xref: /linux/net/sched/sch_generic.c (revision 5d83b9cbe7cf40746948a419c5018f4d617a86fa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net/sched/sch_generic.c	Generic packet scheduler routines.
4  *
5  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6  *              Jamal Hadi Salim, <hadi@cyberus.ca> 990601
7  *              - Ingress support
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/init.h>
21 #include <linux/rcupdate.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/if_vlan.h>
25 #include <linux/skb_array.h>
26 #include <linux/if_macvlan.h>
27 #include <net/sch_generic.h>
28 #include <net/pkt_sched.h>
29 #include <net/dst.h>
30 #include <net/hotdata.h>
31 #include <trace/events/qdisc.h>
32 #include <trace/events/net.h>
33 #include <net/xfrm.h>
34 
35 /* Qdisc to use by default */
36 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
37 EXPORT_SYMBOL(default_qdisc_ops);
38 
39 static void qdisc_maybe_clear_missed(struct Qdisc *q,
40 				     const struct netdev_queue *txq)
41 {
42 	clear_bit(__QDISC_STATE_MISSED, &q->state);
43 
44 	/* Make sure the below netif_xmit_frozen_or_stopped()
45 	 * checking happens after clearing STATE_MISSED.
46 	 */
47 	smp_mb__after_atomic();
48 
49 	/* Checking netif_xmit_frozen_or_stopped() again to
50 	 * make sure STATE_MISSED is set if the STATE_MISSED
51 	 * set by netif_tx_wake_queue()'s rescheduling of
52 	 * net_tx_action() is cleared by the above clear_bit().
53 	 */
54 	if (!netif_xmit_frozen_or_stopped(txq))
55 		set_bit(__QDISC_STATE_MISSED, &q->state);
56 	else
57 		set_bit(__QDISC_STATE_DRAINING, &q->state);
58 }
59 
60 /* Main transmission queue. */
61 
62 /* Modifications to data participating in scheduling must be protected with
63  * qdisc_lock(qdisc) spinlock.
64  *
65  * The idea is the following:
66  * - enqueue, dequeue are serialized via qdisc root lock
67  * - ingress filtering is also serialized via qdisc root lock
68  * - updates to tree and tree walking are only done under the rtnl mutex.
69  */
70 
71 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL)
72 
73 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
74 {
75 	const struct netdev_queue *txq = q->dev_queue;
76 	spinlock_t *lock = NULL;
77 	struct sk_buff *skb;
78 
79 	if (q->flags & TCQ_F_NOLOCK) {
80 		lock = qdisc_lock(q);
81 		spin_lock(lock);
82 	}
83 
84 	skb = skb_peek(&q->skb_bad_txq);
85 	if (skb) {
86 		/* check the reason of requeuing without tx lock first */
87 		txq = skb_get_tx_queue(txq->dev, skb);
88 		if (!netif_xmit_frozen_or_stopped(txq)) {
89 			skb = __skb_dequeue(&q->skb_bad_txq);
90 			if (qdisc_is_percpu_stats(q)) {
91 				qdisc_qstats_cpu_backlog_dec(q, skb);
92 				qdisc_qstats_cpu_qlen_dec(q);
93 			} else {
94 				qdisc_qstats_backlog_dec(q, skb);
95 				q->q.qlen--;
96 			}
97 		} else {
98 			skb = SKB_XOFF_MAGIC;
99 			qdisc_maybe_clear_missed(q, txq);
100 		}
101 	}
102 
103 	if (lock)
104 		spin_unlock(lock);
105 
106 	return skb;
107 }
108 
109 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
110 {
111 	struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
112 
113 	if (unlikely(skb))
114 		skb = __skb_dequeue_bad_txq(q);
115 
116 	return skb;
117 }
118 
119 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
120 					     struct sk_buff *skb)
121 {
122 	spinlock_t *lock = NULL;
123 
124 	if (q->flags & TCQ_F_NOLOCK) {
125 		lock = qdisc_lock(q);
126 		spin_lock(lock);
127 	}
128 
129 	__skb_queue_tail(&q->skb_bad_txq, skb);
130 
131 	if (qdisc_is_percpu_stats(q)) {
132 		qdisc_qstats_cpu_backlog_inc(q, skb);
133 		qdisc_qstats_cpu_qlen_inc(q);
134 	} else {
135 		qdisc_qstats_backlog_inc(q, skb);
136 		q->q.qlen++;
137 	}
138 
139 	if (lock)
140 		spin_unlock(lock);
141 }
142 
143 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
144 {
145 	spinlock_t *lock = NULL;
146 
147 	if (q->flags & TCQ_F_NOLOCK) {
148 		lock = qdisc_lock(q);
149 		spin_lock(lock);
150 	}
151 
152 	while (skb) {
153 		struct sk_buff *next = skb->next;
154 
155 		__skb_queue_tail(&q->gso_skb, skb);
156 
157 		/* it's still part of the queue */
158 		if (qdisc_is_percpu_stats(q)) {
159 			qdisc_qstats_cpu_requeues_inc(q);
160 			qdisc_qstats_cpu_backlog_inc(q, skb);
161 			qdisc_qstats_cpu_qlen_inc(q);
162 		} else {
163 			q->qstats.requeues++;
164 			qdisc_qstats_backlog_inc(q, skb);
165 			q->q.qlen++;
166 		}
167 
168 		skb = next;
169 	}
170 
171 	if (lock) {
172 		spin_unlock(lock);
173 		set_bit(__QDISC_STATE_MISSED, &q->state);
174 	} else {
175 		__netif_schedule(q);
176 	}
177 }
178 
179 static void try_bulk_dequeue_skb(struct Qdisc *q,
180 				 struct sk_buff *skb,
181 				 const struct netdev_queue *txq,
182 				 int *packets)
183 {
184 	int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
185 
186 	while (bytelimit > 0) {
187 		struct sk_buff *nskb = q->dequeue(q);
188 
189 		if (!nskb)
190 			break;
191 
192 		bytelimit -= nskb->len; /* covers GSO len */
193 		skb->next = nskb;
194 		skb = nskb;
195 		(*packets)++; /* GSO counts as one pkt */
196 	}
197 	skb_mark_not_on_list(skb);
198 }
199 
200 /* This variant of try_bulk_dequeue_skb() makes sure
201  * all skbs in the chain are for the same txq
202  */
203 static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
204 				      struct sk_buff *skb,
205 				      int *packets)
206 {
207 	int mapping = skb_get_queue_mapping(skb);
208 	struct sk_buff *nskb;
209 	int cnt = 0;
210 
211 	do {
212 		nskb = q->dequeue(q);
213 		if (!nskb)
214 			break;
215 		if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
216 			qdisc_enqueue_skb_bad_txq(q, nskb);
217 			break;
218 		}
219 		skb->next = nskb;
220 		skb = nskb;
221 	} while (++cnt < 8);
222 	(*packets) += cnt;
223 	skb_mark_not_on_list(skb);
224 }
225 
226 /* Note that dequeue_skb can possibly return a SKB list (via skb->next).
227  * A requeued skb (via q->gso_skb) can also be a SKB list.
228  */
229 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
230 				   int *packets)
231 {
232 	const struct netdev_queue *txq = q->dev_queue;
233 	struct sk_buff *skb = NULL;
234 
235 	*packets = 1;
236 	if (unlikely(!skb_queue_empty(&q->gso_skb))) {
237 		spinlock_t *lock = NULL;
238 
239 		if (q->flags & TCQ_F_NOLOCK) {
240 			lock = qdisc_lock(q);
241 			spin_lock(lock);
242 		}
243 
244 		skb = skb_peek(&q->gso_skb);
245 
246 		/* skb may be null if another cpu pulls gso_skb off in between
247 		 * empty check and lock.
248 		 */
249 		if (!skb) {
250 			if (lock)
251 				spin_unlock(lock);
252 			goto validate;
253 		}
254 
255 		/* skb in gso_skb were already validated */
256 		*validate = false;
257 		if (xfrm_offload(skb))
258 			*validate = true;
259 		/* check the reason of requeuing without tx lock first */
260 		txq = skb_get_tx_queue(txq->dev, skb);
261 		if (!netif_xmit_frozen_or_stopped(txq)) {
262 			skb = __skb_dequeue(&q->gso_skb);
263 			if (qdisc_is_percpu_stats(q)) {
264 				qdisc_qstats_cpu_backlog_dec(q, skb);
265 				qdisc_qstats_cpu_qlen_dec(q);
266 			} else {
267 				qdisc_qstats_backlog_dec(q, skb);
268 				q->q.qlen--;
269 			}
270 		} else {
271 			skb = NULL;
272 			qdisc_maybe_clear_missed(q, txq);
273 		}
274 		if (lock)
275 			spin_unlock(lock);
276 		goto trace;
277 	}
278 validate:
279 	*validate = true;
280 
281 	if ((q->flags & TCQ_F_ONETXQUEUE) &&
282 	    netif_xmit_frozen_or_stopped(txq)) {
283 		qdisc_maybe_clear_missed(q, txq);
284 		return skb;
285 	}
286 
287 	skb = qdisc_dequeue_skb_bad_txq(q);
288 	if (unlikely(skb)) {
289 		if (skb == SKB_XOFF_MAGIC)
290 			return NULL;
291 		goto bulk;
292 	}
293 	skb = q->dequeue(q);
294 	if (skb) {
295 bulk:
296 		if (qdisc_may_bulk(q))
297 			try_bulk_dequeue_skb(q, skb, txq, packets);
298 		else
299 			try_bulk_dequeue_skb_slow(q, skb, packets);
300 	}
301 trace:
302 	trace_qdisc_dequeue(q, txq, *packets, skb);
303 	return skb;
304 }
305 
306 /*
307  * Transmit possibly several skbs, and handle the return status as
308  * required. Owning qdisc running bit guarantees that only one CPU
309  * can execute this function.
310  *
311  * Returns to the caller:
312  *				false  - hardware queue frozen backoff
313  *				true   - feel free to send more pkts
314  */
315 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
316 		     struct net_device *dev, struct netdev_queue *txq,
317 		     spinlock_t *root_lock, bool validate)
318 {
319 	int ret = NETDEV_TX_BUSY;
320 	bool again = false;
321 
322 	/* And release qdisc */
323 	if (root_lock)
324 		spin_unlock(root_lock);
325 
326 	/* Note that we validate skb (GSO, checksum, ...) outside of locks */
327 	if (validate)
328 		skb = validate_xmit_skb_list(skb, dev, &again);
329 
330 #ifdef CONFIG_XFRM_OFFLOAD
331 	if (unlikely(again)) {
332 		if (root_lock)
333 			spin_lock(root_lock);
334 
335 		dev_requeue_skb(skb, q);
336 		return false;
337 	}
338 #endif
339 
340 	if (likely(skb)) {
341 		HARD_TX_LOCK(dev, txq, smp_processor_id());
342 		if (!netif_xmit_frozen_or_stopped(txq))
343 			skb = dev_hard_start_xmit(skb, dev, txq, &ret);
344 		else
345 			qdisc_maybe_clear_missed(q, txq);
346 
347 		HARD_TX_UNLOCK(dev, txq);
348 	} else {
349 		if (root_lock)
350 			spin_lock(root_lock);
351 		return true;
352 	}
353 
354 	if (root_lock)
355 		spin_lock(root_lock);
356 
357 	if (!dev_xmit_complete(ret)) {
358 		/* Driver returned NETDEV_TX_BUSY - requeue skb */
359 		if (unlikely(ret != NETDEV_TX_BUSY))
360 			net_warn_ratelimited("BUG %s code %d qlen %d\n",
361 					     dev->name, ret, q->q.qlen);
362 
363 		dev_requeue_skb(skb, q);
364 		return false;
365 	}
366 
367 	return true;
368 }
369 
370 /*
371  * NOTE: Called under qdisc_lock(q) with locally disabled BH.
372  *
373  * running seqcount guarantees only one CPU can process
374  * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
375  * this queue.
376  *
377  *  netif_tx_lock serializes accesses to device driver.
378  *
379  *  qdisc_lock(q) and netif_tx_lock are mutually exclusive,
380  *  if one is grabbed, another must be free.
381  *
382  * Note, that this procedure can be called by a watchdog timer
383  *
384  * Returns to the caller:
385  *				0  - queue is empty or throttled.
386  *				>0 - queue is not empty.
387  *
388  */
389 static inline bool qdisc_restart(struct Qdisc *q, int *packets)
390 {
391 	spinlock_t *root_lock = NULL;
392 	struct netdev_queue *txq;
393 	struct net_device *dev;
394 	struct sk_buff *skb;
395 	bool validate;
396 
397 	/* Dequeue packet */
398 	skb = dequeue_skb(q, &validate, packets);
399 	if (unlikely(!skb))
400 		return false;
401 
402 	if (!(q->flags & TCQ_F_NOLOCK))
403 		root_lock = qdisc_lock(q);
404 
405 	dev = qdisc_dev(q);
406 	txq = skb_get_tx_queue(dev, skb);
407 
408 	return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
409 }
410 
411 void __qdisc_run(struct Qdisc *q)
412 {
413 	int quota = READ_ONCE(net_hotdata.dev_tx_weight);
414 	int packets;
415 
416 	while (qdisc_restart(q, &packets)) {
417 		quota -= packets;
418 		if (quota <= 0) {
419 			if (q->flags & TCQ_F_NOLOCK)
420 				set_bit(__QDISC_STATE_MISSED, &q->state);
421 			else
422 				__netif_schedule(q);
423 
424 			break;
425 		}
426 	}
427 }
428 
429 unsigned long dev_trans_start(struct net_device *dev)
430 {
431 	unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start);
432 	unsigned long val;
433 	unsigned int i;
434 
435 	for (i = 1; i < dev->num_tx_queues; i++) {
436 		val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start);
437 		if (val && time_after(val, res))
438 			res = val;
439 	}
440 
441 	return res;
442 }
443 EXPORT_SYMBOL(dev_trans_start);
444 
445 static void netif_freeze_queues(struct net_device *dev)
446 {
447 	unsigned int i;
448 	int cpu;
449 
450 	cpu = smp_processor_id();
451 	for (i = 0; i < dev->num_tx_queues; i++) {
452 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
453 
454 		/* We are the only thread of execution doing a
455 		 * freeze, but we have to grab the _xmit_lock in
456 		 * order to synchronize with threads which are in
457 		 * the ->hard_start_xmit() handler and already
458 		 * checked the frozen bit.
459 		 */
460 		__netif_tx_lock(txq, cpu);
461 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
462 		__netif_tx_unlock(txq);
463 	}
464 }
465 
466 void netif_tx_lock(struct net_device *dev)
467 {
468 	spin_lock(&dev->tx_global_lock);
469 	netif_freeze_queues(dev);
470 }
471 EXPORT_SYMBOL(netif_tx_lock);
472 
473 static void netif_unfreeze_queues(struct net_device *dev)
474 {
475 	unsigned int i;
476 
477 	for (i = 0; i < dev->num_tx_queues; i++) {
478 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
479 
480 		/* No need to grab the _xmit_lock here.  If the
481 		 * queue is not stopped for another reason, we
482 		 * force a schedule.
483 		 */
484 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
485 		netif_schedule_queue(txq);
486 	}
487 }
488 
489 void netif_tx_unlock(struct net_device *dev)
490 {
491 	netif_unfreeze_queues(dev);
492 	spin_unlock(&dev->tx_global_lock);
493 }
494 EXPORT_SYMBOL(netif_tx_unlock);
495 
496 static void dev_watchdog(struct timer_list *t)
497 {
498 	struct net_device *dev = from_timer(dev, t, watchdog_timer);
499 	bool release = true;
500 
501 	spin_lock(&dev->tx_global_lock);
502 	if (!qdisc_tx_is_noop(dev)) {
503 		if (netif_device_present(dev) &&
504 		    netif_running(dev) &&
505 		    netif_carrier_ok(dev)) {
506 			unsigned int timedout_ms = 0;
507 			unsigned int i;
508 			unsigned long trans_start;
509 
510 			for (i = 0; i < dev->num_tx_queues; i++) {
511 				struct netdev_queue *txq;
512 
513 				txq = netdev_get_tx_queue(dev, i);
514 				trans_start = READ_ONCE(txq->trans_start);
515 				if (netif_xmit_stopped(txq) &&
516 				    time_after(jiffies, (trans_start +
517 							 dev->watchdog_timeo))) {
518 					timedout_ms = jiffies_to_msecs(jiffies - trans_start);
519 					atomic_long_inc(&txq->trans_timeout);
520 					break;
521 				}
522 			}
523 
524 			if (unlikely(timedout_ms)) {
525 				trace_net_dev_xmit_timeout(dev, i);
526 				netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n",
527 					    raw_smp_processor_id(),
528 					    i, timedout_ms);
529 				netif_freeze_queues(dev);
530 				dev->netdev_ops->ndo_tx_timeout(dev, i);
531 				netif_unfreeze_queues(dev);
532 			}
533 			if (!mod_timer(&dev->watchdog_timer,
534 				       round_jiffies(jiffies +
535 						     dev->watchdog_timeo)))
536 				release = false;
537 		}
538 	}
539 	spin_unlock(&dev->tx_global_lock);
540 
541 	if (release)
542 		netdev_put(dev, &dev->watchdog_dev_tracker);
543 }
544 
545 void __netdev_watchdog_up(struct net_device *dev)
546 {
547 	if (dev->netdev_ops->ndo_tx_timeout) {
548 		if (dev->watchdog_timeo <= 0)
549 			dev->watchdog_timeo = 5*HZ;
550 		if (!mod_timer(&dev->watchdog_timer,
551 			       round_jiffies(jiffies + dev->watchdog_timeo)))
552 			netdev_hold(dev, &dev->watchdog_dev_tracker,
553 				    GFP_ATOMIC);
554 	}
555 }
556 EXPORT_SYMBOL_GPL(__netdev_watchdog_up);
557 
558 static void dev_watchdog_up(struct net_device *dev)
559 {
560 	__netdev_watchdog_up(dev);
561 }
562 
563 static void dev_watchdog_down(struct net_device *dev)
564 {
565 	netif_tx_lock_bh(dev);
566 	if (del_timer(&dev->watchdog_timer))
567 		netdev_put(dev, &dev->watchdog_dev_tracker);
568 	netif_tx_unlock_bh(dev);
569 }
570 
571 /**
572  *	netif_carrier_on - set carrier
573  *	@dev: network device
574  *
575  * Device has detected acquisition of carrier.
576  */
577 void netif_carrier_on(struct net_device *dev)
578 {
579 	if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
580 		if (dev->reg_state == NETREG_UNINITIALIZED)
581 			return;
582 		atomic_inc(&dev->carrier_up_count);
583 		linkwatch_fire_event(dev);
584 		if (netif_running(dev))
585 			__netdev_watchdog_up(dev);
586 	}
587 }
588 EXPORT_SYMBOL(netif_carrier_on);
589 
590 /**
591  *	netif_carrier_off - clear carrier
592  *	@dev: network device
593  *
594  * Device has detected loss of carrier.
595  */
596 void netif_carrier_off(struct net_device *dev)
597 {
598 	if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
599 		if (dev->reg_state == NETREG_UNINITIALIZED)
600 			return;
601 		atomic_inc(&dev->carrier_down_count);
602 		linkwatch_fire_event(dev);
603 	}
604 }
605 EXPORT_SYMBOL(netif_carrier_off);
606 
607 /**
608  *	netif_carrier_event - report carrier state event
609  *	@dev: network device
610  *
611  * Device has detected a carrier event but the carrier state wasn't changed.
612  * Use in drivers when querying carrier state asynchronously, to avoid missing
613  * events (link flaps) if link recovers before it's queried.
614  */
615 void netif_carrier_event(struct net_device *dev)
616 {
617 	if (dev->reg_state == NETREG_UNINITIALIZED)
618 		return;
619 	atomic_inc(&dev->carrier_up_count);
620 	atomic_inc(&dev->carrier_down_count);
621 	linkwatch_fire_event(dev);
622 }
623 EXPORT_SYMBOL_GPL(netif_carrier_event);
624 
625 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces
626    under all circumstances. It is difficult to invent anything faster or
627    cheaper.
628  */
629 
630 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
631 			struct sk_buff **to_free)
632 {
633 	__qdisc_drop(skb, to_free);
634 	return NET_XMIT_CN;
635 }
636 
637 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
638 {
639 	return NULL;
640 }
641 
642 struct Qdisc_ops noop_qdisc_ops __read_mostly = {
643 	.id		=	"noop",
644 	.priv_size	=	0,
645 	.enqueue	=	noop_enqueue,
646 	.dequeue	=	noop_dequeue,
647 	.peek		=	noop_dequeue,
648 	.owner		=	THIS_MODULE,
649 };
650 
651 static struct netdev_queue noop_netdev_queue = {
652 	RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc),
653 	RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc),
654 };
655 
656 struct Qdisc noop_qdisc = {
657 	.enqueue	=	noop_enqueue,
658 	.dequeue	=	noop_dequeue,
659 	.flags		=	TCQ_F_BUILTIN,
660 	.ops		=	&noop_qdisc_ops,
661 	.q.lock		=	__SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
662 	.dev_queue	=	&noop_netdev_queue,
663 	.busylock	=	__SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
664 	.gso_skb = {
665 		.next = (struct sk_buff *)&noop_qdisc.gso_skb,
666 		.prev = (struct sk_buff *)&noop_qdisc.gso_skb,
667 		.qlen = 0,
668 		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
669 	},
670 	.skb_bad_txq = {
671 		.next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
672 		.prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
673 		.qlen = 0,
674 		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
675 	},
676 };
677 EXPORT_SYMBOL(noop_qdisc);
678 
679 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
680 			struct netlink_ext_ack *extack)
681 {
682 	/* register_qdisc() assigns a default of noop_enqueue if unset,
683 	 * but __dev_queue_xmit() treats noqueue only as such
684 	 * if this is NULL - so clear it here. */
685 	qdisc->enqueue = NULL;
686 	return 0;
687 }
688 
689 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
690 	.id		=	"noqueue",
691 	.priv_size	=	0,
692 	.init		=	noqueue_init,
693 	.enqueue	=	noop_enqueue,
694 	.dequeue	=	noop_dequeue,
695 	.peek		=	noop_dequeue,
696 	.owner		=	THIS_MODULE,
697 };
698 
699 const u8 sch_default_prio2band[TC_PRIO_MAX + 1] = {
700 	1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
701 };
702 EXPORT_SYMBOL(sch_default_prio2band);
703 
704 /* 3-band FIFO queue: old style, but should be a bit faster than
705    generic prio+fifo combination.
706  */
707 
708 #define PFIFO_FAST_BANDS 3
709 
710 /*
711  * Private data for a pfifo_fast scheduler containing:
712  *	- rings for priority bands
713  */
714 struct pfifo_fast_priv {
715 	struct skb_array q[PFIFO_FAST_BANDS];
716 };
717 
718 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
719 					  int band)
720 {
721 	return &priv->q[band];
722 }
723 
724 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
725 			      struct sk_buff **to_free)
726 {
727 	int band = sch_default_prio2band[skb->priority & TC_PRIO_MAX];
728 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
729 	struct skb_array *q = band2list(priv, band);
730 	unsigned int pkt_len = qdisc_pkt_len(skb);
731 	int err;
732 
733 	err = skb_array_produce(q, skb);
734 
735 	if (unlikely(err)) {
736 		if (qdisc_is_percpu_stats(qdisc))
737 			return qdisc_drop_cpu(skb, qdisc, to_free);
738 		else
739 			return qdisc_drop(skb, qdisc, to_free);
740 	}
741 
742 	qdisc_update_stats_at_enqueue(qdisc, pkt_len);
743 	return NET_XMIT_SUCCESS;
744 }
745 
746 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
747 {
748 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
749 	struct sk_buff *skb = NULL;
750 	bool need_retry = true;
751 	int band;
752 
753 retry:
754 	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
755 		struct skb_array *q = band2list(priv, band);
756 
757 		if (__skb_array_empty(q))
758 			continue;
759 
760 		skb = __skb_array_consume(q);
761 	}
762 	if (likely(skb)) {
763 		qdisc_update_stats_at_dequeue(qdisc, skb);
764 	} else if (need_retry &&
765 		   READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) {
766 		/* Delay clearing the STATE_MISSED here to reduce
767 		 * the overhead of the second spin_trylock() in
768 		 * qdisc_run_begin() and __netif_schedule() calling
769 		 * in qdisc_run_end().
770 		 */
771 		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
772 		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
773 
774 		/* Make sure dequeuing happens after clearing
775 		 * STATE_MISSED.
776 		 */
777 		smp_mb__after_atomic();
778 
779 		need_retry = false;
780 
781 		goto retry;
782 	}
783 
784 	return skb;
785 }
786 
787 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
788 {
789 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
790 	struct sk_buff *skb = NULL;
791 	int band;
792 
793 	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
794 		struct skb_array *q = band2list(priv, band);
795 
796 		skb = __skb_array_peek(q);
797 	}
798 
799 	return skb;
800 }
801 
802 static void pfifo_fast_reset(struct Qdisc *qdisc)
803 {
804 	int i, band;
805 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
806 
807 	for (band = 0; band < PFIFO_FAST_BANDS; band++) {
808 		struct skb_array *q = band2list(priv, band);
809 		struct sk_buff *skb;
810 
811 		/* NULL ring is possible if destroy path is due to a failed
812 		 * skb_array_init() in pfifo_fast_init() case.
813 		 */
814 		if (!q->ring.queue)
815 			continue;
816 
817 		while ((skb = __skb_array_consume(q)) != NULL)
818 			kfree_skb(skb);
819 	}
820 
821 	if (qdisc_is_percpu_stats(qdisc)) {
822 		for_each_possible_cpu(i) {
823 			struct gnet_stats_queue *q;
824 
825 			q = per_cpu_ptr(qdisc->cpu_qstats, i);
826 			q->backlog = 0;
827 			q->qlen = 0;
828 		}
829 	}
830 }
831 
832 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
833 {
834 	struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
835 
836 	memcpy(&opt.priomap, sch_default_prio2band, TC_PRIO_MAX + 1);
837 	if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
838 		goto nla_put_failure;
839 	return skb->len;
840 
841 nla_put_failure:
842 	return -1;
843 }
844 
845 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
846 			   struct netlink_ext_ack *extack)
847 {
848 	unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
849 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
850 	int prio;
851 
852 	/* guard against zero length rings */
853 	if (!qlen)
854 		return -EINVAL;
855 
856 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
857 		struct skb_array *q = band2list(priv, prio);
858 		int err;
859 
860 		err = skb_array_init(q, qlen, GFP_KERNEL);
861 		if (err)
862 			return -ENOMEM;
863 	}
864 
865 	/* Can by-pass the queue discipline */
866 	qdisc->flags |= TCQ_F_CAN_BYPASS;
867 	return 0;
868 }
869 
870 static void pfifo_fast_destroy(struct Qdisc *sch)
871 {
872 	struct pfifo_fast_priv *priv = qdisc_priv(sch);
873 	int prio;
874 
875 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
876 		struct skb_array *q = band2list(priv, prio);
877 
878 		/* NULL ring is possible if destroy path is due to a failed
879 		 * skb_array_init() in pfifo_fast_init() case.
880 		 */
881 		if (!q->ring.queue)
882 			continue;
883 		/* Destroy ring but no need to kfree_skb because a call to
884 		 * pfifo_fast_reset() has already done that work.
885 		 */
886 		ptr_ring_cleanup(&q->ring, NULL);
887 	}
888 }
889 
890 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
891 					  unsigned int new_len)
892 {
893 	struct pfifo_fast_priv *priv = qdisc_priv(sch);
894 	struct skb_array *bands[PFIFO_FAST_BANDS];
895 	int prio;
896 
897 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
898 		struct skb_array *q = band2list(priv, prio);
899 
900 		bands[prio] = q;
901 	}
902 
903 	return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len,
904 					 GFP_KERNEL);
905 }
906 
907 struct Qdisc_ops pfifo_fast_ops __read_mostly = {
908 	.id		=	"pfifo_fast",
909 	.priv_size	=	sizeof(struct pfifo_fast_priv),
910 	.enqueue	=	pfifo_fast_enqueue,
911 	.dequeue	=	pfifo_fast_dequeue,
912 	.peek		=	pfifo_fast_peek,
913 	.init		=	pfifo_fast_init,
914 	.destroy	=	pfifo_fast_destroy,
915 	.reset		=	pfifo_fast_reset,
916 	.dump		=	pfifo_fast_dump,
917 	.change_tx_queue_len =  pfifo_fast_change_tx_queue_len,
918 	.owner		=	THIS_MODULE,
919 	.static_flags	=	TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
920 };
921 EXPORT_SYMBOL(pfifo_fast_ops);
922 
923 static struct lock_class_key qdisc_tx_busylock;
924 
925 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
926 			  const struct Qdisc_ops *ops,
927 			  struct netlink_ext_ack *extack)
928 {
929 	struct Qdisc *sch;
930 	unsigned int size = sizeof(*sch) + ops->priv_size;
931 	int err = -ENOBUFS;
932 	struct net_device *dev;
933 
934 	if (!dev_queue) {
935 		NL_SET_ERR_MSG(extack, "No device queue given");
936 		err = -EINVAL;
937 		goto errout;
938 	}
939 
940 	dev = dev_queue->dev;
941 	sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue));
942 
943 	if (!sch)
944 		goto errout;
945 	__skb_queue_head_init(&sch->gso_skb);
946 	__skb_queue_head_init(&sch->skb_bad_txq);
947 	gnet_stats_basic_sync_init(&sch->bstats);
948 	spin_lock_init(&sch->q.lock);
949 
950 	if (ops->static_flags & TCQ_F_CPUSTATS) {
951 		sch->cpu_bstats =
952 			netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
953 		if (!sch->cpu_bstats)
954 			goto errout1;
955 
956 		sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
957 		if (!sch->cpu_qstats) {
958 			free_percpu(sch->cpu_bstats);
959 			goto errout1;
960 		}
961 	}
962 
963 	spin_lock_init(&sch->busylock);
964 	lockdep_set_class(&sch->busylock,
965 			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
966 
967 	/* seqlock has the same scope of busylock, for NOLOCK qdisc */
968 	spin_lock_init(&sch->seqlock);
969 	lockdep_set_class(&sch->seqlock,
970 			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
971 
972 	sch->ops = ops;
973 	sch->flags = ops->static_flags;
974 	sch->enqueue = ops->enqueue;
975 	sch->dequeue = ops->dequeue;
976 	sch->dev_queue = dev_queue;
977 	netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL);
978 	refcount_set(&sch->refcnt, 1);
979 
980 	return sch;
981 errout1:
982 	kfree(sch);
983 errout:
984 	return ERR_PTR(err);
985 }
986 
987 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
988 				const struct Qdisc_ops *ops,
989 				unsigned int parentid,
990 				struct netlink_ext_ack *extack)
991 {
992 	struct Qdisc *sch;
993 
994 	if (!try_module_get(ops->owner)) {
995 		NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
996 		return NULL;
997 	}
998 
999 	sch = qdisc_alloc(dev_queue, ops, extack);
1000 	if (IS_ERR(sch)) {
1001 		module_put(ops->owner);
1002 		return NULL;
1003 	}
1004 	sch->parent = parentid;
1005 
1006 	if (!ops->init || ops->init(sch, NULL, extack) == 0) {
1007 		trace_qdisc_create(ops, dev_queue->dev, parentid);
1008 		return sch;
1009 	}
1010 
1011 	qdisc_put(sch);
1012 	return NULL;
1013 }
1014 EXPORT_SYMBOL(qdisc_create_dflt);
1015 
1016 /* Under qdisc_lock(qdisc) and BH! */
1017 
1018 void qdisc_reset(struct Qdisc *qdisc)
1019 {
1020 	const struct Qdisc_ops *ops = qdisc->ops;
1021 
1022 	trace_qdisc_reset(qdisc);
1023 
1024 	if (ops->reset)
1025 		ops->reset(qdisc);
1026 
1027 	__skb_queue_purge(&qdisc->gso_skb);
1028 	__skb_queue_purge(&qdisc->skb_bad_txq);
1029 
1030 	qdisc->q.qlen = 0;
1031 	qdisc->qstats.backlog = 0;
1032 }
1033 EXPORT_SYMBOL(qdisc_reset);
1034 
1035 void qdisc_free(struct Qdisc *qdisc)
1036 {
1037 	if (qdisc_is_percpu_stats(qdisc)) {
1038 		free_percpu(qdisc->cpu_bstats);
1039 		free_percpu(qdisc->cpu_qstats);
1040 	}
1041 
1042 	kfree(qdisc);
1043 }
1044 
1045 static void qdisc_free_cb(struct rcu_head *head)
1046 {
1047 	struct Qdisc *q = container_of(head, struct Qdisc, rcu);
1048 
1049 	qdisc_free(q);
1050 }
1051 
1052 static void __qdisc_destroy(struct Qdisc *qdisc)
1053 {
1054 	const struct Qdisc_ops  *ops = qdisc->ops;
1055 	struct net_device *dev = qdisc_dev(qdisc);
1056 
1057 #ifdef CONFIG_NET_SCHED
1058 	qdisc_hash_del(qdisc);
1059 
1060 	qdisc_put_stab(rtnl_dereference(qdisc->stab));
1061 #endif
1062 	gen_kill_estimator(&qdisc->rate_est);
1063 
1064 	qdisc_reset(qdisc);
1065 
1066 
1067 	if (ops->destroy)
1068 		ops->destroy(qdisc);
1069 
1070 	module_put(ops->owner);
1071 	netdev_put(dev, &qdisc->dev_tracker);
1072 
1073 	trace_qdisc_destroy(qdisc);
1074 
1075 	call_rcu(&qdisc->rcu, qdisc_free_cb);
1076 }
1077 
1078 void qdisc_destroy(struct Qdisc *qdisc)
1079 {
1080 	if (qdisc->flags & TCQ_F_BUILTIN)
1081 		return;
1082 
1083 	__qdisc_destroy(qdisc);
1084 }
1085 
1086 void qdisc_put(struct Qdisc *qdisc)
1087 {
1088 	if (!qdisc)
1089 		return;
1090 
1091 	if (qdisc->flags & TCQ_F_BUILTIN ||
1092 	    !refcount_dec_and_test(&qdisc->refcnt))
1093 		return;
1094 
1095 	__qdisc_destroy(qdisc);
1096 }
1097 EXPORT_SYMBOL(qdisc_put);
1098 
1099 /* Version of qdisc_put() that is called with rtnl mutex unlocked.
1100  * Intended to be used as optimization, this function only takes rtnl lock if
1101  * qdisc reference counter reached zero.
1102  */
1103 
1104 void qdisc_put_unlocked(struct Qdisc *qdisc)
1105 {
1106 	if (qdisc->flags & TCQ_F_BUILTIN ||
1107 	    !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1108 		return;
1109 
1110 	__qdisc_destroy(qdisc);
1111 	rtnl_unlock();
1112 }
1113 EXPORT_SYMBOL(qdisc_put_unlocked);
1114 
1115 /* Attach toplevel qdisc to device queue. */
1116 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1117 			      struct Qdisc *qdisc)
1118 {
1119 	struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1120 	spinlock_t *root_lock;
1121 
1122 	root_lock = qdisc_lock(oqdisc);
1123 	spin_lock_bh(root_lock);
1124 
1125 	/* ... and graft new one */
1126 	if (qdisc == NULL)
1127 		qdisc = &noop_qdisc;
1128 	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1129 	rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1130 
1131 	spin_unlock_bh(root_lock);
1132 
1133 	return oqdisc;
1134 }
1135 EXPORT_SYMBOL(dev_graft_qdisc);
1136 
1137 static void shutdown_scheduler_queue(struct net_device *dev,
1138 				     struct netdev_queue *dev_queue,
1139 				     void *_qdisc_default)
1140 {
1141 	struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1142 	struct Qdisc *qdisc_default = _qdisc_default;
1143 
1144 	if (qdisc) {
1145 		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1146 		rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default);
1147 
1148 		qdisc_put(qdisc);
1149 	}
1150 }
1151 
1152 static void attach_one_default_qdisc(struct net_device *dev,
1153 				     struct netdev_queue *dev_queue,
1154 				     void *_unused)
1155 {
1156 	struct Qdisc *qdisc;
1157 	const struct Qdisc_ops *ops = default_qdisc_ops;
1158 
1159 	if (dev->priv_flags & IFF_NO_QUEUE)
1160 		ops = &noqueue_qdisc_ops;
1161 	else if(dev->type == ARPHRD_CAN)
1162 		ops = &pfifo_fast_ops;
1163 
1164 	qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1165 	if (!qdisc)
1166 		return;
1167 
1168 	if (!netif_is_multiqueue(dev))
1169 		qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1170 	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1171 }
1172 
1173 static void attach_default_qdiscs(struct net_device *dev)
1174 {
1175 	struct netdev_queue *txq;
1176 	struct Qdisc *qdisc;
1177 
1178 	txq = netdev_get_tx_queue(dev, 0);
1179 
1180 	if (!netif_is_multiqueue(dev) ||
1181 	    dev->priv_flags & IFF_NO_QUEUE) {
1182 		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1183 		qdisc = rtnl_dereference(txq->qdisc_sleeping);
1184 		rcu_assign_pointer(dev->qdisc, qdisc);
1185 		qdisc_refcount_inc(qdisc);
1186 	} else {
1187 		qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1188 		if (qdisc) {
1189 			rcu_assign_pointer(dev->qdisc, qdisc);
1190 			qdisc->ops->attach(qdisc);
1191 		}
1192 	}
1193 	qdisc = rtnl_dereference(dev->qdisc);
1194 
1195 	/* Detect default qdisc setup/init failed and fallback to "noqueue" */
1196 	if (qdisc == &noop_qdisc) {
1197 		netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n",
1198 			    default_qdisc_ops->id, noqueue_qdisc_ops.id);
1199 		netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1200 		dev->priv_flags |= IFF_NO_QUEUE;
1201 		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1202 		qdisc = rtnl_dereference(txq->qdisc_sleeping);
1203 		rcu_assign_pointer(dev->qdisc, qdisc);
1204 		qdisc_refcount_inc(qdisc);
1205 		dev->priv_flags ^= IFF_NO_QUEUE;
1206 	}
1207 
1208 #ifdef CONFIG_NET_SCHED
1209 	if (qdisc != &noop_qdisc)
1210 		qdisc_hash_add(qdisc, false);
1211 #endif
1212 }
1213 
1214 static void transition_one_qdisc(struct net_device *dev,
1215 				 struct netdev_queue *dev_queue,
1216 				 void *_need_watchdog)
1217 {
1218 	struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1219 	int *need_watchdog_p = _need_watchdog;
1220 
1221 	if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1222 		clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1223 
1224 	rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1225 	if (need_watchdog_p) {
1226 		WRITE_ONCE(dev_queue->trans_start, 0);
1227 		*need_watchdog_p = 1;
1228 	}
1229 }
1230 
1231 void dev_activate(struct net_device *dev)
1232 {
1233 	int need_watchdog;
1234 
1235 	/* No queueing discipline is attached to device;
1236 	 * create default one for devices, which need queueing
1237 	 * and noqueue_qdisc for virtual interfaces
1238 	 */
1239 
1240 	if (rtnl_dereference(dev->qdisc) == &noop_qdisc)
1241 		attach_default_qdiscs(dev);
1242 
1243 	if (!netif_carrier_ok(dev))
1244 		/* Delay activation until next carrier-on event */
1245 		return;
1246 
1247 	need_watchdog = 0;
1248 	netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1249 	if (dev_ingress_queue(dev))
1250 		transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1251 
1252 	if (need_watchdog) {
1253 		netif_trans_update(dev);
1254 		dev_watchdog_up(dev);
1255 	}
1256 }
1257 EXPORT_SYMBOL(dev_activate);
1258 
1259 static void qdisc_deactivate(struct Qdisc *qdisc)
1260 {
1261 	if (qdisc->flags & TCQ_F_BUILTIN)
1262 		return;
1263 
1264 	set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
1265 }
1266 
1267 static void dev_deactivate_queue(struct net_device *dev,
1268 				 struct netdev_queue *dev_queue,
1269 				 void *_qdisc_default)
1270 {
1271 	struct Qdisc *qdisc_default = _qdisc_default;
1272 	struct Qdisc *qdisc;
1273 
1274 	qdisc = rtnl_dereference(dev_queue->qdisc);
1275 	if (qdisc) {
1276 		qdisc_deactivate(qdisc);
1277 		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1278 	}
1279 }
1280 
1281 static void dev_reset_queue(struct net_device *dev,
1282 			    struct netdev_queue *dev_queue,
1283 			    void *_unused)
1284 {
1285 	struct Qdisc *qdisc;
1286 	bool nolock;
1287 
1288 	qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1289 	if (!qdisc)
1290 		return;
1291 
1292 	nolock = qdisc->flags & TCQ_F_NOLOCK;
1293 
1294 	if (nolock)
1295 		spin_lock_bh(&qdisc->seqlock);
1296 	spin_lock_bh(qdisc_lock(qdisc));
1297 
1298 	qdisc_reset(qdisc);
1299 
1300 	spin_unlock_bh(qdisc_lock(qdisc));
1301 	if (nolock) {
1302 		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
1303 		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
1304 		spin_unlock_bh(&qdisc->seqlock);
1305 	}
1306 }
1307 
1308 static bool some_qdisc_is_busy(struct net_device *dev)
1309 {
1310 	unsigned int i;
1311 
1312 	for (i = 0; i < dev->num_tx_queues; i++) {
1313 		struct netdev_queue *dev_queue;
1314 		spinlock_t *root_lock;
1315 		struct Qdisc *q;
1316 		int val;
1317 
1318 		dev_queue = netdev_get_tx_queue(dev, i);
1319 		q = rtnl_dereference(dev_queue->qdisc_sleeping);
1320 
1321 		root_lock = qdisc_lock(q);
1322 		spin_lock_bh(root_lock);
1323 
1324 		val = (qdisc_is_running(q) ||
1325 		       test_bit(__QDISC_STATE_SCHED, &q->state));
1326 
1327 		spin_unlock_bh(root_lock);
1328 
1329 		if (val)
1330 			return true;
1331 	}
1332 	return false;
1333 }
1334 
1335 /**
1336  * 	dev_deactivate_many - deactivate transmissions on several devices
1337  * 	@head: list of devices to deactivate
1338  *
1339  *	This function returns only when all outstanding transmissions
1340  *	have completed, unless all devices are in dismantle phase.
1341  */
1342 void dev_deactivate_many(struct list_head *head)
1343 {
1344 	struct net_device *dev;
1345 
1346 	list_for_each_entry(dev, head, close_list) {
1347 		netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1348 					 &noop_qdisc);
1349 		if (dev_ingress_queue(dev))
1350 			dev_deactivate_queue(dev, dev_ingress_queue(dev),
1351 					     &noop_qdisc);
1352 
1353 		dev_watchdog_down(dev);
1354 	}
1355 
1356 	/* Wait for outstanding qdisc-less dev_queue_xmit calls or
1357 	 * outstanding qdisc enqueuing calls.
1358 	 * This is avoided if all devices are in dismantle phase :
1359 	 * Caller will call synchronize_net() for us
1360 	 */
1361 	synchronize_net();
1362 
1363 	list_for_each_entry(dev, head, close_list) {
1364 		netdev_for_each_tx_queue(dev, dev_reset_queue, NULL);
1365 
1366 		if (dev_ingress_queue(dev))
1367 			dev_reset_queue(dev, dev_ingress_queue(dev), NULL);
1368 	}
1369 
1370 	/* Wait for outstanding qdisc_run calls. */
1371 	list_for_each_entry(dev, head, close_list) {
1372 		while (some_qdisc_is_busy(dev)) {
1373 			/* wait_event() would avoid this sleep-loop but would
1374 			 * require expensive checks in the fast paths of packet
1375 			 * processing which isn't worth it.
1376 			 */
1377 			schedule_timeout_uninterruptible(1);
1378 		}
1379 	}
1380 }
1381 
1382 void dev_deactivate(struct net_device *dev)
1383 {
1384 	LIST_HEAD(single);
1385 
1386 	list_add(&dev->close_list, &single);
1387 	dev_deactivate_many(&single);
1388 	list_del(&single);
1389 }
1390 EXPORT_SYMBOL(dev_deactivate);
1391 
1392 static int qdisc_change_tx_queue_len(struct net_device *dev,
1393 				     struct netdev_queue *dev_queue)
1394 {
1395 	struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1396 	const struct Qdisc_ops *ops = qdisc->ops;
1397 
1398 	if (ops->change_tx_queue_len)
1399 		return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1400 	return 0;
1401 }
1402 
1403 void dev_qdisc_change_real_num_tx(struct net_device *dev,
1404 				  unsigned int new_real_tx)
1405 {
1406 	struct Qdisc *qdisc = rtnl_dereference(dev->qdisc);
1407 
1408 	if (qdisc->ops->change_real_num_tx)
1409 		qdisc->ops->change_real_num_tx(qdisc, new_real_tx);
1410 }
1411 
1412 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx)
1413 {
1414 #ifdef CONFIG_NET_SCHED
1415 	struct net_device *dev = qdisc_dev(sch);
1416 	struct Qdisc *qdisc;
1417 	unsigned int i;
1418 
1419 	for (i = new_real_tx; i < dev->real_num_tx_queues; i++) {
1420 		qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1421 		/* Only update the default qdiscs we created,
1422 		 * qdiscs with handles are always hashed.
1423 		 */
1424 		if (qdisc != &noop_qdisc && !qdisc->handle)
1425 			qdisc_hash_del(qdisc);
1426 	}
1427 	for (i = dev->real_num_tx_queues; i < new_real_tx; i++) {
1428 		qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1429 		if (qdisc != &noop_qdisc && !qdisc->handle)
1430 			qdisc_hash_add(qdisc, false);
1431 	}
1432 #endif
1433 }
1434 EXPORT_SYMBOL(mq_change_real_num_tx);
1435 
1436 int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1437 {
1438 	bool up = dev->flags & IFF_UP;
1439 	unsigned int i;
1440 	int ret = 0;
1441 
1442 	if (up)
1443 		dev_deactivate(dev);
1444 
1445 	for (i = 0; i < dev->num_tx_queues; i++) {
1446 		ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1447 
1448 		/* TODO: revert changes on a partial failure */
1449 		if (ret)
1450 			break;
1451 	}
1452 
1453 	if (up)
1454 		dev_activate(dev);
1455 	return ret;
1456 }
1457 
1458 static void dev_init_scheduler_queue(struct net_device *dev,
1459 				     struct netdev_queue *dev_queue,
1460 				     void *_qdisc)
1461 {
1462 	struct Qdisc *qdisc = _qdisc;
1463 
1464 	rcu_assign_pointer(dev_queue->qdisc, qdisc);
1465 	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1466 }
1467 
1468 void dev_init_scheduler(struct net_device *dev)
1469 {
1470 	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1471 	netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1472 	if (dev_ingress_queue(dev))
1473 		dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1474 
1475 	timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
1476 }
1477 
1478 void dev_shutdown(struct net_device *dev)
1479 {
1480 	netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1481 	if (dev_ingress_queue(dev))
1482 		shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1483 	qdisc_put(rtnl_dereference(dev->qdisc));
1484 	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1485 
1486 	WARN_ON(timer_pending(&dev->watchdog_timer));
1487 }
1488 
1489 /**
1490  * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division
1491  * @rate:   Rate to compute reciprocal division values of
1492  * @mult:   Multiplier for reciprocal division
1493  * @shift:  Shift for reciprocal division
1494  *
1495  * The multiplier and shift for reciprocal division by rate are stored
1496  * in mult and shift.
1497  *
1498  * The deal here is to replace a divide by a reciprocal one
1499  * in fast path (a reciprocal divide is a multiply and a shift)
1500  *
1501  * Normal formula would be :
1502  *  time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1503  *
1504  * We compute mult/shift to use instead :
1505  *  time_in_ns = (len * mult) >> shift;
1506  *
1507  * We try to get the highest possible mult value for accuracy,
1508  * but have to make sure no overflows will ever happen.
1509  *
1510  * reciprocal_value() is not used here it doesn't handle 64-bit values.
1511  */
1512 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift)
1513 {
1514 	u64 factor = NSEC_PER_SEC;
1515 
1516 	*mult = 1;
1517 	*shift = 0;
1518 
1519 	if (rate <= 0)
1520 		return;
1521 
1522 	for (;;) {
1523 		*mult = div64_u64(factor, rate);
1524 		if (*mult & (1U << 31) || factor & (1ULL << 63))
1525 			break;
1526 		factor <<= 1;
1527 		(*shift)++;
1528 	}
1529 }
1530 
1531 void psched_ratecfg_precompute(struct psched_ratecfg *r,
1532 			       const struct tc_ratespec *conf,
1533 			       u64 rate64)
1534 {
1535 	memset(r, 0, sizeof(*r));
1536 	r->overhead = conf->overhead;
1537 	r->mpu = conf->mpu;
1538 	r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1539 	r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1540 	psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift);
1541 }
1542 EXPORT_SYMBOL(psched_ratecfg_precompute);
1543 
1544 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64)
1545 {
1546 	r->rate_pkts_ps = pktrate64;
1547 	psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift);
1548 }
1549 EXPORT_SYMBOL(psched_ppscfg_precompute);
1550 
1551 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1552 			  struct tcf_proto *tp_head)
1553 {
1554 	/* Protected with chain0->filter_chain_lock.
1555 	 * Can't access chain directly because tp_head can be NULL.
1556 	 */
1557 	struct mini_Qdisc *miniq_old =
1558 		rcu_dereference_protected(*miniqp->p_miniq, 1);
1559 	struct mini_Qdisc *miniq;
1560 
1561 	if (!tp_head) {
1562 		RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1563 	} else {
1564 		miniq = miniq_old != &miniqp->miniq1 ?
1565 			&miniqp->miniq1 : &miniqp->miniq2;
1566 
1567 		/* We need to make sure that readers won't see the miniq
1568 		 * we are about to modify. So ensure that at least one RCU
1569 		 * grace period has elapsed since the miniq was made
1570 		 * inactive.
1571 		 */
1572 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
1573 			cond_synchronize_rcu(miniq->rcu_state);
1574 		else if (!poll_state_synchronize_rcu(miniq->rcu_state))
1575 			synchronize_rcu_expedited();
1576 
1577 		miniq->filter_list = tp_head;
1578 		rcu_assign_pointer(*miniqp->p_miniq, miniq);
1579 	}
1580 
1581 	if (miniq_old)
1582 		/* This is counterpart of the rcu sync above. We need to
1583 		 * block potential new user of miniq_old until all readers
1584 		 * are not seeing it.
1585 		 */
1586 		miniq_old->rcu_state = start_poll_synchronize_rcu();
1587 }
1588 EXPORT_SYMBOL(mini_qdisc_pair_swap);
1589 
1590 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp,
1591 				struct tcf_block *block)
1592 {
1593 	miniqp->miniq1.block = block;
1594 	miniqp->miniq2.block = block;
1595 }
1596 EXPORT_SYMBOL(mini_qdisc_pair_block_init);
1597 
1598 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1599 			  struct mini_Qdisc __rcu **p_miniq)
1600 {
1601 	miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1602 	miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1603 	miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1604 	miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1605 	miniqp->miniq1.rcu_state = get_state_synchronize_rcu();
1606 	miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state;
1607 	miniqp->p_miniq = p_miniq;
1608 }
1609 EXPORT_SYMBOL(mini_qdisc_pair_init);
1610