1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_generic.c Generic packet scheduler routines. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 7 * - Ingress support 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/module.h> 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/netdevice.h> 18 #include <linux/skbuff.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/init.h> 21 #include <linux/rcupdate.h> 22 #include <linux/list.h> 23 #include <linux/slab.h> 24 #include <linux/if_vlan.h> 25 #include <linux/skb_array.h> 26 #include <linux/if_macvlan.h> 27 #include <net/sch_generic.h> 28 #include <net/pkt_sched.h> 29 #include <net/dst.h> 30 #include <trace/events/qdisc.h> 31 #include <trace/events/net.h> 32 #include <net/xfrm.h> 33 34 /* Qdisc to use by default */ 35 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 36 EXPORT_SYMBOL(default_qdisc_ops); 37 38 static void qdisc_maybe_clear_missed(struct Qdisc *q, 39 const struct netdev_queue *txq) 40 { 41 clear_bit(__QDISC_STATE_MISSED, &q->state); 42 43 /* Make sure the below netif_xmit_frozen_or_stopped() 44 * checking happens after clearing STATE_MISSED. 45 */ 46 smp_mb__after_atomic(); 47 48 /* Checking netif_xmit_frozen_or_stopped() again to 49 * make sure STATE_MISSED is set if the STATE_MISSED 50 * set by netif_tx_wake_queue()'s rescheduling of 51 * net_tx_action() is cleared by the above clear_bit(). 52 */ 53 if (!netif_xmit_frozen_or_stopped(txq)) 54 set_bit(__QDISC_STATE_MISSED, &q->state); 55 else 56 set_bit(__QDISC_STATE_DRAINING, &q->state); 57 } 58 59 /* Main transmission queue. */ 60 61 /* Modifications to data participating in scheduling must be protected with 62 * qdisc_lock(qdisc) spinlock. 63 * 64 * The idea is the following: 65 * - enqueue, dequeue are serialized via qdisc root lock 66 * - ingress filtering is also serialized via qdisc root lock 67 * - updates to tree and tree walking are only done under the rtnl mutex. 68 */ 69 70 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL) 71 72 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q) 73 { 74 const struct netdev_queue *txq = q->dev_queue; 75 spinlock_t *lock = NULL; 76 struct sk_buff *skb; 77 78 if (q->flags & TCQ_F_NOLOCK) { 79 lock = qdisc_lock(q); 80 spin_lock(lock); 81 } 82 83 skb = skb_peek(&q->skb_bad_txq); 84 if (skb) { 85 /* check the reason of requeuing without tx lock first */ 86 txq = skb_get_tx_queue(txq->dev, skb); 87 if (!netif_xmit_frozen_or_stopped(txq)) { 88 skb = __skb_dequeue(&q->skb_bad_txq); 89 if (qdisc_is_percpu_stats(q)) { 90 qdisc_qstats_cpu_backlog_dec(q, skb); 91 qdisc_qstats_cpu_qlen_dec(q); 92 } else { 93 qdisc_qstats_backlog_dec(q, skb); 94 q->q.qlen--; 95 } 96 } else { 97 skb = SKB_XOFF_MAGIC; 98 qdisc_maybe_clear_missed(q, txq); 99 } 100 } 101 102 if (lock) 103 spin_unlock(lock); 104 105 return skb; 106 } 107 108 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q) 109 { 110 struct sk_buff *skb = skb_peek(&q->skb_bad_txq); 111 112 if (unlikely(skb)) 113 skb = __skb_dequeue_bad_txq(q); 114 115 return skb; 116 } 117 118 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q, 119 struct sk_buff *skb) 120 { 121 spinlock_t *lock = NULL; 122 123 if (q->flags & TCQ_F_NOLOCK) { 124 lock = qdisc_lock(q); 125 spin_lock(lock); 126 } 127 128 __skb_queue_tail(&q->skb_bad_txq, skb); 129 130 if (qdisc_is_percpu_stats(q)) { 131 qdisc_qstats_cpu_backlog_inc(q, skb); 132 qdisc_qstats_cpu_qlen_inc(q); 133 } else { 134 qdisc_qstats_backlog_inc(q, skb); 135 q->q.qlen++; 136 } 137 138 if (lock) 139 spin_unlock(lock); 140 } 141 142 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 143 { 144 spinlock_t *lock = NULL; 145 146 if (q->flags & TCQ_F_NOLOCK) { 147 lock = qdisc_lock(q); 148 spin_lock(lock); 149 } 150 151 while (skb) { 152 struct sk_buff *next = skb->next; 153 154 __skb_queue_tail(&q->gso_skb, skb); 155 156 /* it's still part of the queue */ 157 if (qdisc_is_percpu_stats(q)) { 158 qdisc_qstats_cpu_requeues_inc(q); 159 qdisc_qstats_cpu_backlog_inc(q, skb); 160 qdisc_qstats_cpu_qlen_inc(q); 161 } else { 162 q->qstats.requeues++; 163 qdisc_qstats_backlog_inc(q, skb); 164 q->q.qlen++; 165 } 166 167 skb = next; 168 } 169 170 if (lock) { 171 spin_unlock(lock); 172 set_bit(__QDISC_STATE_MISSED, &q->state); 173 } else { 174 __netif_schedule(q); 175 } 176 } 177 178 static void try_bulk_dequeue_skb(struct Qdisc *q, 179 struct sk_buff *skb, 180 const struct netdev_queue *txq, 181 int *packets) 182 { 183 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len; 184 185 while (bytelimit > 0) { 186 struct sk_buff *nskb = q->dequeue(q); 187 188 if (!nskb) 189 break; 190 191 bytelimit -= nskb->len; /* covers GSO len */ 192 skb->next = nskb; 193 skb = nskb; 194 (*packets)++; /* GSO counts as one pkt */ 195 } 196 skb_mark_not_on_list(skb); 197 } 198 199 /* This variant of try_bulk_dequeue_skb() makes sure 200 * all skbs in the chain are for the same txq 201 */ 202 static void try_bulk_dequeue_skb_slow(struct Qdisc *q, 203 struct sk_buff *skb, 204 int *packets) 205 { 206 int mapping = skb_get_queue_mapping(skb); 207 struct sk_buff *nskb; 208 int cnt = 0; 209 210 do { 211 nskb = q->dequeue(q); 212 if (!nskb) 213 break; 214 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) { 215 qdisc_enqueue_skb_bad_txq(q, nskb); 216 break; 217 } 218 skb->next = nskb; 219 skb = nskb; 220 } while (++cnt < 8); 221 (*packets) += cnt; 222 skb_mark_not_on_list(skb); 223 } 224 225 /* Note that dequeue_skb can possibly return a SKB list (via skb->next). 226 * A requeued skb (via q->gso_skb) can also be a SKB list. 227 */ 228 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate, 229 int *packets) 230 { 231 const struct netdev_queue *txq = q->dev_queue; 232 struct sk_buff *skb = NULL; 233 234 *packets = 1; 235 if (unlikely(!skb_queue_empty(&q->gso_skb))) { 236 spinlock_t *lock = NULL; 237 238 if (q->flags & TCQ_F_NOLOCK) { 239 lock = qdisc_lock(q); 240 spin_lock(lock); 241 } 242 243 skb = skb_peek(&q->gso_skb); 244 245 /* skb may be null if another cpu pulls gso_skb off in between 246 * empty check and lock. 247 */ 248 if (!skb) { 249 if (lock) 250 spin_unlock(lock); 251 goto validate; 252 } 253 254 /* skb in gso_skb were already validated */ 255 *validate = false; 256 if (xfrm_offload(skb)) 257 *validate = true; 258 /* check the reason of requeuing without tx lock first */ 259 txq = skb_get_tx_queue(txq->dev, skb); 260 if (!netif_xmit_frozen_or_stopped(txq)) { 261 skb = __skb_dequeue(&q->gso_skb); 262 if (qdisc_is_percpu_stats(q)) { 263 qdisc_qstats_cpu_backlog_dec(q, skb); 264 qdisc_qstats_cpu_qlen_dec(q); 265 } else { 266 qdisc_qstats_backlog_dec(q, skb); 267 q->q.qlen--; 268 } 269 } else { 270 skb = NULL; 271 qdisc_maybe_clear_missed(q, txq); 272 } 273 if (lock) 274 spin_unlock(lock); 275 goto trace; 276 } 277 validate: 278 *validate = true; 279 280 if ((q->flags & TCQ_F_ONETXQUEUE) && 281 netif_xmit_frozen_or_stopped(txq)) { 282 qdisc_maybe_clear_missed(q, txq); 283 return skb; 284 } 285 286 skb = qdisc_dequeue_skb_bad_txq(q); 287 if (unlikely(skb)) { 288 if (skb == SKB_XOFF_MAGIC) 289 return NULL; 290 goto bulk; 291 } 292 skb = q->dequeue(q); 293 if (skb) { 294 bulk: 295 if (qdisc_may_bulk(q)) 296 try_bulk_dequeue_skb(q, skb, txq, packets); 297 else 298 try_bulk_dequeue_skb_slow(q, skb, packets); 299 } 300 trace: 301 trace_qdisc_dequeue(q, txq, *packets, skb); 302 return skb; 303 } 304 305 /* 306 * Transmit possibly several skbs, and handle the return status as 307 * required. Owning qdisc running bit guarantees that only one CPU 308 * can execute this function. 309 * 310 * Returns to the caller: 311 * false - hardware queue frozen backoff 312 * true - feel free to send more pkts 313 */ 314 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 315 struct net_device *dev, struct netdev_queue *txq, 316 spinlock_t *root_lock, bool validate) 317 { 318 int ret = NETDEV_TX_BUSY; 319 bool again = false; 320 321 /* And release qdisc */ 322 if (root_lock) 323 spin_unlock(root_lock); 324 325 /* Note that we validate skb (GSO, checksum, ...) outside of locks */ 326 if (validate) 327 skb = validate_xmit_skb_list(skb, dev, &again); 328 329 #ifdef CONFIG_XFRM_OFFLOAD 330 if (unlikely(again)) { 331 if (root_lock) 332 spin_lock(root_lock); 333 334 dev_requeue_skb(skb, q); 335 return false; 336 } 337 #endif 338 339 if (likely(skb)) { 340 HARD_TX_LOCK(dev, txq, smp_processor_id()); 341 if (!netif_xmit_frozen_or_stopped(txq)) 342 skb = dev_hard_start_xmit(skb, dev, txq, &ret); 343 else 344 qdisc_maybe_clear_missed(q, txq); 345 346 HARD_TX_UNLOCK(dev, txq); 347 } else { 348 if (root_lock) 349 spin_lock(root_lock); 350 return true; 351 } 352 353 if (root_lock) 354 spin_lock(root_lock); 355 356 if (!dev_xmit_complete(ret)) { 357 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 358 if (unlikely(ret != NETDEV_TX_BUSY)) 359 net_warn_ratelimited("BUG %s code %d qlen %d\n", 360 dev->name, ret, q->q.qlen); 361 362 dev_requeue_skb(skb, q); 363 return false; 364 } 365 366 return true; 367 } 368 369 /* 370 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 371 * 372 * running seqcount guarantees only one CPU can process 373 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 374 * this queue. 375 * 376 * netif_tx_lock serializes accesses to device driver. 377 * 378 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 379 * if one is grabbed, another must be free. 380 * 381 * Note, that this procedure can be called by a watchdog timer 382 * 383 * Returns to the caller: 384 * 0 - queue is empty or throttled. 385 * >0 - queue is not empty. 386 * 387 */ 388 static inline bool qdisc_restart(struct Qdisc *q, int *packets) 389 { 390 spinlock_t *root_lock = NULL; 391 struct netdev_queue *txq; 392 struct net_device *dev; 393 struct sk_buff *skb; 394 bool validate; 395 396 /* Dequeue packet */ 397 skb = dequeue_skb(q, &validate, packets); 398 if (unlikely(!skb)) 399 return false; 400 401 if (!(q->flags & TCQ_F_NOLOCK)) 402 root_lock = qdisc_lock(q); 403 404 dev = qdisc_dev(q); 405 txq = skb_get_tx_queue(dev, skb); 406 407 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate); 408 } 409 410 void __qdisc_run(struct Qdisc *q) 411 { 412 int quota = READ_ONCE(dev_tx_weight); 413 int packets; 414 415 while (qdisc_restart(q, &packets)) { 416 quota -= packets; 417 if (quota <= 0) { 418 if (q->flags & TCQ_F_NOLOCK) 419 set_bit(__QDISC_STATE_MISSED, &q->state); 420 else 421 __netif_schedule(q); 422 423 break; 424 } 425 } 426 } 427 428 unsigned long dev_trans_start(struct net_device *dev) 429 { 430 unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start); 431 unsigned long val; 432 unsigned int i; 433 434 for (i = 1; i < dev->num_tx_queues; i++) { 435 val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start); 436 if (val && time_after(val, res)) 437 res = val; 438 } 439 440 return res; 441 } 442 EXPORT_SYMBOL(dev_trans_start); 443 444 static void netif_freeze_queues(struct net_device *dev) 445 { 446 unsigned int i; 447 int cpu; 448 449 cpu = smp_processor_id(); 450 for (i = 0; i < dev->num_tx_queues; i++) { 451 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 452 453 /* We are the only thread of execution doing a 454 * freeze, but we have to grab the _xmit_lock in 455 * order to synchronize with threads which are in 456 * the ->hard_start_xmit() handler and already 457 * checked the frozen bit. 458 */ 459 __netif_tx_lock(txq, cpu); 460 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 461 __netif_tx_unlock(txq); 462 } 463 } 464 465 void netif_tx_lock(struct net_device *dev) 466 { 467 spin_lock(&dev->tx_global_lock); 468 netif_freeze_queues(dev); 469 } 470 EXPORT_SYMBOL(netif_tx_lock); 471 472 static void netif_unfreeze_queues(struct net_device *dev) 473 { 474 unsigned int i; 475 476 for (i = 0; i < dev->num_tx_queues; i++) { 477 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 478 479 /* No need to grab the _xmit_lock here. If the 480 * queue is not stopped for another reason, we 481 * force a schedule. 482 */ 483 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 484 netif_schedule_queue(txq); 485 } 486 } 487 488 void netif_tx_unlock(struct net_device *dev) 489 { 490 netif_unfreeze_queues(dev); 491 spin_unlock(&dev->tx_global_lock); 492 } 493 EXPORT_SYMBOL(netif_tx_unlock); 494 495 static void dev_watchdog(struct timer_list *t) 496 { 497 struct net_device *dev = from_timer(dev, t, watchdog_timer); 498 bool release = true; 499 500 spin_lock(&dev->tx_global_lock); 501 if (!qdisc_tx_is_noop(dev)) { 502 if (netif_device_present(dev) && 503 netif_running(dev) && 504 netif_carrier_ok(dev)) { 505 unsigned int timedout_ms = 0; 506 unsigned int i; 507 unsigned long trans_start; 508 509 for (i = 0; i < dev->num_tx_queues; i++) { 510 struct netdev_queue *txq; 511 512 txq = netdev_get_tx_queue(dev, i); 513 trans_start = READ_ONCE(txq->trans_start); 514 if (netif_xmit_stopped(txq) && 515 time_after(jiffies, (trans_start + 516 dev->watchdog_timeo))) { 517 timedout_ms = jiffies_to_msecs(jiffies - trans_start); 518 atomic_long_inc(&txq->trans_timeout); 519 break; 520 } 521 } 522 523 if (unlikely(timedout_ms)) { 524 trace_net_dev_xmit_timeout(dev, i); 525 netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n", 526 raw_smp_processor_id(), 527 i, timedout_ms); 528 netif_freeze_queues(dev); 529 dev->netdev_ops->ndo_tx_timeout(dev, i); 530 netif_unfreeze_queues(dev); 531 } 532 if (!mod_timer(&dev->watchdog_timer, 533 round_jiffies(jiffies + 534 dev->watchdog_timeo))) 535 release = false; 536 } 537 } 538 spin_unlock(&dev->tx_global_lock); 539 540 if (release) 541 netdev_put(dev, &dev->watchdog_dev_tracker); 542 } 543 544 void __netdev_watchdog_up(struct net_device *dev) 545 { 546 if (dev->netdev_ops->ndo_tx_timeout) { 547 if (dev->watchdog_timeo <= 0) 548 dev->watchdog_timeo = 5*HZ; 549 if (!mod_timer(&dev->watchdog_timer, 550 round_jiffies(jiffies + dev->watchdog_timeo))) 551 netdev_hold(dev, &dev->watchdog_dev_tracker, 552 GFP_ATOMIC); 553 } 554 } 555 EXPORT_SYMBOL_GPL(__netdev_watchdog_up); 556 557 static void dev_watchdog_up(struct net_device *dev) 558 { 559 __netdev_watchdog_up(dev); 560 } 561 562 static void dev_watchdog_down(struct net_device *dev) 563 { 564 netif_tx_lock_bh(dev); 565 if (del_timer(&dev->watchdog_timer)) 566 netdev_put(dev, &dev->watchdog_dev_tracker); 567 netif_tx_unlock_bh(dev); 568 } 569 570 /** 571 * netif_carrier_on - set carrier 572 * @dev: network device 573 * 574 * Device has detected acquisition of carrier. 575 */ 576 void netif_carrier_on(struct net_device *dev) 577 { 578 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 579 if (dev->reg_state == NETREG_UNINITIALIZED) 580 return; 581 atomic_inc(&dev->carrier_up_count); 582 linkwatch_fire_event(dev); 583 if (netif_running(dev)) 584 __netdev_watchdog_up(dev); 585 } 586 } 587 EXPORT_SYMBOL(netif_carrier_on); 588 589 /** 590 * netif_carrier_off - clear carrier 591 * @dev: network device 592 * 593 * Device has detected loss of carrier. 594 */ 595 void netif_carrier_off(struct net_device *dev) 596 { 597 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 598 if (dev->reg_state == NETREG_UNINITIALIZED) 599 return; 600 atomic_inc(&dev->carrier_down_count); 601 linkwatch_fire_event(dev); 602 } 603 } 604 EXPORT_SYMBOL(netif_carrier_off); 605 606 /** 607 * netif_carrier_event - report carrier state event 608 * @dev: network device 609 * 610 * Device has detected a carrier event but the carrier state wasn't changed. 611 * Use in drivers when querying carrier state asynchronously, to avoid missing 612 * events (link flaps) if link recovers before it's queried. 613 */ 614 void netif_carrier_event(struct net_device *dev) 615 { 616 if (dev->reg_state == NETREG_UNINITIALIZED) 617 return; 618 atomic_inc(&dev->carrier_up_count); 619 atomic_inc(&dev->carrier_down_count); 620 linkwatch_fire_event(dev); 621 } 622 EXPORT_SYMBOL_GPL(netif_carrier_event); 623 624 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 625 under all circumstances. It is difficult to invent anything faster or 626 cheaper. 627 */ 628 629 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 630 struct sk_buff **to_free) 631 { 632 __qdisc_drop(skb, to_free); 633 return NET_XMIT_CN; 634 } 635 636 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 637 { 638 return NULL; 639 } 640 641 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 642 .id = "noop", 643 .priv_size = 0, 644 .enqueue = noop_enqueue, 645 .dequeue = noop_dequeue, 646 .peek = noop_dequeue, 647 .owner = THIS_MODULE, 648 }; 649 650 static struct netdev_queue noop_netdev_queue = { 651 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc), 652 RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc), 653 }; 654 655 struct Qdisc noop_qdisc = { 656 .enqueue = noop_enqueue, 657 .dequeue = noop_dequeue, 658 .flags = TCQ_F_BUILTIN, 659 .ops = &noop_qdisc_ops, 660 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 661 .dev_queue = &noop_netdev_queue, 662 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 663 .gso_skb = { 664 .next = (struct sk_buff *)&noop_qdisc.gso_skb, 665 .prev = (struct sk_buff *)&noop_qdisc.gso_skb, 666 .qlen = 0, 667 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock), 668 }, 669 .skb_bad_txq = { 670 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 671 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 672 .qlen = 0, 673 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock), 674 }, 675 }; 676 EXPORT_SYMBOL(noop_qdisc); 677 678 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt, 679 struct netlink_ext_ack *extack) 680 { 681 /* register_qdisc() assigns a default of noop_enqueue if unset, 682 * but __dev_queue_xmit() treats noqueue only as such 683 * if this is NULL - so clear it here. */ 684 qdisc->enqueue = NULL; 685 return 0; 686 } 687 688 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 689 .id = "noqueue", 690 .priv_size = 0, 691 .init = noqueue_init, 692 .enqueue = noop_enqueue, 693 .dequeue = noop_dequeue, 694 .peek = noop_dequeue, 695 .owner = THIS_MODULE, 696 }; 697 698 const u8 sch_default_prio2band[TC_PRIO_MAX + 1] = { 699 1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 700 }; 701 EXPORT_SYMBOL(sch_default_prio2band); 702 703 /* 3-band FIFO queue: old style, but should be a bit faster than 704 generic prio+fifo combination. 705 */ 706 707 #define PFIFO_FAST_BANDS 3 708 709 /* 710 * Private data for a pfifo_fast scheduler containing: 711 * - rings for priority bands 712 */ 713 struct pfifo_fast_priv { 714 struct skb_array q[PFIFO_FAST_BANDS]; 715 }; 716 717 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv, 718 int band) 719 { 720 return &priv->q[band]; 721 } 722 723 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 724 struct sk_buff **to_free) 725 { 726 int band = sch_default_prio2band[skb->priority & TC_PRIO_MAX]; 727 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 728 struct skb_array *q = band2list(priv, band); 729 unsigned int pkt_len = qdisc_pkt_len(skb); 730 int err; 731 732 err = skb_array_produce(q, skb); 733 734 if (unlikely(err)) { 735 if (qdisc_is_percpu_stats(qdisc)) 736 return qdisc_drop_cpu(skb, qdisc, to_free); 737 else 738 return qdisc_drop(skb, qdisc, to_free); 739 } 740 741 qdisc_update_stats_at_enqueue(qdisc, pkt_len); 742 return NET_XMIT_SUCCESS; 743 } 744 745 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 746 { 747 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 748 struct sk_buff *skb = NULL; 749 bool need_retry = true; 750 int band; 751 752 retry: 753 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 754 struct skb_array *q = band2list(priv, band); 755 756 if (__skb_array_empty(q)) 757 continue; 758 759 skb = __skb_array_consume(q); 760 } 761 if (likely(skb)) { 762 qdisc_update_stats_at_dequeue(qdisc, skb); 763 } else if (need_retry && 764 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) { 765 /* Delay clearing the STATE_MISSED here to reduce 766 * the overhead of the second spin_trylock() in 767 * qdisc_run_begin() and __netif_schedule() calling 768 * in qdisc_run_end(). 769 */ 770 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 771 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 772 773 /* Make sure dequeuing happens after clearing 774 * STATE_MISSED. 775 */ 776 smp_mb__after_atomic(); 777 778 need_retry = false; 779 780 goto retry; 781 } 782 783 return skb; 784 } 785 786 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 787 { 788 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 789 struct sk_buff *skb = NULL; 790 int band; 791 792 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 793 struct skb_array *q = band2list(priv, band); 794 795 skb = __skb_array_peek(q); 796 } 797 798 return skb; 799 } 800 801 static void pfifo_fast_reset(struct Qdisc *qdisc) 802 { 803 int i, band; 804 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 805 806 for (band = 0; band < PFIFO_FAST_BANDS; band++) { 807 struct skb_array *q = band2list(priv, band); 808 struct sk_buff *skb; 809 810 /* NULL ring is possible if destroy path is due to a failed 811 * skb_array_init() in pfifo_fast_init() case. 812 */ 813 if (!q->ring.queue) 814 continue; 815 816 while ((skb = __skb_array_consume(q)) != NULL) 817 kfree_skb(skb); 818 } 819 820 if (qdisc_is_percpu_stats(qdisc)) { 821 for_each_possible_cpu(i) { 822 struct gnet_stats_queue *q; 823 824 q = per_cpu_ptr(qdisc->cpu_qstats, i); 825 q->backlog = 0; 826 q->qlen = 0; 827 } 828 } 829 } 830 831 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 832 { 833 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 834 835 memcpy(&opt.priomap, sch_default_prio2band, TC_PRIO_MAX + 1); 836 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 837 goto nla_put_failure; 838 return skb->len; 839 840 nla_put_failure: 841 return -1; 842 } 843 844 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt, 845 struct netlink_ext_ack *extack) 846 { 847 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len; 848 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 849 int prio; 850 851 /* guard against zero length rings */ 852 if (!qlen) 853 return -EINVAL; 854 855 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 856 struct skb_array *q = band2list(priv, prio); 857 int err; 858 859 err = skb_array_init(q, qlen, GFP_KERNEL); 860 if (err) 861 return -ENOMEM; 862 } 863 864 /* Can by-pass the queue discipline */ 865 qdisc->flags |= TCQ_F_CAN_BYPASS; 866 return 0; 867 } 868 869 static void pfifo_fast_destroy(struct Qdisc *sch) 870 { 871 struct pfifo_fast_priv *priv = qdisc_priv(sch); 872 int prio; 873 874 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 875 struct skb_array *q = band2list(priv, prio); 876 877 /* NULL ring is possible if destroy path is due to a failed 878 * skb_array_init() in pfifo_fast_init() case. 879 */ 880 if (!q->ring.queue) 881 continue; 882 /* Destroy ring but no need to kfree_skb because a call to 883 * pfifo_fast_reset() has already done that work. 884 */ 885 ptr_ring_cleanup(&q->ring, NULL); 886 } 887 } 888 889 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch, 890 unsigned int new_len) 891 { 892 struct pfifo_fast_priv *priv = qdisc_priv(sch); 893 struct skb_array *bands[PFIFO_FAST_BANDS]; 894 int prio; 895 896 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 897 struct skb_array *q = band2list(priv, prio); 898 899 bands[prio] = q; 900 } 901 902 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len, 903 GFP_KERNEL); 904 } 905 906 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 907 .id = "pfifo_fast", 908 .priv_size = sizeof(struct pfifo_fast_priv), 909 .enqueue = pfifo_fast_enqueue, 910 .dequeue = pfifo_fast_dequeue, 911 .peek = pfifo_fast_peek, 912 .init = pfifo_fast_init, 913 .destroy = pfifo_fast_destroy, 914 .reset = pfifo_fast_reset, 915 .dump = pfifo_fast_dump, 916 .change_tx_queue_len = pfifo_fast_change_tx_queue_len, 917 .owner = THIS_MODULE, 918 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS, 919 }; 920 EXPORT_SYMBOL(pfifo_fast_ops); 921 922 static struct lock_class_key qdisc_tx_busylock; 923 924 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 925 const struct Qdisc_ops *ops, 926 struct netlink_ext_ack *extack) 927 { 928 struct Qdisc *sch; 929 unsigned int size = sizeof(*sch) + ops->priv_size; 930 int err = -ENOBUFS; 931 struct net_device *dev; 932 933 if (!dev_queue) { 934 NL_SET_ERR_MSG(extack, "No device queue given"); 935 err = -EINVAL; 936 goto errout; 937 } 938 939 dev = dev_queue->dev; 940 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue)); 941 942 if (!sch) 943 goto errout; 944 __skb_queue_head_init(&sch->gso_skb); 945 __skb_queue_head_init(&sch->skb_bad_txq); 946 gnet_stats_basic_sync_init(&sch->bstats); 947 spin_lock_init(&sch->q.lock); 948 949 if (ops->static_flags & TCQ_F_CPUSTATS) { 950 sch->cpu_bstats = 951 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync); 952 if (!sch->cpu_bstats) 953 goto errout1; 954 955 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue); 956 if (!sch->cpu_qstats) { 957 free_percpu(sch->cpu_bstats); 958 goto errout1; 959 } 960 } 961 962 spin_lock_init(&sch->busylock); 963 lockdep_set_class(&sch->busylock, 964 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 965 966 /* seqlock has the same scope of busylock, for NOLOCK qdisc */ 967 spin_lock_init(&sch->seqlock); 968 lockdep_set_class(&sch->seqlock, 969 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 970 971 sch->ops = ops; 972 sch->flags = ops->static_flags; 973 sch->enqueue = ops->enqueue; 974 sch->dequeue = ops->dequeue; 975 sch->dev_queue = dev_queue; 976 netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL); 977 refcount_set(&sch->refcnt, 1); 978 979 return sch; 980 errout1: 981 kfree(sch); 982 errout: 983 return ERR_PTR(err); 984 } 985 986 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 987 const struct Qdisc_ops *ops, 988 unsigned int parentid, 989 struct netlink_ext_ack *extack) 990 { 991 struct Qdisc *sch; 992 993 if (!try_module_get(ops->owner)) { 994 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter"); 995 return NULL; 996 } 997 998 sch = qdisc_alloc(dev_queue, ops, extack); 999 if (IS_ERR(sch)) { 1000 module_put(ops->owner); 1001 return NULL; 1002 } 1003 sch->parent = parentid; 1004 1005 if (!ops->init || ops->init(sch, NULL, extack) == 0) { 1006 trace_qdisc_create(ops, dev_queue->dev, parentid); 1007 return sch; 1008 } 1009 1010 qdisc_put(sch); 1011 return NULL; 1012 } 1013 EXPORT_SYMBOL(qdisc_create_dflt); 1014 1015 /* Under qdisc_lock(qdisc) and BH! */ 1016 1017 void qdisc_reset(struct Qdisc *qdisc) 1018 { 1019 const struct Qdisc_ops *ops = qdisc->ops; 1020 1021 trace_qdisc_reset(qdisc); 1022 1023 if (ops->reset) 1024 ops->reset(qdisc); 1025 1026 __skb_queue_purge(&qdisc->gso_skb); 1027 __skb_queue_purge(&qdisc->skb_bad_txq); 1028 1029 qdisc->q.qlen = 0; 1030 qdisc->qstats.backlog = 0; 1031 } 1032 EXPORT_SYMBOL(qdisc_reset); 1033 1034 void qdisc_free(struct Qdisc *qdisc) 1035 { 1036 if (qdisc_is_percpu_stats(qdisc)) { 1037 free_percpu(qdisc->cpu_bstats); 1038 free_percpu(qdisc->cpu_qstats); 1039 } 1040 1041 kfree(qdisc); 1042 } 1043 1044 static void qdisc_free_cb(struct rcu_head *head) 1045 { 1046 struct Qdisc *q = container_of(head, struct Qdisc, rcu); 1047 1048 qdisc_free(q); 1049 } 1050 1051 static void __qdisc_destroy(struct Qdisc *qdisc) 1052 { 1053 const struct Qdisc_ops *ops = qdisc->ops; 1054 struct net_device *dev = qdisc_dev(qdisc); 1055 1056 #ifdef CONFIG_NET_SCHED 1057 qdisc_hash_del(qdisc); 1058 1059 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 1060 #endif 1061 gen_kill_estimator(&qdisc->rate_est); 1062 1063 qdisc_reset(qdisc); 1064 1065 1066 if (ops->destroy) 1067 ops->destroy(qdisc); 1068 1069 module_put(ops->owner); 1070 netdev_put(dev, &qdisc->dev_tracker); 1071 1072 trace_qdisc_destroy(qdisc); 1073 1074 call_rcu(&qdisc->rcu, qdisc_free_cb); 1075 } 1076 1077 void qdisc_destroy(struct Qdisc *qdisc) 1078 { 1079 if (qdisc->flags & TCQ_F_BUILTIN) 1080 return; 1081 1082 __qdisc_destroy(qdisc); 1083 } 1084 1085 void qdisc_put(struct Qdisc *qdisc) 1086 { 1087 if (!qdisc) 1088 return; 1089 1090 if (qdisc->flags & TCQ_F_BUILTIN || 1091 !refcount_dec_and_test(&qdisc->refcnt)) 1092 return; 1093 1094 __qdisc_destroy(qdisc); 1095 } 1096 EXPORT_SYMBOL(qdisc_put); 1097 1098 /* Version of qdisc_put() that is called with rtnl mutex unlocked. 1099 * Intended to be used as optimization, this function only takes rtnl lock if 1100 * qdisc reference counter reached zero. 1101 */ 1102 1103 void qdisc_put_unlocked(struct Qdisc *qdisc) 1104 { 1105 if (qdisc->flags & TCQ_F_BUILTIN || 1106 !refcount_dec_and_rtnl_lock(&qdisc->refcnt)) 1107 return; 1108 1109 __qdisc_destroy(qdisc); 1110 rtnl_unlock(); 1111 } 1112 EXPORT_SYMBOL(qdisc_put_unlocked); 1113 1114 /* Attach toplevel qdisc to device queue. */ 1115 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 1116 struct Qdisc *qdisc) 1117 { 1118 struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1119 spinlock_t *root_lock; 1120 1121 root_lock = qdisc_lock(oqdisc); 1122 spin_lock_bh(root_lock); 1123 1124 /* ... and graft new one */ 1125 if (qdisc == NULL) 1126 qdisc = &noop_qdisc; 1127 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1128 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1129 1130 spin_unlock_bh(root_lock); 1131 1132 return oqdisc; 1133 } 1134 EXPORT_SYMBOL(dev_graft_qdisc); 1135 1136 static void shutdown_scheduler_queue(struct net_device *dev, 1137 struct netdev_queue *dev_queue, 1138 void *_qdisc_default) 1139 { 1140 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1141 struct Qdisc *qdisc_default = _qdisc_default; 1142 1143 if (qdisc) { 1144 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1145 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default); 1146 1147 qdisc_put(qdisc); 1148 } 1149 } 1150 1151 static void attach_one_default_qdisc(struct net_device *dev, 1152 struct netdev_queue *dev_queue, 1153 void *_unused) 1154 { 1155 struct Qdisc *qdisc; 1156 const struct Qdisc_ops *ops = default_qdisc_ops; 1157 1158 if (dev->priv_flags & IFF_NO_QUEUE) 1159 ops = &noqueue_qdisc_ops; 1160 else if(dev->type == ARPHRD_CAN) 1161 ops = &pfifo_fast_ops; 1162 1163 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL); 1164 if (!qdisc) 1165 return; 1166 1167 if (!netif_is_multiqueue(dev)) 1168 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1169 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1170 } 1171 1172 static void attach_default_qdiscs(struct net_device *dev) 1173 { 1174 struct netdev_queue *txq; 1175 struct Qdisc *qdisc; 1176 1177 txq = netdev_get_tx_queue(dev, 0); 1178 1179 if (!netif_is_multiqueue(dev) || 1180 dev->priv_flags & IFF_NO_QUEUE) { 1181 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1182 qdisc = rtnl_dereference(txq->qdisc_sleeping); 1183 rcu_assign_pointer(dev->qdisc, qdisc); 1184 qdisc_refcount_inc(qdisc); 1185 } else { 1186 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL); 1187 if (qdisc) { 1188 rcu_assign_pointer(dev->qdisc, qdisc); 1189 qdisc->ops->attach(qdisc); 1190 } 1191 } 1192 qdisc = rtnl_dereference(dev->qdisc); 1193 1194 /* Detect default qdisc setup/init failed and fallback to "noqueue" */ 1195 if (qdisc == &noop_qdisc) { 1196 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n", 1197 default_qdisc_ops->id, noqueue_qdisc_ops.id); 1198 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1199 dev->priv_flags |= IFF_NO_QUEUE; 1200 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1201 qdisc = rtnl_dereference(txq->qdisc_sleeping); 1202 rcu_assign_pointer(dev->qdisc, qdisc); 1203 qdisc_refcount_inc(qdisc); 1204 dev->priv_flags ^= IFF_NO_QUEUE; 1205 } 1206 1207 #ifdef CONFIG_NET_SCHED 1208 if (qdisc != &noop_qdisc) 1209 qdisc_hash_add(qdisc, false); 1210 #endif 1211 } 1212 1213 static void transition_one_qdisc(struct net_device *dev, 1214 struct netdev_queue *dev_queue, 1215 void *_need_watchdog) 1216 { 1217 struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1218 int *need_watchdog_p = _need_watchdog; 1219 1220 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 1221 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 1222 1223 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 1224 if (need_watchdog_p) { 1225 WRITE_ONCE(dev_queue->trans_start, 0); 1226 *need_watchdog_p = 1; 1227 } 1228 } 1229 1230 void dev_activate(struct net_device *dev) 1231 { 1232 int need_watchdog; 1233 1234 /* No queueing discipline is attached to device; 1235 * create default one for devices, which need queueing 1236 * and noqueue_qdisc for virtual interfaces 1237 */ 1238 1239 if (rtnl_dereference(dev->qdisc) == &noop_qdisc) 1240 attach_default_qdiscs(dev); 1241 1242 if (!netif_carrier_ok(dev)) 1243 /* Delay activation until next carrier-on event */ 1244 return; 1245 1246 need_watchdog = 0; 1247 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 1248 if (dev_ingress_queue(dev)) 1249 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 1250 1251 if (need_watchdog) { 1252 netif_trans_update(dev); 1253 dev_watchdog_up(dev); 1254 } 1255 } 1256 EXPORT_SYMBOL(dev_activate); 1257 1258 static void qdisc_deactivate(struct Qdisc *qdisc) 1259 { 1260 if (qdisc->flags & TCQ_F_BUILTIN) 1261 return; 1262 1263 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 1264 } 1265 1266 static void dev_deactivate_queue(struct net_device *dev, 1267 struct netdev_queue *dev_queue, 1268 void *_qdisc_default) 1269 { 1270 struct Qdisc *qdisc_default = _qdisc_default; 1271 struct Qdisc *qdisc; 1272 1273 qdisc = rtnl_dereference(dev_queue->qdisc); 1274 if (qdisc) { 1275 qdisc_deactivate(qdisc); 1276 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1277 } 1278 } 1279 1280 static void dev_reset_queue(struct net_device *dev, 1281 struct netdev_queue *dev_queue, 1282 void *_unused) 1283 { 1284 struct Qdisc *qdisc; 1285 bool nolock; 1286 1287 qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1288 if (!qdisc) 1289 return; 1290 1291 nolock = qdisc->flags & TCQ_F_NOLOCK; 1292 1293 if (nolock) 1294 spin_lock_bh(&qdisc->seqlock); 1295 spin_lock_bh(qdisc_lock(qdisc)); 1296 1297 qdisc_reset(qdisc); 1298 1299 spin_unlock_bh(qdisc_lock(qdisc)); 1300 if (nolock) { 1301 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 1302 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 1303 spin_unlock_bh(&qdisc->seqlock); 1304 } 1305 } 1306 1307 static bool some_qdisc_is_busy(struct net_device *dev) 1308 { 1309 unsigned int i; 1310 1311 for (i = 0; i < dev->num_tx_queues; i++) { 1312 struct netdev_queue *dev_queue; 1313 spinlock_t *root_lock; 1314 struct Qdisc *q; 1315 int val; 1316 1317 dev_queue = netdev_get_tx_queue(dev, i); 1318 q = rtnl_dereference(dev_queue->qdisc_sleeping); 1319 1320 root_lock = qdisc_lock(q); 1321 spin_lock_bh(root_lock); 1322 1323 val = (qdisc_is_running(q) || 1324 test_bit(__QDISC_STATE_SCHED, &q->state)); 1325 1326 spin_unlock_bh(root_lock); 1327 1328 if (val) 1329 return true; 1330 } 1331 return false; 1332 } 1333 1334 /** 1335 * dev_deactivate_many - deactivate transmissions on several devices 1336 * @head: list of devices to deactivate 1337 * 1338 * This function returns only when all outstanding transmissions 1339 * have completed, unless all devices are in dismantle phase. 1340 */ 1341 void dev_deactivate_many(struct list_head *head) 1342 { 1343 struct net_device *dev; 1344 1345 list_for_each_entry(dev, head, close_list) { 1346 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 1347 &noop_qdisc); 1348 if (dev_ingress_queue(dev)) 1349 dev_deactivate_queue(dev, dev_ingress_queue(dev), 1350 &noop_qdisc); 1351 1352 dev_watchdog_down(dev); 1353 } 1354 1355 /* Wait for outstanding qdisc-less dev_queue_xmit calls or 1356 * outstanding qdisc enqueuing calls. 1357 * This is avoided if all devices are in dismantle phase : 1358 * Caller will call synchronize_net() for us 1359 */ 1360 synchronize_net(); 1361 1362 list_for_each_entry(dev, head, close_list) { 1363 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL); 1364 1365 if (dev_ingress_queue(dev)) 1366 dev_reset_queue(dev, dev_ingress_queue(dev), NULL); 1367 } 1368 1369 /* Wait for outstanding qdisc_run calls. */ 1370 list_for_each_entry(dev, head, close_list) { 1371 while (some_qdisc_is_busy(dev)) { 1372 /* wait_event() would avoid this sleep-loop but would 1373 * require expensive checks in the fast paths of packet 1374 * processing which isn't worth it. 1375 */ 1376 schedule_timeout_uninterruptible(1); 1377 } 1378 } 1379 } 1380 1381 void dev_deactivate(struct net_device *dev) 1382 { 1383 LIST_HEAD(single); 1384 1385 list_add(&dev->close_list, &single); 1386 dev_deactivate_many(&single); 1387 list_del(&single); 1388 } 1389 EXPORT_SYMBOL(dev_deactivate); 1390 1391 static int qdisc_change_tx_queue_len(struct net_device *dev, 1392 struct netdev_queue *dev_queue) 1393 { 1394 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1395 const struct Qdisc_ops *ops = qdisc->ops; 1396 1397 if (ops->change_tx_queue_len) 1398 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len); 1399 return 0; 1400 } 1401 1402 void dev_qdisc_change_real_num_tx(struct net_device *dev, 1403 unsigned int new_real_tx) 1404 { 1405 struct Qdisc *qdisc = rtnl_dereference(dev->qdisc); 1406 1407 if (qdisc->ops->change_real_num_tx) 1408 qdisc->ops->change_real_num_tx(qdisc, new_real_tx); 1409 } 1410 1411 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx) 1412 { 1413 #ifdef CONFIG_NET_SCHED 1414 struct net_device *dev = qdisc_dev(sch); 1415 struct Qdisc *qdisc; 1416 unsigned int i; 1417 1418 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) { 1419 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping); 1420 /* Only update the default qdiscs we created, 1421 * qdiscs with handles are always hashed. 1422 */ 1423 if (qdisc != &noop_qdisc && !qdisc->handle) 1424 qdisc_hash_del(qdisc); 1425 } 1426 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) { 1427 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping); 1428 if (qdisc != &noop_qdisc && !qdisc->handle) 1429 qdisc_hash_add(qdisc, false); 1430 } 1431 #endif 1432 } 1433 EXPORT_SYMBOL(mq_change_real_num_tx); 1434 1435 int dev_qdisc_change_tx_queue_len(struct net_device *dev) 1436 { 1437 bool up = dev->flags & IFF_UP; 1438 unsigned int i; 1439 int ret = 0; 1440 1441 if (up) 1442 dev_deactivate(dev); 1443 1444 for (i = 0; i < dev->num_tx_queues; i++) { 1445 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]); 1446 1447 /* TODO: revert changes on a partial failure */ 1448 if (ret) 1449 break; 1450 } 1451 1452 if (up) 1453 dev_activate(dev); 1454 return ret; 1455 } 1456 1457 static void dev_init_scheduler_queue(struct net_device *dev, 1458 struct netdev_queue *dev_queue, 1459 void *_qdisc) 1460 { 1461 struct Qdisc *qdisc = _qdisc; 1462 1463 rcu_assign_pointer(dev_queue->qdisc, qdisc); 1464 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1465 } 1466 1467 void dev_init_scheduler(struct net_device *dev) 1468 { 1469 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1470 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 1471 if (dev_ingress_queue(dev)) 1472 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1473 1474 timer_setup(&dev->watchdog_timer, dev_watchdog, 0); 1475 } 1476 1477 void dev_shutdown(struct net_device *dev) 1478 { 1479 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1480 if (dev_ingress_queue(dev)) 1481 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1482 qdisc_put(rtnl_dereference(dev->qdisc)); 1483 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1484 1485 WARN_ON(timer_pending(&dev->watchdog_timer)); 1486 } 1487 1488 /** 1489 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division 1490 * @rate: Rate to compute reciprocal division values of 1491 * @mult: Multiplier for reciprocal division 1492 * @shift: Shift for reciprocal division 1493 * 1494 * The multiplier and shift for reciprocal division by rate are stored 1495 * in mult and shift. 1496 * 1497 * The deal here is to replace a divide by a reciprocal one 1498 * in fast path (a reciprocal divide is a multiply and a shift) 1499 * 1500 * Normal formula would be : 1501 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 1502 * 1503 * We compute mult/shift to use instead : 1504 * time_in_ns = (len * mult) >> shift; 1505 * 1506 * We try to get the highest possible mult value for accuracy, 1507 * but have to make sure no overflows will ever happen. 1508 * 1509 * reciprocal_value() is not used here it doesn't handle 64-bit values. 1510 */ 1511 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift) 1512 { 1513 u64 factor = NSEC_PER_SEC; 1514 1515 *mult = 1; 1516 *shift = 0; 1517 1518 if (rate <= 0) 1519 return; 1520 1521 for (;;) { 1522 *mult = div64_u64(factor, rate); 1523 if (*mult & (1U << 31) || factor & (1ULL << 63)) 1524 break; 1525 factor <<= 1; 1526 (*shift)++; 1527 } 1528 } 1529 1530 void psched_ratecfg_precompute(struct psched_ratecfg *r, 1531 const struct tc_ratespec *conf, 1532 u64 rate64) 1533 { 1534 memset(r, 0, sizeof(*r)); 1535 r->overhead = conf->overhead; 1536 r->mpu = conf->mpu; 1537 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 1538 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 1539 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift); 1540 } 1541 EXPORT_SYMBOL(psched_ratecfg_precompute); 1542 1543 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64) 1544 { 1545 r->rate_pkts_ps = pktrate64; 1546 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift); 1547 } 1548 EXPORT_SYMBOL(psched_ppscfg_precompute); 1549 1550 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, 1551 struct tcf_proto *tp_head) 1552 { 1553 /* Protected with chain0->filter_chain_lock. 1554 * Can't access chain directly because tp_head can be NULL. 1555 */ 1556 struct mini_Qdisc *miniq_old = 1557 rcu_dereference_protected(*miniqp->p_miniq, 1); 1558 struct mini_Qdisc *miniq; 1559 1560 if (!tp_head) { 1561 RCU_INIT_POINTER(*miniqp->p_miniq, NULL); 1562 } else { 1563 miniq = miniq_old != &miniqp->miniq1 ? 1564 &miniqp->miniq1 : &miniqp->miniq2; 1565 1566 /* We need to make sure that readers won't see the miniq 1567 * we are about to modify. So ensure that at least one RCU 1568 * grace period has elapsed since the miniq was made 1569 * inactive. 1570 */ 1571 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1572 cond_synchronize_rcu(miniq->rcu_state); 1573 else if (!poll_state_synchronize_rcu(miniq->rcu_state)) 1574 synchronize_rcu_expedited(); 1575 1576 miniq->filter_list = tp_head; 1577 rcu_assign_pointer(*miniqp->p_miniq, miniq); 1578 } 1579 1580 if (miniq_old) 1581 /* This is counterpart of the rcu sync above. We need to 1582 * block potential new user of miniq_old until all readers 1583 * are not seeing it. 1584 */ 1585 miniq_old->rcu_state = start_poll_synchronize_rcu(); 1586 } 1587 EXPORT_SYMBOL(mini_qdisc_pair_swap); 1588 1589 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, 1590 struct tcf_block *block) 1591 { 1592 miniqp->miniq1.block = block; 1593 miniqp->miniq2.block = block; 1594 } 1595 EXPORT_SYMBOL(mini_qdisc_pair_block_init); 1596 1597 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, 1598 struct mini_Qdisc __rcu **p_miniq) 1599 { 1600 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats; 1601 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats; 1602 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats; 1603 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats; 1604 miniqp->miniq1.rcu_state = get_state_synchronize_rcu(); 1605 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state; 1606 miniqp->p_miniq = p_miniq; 1607 } 1608 EXPORT_SYMBOL(mini_qdisc_pair_init); 1609