xref: /linux/net/sched/sch_generic.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * net/sched/sch_generic.c	Generic packet scheduler routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10  *              Jamal Hadi Salim, <hadi@cyberus.ca> 990601
11  *              - Ingress support
12  */
13 
14 #include <linux/bitops.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/sched.h>
19 #include <linux/string.h>
20 #include <linux/errno.h>
21 #include <linux/netdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/rtnetlink.h>
24 #include <linux/init.h>
25 #include <linux/rcupdate.h>
26 #include <linux/list.h>
27 #include <linux/slab.h>
28 #include <linux/if_vlan.h>
29 #include <linux/skb_array.h>
30 #include <linux/if_macvlan.h>
31 #include <net/sch_generic.h>
32 #include <net/pkt_sched.h>
33 #include <net/dst.h>
34 #include <trace/events/qdisc.h>
35 #include <net/xfrm.h>
36 
37 /* Qdisc to use by default */
38 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
39 EXPORT_SYMBOL(default_qdisc_ops);
40 
41 /* Main transmission queue. */
42 
43 /* Modifications to data participating in scheduling must be protected with
44  * qdisc_lock(qdisc) spinlock.
45  *
46  * The idea is the following:
47  * - enqueue, dequeue are serialized via qdisc root lock
48  * - ingress filtering is also serialized via qdisc root lock
49  * - updates to tree and tree walking are only done under the rtnl mutex.
50  */
51 
52 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
53 {
54 	const struct netdev_queue *txq = q->dev_queue;
55 	spinlock_t *lock = NULL;
56 	struct sk_buff *skb;
57 
58 	if (q->flags & TCQ_F_NOLOCK) {
59 		lock = qdisc_lock(q);
60 		spin_lock(lock);
61 	}
62 
63 	skb = skb_peek(&q->skb_bad_txq);
64 	if (skb) {
65 		/* check the reason of requeuing without tx lock first */
66 		txq = skb_get_tx_queue(txq->dev, skb);
67 		if (!netif_xmit_frozen_or_stopped(txq)) {
68 			skb = __skb_dequeue(&q->skb_bad_txq);
69 			if (qdisc_is_percpu_stats(q)) {
70 				qdisc_qstats_cpu_backlog_dec(q, skb);
71 				qdisc_qstats_cpu_qlen_dec(q);
72 			} else {
73 				qdisc_qstats_backlog_dec(q, skb);
74 				q->q.qlen--;
75 			}
76 		} else {
77 			skb = NULL;
78 		}
79 	}
80 
81 	if (lock)
82 		spin_unlock(lock);
83 
84 	return skb;
85 }
86 
87 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
88 {
89 	struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
90 
91 	if (unlikely(skb))
92 		skb = __skb_dequeue_bad_txq(q);
93 
94 	return skb;
95 }
96 
97 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
98 					     struct sk_buff *skb)
99 {
100 	spinlock_t *lock = NULL;
101 
102 	if (q->flags & TCQ_F_NOLOCK) {
103 		lock = qdisc_lock(q);
104 		spin_lock(lock);
105 	}
106 
107 	__skb_queue_tail(&q->skb_bad_txq, skb);
108 
109 	if (qdisc_is_percpu_stats(q)) {
110 		qdisc_qstats_cpu_backlog_inc(q, skb);
111 		qdisc_qstats_cpu_qlen_inc(q);
112 	} else {
113 		qdisc_qstats_backlog_inc(q, skb);
114 		q->q.qlen++;
115 	}
116 
117 	if (lock)
118 		spin_unlock(lock);
119 }
120 
121 static inline int __dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
122 {
123 	while (skb) {
124 		struct sk_buff *next = skb->next;
125 
126 		__skb_queue_tail(&q->gso_skb, skb);
127 		q->qstats.requeues++;
128 		qdisc_qstats_backlog_inc(q, skb);
129 		q->q.qlen++;	/* it's still part of the queue */
130 
131 		skb = next;
132 	}
133 	__netif_schedule(q);
134 
135 	return 0;
136 }
137 
138 static inline int dev_requeue_skb_locked(struct sk_buff *skb, struct Qdisc *q)
139 {
140 	spinlock_t *lock = qdisc_lock(q);
141 
142 	spin_lock(lock);
143 	while (skb) {
144 		struct sk_buff *next = skb->next;
145 
146 		__skb_queue_tail(&q->gso_skb, skb);
147 
148 		qdisc_qstats_cpu_requeues_inc(q);
149 		qdisc_qstats_cpu_backlog_inc(q, skb);
150 		qdisc_qstats_cpu_qlen_inc(q);
151 
152 		skb = next;
153 	}
154 	spin_unlock(lock);
155 
156 	__netif_schedule(q);
157 
158 	return 0;
159 }
160 
161 static inline int dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
162 {
163 	if (q->flags & TCQ_F_NOLOCK)
164 		return dev_requeue_skb_locked(skb, q);
165 	else
166 		return __dev_requeue_skb(skb, q);
167 }
168 
169 static void try_bulk_dequeue_skb(struct Qdisc *q,
170 				 struct sk_buff *skb,
171 				 const struct netdev_queue *txq,
172 				 int *packets)
173 {
174 	int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
175 
176 	while (bytelimit > 0) {
177 		struct sk_buff *nskb = q->dequeue(q);
178 
179 		if (!nskb)
180 			break;
181 
182 		bytelimit -= nskb->len; /* covers GSO len */
183 		skb->next = nskb;
184 		skb = nskb;
185 		(*packets)++; /* GSO counts as one pkt */
186 	}
187 	skb_mark_not_on_list(skb);
188 }
189 
190 /* This variant of try_bulk_dequeue_skb() makes sure
191  * all skbs in the chain are for the same txq
192  */
193 static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
194 				      struct sk_buff *skb,
195 				      int *packets)
196 {
197 	int mapping = skb_get_queue_mapping(skb);
198 	struct sk_buff *nskb;
199 	int cnt = 0;
200 
201 	do {
202 		nskb = q->dequeue(q);
203 		if (!nskb)
204 			break;
205 		if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
206 			qdisc_enqueue_skb_bad_txq(q, nskb);
207 			break;
208 		}
209 		skb->next = nskb;
210 		skb = nskb;
211 	} while (++cnt < 8);
212 	(*packets) += cnt;
213 	skb_mark_not_on_list(skb);
214 }
215 
216 /* Note that dequeue_skb can possibly return a SKB list (via skb->next).
217  * A requeued skb (via q->gso_skb) can also be a SKB list.
218  */
219 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
220 				   int *packets)
221 {
222 	const struct netdev_queue *txq = q->dev_queue;
223 	struct sk_buff *skb = NULL;
224 
225 	*packets = 1;
226 	if (unlikely(!skb_queue_empty(&q->gso_skb))) {
227 		spinlock_t *lock = NULL;
228 
229 		if (q->flags & TCQ_F_NOLOCK) {
230 			lock = qdisc_lock(q);
231 			spin_lock(lock);
232 		}
233 
234 		skb = skb_peek(&q->gso_skb);
235 
236 		/* skb may be null if another cpu pulls gso_skb off in between
237 		 * empty check and lock.
238 		 */
239 		if (!skb) {
240 			if (lock)
241 				spin_unlock(lock);
242 			goto validate;
243 		}
244 
245 		/* skb in gso_skb were already validated */
246 		*validate = false;
247 		if (xfrm_offload(skb))
248 			*validate = true;
249 		/* check the reason of requeuing without tx lock first */
250 		txq = skb_get_tx_queue(txq->dev, skb);
251 		if (!netif_xmit_frozen_or_stopped(txq)) {
252 			skb = __skb_dequeue(&q->gso_skb);
253 			if (qdisc_is_percpu_stats(q)) {
254 				qdisc_qstats_cpu_backlog_dec(q, skb);
255 				qdisc_qstats_cpu_qlen_dec(q);
256 			} else {
257 				qdisc_qstats_backlog_dec(q, skb);
258 				q->q.qlen--;
259 			}
260 		} else {
261 			skb = NULL;
262 		}
263 		if (lock)
264 			spin_unlock(lock);
265 		goto trace;
266 	}
267 validate:
268 	*validate = true;
269 
270 	if ((q->flags & TCQ_F_ONETXQUEUE) &&
271 	    netif_xmit_frozen_or_stopped(txq))
272 		return skb;
273 
274 	skb = qdisc_dequeue_skb_bad_txq(q);
275 	if (unlikely(skb))
276 		goto bulk;
277 	skb = q->dequeue(q);
278 	if (skb) {
279 bulk:
280 		if (qdisc_may_bulk(q))
281 			try_bulk_dequeue_skb(q, skb, txq, packets);
282 		else
283 			try_bulk_dequeue_skb_slow(q, skb, packets);
284 	}
285 trace:
286 	trace_qdisc_dequeue(q, txq, *packets, skb);
287 	return skb;
288 }
289 
290 /*
291  * Transmit possibly several skbs, and handle the return status as
292  * required. Owning running seqcount bit guarantees that
293  * only one CPU can execute this function.
294  *
295  * Returns to the caller:
296  *				false  - hardware queue frozen backoff
297  *				true   - feel free to send more pkts
298  */
299 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
300 		     struct net_device *dev, struct netdev_queue *txq,
301 		     spinlock_t *root_lock, bool validate)
302 {
303 	int ret = NETDEV_TX_BUSY;
304 	bool again = false;
305 
306 	/* And release qdisc */
307 	if (root_lock)
308 		spin_unlock(root_lock);
309 
310 	/* Note that we validate skb (GSO, checksum, ...) outside of locks */
311 	if (validate)
312 		skb = validate_xmit_skb_list(skb, dev, &again);
313 
314 #ifdef CONFIG_XFRM_OFFLOAD
315 	if (unlikely(again)) {
316 		if (root_lock)
317 			spin_lock(root_lock);
318 
319 		dev_requeue_skb(skb, q);
320 		return false;
321 	}
322 #endif
323 
324 	if (likely(skb)) {
325 		HARD_TX_LOCK(dev, txq, smp_processor_id());
326 		if (!netif_xmit_frozen_or_stopped(txq))
327 			skb = dev_hard_start_xmit(skb, dev, txq, &ret);
328 
329 		HARD_TX_UNLOCK(dev, txq);
330 	} else {
331 		if (root_lock)
332 			spin_lock(root_lock);
333 		return true;
334 	}
335 
336 	if (root_lock)
337 		spin_lock(root_lock);
338 
339 	if (!dev_xmit_complete(ret)) {
340 		/* Driver returned NETDEV_TX_BUSY - requeue skb */
341 		if (unlikely(ret != NETDEV_TX_BUSY))
342 			net_warn_ratelimited("BUG %s code %d qlen %d\n",
343 					     dev->name, ret, q->q.qlen);
344 
345 		dev_requeue_skb(skb, q);
346 		return false;
347 	}
348 
349 	return true;
350 }
351 
352 /*
353  * NOTE: Called under qdisc_lock(q) with locally disabled BH.
354  *
355  * running seqcount guarantees only one CPU can process
356  * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
357  * this queue.
358  *
359  *  netif_tx_lock serializes accesses to device driver.
360  *
361  *  qdisc_lock(q) and netif_tx_lock are mutually exclusive,
362  *  if one is grabbed, another must be free.
363  *
364  * Note, that this procedure can be called by a watchdog timer
365  *
366  * Returns to the caller:
367  *				0  - queue is empty or throttled.
368  *				>0 - queue is not empty.
369  *
370  */
371 static inline bool qdisc_restart(struct Qdisc *q, int *packets)
372 {
373 	spinlock_t *root_lock = NULL;
374 	struct netdev_queue *txq;
375 	struct net_device *dev;
376 	struct sk_buff *skb;
377 	bool validate;
378 
379 	/* Dequeue packet */
380 	skb = dequeue_skb(q, &validate, packets);
381 	if (unlikely(!skb))
382 		return false;
383 
384 	if (!(q->flags & TCQ_F_NOLOCK))
385 		root_lock = qdisc_lock(q);
386 
387 	dev = qdisc_dev(q);
388 	txq = skb_get_tx_queue(dev, skb);
389 
390 	return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
391 }
392 
393 void __qdisc_run(struct Qdisc *q)
394 {
395 	int quota = dev_tx_weight;
396 	int packets;
397 
398 	while (qdisc_restart(q, &packets)) {
399 		/*
400 		 * Ordered by possible occurrence: Postpone processing if
401 		 * 1. we've exceeded packet quota
402 		 * 2. another process needs the CPU;
403 		 */
404 		quota -= packets;
405 		if (quota <= 0 || need_resched()) {
406 			__netif_schedule(q);
407 			break;
408 		}
409 	}
410 }
411 
412 unsigned long dev_trans_start(struct net_device *dev)
413 {
414 	unsigned long val, res;
415 	unsigned int i;
416 
417 	if (is_vlan_dev(dev))
418 		dev = vlan_dev_real_dev(dev);
419 	else if (netif_is_macvlan(dev))
420 		dev = macvlan_dev_real_dev(dev);
421 	res = netdev_get_tx_queue(dev, 0)->trans_start;
422 	for (i = 1; i < dev->num_tx_queues; i++) {
423 		val = netdev_get_tx_queue(dev, i)->trans_start;
424 		if (val && time_after(val, res))
425 			res = val;
426 	}
427 
428 	return res;
429 }
430 EXPORT_SYMBOL(dev_trans_start);
431 
432 static void dev_watchdog(struct timer_list *t)
433 {
434 	struct net_device *dev = from_timer(dev, t, watchdog_timer);
435 
436 	netif_tx_lock(dev);
437 	if (!qdisc_tx_is_noop(dev)) {
438 		if (netif_device_present(dev) &&
439 		    netif_running(dev) &&
440 		    netif_carrier_ok(dev)) {
441 			int some_queue_timedout = 0;
442 			unsigned int i;
443 			unsigned long trans_start;
444 
445 			for (i = 0; i < dev->num_tx_queues; i++) {
446 				struct netdev_queue *txq;
447 
448 				txq = netdev_get_tx_queue(dev, i);
449 				trans_start = txq->trans_start;
450 				if (netif_xmit_stopped(txq) &&
451 				    time_after(jiffies, (trans_start +
452 							 dev->watchdog_timeo))) {
453 					some_queue_timedout = 1;
454 					txq->trans_timeout++;
455 					break;
456 				}
457 			}
458 
459 			if (some_queue_timedout) {
460 				WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n",
461 				       dev->name, netdev_drivername(dev), i);
462 				dev->netdev_ops->ndo_tx_timeout(dev);
463 			}
464 			if (!mod_timer(&dev->watchdog_timer,
465 				       round_jiffies(jiffies +
466 						     dev->watchdog_timeo)))
467 				dev_hold(dev);
468 		}
469 	}
470 	netif_tx_unlock(dev);
471 
472 	dev_put(dev);
473 }
474 
475 void __netdev_watchdog_up(struct net_device *dev)
476 {
477 	if (dev->netdev_ops->ndo_tx_timeout) {
478 		if (dev->watchdog_timeo <= 0)
479 			dev->watchdog_timeo = 5*HZ;
480 		if (!mod_timer(&dev->watchdog_timer,
481 			       round_jiffies(jiffies + dev->watchdog_timeo)))
482 			dev_hold(dev);
483 	}
484 }
485 
486 static void dev_watchdog_up(struct net_device *dev)
487 {
488 	__netdev_watchdog_up(dev);
489 }
490 
491 static void dev_watchdog_down(struct net_device *dev)
492 {
493 	netif_tx_lock_bh(dev);
494 	if (del_timer(&dev->watchdog_timer))
495 		dev_put(dev);
496 	netif_tx_unlock_bh(dev);
497 }
498 
499 /**
500  *	netif_carrier_on - set carrier
501  *	@dev: network device
502  *
503  * Device has detected that carrier.
504  */
505 void netif_carrier_on(struct net_device *dev)
506 {
507 	if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
508 		if (dev->reg_state == NETREG_UNINITIALIZED)
509 			return;
510 		atomic_inc(&dev->carrier_up_count);
511 		linkwatch_fire_event(dev);
512 		if (netif_running(dev))
513 			__netdev_watchdog_up(dev);
514 	}
515 }
516 EXPORT_SYMBOL(netif_carrier_on);
517 
518 /**
519  *	netif_carrier_off - clear carrier
520  *	@dev: network device
521  *
522  * Device has detected loss of carrier.
523  */
524 void netif_carrier_off(struct net_device *dev)
525 {
526 	if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
527 		if (dev->reg_state == NETREG_UNINITIALIZED)
528 			return;
529 		atomic_inc(&dev->carrier_down_count);
530 		linkwatch_fire_event(dev);
531 	}
532 }
533 EXPORT_SYMBOL(netif_carrier_off);
534 
535 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces
536    under all circumstances. It is difficult to invent anything faster or
537    cheaper.
538  */
539 
540 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
541 			struct sk_buff **to_free)
542 {
543 	__qdisc_drop(skb, to_free);
544 	return NET_XMIT_CN;
545 }
546 
547 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
548 {
549 	return NULL;
550 }
551 
552 struct Qdisc_ops noop_qdisc_ops __read_mostly = {
553 	.id		=	"noop",
554 	.priv_size	=	0,
555 	.enqueue	=	noop_enqueue,
556 	.dequeue	=	noop_dequeue,
557 	.peek		=	noop_dequeue,
558 	.owner		=	THIS_MODULE,
559 };
560 
561 static struct netdev_queue noop_netdev_queue = {
562 	.qdisc		=	&noop_qdisc,
563 	.qdisc_sleeping	=	&noop_qdisc,
564 };
565 
566 struct Qdisc noop_qdisc = {
567 	.enqueue	=	noop_enqueue,
568 	.dequeue	=	noop_dequeue,
569 	.flags		=	TCQ_F_BUILTIN,
570 	.ops		=	&noop_qdisc_ops,
571 	.q.lock		=	__SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
572 	.dev_queue	=	&noop_netdev_queue,
573 	.running	=	SEQCNT_ZERO(noop_qdisc.running),
574 	.busylock	=	__SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
575 	.gso_skb = {
576 		.next = (struct sk_buff *)&noop_qdisc.gso_skb,
577 		.prev = (struct sk_buff *)&noop_qdisc.gso_skb,
578 		.qlen = 0,
579 		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
580 	},
581 	.skb_bad_txq = {
582 		.next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
583 		.prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
584 		.qlen = 0,
585 		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
586 	},
587 };
588 EXPORT_SYMBOL(noop_qdisc);
589 
590 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
591 			struct netlink_ext_ack *extack)
592 {
593 	/* register_qdisc() assigns a default of noop_enqueue if unset,
594 	 * but __dev_queue_xmit() treats noqueue only as such
595 	 * if this is NULL - so clear it here. */
596 	qdisc->enqueue = NULL;
597 	return 0;
598 }
599 
600 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
601 	.id		=	"noqueue",
602 	.priv_size	=	0,
603 	.init		=	noqueue_init,
604 	.enqueue	=	noop_enqueue,
605 	.dequeue	=	noop_dequeue,
606 	.peek		=	noop_dequeue,
607 	.owner		=	THIS_MODULE,
608 };
609 
610 static const u8 prio2band[TC_PRIO_MAX + 1] = {
611 	1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
612 };
613 
614 /* 3-band FIFO queue: old style, but should be a bit faster than
615    generic prio+fifo combination.
616  */
617 
618 #define PFIFO_FAST_BANDS 3
619 
620 /*
621  * Private data for a pfifo_fast scheduler containing:
622  *	- rings for priority bands
623  */
624 struct pfifo_fast_priv {
625 	struct skb_array q[PFIFO_FAST_BANDS];
626 };
627 
628 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
629 					  int band)
630 {
631 	return &priv->q[band];
632 }
633 
634 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
635 			      struct sk_buff **to_free)
636 {
637 	int band = prio2band[skb->priority & TC_PRIO_MAX];
638 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
639 	struct skb_array *q = band2list(priv, band);
640 	unsigned int pkt_len = qdisc_pkt_len(skb);
641 	int err;
642 
643 	err = skb_array_produce(q, skb);
644 
645 	if (unlikely(err))
646 		return qdisc_drop_cpu(skb, qdisc, to_free);
647 
648 	qdisc_qstats_cpu_qlen_inc(qdisc);
649 	/* Note: skb can not be used after skb_array_produce(),
650 	 * so we better not use qdisc_qstats_cpu_backlog_inc()
651 	 */
652 	this_cpu_add(qdisc->cpu_qstats->backlog, pkt_len);
653 	return NET_XMIT_SUCCESS;
654 }
655 
656 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
657 {
658 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
659 	struct sk_buff *skb = NULL;
660 	int band;
661 
662 	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
663 		struct skb_array *q = band2list(priv, band);
664 
665 		if (__skb_array_empty(q))
666 			continue;
667 
668 		skb = __skb_array_consume(q);
669 	}
670 	if (likely(skb)) {
671 		qdisc_qstats_cpu_backlog_dec(qdisc, skb);
672 		qdisc_bstats_cpu_update(qdisc, skb);
673 		qdisc_qstats_cpu_qlen_dec(qdisc);
674 	}
675 
676 	return skb;
677 }
678 
679 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
680 {
681 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
682 	struct sk_buff *skb = NULL;
683 	int band;
684 
685 	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
686 		struct skb_array *q = band2list(priv, band);
687 
688 		skb = __skb_array_peek(q);
689 	}
690 
691 	return skb;
692 }
693 
694 static void pfifo_fast_reset(struct Qdisc *qdisc)
695 {
696 	int i, band;
697 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
698 
699 	for (band = 0; band < PFIFO_FAST_BANDS; band++) {
700 		struct skb_array *q = band2list(priv, band);
701 		struct sk_buff *skb;
702 
703 		/* NULL ring is possible if destroy path is due to a failed
704 		 * skb_array_init() in pfifo_fast_init() case.
705 		 */
706 		if (!q->ring.queue)
707 			continue;
708 
709 		while ((skb = __skb_array_consume(q)) != NULL)
710 			kfree_skb(skb);
711 	}
712 
713 	for_each_possible_cpu(i) {
714 		struct gnet_stats_queue *q = per_cpu_ptr(qdisc->cpu_qstats, i);
715 
716 		q->backlog = 0;
717 		q->qlen = 0;
718 	}
719 }
720 
721 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
722 {
723 	struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
724 
725 	memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1);
726 	if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
727 		goto nla_put_failure;
728 	return skb->len;
729 
730 nla_put_failure:
731 	return -1;
732 }
733 
734 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
735 			   struct netlink_ext_ack *extack)
736 {
737 	unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
738 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
739 	int prio;
740 
741 	/* guard against zero length rings */
742 	if (!qlen)
743 		return -EINVAL;
744 
745 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
746 		struct skb_array *q = band2list(priv, prio);
747 		int err;
748 
749 		err = skb_array_init(q, qlen, GFP_KERNEL);
750 		if (err)
751 			return -ENOMEM;
752 	}
753 
754 	/* Can by-pass the queue discipline */
755 	qdisc->flags |= TCQ_F_CAN_BYPASS;
756 	return 0;
757 }
758 
759 static void pfifo_fast_destroy(struct Qdisc *sch)
760 {
761 	struct pfifo_fast_priv *priv = qdisc_priv(sch);
762 	int prio;
763 
764 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
765 		struct skb_array *q = band2list(priv, prio);
766 
767 		/* NULL ring is possible if destroy path is due to a failed
768 		 * skb_array_init() in pfifo_fast_init() case.
769 		 */
770 		if (!q->ring.queue)
771 			continue;
772 		/* Destroy ring but no need to kfree_skb because a call to
773 		 * pfifo_fast_reset() has already done that work.
774 		 */
775 		ptr_ring_cleanup(&q->ring, NULL);
776 	}
777 }
778 
779 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
780 					  unsigned int new_len)
781 {
782 	struct pfifo_fast_priv *priv = qdisc_priv(sch);
783 	struct skb_array *bands[PFIFO_FAST_BANDS];
784 	int prio;
785 
786 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
787 		struct skb_array *q = band2list(priv, prio);
788 
789 		bands[prio] = q;
790 	}
791 
792 	return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len,
793 					 GFP_KERNEL);
794 }
795 
796 struct Qdisc_ops pfifo_fast_ops __read_mostly = {
797 	.id		=	"pfifo_fast",
798 	.priv_size	=	sizeof(struct pfifo_fast_priv),
799 	.enqueue	=	pfifo_fast_enqueue,
800 	.dequeue	=	pfifo_fast_dequeue,
801 	.peek		=	pfifo_fast_peek,
802 	.init		=	pfifo_fast_init,
803 	.destroy	=	pfifo_fast_destroy,
804 	.reset		=	pfifo_fast_reset,
805 	.dump		=	pfifo_fast_dump,
806 	.change_tx_queue_len =  pfifo_fast_change_tx_queue_len,
807 	.owner		=	THIS_MODULE,
808 	.static_flags	=	TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
809 };
810 EXPORT_SYMBOL(pfifo_fast_ops);
811 
812 static struct lock_class_key qdisc_tx_busylock;
813 static struct lock_class_key qdisc_running_key;
814 
815 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
816 			  const struct Qdisc_ops *ops,
817 			  struct netlink_ext_ack *extack)
818 {
819 	void *p;
820 	struct Qdisc *sch;
821 	unsigned int size = QDISC_ALIGN(sizeof(*sch)) + ops->priv_size;
822 	int err = -ENOBUFS;
823 	struct net_device *dev;
824 
825 	if (!dev_queue) {
826 		NL_SET_ERR_MSG(extack, "No device queue given");
827 		err = -EINVAL;
828 		goto errout;
829 	}
830 
831 	dev = dev_queue->dev;
832 	p = kzalloc_node(size, GFP_KERNEL,
833 			 netdev_queue_numa_node_read(dev_queue));
834 
835 	if (!p)
836 		goto errout;
837 	sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p);
838 	/* if we got non aligned memory, ask more and do alignment ourself */
839 	if (sch != p) {
840 		kfree(p);
841 		p = kzalloc_node(size + QDISC_ALIGNTO - 1, GFP_KERNEL,
842 				 netdev_queue_numa_node_read(dev_queue));
843 		if (!p)
844 			goto errout;
845 		sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p);
846 		sch->padded = (char *) sch - (char *) p;
847 	}
848 	__skb_queue_head_init(&sch->gso_skb);
849 	__skb_queue_head_init(&sch->skb_bad_txq);
850 	qdisc_skb_head_init(&sch->q);
851 	spin_lock_init(&sch->q.lock);
852 
853 	if (ops->static_flags & TCQ_F_CPUSTATS) {
854 		sch->cpu_bstats =
855 			netdev_alloc_pcpu_stats(struct gnet_stats_basic_cpu);
856 		if (!sch->cpu_bstats)
857 			goto errout1;
858 
859 		sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
860 		if (!sch->cpu_qstats) {
861 			free_percpu(sch->cpu_bstats);
862 			goto errout1;
863 		}
864 	}
865 
866 	spin_lock_init(&sch->busylock);
867 	lockdep_set_class(&sch->busylock,
868 			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
869 
870 	/* seqlock has the same scope of busylock, for NOLOCK qdisc */
871 	spin_lock_init(&sch->seqlock);
872 	lockdep_set_class(&sch->busylock,
873 			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
874 
875 	seqcount_init(&sch->running);
876 	lockdep_set_class(&sch->running,
877 			  dev->qdisc_running_key ?: &qdisc_running_key);
878 
879 	sch->ops = ops;
880 	sch->flags = ops->static_flags;
881 	sch->enqueue = ops->enqueue;
882 	sch->dequeue = ops->dequeue;
883 	sch->dev_queue = dev_queue;
884 	dev_hold(dev);
885 	refcount_set(&sch->refcnt, 1);
886 
887 	return sch;
888 errout1:
889 	kfree(p);
890 errout:
891 	return ERR_PTR(err);
892 }
893 
894 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
895 				const struct Qdisc_ops *ops,
896 				unsigned int parentid,
897 				struct netlink_ext_ack *extack)
898 {
899 	struct Qdisc *sch;
900 
901 	if (!try_module_get(ops->owner)) {
902 		NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
903 		return NULL;
904 	}
905 
906 	sch = qdisc_alloc(dev_queue, ops, extack);
907 	if (IS_ERR(sch)) {
908 		module_put(ops->owner);
909 		return NULL;
910 	}
911 	sch->parent = parentid;
912 
913 	if (!ops->init || ops->init(sch, NULL, extack) == 0)
914 		return sch;
915 
916 	qdisc_put(sch);
917 	return NULL;
918 }
919 EXPORT_SYMBOL(qdisc_create_dflt);
920 
921 /* Under qdisc_lock(qdisc) and BH! */
922 
923 void qdisc_reset(struct Qdisc *qdisc)
924 {
925 	const struct Qdisc_ops *ops = qdisc->ops;
926 	struct sk_buff *skb, *tmp;
927 
928 	if (ops->reset)
929 		ops->reset(qdisc);
930 
931 	skb_queue_walk_safe(&qdisc->gso_skb, skb, tmp) {
932 		__skb_unlink(skb, &qdisc->gso_skb);
933 		kfree_skb_list(skb);
934 	}
935 
936 	skb_queue_walk_safe(&qdisc->skb_bad_txq, skb, tmp) {
937 		__skb_unlink(skb, &qdisc->skb_bad_txq);
938 		kfree_skb_list(skb);
939 	}
940 
941 	qdisc->q.qlen = 0;
942 	qdisc->qstats.backlog = 0;
943 }
944 EXPORT_SYMBOL(qdisc_reset);
945 
946 void qdisc_free(struct Qdisc *qdisc)
947 {
948 	if (qdisc_is_percpu_stats(qdisc)) {
949 		free_percpu(qdisc->cpu_bstats);
950 		free_percpu(qdisc->cpu_qstats);
951 	}
952 
953 	kfree((char *) qdisc - qdisc->padded);
954 }
955 
956 static void qdisc_free_cb(struct rcu_head *head)
957 {
958 	struct Qdisc *q = container_of(head, struct Qdisc, rcu);
959 
960 	qdisc_free(q);
961 }
962 
963 static void qdisc_destroy(struct Qdisc *qdisc)
964 {
965 	const struct Qdisc_ops  *ops = qdisc->ops;
966 	struct sk_buff *skb, *tmp;
967 
968 #ifdef CONFIG_NET_SCHED
969 	qdisc_hash_del(qdisc);
970 
971 	qdisc_put_stab(rtnl_dereference(qdisc->stab));
972 #endif
973 	gen_kill_estimator(&qdisc->rate_est);
974 	if (ops->reset)
975 		ops->reset(qdisc);
976 	if (ops->destroy)
977 		ops->destroy(qdisc);
978 
979 	module_put(ops->owner);
980 	dev_put(qdisc_dev(qdisc));
981 
982 	skb_queue_walk_safe(&qdisc->gso_skb, skb, tmp) {
983 		__skb_unlink(skb, &qdisc->gso_skb);
984 		kfree_skb_list(skb);
985 	}
986 
987 	skb_queue_walk_safe(&qdisc->skb_bad_txq, skb, tmp) {
988 		__skb_unlink(skb, &qdisc->skb_bad_txq);
989 		kfree_skb_list(skb);
990 	}
991 
992 	call_rcu(&qdisc->rcu, qdisc_free_cb);
993 }
994 
995 void qdisc_put(struct Qdisc *qdisc)
996 {
997 	if (qdisc->flags & TCQ_F_BUILTIN ||
998 	    !refcount_dec_and_test(&qdisc->refcnt))
999 		return;
1000 
1001 	qdisc_destroy(qdisc);
1002 }
1003 EXPORT_SYMBOL(qdisc_put);
1004 
1005 /* Version of qdisc_put() that is called with rtnl mutex unlocked.
1006  * Intended to be used as optimization, this function only takes rtnl lock if
1007  * qdisc reference counter reached zero.
1008  */
1009 
1010 void qdisc_put_unlocked(struct Qdisc *qdisc)
1011 {
1012 	if (qdisc->flags & TCQ_F_BUILTIN ||
1013 	    !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1014 		return;
1015 
1016 	qdisc_destroy(qdisc);
1017 	rtnl_unlock();
1018 }
1019 EXPORT_SYMBOL(qdisc_put_unlocked);
1020 
1021 /* Attach toplevel qdisc to device queue. */
1022 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1023 			      struct Qdisc *qdisc)
1024 {
1025 	struct Qdisc *oqdisc = dev_queue->qdisc_sleeping;
1026 	spinlock_t *root_lock;
1027 
1028 	root_lock = qdisc_lock(oqdisc);
1029 	spin_lock_bh(root_lock);
1030 
1031 	/* ... and graft new one */
1032 	if (qdisc == NULL)
1033 		qdisc = &noop_qdisc;
1034 	dev_queue->qdisc_sleeping = qdisc;
1035 	rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1036 
1037 	spin_unlock_bh(root_lock);
1038 
1039 	return oqdisc;
1040 }
1041 EXPORT_SYMBOL(dev_graft_qdisc);
1042 
1043 static void attach_one_default_qdisc(struct net_device *dev,
1044 				     struct netdev_queue *dev_queue,
1045 				     void *_unused)
1046 {
1047 	struct Qdisc *qdisc;
1048 	const struct Qdisc_ops *ops = default_qdisc_ops;
1049 
1050 	if (dev->priv_flags & IFF_NO_QUEUE)
1051 		ops = &noqueue_qdisc_ops;
1052 
1053 	qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1054 	if (!qdisc) {
1055 		netdev_info(dev, "activation failed\n");
1056 		return;
1057 	}
1058 	if (!netif_is_multiqueue(dev))
1059 		qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1060 	dev_queue->qdisc_sleeping = qdisc;
1061 }
1062 
1063 static void attach_default_qdiscs(struct net_device *dev)
1064 {
1065 	struct netdev_queue *txq;
1066 	struct Qdisc *qdisc;
1067 
1068 	txq = netdev_get_tx_queue(dev, 0);
1069 
1070 	if (!netif_is_multiqueue(dev) ||
1071 	    dev->priv_flags & IFF_NO_QUEUE) {
1072 		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1073 		dev->qdisc = txq->qdisc_sleeping;
1074 		qdisc_refcount_inc(dev->qdisc);
1075 	} else {
1076 		qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1077 		if (qdisc) {
1078 			dev->qdisc = qdisc;
1079 			qdisc->ops->attach(qdisc);
1080 		}
1081 	}
1082 #ifdef CONFIG_NET_SCHED
1083 	if (dev->qdisc != &noop_qdisc)
1084 		qdisc_hash_add(dev->qdisc, false);
1085 #endif
1086 }
1087 
1088 static void transition_one_qdisc(struct net_device *dev,
1089 				 struct netdev_queue *dev_queue,
1090 				 void *_need_watchdog)
1091 {
1092 	struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping;
1093 	int *need_watchdog_p = _need_watchdog;
1094 
1095 	if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1096 		clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1097 
1098 	rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1099 	if (need_watchdog_p) {
1100 		dev_queue->trans_start = 0;
1101 		*need_watchdog_p = 1;
1102 	}
1103 }
1104 
1105 void dev_activate(struct net_device *dev)
1106 {
1107 	int need_watchdog;
1108 
1109 	/* No queueing discipline is attached to device;
1110 	 * create default one for devices, which need queueing
1111 	 * and noqueue_qdisc for virtual interfaces
1112 	 */
1113 
1114 	if (dev->qdisc == &noop_qdisc)
1115 		attach_default_qdiscs(dev);
1116 
1117 	if (!netif_carrier_ok(dev))
1118 		/* Delay activation until next carrier-on event */
1119 		return;
1120 
1121 	need_watchdog = 0;
1122 	netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1123 	if (dev_ingress_queue(dev))
1124 		transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1125 
1126 	if (need_watchdog) {
1127 		netif_trans_update(dev);
1128 		dev_watchdog_up(dev);
1129 	}
1130 }
1131 EXPORT_SYMBOL(dev_activate);
1132 
1133 static void dev_deactivate_queue(struct net_device *dev,
1134 				 struct netdev_queue *dev_queue,
1135 				 void *_qdisc_default)
1136 {
1137 	struct Qdisc *qdisc_default = _qdisc_default;
1138 	struct Qdisc *qdisc;
1139 
1140 	qdisc = rtnl_dereference(dev_queue->qdisc);
1141 	if (qdisc) {
1142 		bool nolock = qdisc->flags & TCQ_F_NOLOCK;
1143 
1144 		if (nolock)
1145 			spin_lock_bh(&qdisc->seqlock);
1146 		spin_lock_bh(qdisc_lock(qdisc));
1147 
1148 		if (!(qdisc->flags & TCQ_F_BUILTIN))
1149 			set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
1150 
1151 		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1152 		qdisc_reset(qdisc);
1153 
1154 		spin_unlock_bh(qdisc_lock(qdisc));
1155 		if (nolock)
1156 			spin_unlock_bh(&qdisc->seqlock);
1157 	}
1158 }
1159 
1160 static bool some_qdisc_is_busy(struct net_device *dev)
1161 {
1162 	unsigned int i;
1163 
1164 	for (i = 0; i < dev->num_tx_queues; i++) {
1165 		struct netdev_queue *dev_queue;
1166 		spinlock_t *root_lock;
1167 		struct Qdisc *q;
1168 		int val;
1169 
1170 		dev_queue = netdev_get_tx_queue(dev, i);
1171 		q = dev_queue->qdisc_sleeping;
1172 
1173 		root_lock = qdisc_lock(q);
1174 		spin_lock_bh(root_lock);
1175 
1176 		val = (qdisc_is_running(q) ||
1177 		       test_bit(__QDISC_STATE_SCHED, &q->state));
1178 
1179 		spin_unlock_bh(root_lock);
1180 
1181 		if (val)
1182 			return true;
1183 	}
1184 	return false;
1185 }
1186 
1187 static void dev_qdisc_reset(struct net_device *dev,
1188 			    struct netdev_queue *dev_queue,
1189 			    void *none)
1190 {
1191 	struct Qdisc *qdisc = dev_queue->qdisc_sleeping;
1192 
1193 	if (qdisc)
1194 		qdisc_reset(qdisc);
1195 }
1196 
1197 /**
1198  * 	dev_deactivate_many - deactivate transmissions on several devices
1199  * 	@head: list of devices to deactivate
1200  *
1201  *	This function returns only when all outstanding transmissions
1202  *	have completed, unless all devices are in dismantle phase.
1203  */
1204 void dev_deactivate_many(struct list_head *head)
1205 {
1206 	struct net_device *dev;
1207 
1208 	list_for_each_entry(dev, head, close_list) {
1209 		netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1210 					 &noop_qdisc);
1211 		if (dev_ingress_queue(dev))
1212 			dev_deactivate_queue(dev, dev_ingress_queue(dev),
1213 					     &noop_qdisc);
1214 
1215 		dev_watchdog_down(dev);
1216 	}
1217 
1218 	/* Wait for outstanding qdisc-less dev_queue_xmit calls.
1219 	 * This is avoided if all devices are in dismantle phase :
1220 	 * Caller will call synchronize_net() for us
1221 	 */
1222 	synchronize_net();
1223 
1224 	/* Wait for outstanding qdisc_run calls. */
1225 	list_for_each_entry(dev, head, close_list) {
1226 		while (some_qdisc_is_busy(dev))
1227 			yield();
1228 		/* The new qdisc is assigned at this point so we can safely
1229 		 * unwind stale skb lists and qdisc statistics
1230 		 */
1231 		netdev_for_each_tx_queue(dev, dev_qdisc_reset, NULL);
1232 		if (dev_ingress_queue(dev))
1233 			dev_qdisc_reset(dev, dev_ingress_queue(dev), NULL);
1234 	}
1235 }
1236 
1237 void dev_deactivate(struct net_device *dev)
1238 {
1239 	LIST_HEAD(single);
1240 
1241 	list_add(&dev->close_list, &single);
1242 	dev_deactivate_many(&single);
1243 	list_del(&single);
1244 }
1245 EXPORT_SYMBOL(dev_deactivate);
1246 
1247 static int qdisc_change_tx_queue_len(struct net_device *dev,
1248 				     struct netdev_queue *dev_queue)
1249 {
1250 	struct Qdisc *qdisc = dev_queue->qdisc_sleeping;
1251 	const struct Qdisc_ops *ops = qdisc->ops;
1252 
1253 	if (ops->change_tx_queue_len)
1254 		return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1255 	return 0;
1256 }
1257 
1258 int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1259 {
1260 	bool up = dev->flags & IFF_UP;
1261 	unsigned int i;
1262 	int ret = 0;
1263 
1264 	if (up)
1265 		dev_deactivate(dev);
1266 
1267 	for (i = 0; i < dev->num_tx_queues; i++) {
1268 		ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1269 
1270 		/* TODO: revert changes on a partial failure */
1271 		if (ret)
1272 			break;
1273 	}
1274 
1275 	if (up)
1276 		dev_activate(dev);
1277 	return ret;
1278 }
1279 
1280 static void dev_init_scheduler_queue(struct net_device *dev,
1281 				     struct netdev_queue *dev_queue,
1282 				     void *_qdisc)
1283 {
1284 	struct Qdisc *qdisc = _qdisc;
1285 
1286 	rcu_assign_pointer(dev_queue->qdisc, qdisc);
1287 	dev_queue->qdisc_sleeping = qdisc;
1288 }
1289 
1290 void dev_init_scheduler(struct net_device *dev)
1291 {
1292 	dev->qdisc = &noop_qdisc;
1293 	netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1294 	if (dev_ingress_queue(dev))
1295 		dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1296 
1297 	timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
1298 }
1299 
1300 static void shutdown_scheduler_queue(struct net_device *dev,
1301 				     struct netdev_queue *dev_queue,
1302 				     void *_qdisc_default)
1303 {
1304 	struct Qdisc *qdisc = dev_queue->qdisc_sleeping;
1305 	struct Qdisc *qdisc_default = _qdisc_default;
1306 
1307 	if (qdisc) {
1308 		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1309 		dev_queue->qdisc_sleeping = qdisc_default;
1310 
1311 		qdisc_put(qdisc);
1312 	}
1313 }
1314 
1315 void dev_shutdown(struct net_device *dev)
1316 {
1317 	netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1318 	if (dev_ingress_queue(dev))
1319 		shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1320 	qdisc_put(dev->qdisc);
1321 	dev->qdisc = &noop_qdisc;
1322 
1323 	WARN_ON(timer_pending(&dev->watchdog_timer));
1324 }
1325 
1326 void psched_ratecfg_precompute(struct psched_ratecfg *r,
1327 			       const struct tc_ratespec *conf,
1328 			       u64 rate64)
1329 {
1330 	memset(r, 0, sizeof(*r));
1331 	r->overhead = conf->overhead;
1332 	r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1333 	r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1334 	r->mult = 1;
1335 	/*
1336 	 * The deal here is to replace a divide by a reciprocal one
1337 	 * in fast path (a reciprocal divide is a multiply and a shift)
1338 	 *
1339 	 * Normal formula would be :
1340 	 *  time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1341 	 *
1342 	 * We compute mult/shift to use instead :
1343 	 *  time_in_ns = (len * mult) >> shift;
1344 	 *
1345 	 * We try to get the highest possible mult value for accuracy,
1346 	 * but have to make sure no overflows will ever happen.
1347 	 */
1348 	if (r->rate_bytes_ps > 0) {
1349 		u64 factor = NSEC_PER_SEC;
1350 
1351 		for (;;) {
1352 			r->mult = div64_u64(factor, r->rate_bytes_ps);
1353 			if (r->mult & (1U << 31) || factor & (1ULL << 63))
1354 				break;
1355 			factor <<= 1;
1356 			r->shift++;
1357 		}
1358 	}
1359 }
1360 EXPORT_SYMBOL(psched_ratecfg_precompute);
1361 
1362 static void mini_qdisc_rcu_func(struct rcu_head *head)
1363 {
1364 }
1365 
1366 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1367 			  struct tcf_proto *tp_head)
1368 {
1369 	struct mini_Qdisc *miniq_old = rtnl_dereference(*miniqp->p_miniq);
1370 	struct mini_Qdisc *miniq;
1371 
1372 	if (!tp_head) {
1373 		RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1374 		/* Wait for flying RCU callback before it is freed. */
1375 		rcu_barrier();
1376 		return;
1377 	}
1378 
1379 	miniq = !miniq_old || miniq_old == &miniqp->miniq2 ?
1380 		&miniqp->miniq1 : &miniqp->miniq2;
1381 
1382 	/* We need to make sure that readers won't see the miniq
1383 	 * we are about to modify. So wait until previous call_rcu callback
1384 	 * is done.
1385 	 */
1386 	rcu_barrier();
1387 	miniq->filter_list = tp_head;
1388 	rcu_assign_pointer(*miniqp->p_miniq, miniq);
1389 
1390 	if (miniq_old)
1391 		/* This is counterpart of the rcu barriers above. We need to
1392 		 * block potential new user of miniq_old until all readers
1393 		 * are not seeing it.
1394 		 */
1395 		call_rcu(&miniq_old->rcu, mini_qdisc_rcu_func);
1396 }
1397 EXPORT_SYMBOL(mini_qdisc_pair_swap);
1398 
1399 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1400 			  struct mini_Qdisc __rcu **p_miniq)
1401 {
1402 	miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1403 	miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1404 	miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1405 	miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1406 	miniqp->p_miniq = p_miniq;
1407 }
1408 EXPORT_SYMBOL(mini_qdisc_pair_init);
1409