1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_generic.c Generic packet scheduler routines. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 7 * - Ingress support 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/module.h> 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/netdevice.h> 18 #include <linux/skbuff.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/init.h> 21 #include <linux/rcupdate.h> 22 #include <linux/list.h> 23 #include <linux/slab.h> 24 #include <linux/if_vlan.h> 25 #include <linux/skb_array.h> 26 #include <linux/if_macvlan.h> 27 #include <net/sch_generic.h> 28 #include <net/pkt_sched.h> 29 #include <net/dst.h> 30 #include <net/hotdata.h> 31 #include <trace/events/qdisc.h> 32 #include <trace/events/net.h> 33 #include <net/xfrm.h> 34 35 /* Qdisc to use by default */ 36 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 37 EXPORT_SYMBOL(default_qdisc_ops); 38 39 static void qdisc_maybe_clear_missed(struct Qdisc *q, 40 const struct netdev_queue *txq) 41 { 42 clear_bit(__QDISC_STATE_MISSED, &q->state); 43 44 /* Make sure the below netif_xmit_frozen_or_stopped() 45 * checking happens after clearing STATE_MISSED. 46 */ 47 smp_mb__after_atomic(); 48 49 /* Checking netif_xmit_frozen_or_stopped() again to 50 * make sure STATE_MISSED is set if the STATE_MISSED 51 * set by netif_tx_wake_queue()'s rescheduling of 52 * net_tx_action() is cleared by the above clear_bit(). 53 */ 54 if (!netif_xmit_frozen_or_stopped(txq)) 55 set_bit(__QDISC_STATE_MISSED, &q->state); 56 else 57 set_bit(__QDISC_STATE_DRAINING, &q->state); 58 } 59 60 /* Main transmission queue. */ 61 62 /* Modifications to data participating in scheduling must be protected with 63 * qdisc_lock(qdisc) spinlock. 64 * 65 * The idea is the following: 66 * - enqueue, dequeue are serialized via qdisc root lock 67 * - ingress filtering is also serialized via qdisc root lock 68 * - updates to tree and tree walking are only done under the rtnl mutex. 69 */ 70 71 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL) 72 73 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q) 74 { 75 const struct netdev_queue *txq = q->dev_queue; 76 spinlock_t *lock = NULL; 77 struct sk_buff *skb; 78 79 if (q->flags & TCQ_F_NOLOCK) { 80 lock = qdisc_lock(q); 81 spin_lock(lock); 82 } 83 84 skb = skb_peek(&q->skb_bad_txq); 85 if (skb) { 86 /* check the reason of requeuing without tx lock first */ 87 txq = skb_get_tx_queue(txq->dev, skb); 88 if (!netif_xmit_frozen_or_stopped(txq)) { 89 skb = __skb_dequeue(&q->skb_bad_txq); 90 if (qdisc_is_percpu_stats(q)) { 91 qdisc_qstats_cpu_backlog_dec(q, skb); 92 qdisc_qstats_cpu_qlen_dec(q); 93 } else { 94 qdisc_qstats_backlog_dec(q, skb); 95 q->q.qlen--; 96 } 97 } else { 98 skb = SKB_XOFF_MAGIC; 99 qdisc_maybe_clear_missed(q, txq); 100 } 101 } 102 103 if (lock) 104 spin_unlock(lock); 105 106 return skb; 107 } 108 109 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q) 110 { 111 struct sk_buff *skb = skb_peek(&q->skb_bad_txq); 112 113 if (unlikely(skb)) 114 skb = __skb_dequeue_bad_txq(q); 115 116 return skb; 117 } 118 119 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q, 120 struct sk_buff *skb) 121 { 122 spinlock_t *lock = NULL; 123 124 if (q->flags & TCQ_F_NOLOCK) { 125 lock = qdisc_lock(q); 126 spin_lock(lock); 127 } 128 129 __skb_queue_tail(&q->skb_bad_txq, skb); 130 131 if (qdisc_is_percpu_stats(q)) { 132 qdisc_qstats_cpu_backlog_inc(q, skb); 133 qdisc_qstats_cpu_qlen_inc(q); 134 } else { 135 qdisc_qstats_backlog_inc(q, skb); 136 q->q.qlen++; 137 } 138 139 if (lock) 140 spin_unlock(lock); 141 } 142 143 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 144 { 145 spinlock_t *lock = NULL; 146 147 if (q->flags & TCQ_F_NOLOCK) { 148 lock = qdisc_lock(q); 149 spin_lock(lock); 150 } 151 152 while (skb) { 153 struct sk_buff *next = skb->next; 154 155 __skb_queue_tail(&q->gso_skb, skb); 156 157 /* it's still part of the queue */ 158 if (qdisc_is_percpu_stats(q)) { 159 qdisc_qstats_cpu_requeues_inc(q); 160 qdisc_qstats_cpu_backlog_inc(q, skb); 161 qdisc_qstats_cpu_qlen_inc(q); 162 } else { 163 q->qstats.requeues++; 164 qdisc_qstats_backlog_inc(q, skb); 165 q->q.qlen++; 166 } 167 168 skb = next; 169 } 170 171 if (lock) { 172 spin_unlock(lock); 173 set_bit(__QDISC_STATE_MISSED, &q->state); 174 } else { 175 __netif_schedule(q); 176 } 177 } 178 179 static void try_bulk_dequeue_skb(struct Qdisc *q, 180 struct sk_buff *skb, 181 const struct netdev_queue *txq, 182 int *packets) 183 { 184 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len; 185 186 while (bytelimit > 0) { 187 struct sk_buff *nskb = q->dequeue(q); 188 189 if (!nskb) 190 break; 191 192 bytelimit -= nskb->len; /* covers GSO len */ 193 skb->next = nskb; 194 skb = nskb; 195 (*packets)++; /* GSO counts as one pkt */ 196 } 197 skb_mark_not_on_list(skb); 198 } 199 200 /* This variant of try_bulk_dequeue_skb() makes sure 201 * all skbs in the chain are for the same txq 202 */ 203 static void try_bulk_dequeue_skb_slow(struct Qdisc *q, 204 struct sk_buff *skb, 205 int *packets) 206 { 207 int mapping = skb_get_queue_mapping(skb); 208 struct sk_buff *nskb; 209 int cnt = 0; 210 211 do { 212 nskb = q->dequeue(q); 213 if (!nskb) 214 break; 215 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) { 216 qdisc_enqueue_skb_bad_txq(q, nskb); 217 break; 218 } 219 skb->next = nskb; 220 skb = nskb; 221 } while (++cnt < 8); 222 (*packets) += cnt; 223 skb_mark_not_on_list(skb); 224 } 225 226 /* Note that dequeue_skb can possibly return a SKB list (via skb->next). 227 * A requeued skb (via q->gso_skb) can also be a SKB list. 228 */ 229 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate, 230 int *packets) 231 { 232 const struct netdev_queue *txq = q->dev_queue; 233 struct sk_buff *skb = NULL; 234 235 *packets = 1; 236 if (unlikely(!skb_queue_empty(&q->gso_skb))) { 237 spinlock_t *lock = NULL; 238 239 if (q->flags & TCQ_F_NOLOCK) { 240 lock = qdisc_lock(q); 241 spin_lock(lock); 242 } 243 244 skb = skb_peek(&q->gso_skb); 245 246 /* skb may be null if another cpu pulls gso_skb off in between 247 * empty check and lock. 248 */ 249 if (!skb) { 250 if (lock) 251 spin_unlock(lock); 252 goto validate; 253 } 254 255 /* skb in gso_skb were already validated */ 256 *validate = false; 257 if (xfrm_offload(skb)) 258 *validate = true; 259 /* check the reason of requeuing without tx lock first */ 260 txq = skb_get_tx_queue(txq->dev, skb); 261 if (!netif_xmit_frozen_or_stopped(txq)) { 262 skb = __skb_dequeue(&q->gso_skb); 263 if (qdisc_is_percpu_stats(q)) { 264 qdisc_qstats_cpu_backlog_dec(q, skb); 265 qdisc_qstats_cpu_qlen_dec(q); 266 } else { 267 qdisc_qstats_backlog_dec(q, skb); 268 q->q.qlen--; 269 } 270 } else { 271 skb = NULL; 272 qdisc_maybe_clear_missed(q, txq); 273 } 274 if (lock) 275 spin_unlock(lock); 276 goto trace; 277 } 278 validate: 279 *validate = true; 280 281 if ((q->flags & TCQ_F_ONETXQUEUE) && 282 netif_xmit_frozen_or_stopped(txq)) { 283 qdisc_maybe_clear_missed(q, txq); 284 return skb; 285 } 286 287 skb = qdisc_dequeue_skb_bad_txq(q); 288 if (unlikely(skb)) { 289 if (skb == SKB_XOFF_MAGIC) 290 return NULL; 291 goto bulk; 292 } 293 skb = q->dequeue(q); 294 if (skb) { 295 bulk: 296 if (qdisc_may_bulk(q)) 297 try_bulk_dequeue_skb(q, skb, txq, packets); 298 else 299 try_bulk_dequeue_skb_slow(q, skb, packets); 300 } 301 trace: 302 trace_qdisc_dequeue(q, txq, *packets, skb); 303 return skb; 304 } 305 306 /* 307 * Transmit possibly several skbs, and handle the return status as 308 * required. Owning qdisc running bit guarantees that only one CPU 309 * can execute this function. 310 * 311 * Returns to the caller: 312 * false - hardware queue frozen backoff 313 * true - feel free to send more pkts 314 */ 315 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 316 struct net_device *dev, struct netdev_queue *txq, 317 spinlock_t *root_lock, bool validate) 318 { 319 int ret = NETDEV_TX_BUSY; 320 bool again = false; 321 322 /* And release qdisc */ 323 if (root_lock) 324 spin_unlock(root_lock); 325 326 /* Note that we validate skb (GSO, checksum, ...) outside of locks */ 327 if (validate) 328 skb = validate_xmit_skb_list(skb, dev, &again); 329 330 #ifdef CONFIG_XFRM_OFFLOAD 331 if (unlikely(again)) { 332 if (root_lock) 333 spin_lock(root_lock); 334 335 dev_requeue_skb(skb, q); 336 return false; 337 } 338 #endif 339 340 if (likely(skb)) { 341 HARD_TX_LOCK(dev, txq, smp_processor_id()); 342 if (!netif_xmit_frozen_or_stopped(txq)) 343 skb = dev_hard_start_xmit(skb, dev, txq, &ret); 344 else 345 qdisc_maybe_clear_missed(q, txq); 346 347 HARD_TX_UNLOCK(dev, txq); 348 } else { 349 if (root_lock) 350 spin_lock(root_lock); 351 return true; 352 } 353 354 if (root_lock) 355 spin_lock(root_lock); 356 357 if (!dev_xmit_complete(ret)) { 358 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 359 if (unlikely(ret != NETDEV_TX_BUSY)) 360 net_warn_ratelimited("BUG %s code %d qlen %d\n", 361 dev->name, ret, q->q.qlen); 362 363 dev_requeue_skb(skb, q); 364 return false; 365 } 366 367 return true; 368 } 369 370 /* 371 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 372 * 373 * running seqcount guarantees only one CPU can process 374 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 375 * this queue. 376 * 377 * netif_tx_lock serializes accesses to device driver. 378 * 379 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 380 * if one is grabbed, another must be free. 381 * 382 * Note, that this procedure can be called by a watchdog timer 383 * 384 * Returns to the caller: 385 * 0 - queue is empty or throttled. 386 * >0 - queue is not empty. 387 * 388 */ 389 static inline bool qdisc_restart(struct Qdisc *q, int *packets) 390 { 391 spinlock_t *root_lock = NULL; 392 struct netdev_queue *txq; 393 struct net_device *dev; 394 struct sk_buff *skb; 395 bool validate; 396 397 /* Dequeue packet */ 398 skb = dequeue_skb(q, &validate, packets); 399 if (unlikely(!skb)) 400 return false; 401 402 if (!(q->flags & TCQ_F_NOLOCK)) 403 root_lock = qdisc_lock(q); 404 405 dev = qdisc_dev(q); 406 txq = skb_get_tx_queue(dev, skb); 407 408 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate); 409 } 410 411 void __qdisc_run(struct Qdisc *q) 412 { 413 int quota = READ_ONCE(net_hotdata.dev_tx_weight); 414 int packets; 415 416 while (qdisc_restart(q, &packets)) { 417 quota -= packets; 418 if (quota <= 0) { 419 if (q->flags & TCQ_F_NOLOCK) 420 set_bit(__QDISC_STATE_MISSED, &q->state); 421 else 422 __netif_schedule(q); 423 424 break; 425 } 426 } 427 } 428 429 unsigned long dev_trans_start(struct net_device *dev) 430 { 431 unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start); 432 unsigned long val; 433 unsigned int i; 434 435 for (i = 1; i < dev->num_tx_queues; i++) { 436 val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start); 437 if (val && time_after(val, res)) 438 res = val; 439 } 440 441 return res; 442 } 443 EXPORT_SYMBOL(dev_trans_start); 444 445 static void netif_freeze_queues(struct net_device *dev) 446 { 447 unsigned int i; 448 int cpu; 449 450 cpu = smp_processor_id(); 451 for (i = 0; i < dev->num_tx_queues; i++) { 452 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 453 454 /* We are the only thread of execution doing a 455 * freeze, but we have to grab the _xmit_lock in 456 * order to synchronize with threads which are in 457 * the ->hard_start_xmit() handler and already 458 * checked the frozen bit. 459 */ 460 __netif_tx_lock(txq, cpu); 461 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 462 __netif_tx_unlock(txq); 463 } 464 } 465 466 void netif_tx_lock(struct net_device *dev) 467 { 468 spin_lock(&dev->tx_global_lock); 469 netif_freeze_queues(dev); 470 } 471 EXPORT_SYMBOL(netif_tx_lock); 472 473 static void netif_unfreeze_queues(struct net_device *dev) 474 { 475 unsigned int i; 476 477 for (i = 0; i < dev->num_tx_queues; i++) { 478 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 479 480 /* No need to grab the _xmit_lock here. If the 481 * queue is not stopped for another reason, we 482 * force a schedule. 483 */ 484 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 485 netif_schedule_queue(txq); 486 } 487 } 488 489 void netif_tx_unlock(struct net_device *dev) 490 { 491 netif_unfreeze_queues(dev); 492 spin_unlock(&dev->tx_global_lock); 493 } 494 EXPORT_SYMBOL(netif_tx_unlock); 495 496 static void dev_watchdog(struct timer_list *t) 497 { 498 struct net_device *dev = from_timer(dev, t, watchdog_timer); 499 bool release = true; 500 501 spin_lock(&dev->tx_global_lock); 502 if (!qdisc_tx_is_noop(dev)) { 503 if (netif_device_present(dev) && 504 netif_running(dev) && 505 netif_carrier_ok(dev)) { 506 unsigned int timedout_ms = 0; 507 unsigned int i; 508 unsigned long trans_start; 509 unsigned long oldest_start = jiffies; 510 511 for (i = 0; i < dev->num_tx_queues; i++) { 512 struct netdev_queue *txq; 513 514 txq = netdev_get_tx_queue(dev, i); 515 if (!netif_xmit_stopped(txq)) 516 continue; 517 518 /* Paired with WRITE_ONCE() + smp_mb...() in 519 * netdev_tx_sent_queue() and netif_tx_stop_queue(). 520 */ 521 smp_mb(); 522 trans_start = READ_ONCE(txq->trans_start); 523 524 if (time_after(jiffies, trans_start + dev->watchdog_timeo)) { 525 timedout_ms = jiffies_to_msecs(jiffies - trans_start); 526 atomic_long_inc(&txq->trans_timeout); 527 break; 528 } 529 if (time_after(oldest_start, trans_start)) 530 oldest_start = trans_start; 531 } 532 533 if (unlikely(timedout_ms)) { 534 trace_net_dev_xmit_timeout(dev, i); 535 netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n", 536 raw_smp_processor_id(), 537 i, timedout_ms); 538 netif_freeze_queues(dev); 539 dev->netdev_ops->ndo_tx_timeout(dev, i); 540 netif_unfreeze_queues(dev); 541 } 542 if (!mod_timer(&dev->watchdog_timer, 543 round_jiffies(oldest_start + 544 dev->watchdog_timeo))) 545 release = false; 546 } 547 } 548 spin_unlock(&dev->tx_global_lock); 549 550 if (release) 551 netdev_put(dev, &dev->watchdog_dev_tracker); 552 } 553 554 void __netdev_watchdog_up(struct net_device *dev) 555 { 556 if (dev->netdev_ops->ndo_tx_timeout) { 557 if (dev->watchdog_timeo <= 0) 558 dev->watchdog_timeo = 5*HZ; 559 if (!mod_timer(&dev->watchdog_timer, 560 round_jiffies(jiffies + dev->watchdog_timeo))) 561 netdev_hold(dev, &dev->watchdog_dev_tracker, 562 GFP_ATOMIC); 563 } 564 } 565 EXPORT_SYMBOL_GPL(__netdev_watchdog_up); 566 567 static void dev_watchdog_up(struct net_device *dev) 568 { 569 __netdev_watchdog_up(dev); 570 } 571 572 static void dev_watchdog_down(struct net_device *dev) 573 { 574 netif_tx_lock_bh(dev); 575 if (del_timer(&dev->watchdog_timer)) 576 netdev_put(dev, &dev->watchdog_dev_tracker); 577 netif_tx_unlock_bh(dev); 578 } 579 580 /** 581 * netif_carrier_on - set carrier 582 * @dev: network device 583 * 584 * Device has detected acquisition of carrier. 585 */ 586 void netif_carrier_on(struct net_device *dev) 587 { 588 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 589 if (dev->reg_state == NETREG_UNINITIALIZED) 590 return; 591 atomic_inc(&dev->carrier_up_count); 592 linkwatch_fire_event(dev); 593 if (netif_running(dev)) 594 __netdev_watchdog_up(dev); 595 } 596 } 597 EXPORT_SYMBOL(netif_carrier_on); 598 599 /** 600 * netif_carrier_off - clear carrier 601 * @dev: network device 602 * 603 * Device has detected loss of carrier. 604 */ 605 void netif_carrier_off(struct net_device *dev) 606 { 607 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 608 if (dev->reg_state == NETREG_UNINITIALIZED) 609 return; 610 atomic_inc(&dev->carrier_down_count); 611 linkwatch_fire_event(dev); 612 } 613 } 614 EXPORT_SYMBOL(netif_carrier_off); 615 616 /** 617 * netif_carrier_event - report carrier state event 618 * @dev: network device 619 * 620 * Device has detected a carrier event but the carrier state wasn't changed. 621 * Use in drivers when querying carrier state asynchronously, to avoid missing 622 * events (link flaps) if link recovers before it's queried. 623 */ 624 void netif_carrier_event(struct net_device *dev) 625 { 626 if (dev->reg_state == NETREG_UNINITIALIZED) 627 return; 628 atomic_inc(&dev->carrier_up_count); 629 atomic_inc(&dev->carrier_down_count); 630 linkwatch_fire_event(dev); 631 } 632 EXPORT_SYMBOL_GPL(netif_carrier_event); 633 634 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 635 under all circumstances. It is difficult to invent anything faster or 636 cheaper. 637 */ 638 639 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 640 struct sk_buff **to_free) 641 { 642 dev_core_stats_tx_dropped_inc(skb->dev); 643 __qdisc_drop(skb, to_free); 644 return NET_XMIT_CN; 645 } 646 647 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 648 { 649 return NULL; 650 } 651 652 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 653 .id = "noop", 654 .priv_size = 0, 655 .enqueue = noop_enqueue, 656 .dequeue = noop_dequeue, 657 .peek = noop_dequeue, 658 .owner = THIS_MODULE, 659 }; 660 661 static struct netdev_queue noop_netdev_queue = { 662 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc), 663 RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc), 664 }; 665 666 struct Qdisc noop_qdisc = { 667 .enqueue = noop_enqueue, 668 .dequeue = noop_dequeue, 669 .flags = TCQ_F_BUILTIN, 670 .ops = &noop_qdisc_ops, 671 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 672 .dev_queue = &noop_netdev_queue, 673 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 674 .gso_skb = { 675 .next = (struct sk_buff *)&noop_qdisc.gso_skb, 676 .prev = (struct sk_buff *)&noop_qdisc.gso_skb, 677 .qlen = 0, 678 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock), 679 }, 680 .skb_bad_txq = { 681 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 682 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 683 .qlen = 0, 684 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock), 685 }, 686 .owner = -1, 687 }; 688 EXPORT_SYMBOL(noop_qdisc); 689 690 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt, 691 struct netlink_ext_ack *extack) 692 { 693 /* register_qdisc() assigns a default of noop_enqueue if unset, 694 * but __dev_queue_xmit() treats noqueue only as such 695 * if this is NULL - so clear it here. */ 696 qdisc->enqueue = NULL; 697 return 0; 698 } 699 700 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 701 .id = "noqueue", 702 .priv_size = 0, 703 .init = noqueue_init, 704 .enqueue = noop_enqueue, 705 .dequeue = noop_dequeue, 706 .peek = noop_dequeue, 707 .owner = THIS_MODULE, 708 }; 709 710 const u8 sch_default_prio2band[TC_PRIO_MAX + 1] = { 711 1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 712 }; 713 EXPORT_SYMBOL(sch_default_prio2band); 714 715 /* 3-band FIFO queue: old style, but should be a bit faster than 716 generic prio+fifo combination. 717 */ 718 719 #define PFIFO_FAST_BANDS 3 720 721 /* 722 * Private data for a pfifo_fast scheduler containing: 723 * - rings for priority bands 724 */ 725 struct pfifo_fast_priv { 726 struct skb_array q[PFIFO_FAST_BANDS]; 727 }; 728 729 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv, 730 int band) 731 { 732 return &priv->q[band]; 733 } 734 735 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 736 struct sk_buff **to_free) 737 { 738 int band = sch_default_prio2band[skb->priority & TC_PRIO_MAX]; 739 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 740 struct skb_array *q = band2list(priv, band); 741 unsigned int pkt_len = qdisc_pkt_len(skb); 742 int err; 743 744 err = skb_array_produce(q, skb); 745 746 if (unlikely(err)) { 747 if (qdisc_is_percpu_stats(qdisc)) 748 return qdisc_drop_cpu(skb, qdisc, to_free); 749 else 750 return qdisc_drop(skb, qdisc, to_free); 751 } 752 753 qdisc_update_stats_at_enqueue(qdisc, pkt_len); 754 return NET_XMIT_SUCCESS; 755 } 756 757 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 758 { 759 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 760 struct sk_buff *skb = NULL; 761 bool need_retry = true; 762 int band; 763 764 retry: 765 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 766 struct skb_array *q = band2list(priv, band); 767 768 if (__skb_array_empty(q)) 769 continue; 770 771 skb = __skb_array_consume(q); 772 } 773 if (likely(skb)) { 774 qdisc_update_stats_at_dequeue(qdisc, skb); 775 } else if (need_retry && 776 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) { 777 /* Delay clearing the STATE_MISSED here to reduce 778 * the overhead of the second spin_trylock() in 779 * qdisc_run_begin() and __netif_schedule() calling 780 * in qdisc_run_end(). 781 */ 782 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 783 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 784 785 /* Make sure dequeuing happens after clearing 786 * STATE_MISSED. 787 */ 788 smp_mb__after_atomic(); 789 790 need_retry = false; 791 792 goto retry; 793 } 794 795 return skb; 796 } 797 798 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 799 { 800 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 801 struct sk_buff *skb = NULL; 802 int band; 803 804 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 805 struct skb_array *q = band2list(priv, band); 806 807 skb = __skb_array_peek(q); 808 } 809 810 return skb; 811 } 812 813 static void pfifo_fast_reset(struct Qdisc *qdisc) 814 { 815 int i, band; 816 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 817 818 for (band = 0; band < PFIFO_FAST_BANDS; band++) { 819 struct skb_array *q = band2list(priv, band); 820 struct sk_buff *skb; 821 822 /* NULL ring is possible if destroy path is due to a failed 823 * skb_array_init() in pfifo_fast_init() case. 824 */ 825 if (!q->ring.queue) 826 continue; 827 828 while ((skb = __skb_array_consume(q)) != NULL) 829 kfree_skb(skb); 830 } 831 832 if (qdisc_is_percpu_stats(qdisc)) { 833 for_each_possible_cpu(i) { 834 struct gnet_stats_queue *q; 835 836 q = per_cpu_ptr(qdisc->cpu_qstats, i); 837 q->backlog = 0; 838 q->qlen = 0; 839 } 840 } 841 } 842 843 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 844 { 845 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 846 847 memcpy(&opt.priomap, sch_default_prio2band, TC_PRIO_MAX + 1); 848 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 849 goto nla_put_failure; 850 return skb->len; 851 852 nla_put_failure: 853 return -1; 854 } 855 856 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt, 857 struct netlink_ext_ack *extack) 858 { 859 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len; 860 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 861 int prio; 862 863 /* guard against zero length rings */ 864 if (!qlen) 865 return -EINVAL; 866 867 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 868 struct skb_array *q = band2list(priv, prio); 869 int err; 870 871 err = skb_array_init(q, qlen, GFP_KERNEL); 872 if (err) 873 return -ENOMEM; 874 } 875 876 /* Can by-pass the queue discipline */ 877 qdisc->flags |= TCQ_F_CAN_BYPASS; 878 return 0; 879 } 880 881 static void pfifo_fast_destroy(struct Qdisc *sch) 882 { 883 struct pfifo_fast_priv *priv = qdisc_priv(sch); 884 int prio; 885 886 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 887 struct skb_array *q = band2list(priv, prio); 888 889 /* NULL ring is possible if destroy path is due to a failed 890 * skb_array_init() in pfifo_fast_init() case. 891 */ 892 if (!q->ring.queue) 893 continue; 894 /* Destroy ring but no need to kfree_skb because a call to 895 * pfifo_fast_reset() has already done that work. 896 */ 897 ptr_ring_cleanup(&q->ring, NULL); 898 } 899 } 900 901 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch, 902 unsigned int new_len) 903 { 904 struct pfifo_fast_priv *priv = qdisc_priv(sch); 905 struct skb_array *bands[PFIFO_FAST_BANDS]; 906 int prio; 907 908 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 909 struct skb_array *q = band2list(priv, prio); 910 911 bands[prio] = q; 912 } 913 914 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len, 915 GFP_KERNEL); 916 } 917 918 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 919 .id = "pfifo_fast", 920 .priv_size = sizeof(struct pfifo_fast_priv), 921 .enqueue = pfifo_fast_enqueue, 922 .dequeue = pfifo_fast_dequeue, 923 .peek = pfifo_fast_peek, 924 .init = pfifo_fast_init, 925 .destroy = pfifo_fast_destroy, 926 .reset = pfifo_fast_reset, 927 .dump = pfifo_fast_dump, 928 .change_tx_queue_len = pfifo_fast_change_tx_queue_len, 929 .owner = THIS_MODULE, 930 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS, 931 }; 932 EXPORT_SYMBOL(pfifo_fast_ops); 933 934 static struct lock_class_key qdisc_tx_busylock; 935 936 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 937 const struct Qdisc_ops *ops, 938 struct netlink_ext_ack *extack) 939 { 940 struct Qdisc *sch; 941 unsigned int size = sizeof(*sch) + ops->priv_size; 942 int err = -ENOBUFS; 943 struct net_device *dev; 944 945 if (!dev_queue) { 946 NL_SET_ERR_MSG(extack, "No device queue given"); 947 err = -EINVAL; 948 goto errout; 949 } 950 951 dev = dev_queue->dev; 952 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue)); 953 954 if (!sch) 955 goto errout; 956 __skb_queue_head_init(&sch->gso_skb); 957 __skb_queue_head_init(&sch->skb_bad_txq); 958 gnet_stats_basic_sync_init(&sch->bstats); 959 lockdep_register_key(&sch->root_lock_key); 960 spin_lock_init(&sch->q.lock); 961 lockdep_set_class(&sch->q.lock, &sch->root_lock_key); 962 963 if (ops->static_flags & TCQ_F_CPUSTATS) { 964 sch->cpu_bstats = 965 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync); 966 if (!sch->cpu_bstats) 967 goto errout1; 968 969 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue); 970 if (!sch->cpu_qstats) { 971 free_percpu(sch->cpu_bstats); 972 goto errout1; 973 } 974 } 975 976 spin_lock_init(&sch->busylock); 977 lockdep_set_class(&sch->busylock, 978 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 979 980 /* seqlock has the same scope of busylock, for NOLOCK qdisc */ 981 spin_lock_init(&sch->seqlock); 982 lockdep_set_class(&sch->seqlock, 983 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 984 985 sch->ops = ops; 986 sch->flags = ops->static_flags; 987 sch->enqueue = ops->enqueue; 988 sch->dequeue = ops->dequeue; 989 sch->dev_queue = dev_queue; 990 sch->owner = -1; 991 netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL); 992 refcount_set(&sch->refcnt, 1); 993 994 return sch; 995 errout1: 996 lockdep_unregister_key(&sch->root_lock_key); 997 kfree(sch); 998 errout: 999 return ERR_PTR(err); 1000 } 1001 1002 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 1003 const struct Qdisc_ops *ops, 1004 unsigned int parentid, 1005 struct netlink_ext_ack *extack) 1006 { 1007 struct Qdisc *sch; 1008 1009 if (!try_module_get(ops->owner)) { 1010 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter"); 1011 return NULL; 1012 } 1013 1014 sch = qdisc_alloc(dev_queue, ops, extack); 1015 if (IS_ERR(sch)) { 1016 module_put(ops->owner); 1017 return NULL; 1018 } 1019 sch->parent = parentid; 1020 1021 if (!ops->init || ops->init(sch, NULL, extack) == 0) { 1022 trace_qdisc_create(ops, dev_queue->dev, parentid); 1023 return sch; 1024 } 1025 1026 qdisc_put(sch); 1027 return NULL; 1028 } 1029 EXPORT_SYMBOL(qdisc_create_dflt); 1030 1031 /* Under qdisc_lock(qdisc) and BH! */ 1032 1033 void qdisc_reset(struct Qdisc *qdisc) 1034 { 1035 const struct Qdisc_ops *ops = qdisc->ops; 1036 1037 trace_qdisc_reset(qdisc); 1038 1039 if (ops->reset) 1040 ops->reset(qdisc); 1041 1042 __skb_queue_purge(&qdisc->gso_skb); 1043 __skb_queue_purge(&qdisc->skb_bad_txq); 1044 1045 qdisc->q.qlen = 0; 1046 qdisc->qstats.backlog = 0; 1047 } 1048 EXPORT_SYMBOL(qdisc_reset); 1049 1050 void qdisc_free(struct Qdisc *qdisc) 1051 { 1052 if (qdisc_is_percpu_stats(qdisc)) { 1053 free_percpu(qdisc->cpu_bstats); 1054 free_percpu(qdisc->cpu_qstats); 1055 } 1056 1057 kfree(qdisc); 1058 } 1059 1060 static void qdisc_free_cb(struct rcu_head *head) 1061 { 1062 struct Qdisc *q = container_of(head, struct Qdisc, rcu); 1063 1064 qdisc_free(q); 1065 } 1066 1067 static void __qdisc_destroy(struct Qdisc *qdisc) 1068 { 1069 const struct Qdisc_ops *ops = qdisc->ops; 1070 struct net_device *dev = qdisc_dev(qdisc); 1071 1072 #ifdef CONFIG_NET_SCHED 1073 qdisc_hash_del(qdisc); 1074 1075 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 1076 #endif 1077 gen_kill_estimator(&qdisc->rate_est); 1078 1079 qdisc_reset(qdisc); 1080 1081 1082 if (ops->destroy) 1083 ops->destroy(qdisc); 1084 1085 lockdep_unregister_key(&qdisc->root_lock_key); 1086 module_put(ops->owner); 1087 netdev_put(dev, &qdisc->dev_tracker); 1088 1089 trace_qdisc_destroy(qdisc); 1090 1091 call_rcu(&qdisc->rcu, qdisc_free_cb); 1092 } 1093 1094 void qdisc_destroy(struct Qdisc *qdisc) 1095 { 1096 if (qdisc->flags & TCQ_F_BUILTIN) 1097 return; 1098 1099 __qdisc_destroy(qdisc); 1100 } 1101 1102 void qdisc_put(struct Qdisc *qdisc) 1103 { 1104 if (!qdisc) 1105 return; 1106 1107 if (qdisc->flags & TCQ_F_BUILTIN || 1108 !refcount_dec_and_test(&qdisc->refcnt)) 1109 return; 1110 1111 __qdisc_destroy(qdisc); 1112 } 1113 EXPORT_SYMBOL(qdisc_put); 1114 1115 /* Version of qdisc_put() that is called with rtnl mutex unlocked. 1116 * Intended to be used as optimization, this function only takes rtnl lock if 1117 * qdisc reference counter reached zero. 1118 */ 1119 1120 void qdisc_put_unlocked(struct Qdisc *qdisc) 1121 { 1122 if (qdisc->flags & TCQ_F_BUILTIN || 1123 !refcount_dec_and_rtnl_lock(&qdisc->refcnt)) 1124 return; 1125 1126 __qdisc_destroy(qdisc); 1127 rtnl_unlock(); 1128 } 1129 EXPORT_SYMBOL(qdisc_put_unlocked); 1130 1131 /* Attach toplevel qdisc to device queue. */ 1132 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 1133 struct Qdisc *qdisc) 1134 { 1135 struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1136 spinlock_t *root_lock; 1137 1138 root_lock = qdisc_lock(oqdisc); 1139 spin_lock_bh(root_lock); 1140 1141 /* ... and graft new one */ 1142 if (qdisc == NULL) 1143 qdisc = &noop_qdisc; 1144 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1145 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1146 1147 spin_unlock_bh(root_lock); 1148 1149 return oqdisc; 1150 } 1151 EXPORT_SYMBOL(dev_graft_qdisc); 1152 1153 static void shutdown_scheduler_queue(struct net_device *dev, 1154 struct netdev_queue *dev_queue, 1155 void *_qdisc_default) 1156 { 1157 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1158 struct Qdisc *qdisc_default = _qdisc_default; 1159 1160 if (qdisc) { 1161 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1162 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default); 1163 1164 qdisc_put(qdisc); 1165 } 1166 } 1167 1168 static void attach_one_default_qdisc(struct net_device *dev, 1169 struct netdev_queue *dev_queue, 1170 void *_unused) 1171 { 1172 struct Qdisc *qdisc; 1173 const struct Qdisc_ops *ops = default_qdisc_ops; 1174 1175 if (dev->priv_flags & IFF_NO_QUEUE) 1176 ops = &noqueue_qdisc_ops; 1177 else if(dev->type == ARPHRD_CAN) 1178 ops = &pfifo_fast_ops; 1179 1180 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL); 1181 if (!qdisc) 1182 return; 1183 1184 if (!netif_is_multiqueue(dev)) 1185 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1186 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1187 } 1188 1189 static void attach_default_qdiscs(struct net_device *dev) 1190 { 1191 struct netdev_queue *txq; 1192 struct Qdisc *qdisc; 1193 1194 txq = netdev_get_tx_queue(dev, 0); 1195 1196 if (!netif_is_multiqueue(dev) || 1197 dev->priv_flags & IFF_NO_QUEUE) { 1198 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1199 qdisc = rtnl_dereference(txq->qdisc_sleeping); 1200 rcu_assign_pointer(dev->qdisc, qdisc); 1201 qdisc_refcount_inc(qdisc); 1202 } else { 1203 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL); 1204 if (qdisc) { 1205 rcu_assign_pointer(dev->qdisc, qdisc); 1206 qdisc->ops->attach(qdisc); 1207 } 1208 } 1209 qdisc = rtnl_dereference(dev->qdisc); 1210 1211 /* Detect default qdisc setup/init failed and fallback to "noqueue" */ 1212 if (qdisc == &noop_qdisc) { 1213 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n", 1214 default_qdisc_ops->id, noqueue_qdisc_ops.id); 1215 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1216 dev->priv_flags |= IFF_NO_QUEUE; 1217 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1218 qdisc = rtnl_dereference(txq->qdisc_sleeping); 1219 rcu_assign_pointer(dev->qdisc, qdisc); 1220 qdisc_refcount_inc(qdisc); 1221 dev->priv_flags ^= IFF_NO_QUEUE; 1222 } 1223 1224 #ifdef CONFIG_NET_SCHED 1225 if (qdisc != &noop_qdisc) 1226 qdisc_hash_add(qdisc, false); 1227 #endif 1228 } 1229 1230 static void transition_one_qdisc(struct net_device *dev, 1231 struct netdev_queue *dev_queue, 1232 void *_need_watchdog) 1233 { 1234 struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1235 int *need_watchdog_p = _need_watchdog; 1236 1237 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 1238 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 1239 1240 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 1241 if (need_watchdog_p) { 1242 WRITE_ONCE(dev_queue->trans_start, 0); 1243 *need_watchdog_p = 1; 1244 } 1245 } 1246 1247 void dev_activate(struct net_device *dev) 1248 { 1249 int need_watchdog; 1250 1251 /* No queueing discipline is attached to device; 1252 * create default one for devices, which need queueing 1253 * and noqueue_qdisc for virtual interfaces 1254 */ 1255 1256 if (rtnl_dereference(dev->qdisc) == &noop_qdisc) 1257 attach_default_qdiscs(dev); 1258 1259 if (!netif_carrier_ok(dev)) 1260 /* Delay activation until next carrier-on event */ 1261 return; 1262 1263 need_watchdog = 0; 1264 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 1265 if (dev_ingress_queue(dev)) 1266 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 1267 1268 if (need_watchdog) { 1269 netif_trans_update(dev); 1270 dev_watchdog_up(dev); 1271 } 1272 } 1273 EXPORT_SYMBOL(dev_activate); 1274 1275 static void qdisc_deactivate(struct Qdisc *qdisc) 1276 { 1277 if (qdisc->flags & TCQ_F_BUILTIN) 1278 return; 1279 1280 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 1281 } 1282 1283 static void dev_deactivate_queue(struct net_device *dev, 1284 struct netdev_queue *dev_queue, 1285 void *_qdisc_default) 1286 { 1287 struct Qdisc *qdisc_default = _qdisc_default; 1288 struct Qdisc *qdisc; 1289 1290 qdisc = rtnl_dereference(dev_queue->qdisc); 1291 if (qdisc) { 1292 qdisc_deactivate(qdisc); 1293 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1294 } 1295 } 1296 1297 static void dev_reset_queue(struct net_device *dev, 1298 struct netdev_queue *dev_queue, 1299 void *_unused) 1300 { 1301 struct Qdisc *qdisc; 1302 bool nolock; 1303 1304 qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1305 if (!qdisc) 1306 return; 1307 1308 nolock = qdisc->flags & TCQ_F_NOLOCK; 1309 1310 if (nolock) 1311 spin_lock_bh(&qdisc->seqlock); 1312 spin_lock_bh(qdisc_lock(qdisc)); 1313 1314 qdisc_reset(qdisc); 1315 1316 spin_unlock_bh(qdisc_lock(qdisc)); 1317 if (nolock) { 1318 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 1319 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 1320 spin_unlock_bh(&qdisc->seqlock); 1321 } 1322 } 1323 1324 static bool some_qdisc_is_busy(struct net_device *dev) 1325 { 1326 unsigned int i; 1327 1328 for (i = 0; i < dev->num_tx_queues; i++) { 1329 struct netdev_queue *dev_queue; 1330 spinlock_t *root_lock; 1331 struct Qdisc *q; 1332 int val; 1333 1334 dev_queue = netdev_get_tx_queue(dev, i); 1335 q = rtnl_dereference(dev_queue->qdisc_sleeping); 1336 1337 root_lock = qdisc_lock(q); 1338 spin_lock_bh(root_lock); 1339 1340 val = (qdisc_is_running(q) || 1341 test_bit(__QDISC_STATE_SCHED, &q->state)); 1342 1343 spin_unlock_bh(root_lock); 1344 1345 if (val) 1346 return true; 1347 } 1348 return false; 1349 } 1350 1351 /** 1352 * dev_deactivate_many - deactivate transmissions on several devices 1353 * @head: list of devices to deactivate 1354 * 1355 * This function returns only when all outstanding transmissions 1356 * have completed, unless all devices are in dismantle phase. 1357 */ 1358 void dev_deactivate_many(struct list_head *head) 1359 { 1360 struct net_device *dev; 1361 1362 list_for_each_entry(dev, head, close_list) { 1363 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 1364 &noop_qdisc); 1365 if (dev_ingress_queue(dev)) 1366 dev_deactivate_queue(dev, dev_ingress_queue(dev), 1367 &noop_qdisc); 1368 1369 dev_watchdog_down(dev); 1370 } 1371 1372 /* Wait for outstanding qdisc-less dev_queue_xmit calls or 1373 * outstanding qdisc enqueuing calls. 1374 * This is avoided if all devices are in dismantle phase : 1375 * Caller will call synchronize_net() for us 1376 */ 1377 synchronize_net(); 1378 1379 list_for_each_entry(dev, head, close_list) { 1380 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL); 1381 1382 if (dev_ingress_queue(dev)) 1383 dev_reset_queue(dev, dev_ingress_queue(dev), NULL); 1384 } 1385 1386 /* Wait for outstanding qdisc_run calls. */ 1387 list_for_each_entry(dev, head, close_list) { 1388 while (some_qdisc_is_busy(dev)) { 1389 /* wait_event() would avoid this sleep-loop but would 1390 * require expensive checks in the fast paths of packet 1391 * processing which isn't worth it. 1392 */ 1393 schedule_timeout_uninterruptible(1); 1394 } 1395 } 1396 } 1397 1398 void dev_deactivate(struct net_device *dev) 1399 { 1400 LIST_HEAD(single); 1401 1402 list_add(&dev->close_list, &single); 1403 dev_deactivate_many(&single); 1404 list_del(&single); 1405 } 1406 EXPORT_SYMBOL(dev_deactivate); 1407 1408 static int qdisc_change_tx_queue_len(struct net_device *dev, 1409 struct netdev_queue *dev_queue) 1410 { 1411 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1412 const struct Qdisc_ops *ops = qdisc->ops; 1413 1414 if (ops->change_tx_queue_len) 1415 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len); 1416 return 0; 1417 } 1418 1419 void dev_qdisc_change_real_num_tx(struct net_device *dev, 1420 unsigned int new_real_tx) 1421 { 1422 struct Qdisc *qdisc = rtnl_dereference(dev->qdisc); 1423 1424 if (qdisc->ops->change_real_num_tx) 1425 qdisc->ops->change_real_num_tx(qdisc, new_real_tx); 1426 } 1427 1428 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx) 1429 { 1430 #ifdef CONFIG_NET_SCHED 1431 struct net_device *dev = qdisc_dev(sch); 1432 struct Qdisc *qdisc; 1433 unsigned int i; 1434 1435 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) { 1436 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping); 1437 /* Only update the default qdiscs we created, 1438 * qdiscs with handles are always hashed. 1439 */ 1440 if (qdisc != &noop_qdisc && !qdisc->handle) 1441 qdisc_hash_del(qdisc); 1442 } 1443 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) { 1444 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping); 1445 if (qdisc != &noop_qdisc && !qdisc->handle) 1446 qdisc_hash_add(qdisc, false); 1447 } 1448 #endif 1449 } 1450 EXPORT_SYMBOL(mq_change_real_num_tx); 1451 1452 int dev_qdisc_change_tx_queue_len(struct net_device *dev) 1453 { 1454 bool up = dev->flags & IFF_UP; 1455 unsigned int i; 1456 int ret = 0; 1457 1458 if (up) 1459 dev_deactivate(dev); 1460 1461 for (i = 0; i < dev->num_tx_queues; i++) { 1462 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]); 1463 1464 /* TODO: revert changes on a partial failure */ 1465 if (ret) 1466 break; 1467 } 1468 1469 if (up) 1470 dev_activate(dev); 1471 return ret; 1472 } 1473 1474 static void dev_init_scheduler_queue(struct net_device *dev, 1475 struct netdev_queue *dev_queue, 1476 void *_qdisc) 1477 { 1478 struct Qdisc *qdisc = _qdisc; 1479 1480 rcu_assign_pointer(dev_queue->qdisc, qdisc); 1481 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1482 } 1483 1484 void dev_init_scheduler(struct net_device *dev) 1485 { 1486 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1487 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 1488 if (dev_ingress_queue(dev)) 1489 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1490 1491 timer_setup(&dev->watchdog_timer, dev_watchdog, 0); 1492 } 1493 1494 void dev_shutdown(struct net_device *dev) 1495 { 1496 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1497 if (dev_ingress_queue(dev)) 1498 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1499 qdisc_put(rtnl_dereference(dev->qdisc)); 1500 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1501 1502 WARN_ON(timer_pending(&dev->watchdog_timer)); 1503 } 1504 1505 /** 1506 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division 1507 * @rate: Rate to compute reciprocal division values of 1508 * @mult: Multiplier for reciprocal division 1509 * @shift: Shift for reciprocal division 1510 * 1511 * The multiplier and shift for reciprocal division by rate are stored 1512 * in mult and shift. 1513 * 1514 * The deal here is to replace a divide by a reciprocal one 1515 * in fast path (a reciprocal divide is a multiply and a shift) 1516 * 1517 * Normal formula would be : 1518 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 1519 * 1520 * We compute mult/shift to use instead : 1521 * time_in_ns = (len * mult) >> shift; 1522 * 1523 * We try to get the highest possible mult value for accuracy, 1524 * but have to make sure no overflows will ever happen. 1525 * 1526 * reciprocal_value() is not used here it doesn't handle 64-bit values. 1527 */ 1528 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift) 1529 { 1530 u64 factor = NSEC_PER_SEC; 1531 1532 *mult = 1; 1533 *shift = 0; 1534 1535 if (rate <= 0) 1536 return; 1537 1538 for (;;) { 1539 *mult = div64_u64(factor, rate); 1540 if (*mult & (1U << 31) || factor & (1ULL << 63)) 1541 break; 1542 factor <<= 1; 1543 (*shift)++; 1544 } 1545 } 1546 1547 void psched_ratecfg_precompute(struct psched_ratecfg *r, 1548 const struct tc_ratespec *conf, 1549 u64 rate64) 1550 { 1551 memset(r, 0, sizeof(*r)); 1552 r->overhead = conf->overhead; 1553 r->mpu = conf->mpu; 1554 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 1555 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 1556 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift); 1557 } 1558 EXPORT_SYMBOL(psched_ratecfg_precompute); 1559 1560 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64) 1561 { 1562 r->rate_pkts_ps = pktrate64; 1563 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift); 1564 } 1565 EXPORT_SYMBOL(psched_ppscfg_precompute); 1566 1567 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, 1568 struct tcf_proto *tp_head) 1569 { 1570 /* Protected with chain0->filter_chain_lock. 1571 * Can't access chain directly because tp_head can be NULL. 1572 */ 1573 struct mini_Qdisc *miniq_old = 1574 rcu_dereference_protected(*miniqp->p_miniq, 1); 1575 struct mini_Qdisc *miniq; 1576 1577 if (!tp_head) { 1578 RCU_INIT_POINTER(*miniqp->p_miniq, NULL); 1579 } else { 1580 miniq = miniq_old != &miniqp->miniq1 ? 1581 &miniqp->miniq1 : &miniqp->miniq2; 1582 1583 /* We need to make sure that readers won't see the miniq 1584 * we are about to modify. So ensure that at least one RCU 1585 * grace period has elapsed since the miniq was made 1586 * inactive. 1587 */ 1588 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1589 cond_synchronize_rcu(miniq->rcu_state); 1590 else if (!poll_state_synchronize_rcu(miniq->rcu_state)) 1591 synchronize_rcu_expedited(); 1592 1593 miniq->filter_list = tp_head; 1594 rcu_assign_pointer(*miniqp->p_miniq, miniq); 1595 } 1596 1597 if (miniq_old) 1598 /* This is counterpart of the rcu sync above. We need to 1599 * block potential new user of miniq_old until all readers 1600 * are not seeing it. 1601 */ 1602 miniq_old->rcu_state = start_poll_synchronize_rcu(); 1603 } 1604 EXPORT_SYMBOL(mini_qdisc_pair_swap); 1605 1606 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, 1607 struct tcf_block *block) 1608 { 1609 miniqp->miniq1.block = block; 1610 miniqp->miniq2.block = block; 1611 } 1612 EXPORT_SYMBOL(mini_qdisc_pair_block_init); 1613 1614 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, 1615 struct mini_Qdisc __rcu **p_miniq) 1616 { 1617 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats; 1618 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats; 1619 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats; 1620 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats; 1621 miniqp->miniq1.rcu_state = get_state_synchronize_rcu(); 1622 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state; 1623 miniqp->p_miniq = p_miniq; 1624 } 1625 EXPORT_SYMBOL(mini_qdisc_pair_init); 1626