdev_get_tx_queue(dev, i); 1329 q = rtnl_dereference(dev_queue->qdisc_sleeping); 1330 1331 root_lock = qdisc_lock(q); 1332 spin_lock_bh(root_lock); 1333 1334 val = (qdisc_is_running(q) || 1335 test_bit(__QDISC_STATE_SCHED, &q->state)); 1336 1337 spin_unlock_bh(root_lock); 1338 1339 if (val) 1340 return true; 1341 } 1342 return false; 1343 } 1344 1345 /** 1346 * dev_deactivate_many - deactivate transmissions on several devices 1347 * @head: list of devices to deactivate 1348 * 1349 * This function returns only when all outstanding transmissions 1350 * have completed, unless all devices are in dismantle phase. 1351 */ 1352 void dev_deactivate_many(struct list_head *head) 1353 { 1354 struct net_device *dev; 1355 1356 list_for_each_entry(dev, head, close_list) { 1357 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 1358 &noop_qdisc); 1359 if (dev_ingress_queue(dev)) 1360 dev_deactivate_queue(dev, dev_ingress_queue(dev), 1361 &noop_qdisc); 1362 1363 dev_watchdog_down(dev); 1364 } 1365 1366 /* Wait for outstanding qdisc-less dev_queue_xmit calls or 1367 * outstanding qdisc enqueuing calls. 1368 * This is avoided if all devices are in dismantle phase : 1369 * Caller will call synchronize_net() for us 1370 */ 1371 synchronize_net(); 1372 1373 list_for_each_entry(dev, head, close_list) { 1374 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL); 1375 1376 if (dev_ingress_queue(dev)) 1377 dev_reset_queue(dev, dev_ingress_queue(dev), NULL); 1378 } 1379 1380 /* Wait for outstanding qdisc_run calls. */ 1381 list_for_each_entry(dev, head, close_list) { 1382 while (some_qdisc_is_busy(dev)) { 1383 /* wait_event() would avoid this sleep-loop but would 1384 * require expensive checks in the fast paths of packet 1385 * processing which isn't worth it. 1386 */ 1387 schedule_timeout_uninterruptible(1); 1388 } 1389 } 1390 } 1391 1392 void dev_deactivate(struct net_device *dev) 1393 { 1394 LIST_HEAD(single); 1395 1396 list_add(&dev->close_list, &single); 1397 dev_deactivate_many(&single); 1398 list_del(&single); 1399 } 1400 EXPORT_SYMBOL(dev_deactivate); 1401 1402 static int qdisc_change_tx_queue_len(struct net_device *dev, 1403 struct netdev_queue *dev_queue) 1404 { 1405 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1406 const struct Qdisc_ops *ops = qdisc->ops; 1407 1408 if (ops->change_tx_queue_len) 1409 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len); 1410 return 0; 1411 } 1412 1413 void dev_qdisc_change_real_num_tx(struct net_device *dev, 1414 unsigned int new_real_tx) 1415 { 1416 struct Qdisc *qdisc = rtnl_dereference(dev->qdisc); 1417 1418 if (qdisc->ops->change_real_num_tx) 1419 qdisc->ops->change_real_num_tx(qdisc, new_real_tx); 1420 } 1421 1422 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx) 1423 { 1424 #ifdef CONFIG_NET_SCHED 1425 struct net_device *dev = qdisc_dev(sch); 1426 struct Qdisc *qdisc; 1427 unsigned int i; 1428 1429 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) { 1430 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping); 1431 /* Only update the default qdiscs we created, 1432 * qdiscs with handles are always hashed. 1433 */ 1434 if (qdisc != &noop_qdisc && !qdisc->handle) 1435 qdisc_hash_del(qdisc); 1436 } 1437 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) { 1438 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping); 1439 if (qdisc != &noop_qdisc && !qdisc->handle) 1440 qdisc_hash_add(qdisc, false); 1441 } 1442 #endif 1443 } 1444 EXPORT_SYMBOL(mq_change_real_num_tx); 1445 1446 int dev_qdisc_change_tx_queue_len(struct net_device *dev) 1447 { 1448 bool up = dev->flags & IFF_UP; 1449 unsigned int i; 1450 int ret = 0; 1451 1452 if (up) 1453 dev_deactivate(dev); 1454 1455 for (i = 0; i < dev->num_tx_queues; i++) { 1456 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]); 1457 1458 /* TODO: revert changes on a partial failure */ 1459 if (ret) 1460 break; 1461 } 1462 1463 if (up) 1464 dev_activate(dev); 1465 return ret; 1466 } 1467 1468 static void dev_init_scheduler_queue(struct net_device *dev, 1469 struct netdev_queue *dev_queue, 1470 void *_qdisc) 1471 { 1472 struct Qdisc *qdisc = _qdisc; 1473 1474 rcu_assign_pointer(dev_queue->qdisc, qdisc); 1475 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1476 } 1477 1478 void dev_init_scheduler(struct net_device *dev) 1479 { 1480 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1481 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 1482 if (dev_ingress_queue(dev)) 1483 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1484 1485 timer_setup(&dev->watchdog_timer, dev_watchdog, 0); 1486 } 1487 1488 void dev_shutdown(struct net_device *dev) 1489 { 1490 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1491 if (dev_ingress_queue(dev)) 1492 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1493 qdisc_put(rtnl_dereference(dev->qdisc)); 1494 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1495 1496 WARN_ON(timer_pending(&dev->watchdog_timer)); 1497 } 1498 1499 /** 1500 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division 1501 * @rate: Rate to compute reciprocal division values of 1502 * @mult: Multiplier for reciprocal division 1503 * @shift: Shift for reciprocal division 1504 * 1505 * The multiplier and shift for reciprocal division by rate are stored 1506 * in mult and shift. 1507 * 1508 * The deal here is to replace a divide by a reciprocal one 1509 * in fast path (a reciprocal divide is a multiply and a shift) 1510 * 1511 * Normal formula would be : 1512 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 1513 * 1514 * We compute mult/shift to use instead : 1515 * time_in_ns = (len * mult) >> shift; 1516 * 1517 * We try to get the highest possible mult value for accuracy, 1518 * but have to make sure no overflows will ever happen. 1519 * 1520 * reciprocal_value() is not used here it doesn't handle 64-bit values. 1521 */ 1522 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift) 1523 { 1524 u64 factor = NSEC_PER_SEC; 1525 1526 *mult = 1; 1527 *shift = 0; 1528 1529 if (rate <= 0) 1530 return; 1531 1532 for (;;) { 1533 *mult = div64_u64(factor, rate); 1534 if (*mult & (1U << 31) || factor & (1ULL << 63)) 1535 break; 1536 factor <<= 1; 1537 (*shift)++; 1538 } 1539 } 1540 1541 void psched_ratecfg_precompute(struct psched_ratecfg *r, 1542 const struct tc_ratespec *conf, 1543 u64 rate64) 1544 { 1545 memset(r, 0, sizeof(*r)); 1546 r->overhead = conf->overhead; 1547 r->mpu = conf->mpu; 1548 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 1549 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 1550 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift); 1551 } 1552 EXPORT_SYMBOL(psched_ratecfg_precompute); 1553 1554 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64) 1555 { 1556 r->rate_pkts_ps = pktrate64; 1557 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift); 1558 } 1559 EXPORT_SYMBOL(psched_ppscfg_precompute); 1560 1561 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, 1562 struct tcf_proto *tp_head) 1563 { 1564 /* Protected with chain0->filter_chain_lock. 1565 * Can't access chain directly because tp_head can be NULL. 1566 */ 1567 struct mini_Qdisc *miniq_old = 1568 rcu_dereference_protected(*miniqp->p_miniq, 1); 1569 struct mini_Qdisc *miniq; 1570 1571 if (!tp_head) { 1572 RCU_INIT_POINTER(*miniqp->p_miniq, NULL); 1573 } else { 1574 miniq = miniq_old != &miniqp->miniq1 ? 1575 &miniqp->miniq1 : &miniqp->miniq2; 1576 1577 /* We need to make sure that readers won't see the miniq 1578 * we are about to modify. So ensure that at least one RCU 1579 * grace period has elapsed since the miniq was made 1580 * inactive. 1581 */ 1582 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1583 cond_synchronize_rcu(miniq->rcu_state); 1584 else if (!poll_state_synchronize_rcu(miniq->rcu_state)) 1585 synchronize_rcu_expedited(); 1586 1587 miniq->filter_list = tp_head; 1588 rcu_assign_pointer(*miniqp->p_miniq, miniq); 1589 } 1590 1591 if (miniq_old) 1592 /* This is counterpart of the rcu sync above. We need to 1593 * block potential new user of miniq_old until all readers 1594 * are not seeing it. 1595 */ 1596 miniq_old->rcu_state = start_poll_synchronize_rcu(); 1597 } 1598 EXPORT_SYMBOL(mini_qdisc_pair_swap); 1599 1600 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, 1601 struct tcf_block *block) 1602 { 1603 miniqp->miniq1.block = block; 1604 miniqp->miniq2.block = block; 1605 } 1606 EXPORT_SYMBOL(mini_qdisc_pair_block_init); 1607 1608 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, 1609 struct mini_Qdisc __rcu **p_miniq) 1610 { 1611 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats; 1612 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats; 1613 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats; 1614 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats; 1615 miniqp->miniq1.rcu_state = get_state_synchronize_rcu(); 1616 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state; 1617 miniqp->p_miniq = p_miniq; 1618 } 1619 EXPORT_SYMBOL(mini_qdisc_pair_init); 1620