xref: /linux/net/sched/sch_generic.c (revision 5bb6ba448fe3598a7668838942db1f008beb581b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net/sched/sch_generic.c	Generic packet scheduler routines.
4  *
5  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6  *              Jamal Hadi Salim, <hadi@cyberus.ca> 990601
7  *              - Ingress support
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/init.h>
21 #include <linux/rcupdate.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/if_vlan.h>
25 #include <linux/skb_array.h>
26 #include <linux/if_macvlan.h>
27 #include <net/sch_generic.h>
28 #include <net/pkt_sched.h>
29 #include <net/dst.h>
30 #include <net/hotdata.h>
31 #include <trace/events/qdisc.h>
32 #include <trace/events/net.h>
33 #include <net/xfrm.h>
34 
35 /* Qdisc to use by default */
36 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
37 EXPORT_SYMBOL(default_qdisc_ops);
38 
39 static void qdisc_maybe_clear_missed(struct Qdisc *q,
40 				     const struct netdev_queue *txq)
41 {
42 	clear_bit(__QDISC_STATE_MISSED, &q->state);
43 
44 	/* Make sure the below netif_xmit_frozen_or_stopped()
45 	 * checking happens after clearing STATE_MISSED.
46 	 */
47 	smp_mb__after_atomic();
48 
49 	/* Checking netif_xmit_frozen_or_stopped() again to
50 	 * make sure STATE_MISSED is set if the STATE_MISSED
51 	 * set by netif_tx_wake_queue()'s rescheduling of
52 	 * net_tx_action() is cleared by the above clear_bit().
53 	 */
54 	if (!netif_xmit_frozen_or_stopped(txq))
55 		set_bit(__QDISC_STATE_MISSED, &q->state);
56 	else
57 		set_bit(__QDISC_STATE_DRAINING, &q->state);
58 }
59 
60 /* Main transmission queue. */
61 
62 /* Modifications to data participating in scheduling must be protected with
63  * qdisc_lock(qdisc) spinlock.
64  *
65  * The idea is the following:
66  * - enqueue, dequeue are serialized via qdisc root lock
67  * - ingress filtering is also serialized via qdisc root lock
68  * - updates to tree and tree walking are only done under the rtnl mutex.
69  */
70 
71 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL)
72 
73 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
74 {
75 	const struct netdev_queue *txq = q->dev_queue;
76 	spinlock_t *lock = NULL;
77 	struct sk_buff *skb;
78 
79 	if (q->flags & TCQ_F_NOLOCK) {
80 		lock = qdisc_lock(q);
81 		spin_lock(lock);
82 	}
83 
84 	skb = skb_peek(&q->skb_bad_txq);
85 	if (skb) {
86 		/* check the reason of requeuing without tx lock first */
87 		txq = skb_get_tx_queue(txq->dev, skb);
88 		if (!netif_xmit_frozen_or_stopped(txq)) {
89 			skb = __skb_dequeue(&q->skb_bad_txq);
90 			if (qdisc_is_percpu_stats(q)) {
91 				qdisc_qstats_cpu_backlog_dec(q, skb);
92 				qdisc_qstats_cpu_qlen_dec(q);
93 			} else {
94 				qdisc_qstats_backlog_dec(q, skb);
95 				q->q.qlen--;
96 			}
97 		} else {
98 			skb = SKB_XOFF_MAGIC;
99 			qdisc_maybe_clear_missed(q, txq);
100 		}
101 	}
102 
103 	if (lock)
104 		spin_unlock(lock);
105 
106 	return skb;
107 }
108 
109 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
110 {
111 	struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
112 
113 	if (unlikely(skb))
114 		skb = __skb_dequeue_bad_txq(q);
115 
116 	return skb;
117 }
118 
119 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
120 					     struct sk_buff *skb)
121 {
122 	spinlock_t *lock = NULL;
123 
124 	if (q->flags & TCQ_F_NOLOCK) {
125 		lock = qdisc_lock(q);
126 		spin_lock(lock);
127 	}
128 
129 	__skb_queue_tail(&q->skb_bad_txq, skb);
130 
131 	if (qdisc_is_percpu_stats(q)) {
132 		qdisc_qstats_cpu_backlog_inc(q, skb);
133 		qdisc_qstats_cpu_qlen_inc(q);
134 	} else {
135 		qdisc_qstats_backlog_inc(q, skb);
136 		q->q.qlen++;
137 	}
138 
139 	if (lock)
140 		spin_unlock(lock);
141 }
142 
143 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
144 {
145 	spinlock_t *lock = NULL;
146 
147 	if (q->flags & TCQ_F_NOLOCK) {
148 		lock = qdisc_lock(q);
149 		spin_lock(lock);
150 	}
151 
152 	while (skb) {
153 		struct sk_buff *next = skb->next;
154 
155 		__skb_queue_tail(&q->gso_skb, skb);
156 
157 		/* it's still part of the queue */
158 		if (qdisc_is_percpu_stats(q)) {
159 			qdisc_qstats_cpu_requeues_inc(q);
160 			qdisc_qstats_cpu_backlog_inc(q, skb);
161 			qdisc_qstats_cpu_qlen_inc(q);
162 		} else {
163 			q->qstats.requeues++;
164 			qdisc_qstats_backlog_inc(q, skb);
165 			q->q.qlen++;
166 		}
167 
168 		skb = next;
169 	}
170 
171 	if (lock) {
172 		spin_unlock(lock);
173 		set_bit(__QDISC_STATE_MISSED, &q->state);
174 	} else {
175 		__netif_schedule(q);
176 	}
177 }
178 
179 static void try_bulk_dequeue_skb(struct Qdisc *q,
180 				 struct sk_buff *skb,
181 				 const struct netdev_queue *txq,
182 				 int *packets)
183 {
184 	int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
185 
186 	while (bytelimit > 0) {
187 		struct sk_buff *nskb = q->dequeue(q);
188 
189 		if (!nskb)
190 			break;
191 
192 		bytelimit -= nskb->len; /* covers GSO len */
193 		skb->next = nskb;
194 		skb = nskb;
195 		(*packets)++; /* GSO counts as one pkt */
196 	}
197 	skb_mark_not_on_list(skb);
198 }
199 
200 /* This variant of try_bulk_dequeue_skb() makes sure
201  * all skbs in the chain are for the same txq
202  */
203 static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
204 				      struct sk_buff *skb,
205 				      int *packets)
206 {
207 	int mapping = skb_get_queue_mapping(skb);
208 	struct sk_buff *nskb;
209 	int cnt = 0;
210 
211 	do {
212 		nskb = q->dequeue(q);
213 		if (!nskb)
214 			break;
215 		if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
216 			qdisc_enqueue_skb_bad_txq(q, nskb);
217 			break;
218 		}
219 		skb->next = nskb;
220 		skb = nskb;
221 	} while (++cnt < 8);
222 	(*packets) += cnt;
223 	skb_mark_not_on_list(skb);
224 }
225 
226 /* Note that dequeue_skb can possibly return a SKB list (via skb->next).
227  * A requeued skb (via q->gso_skb) can also be a SKB list.
228  */
229 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
230 				   int *packets)
231 {
232 	const struct netdev_queue *txq = q->dev_queue;
233 	struct sk_buff *skb = NULL;
234 
235 	*packets = 1;
236 	if (unlikely(!skb_queue_empty(&q->gso_skb))) {
237 		spinlock_t *lock = NULL;
238 
239 		if (q->flags & TCQ_F_NOLOCK) {
240 			lock = qdisc_lock(q);
241 			spin_lock(lock);
242 		}
243 
244 		skb = skb_peek(&q->gso_skb);
245 
246 		/* skb may be null if another cpu pulls gso_skb off in between
247 		 * empty check and lock.
248 		 */
249 		if (!skb) {
250 			if (lock)
251 				spin_unlock(lock);
252 			goto validate;
253 		}
254 
255 		/* skb in gso_skb were already validated */
256 		*validate = false;
257 		if (xfrm_offload(skb))
258 			*validate = true;
259 		/* check the reason of requeuing without tx lock first */
260 		txq = skb_get_tx_queue(txq->dev, skb);
261 		if (!netif_xmit_frozen_or_stopped(txq)) {
262 			skb = __skb_dequeue(&q->gso_skb);
263 			if (qdisc_is_percpu_stats(q)) {
264 				qdisc_qstats_cpu_backlog_dec(q, skb);
265 				qdisc_qstats_cpu_qlen_dec(q);
266 			} else {
267 				qdisc_qstats_backlog_dec(q, skb);
268 				q->q.qlen--;
269 			}
270 		} else {
271 			skb = NULL;
272 			qdisc_maybe_clear_missed(q, txq);
273 		}
274 		if (lock)
275 			spin_unlock(lock);
276 		goto trace;
277 	}
278 validate:
279 	*validate = true;
280 
281 	if ((q->flags & TCQ_F_ONETXQUEUE) &&
282 	    netif_xmit_frozen_or_stopped(txq)) {
283 		qdisc_maybe_clear_missed(q, txq);
284 		return skb;
285 	}
286 
287 	skb = qdisc_dequeue_skb_bad_txq(q);
288 	if (unlikely(skb)) {
289 		if (skb == SKB_XOFF_MAGIC)
290 			return NULL;
291 		goto bulk;
292 	}
293 	skb = q->dequeue(q);
294 	if (skb) {
295 bulk:
296 		if (qdisc_may_bulk(q))
297 			try_bulk_dequeue_skb(q, skb, txq, packets);
298 		else
299 			try_bulk_dequeue_skb_slow(q, skb, packets);
300 	}
301 trace:
302 	trace_qdisc_dequeue(q, txq, *packets, skb);
303 	return skb;
304 }
305 
306 /*
307  * Transmit possibly several skbs, and handle the return status as
308  * required. Owning qdisc running bit guarantees that only one CPU
309  * can execute this function.
310  *
311  * Returns to the caller:
312  *				false  - hardware queue frozen backoff
313  *				true   - feel free to send more pkts
314  */
315 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
316 		     struct net_device *dev, struct netdev_queue *txq,
317 		     spinlock_t *root_lock, bool validate)
318 {
319 	int ret = NETDEV_TX_BUSY;
320 	bool again = false;
321 
322 	/* And release qdisc */
323 	if (root_lock)
324 		spin_unlock(root_lock);
325 
326 	/* Note that we validate skb (GSO, checksum, ...) outside of locks */
327 	if (validate)
328 		skb = validate_xmit_skb_list(skb, dev, &again);
329 
330 #ifdef CONFIG_XFRM_OFFLOAD
331 	if (unlikely(again)) {
332 		if (root_lock)
333 			spin_lock(root_lock);
334 
335 		dev_requeue_skb(skb, q);
336 		return false;
337 	}
338 #endif
339 
340 	if (likely(skb)) {
341 		HARD_TX_LOCK(dev, txq, smp_processor_id());
342 		if (!netif_xmit_frozen_or_stopped(txq))
343 			skb = dev_hard_start_xmit(skb, dev, txq, &ret);
344 		else
345 			qdisc_maybe_clear_missed(q, txq);
346 
347 		HARD_TX_UNLOCK(dev, txq);
348 	} else {
349 		if (root_lock)
350 			spin_lock(root_lock);
351 		return true;
352 	}
353 
354 	if (root_lock)
355 		spin_lock(root_lock);
356 
357 	if (!dev_xmit_complete(ret)) {
358 		/* Driver returned NETDEV_TX_BUSY - requeue skb */
359 		if (unlikely(ret != NETDEV_TX_BUSY))
360 			net_warn_ratelimited("BUG %s code %d qlen %d\n",
361 					     dev->name, ret, q->q.qlen);
362 
363 		dev_requeue_skb(skb, q);
364 		return false;
365 	}
366 
367 	return true;
368 }
369 
370 /*
371  * NOTE: Called under qdisc_lock(q) with locally disabled BH.
372  *
373  * running seqcount guarantees only one CPU can process
374  * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
375  * this queue.
376  *
377  *  netif_tx_lock serializes accesses to device driver.
378  *
379  *  qdisc_lock(q) and netif_tx_lock are mutually exclusive,
380  *  if one is grabbed, another must be free.
381  *
382  * Note, that this procedure can be called by a watchdog timer
383  *
384  * Returns to the caller:
385  *				0  - queue is empty or throttled.
386  *				>0 - queue is not empty.
387  *
388  */
389 static inline bool qdisc_restart(struct Qdisc *q, int *packets)
390 {
391 	spinlock_t *root_lock = NULL;
392 	struct netdev_queue *txq;
393 	struct net_device *dev;
394 	struct sk_buff *skb;
395 	bool validate;
396 
397 	/* Dequeue packet */
398 	skb = dequeue_skb(q, &validate, packets);
399 	if (unlikely(!skb))
400 		return false;
401 
402 	if (!(q->flags & TCQ_F_NOLOCK))
403 		root_lock = qdisc_lock(q);
404 
405 	dev = qdisc_dev(q);
406 	txq = skb_get_tx_queue(dev, skb);
407 
408 	return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
409 }
410 
411 void __qdisc_run(struct Qdisc *q)
412 {
413 	int quota = READ_ONCE(net_hotdata.dev_tx_weight);
414 	int packets;
415 
416 	while (qdisc_restart(q, &packets)) {
417 		quota -= packets;
418 		if (quota <= 0) {
419 			if (q->flags & TCQ_F_NOLOCK)
420 				set_bit(__QDISC_STATE_MISSED, &q->state);
421 			else
422 				__netif_schedule(q);
423 
424 			break;
425 		}
426 	}
427 }
428 
429 unsigned long dev_trans_start(struct net_device *dev)
430 {
431 	unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start);
432 	unsigned long val;
433 	unsigned int i;
434 
435 	for (i = 1; i < dev->num_tx_queues; i++) {
436 		val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start);
437 		if (val && time_after(val, res))
438 			res = val;
439 	}
440 
441 	return res;
442 }
443 EXPORT_SYMBOL(dev_trans_start);
444 
445 static void netif_freeze_queues(struct net_device *dev)
446 {
447 	unsigned int i;
448 	int cpu;
449 
450 	cpu = smp_processor_id();
451 	for (i = 0; i < dev->num_tx_queues; i++) {
452 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
453 
454 		/* We are the only thread of execution doing a
455 		 * freeze, but we have to grab the _xmit_lock in
456 		 * order to synchronize with threads which are in
457 		 * the ->hard_start_xmit() handler and already
458 		 * checked the frozen bit.
459 		 */
460 		__netif_tx_lock(txq, cpu);
461 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
462 		__netif_tx_unlock(txq);
463 	}
464 }
465 
466 void netif_tx_lock(struct net_device *dev)
467 {
468 	spin_lock(&dev->tx_global_lock);
469 	netif_freeze_queues(dev);
470 }
471 EXPORT_SYMBOL(netif_tx_lock);
472 
473 static void netif_unfreeze_queues(struct net_device *dev)
474 {
475 	unsigned int i;
476 
477 	for (i = 0; i < dev->num_tx_queues; i++) {
478 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
479 
480 		/* No need to grab the _xmit_lock here.  If the
481 		 * queue is not stopped for another reason, we
482 		 * force a schedule.
483 		 */
484 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
485 		netif_schedule_queue(txq);
486 	}
487 }
488 
489 void netif_tx_unlock(struct net_device *dev)
490 {
491 	netif_unfreeze_queues(dev);
492 	spin_unlock(&dev->tx_global_lock);
493 }
494 EXPORT_SYMBOL(netif_tx_unlock);
495 
496 static void dev_watchdog(struct timer_list *t)
497 {
498 	struct net_device *dev = from_timer(dev, t, watchdog_timer);
499 	bool release = true;
500 
501 	spin_lock(&dev->tx_global_lock);
502 	if (!qdisc_tx_is_noop(dev)) {
503 		if (netif_device_present(dev) &&
504 		    netif_running(dev) &&
505 		    netif_carrier_ok(dev)) {
506 			unsigned int timedout_ms = 0;
507 			unsigned int i;
508 			unsigned long trans_start;
509 			unsigned long oldest_start = jiffies;
510 
511 			for (i = 0; i < dev->num_tx_queues; i++) {
512 				struct netdev_queue *txq;
513 
514 				txq = netdev_get_tx_queue(dev, i);
515 				if (!netif_xmit_stopped(txq))
516 					continue;
517 
518 				/* Paired with WRITE_ONCE() + smp_mb...() in
519 				 * netdev_tx_sent_queue() and netif_tx_stop_queue().
520 				 */
521 				smp_mb();
522 				trans_start = READ_ONCE(txq->trans_start);
523 
524 				if (time_after(jiffies, trans_start + dev->watchdog_timeo)) {
525 					timedout_ms = jiffies_to_msecs(jiffies - trans_start);
526 					atomic_long_inc(&txq->trans_timeout);
527 					break;
528 				}
529 				if (time_after(oldest_start, trans_start))
530 					oldest_start = trans_start;
531 			}
532 
533 			if (unlikely(timedout_ms)) {
534 				trace_net_dev_xmit_timeout(dev, i);
535 				netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n",
536 					    raw_smp_processor_id(),
537 					    i, timedout_ms);
538 				netif_freeze_queues(dev);
539 				dev->netdev_ops->ndo_tx_timeout(dev, i);
540 				netif_unfreeze_queues(dev);
541 			}
542 			if (!mod_timer(&dev->watchdog_timer,
543 				       round_jiffies(oldest_start +
544 						     dev->watchdog_timeo)))
545 				release = false;
546 		}
547 	}
548 	spin_unlock(&dev->tx_global_lock);
549 
550 	if (release)
551 		netdev_put(dev, &dev->watchdog_dev_tracker);
552 }
553 
554 void __netdev_watchdog_up(struct net_device *dev)
555 {
556 	if (dev->netdev_ops->ndo_tx_timeout) {
557 		if (dev->watchdog_timeo <= 0)
558 			dev->watchdog_timeo = 5*HZ;
559 		if (!mod_timer(&dev->watchdog_timer,
560 			       round_jiffies(jiffies + dev->watchdog_timeo)))
561 			netdev_hold(dev, &dev->watchdog_dev_tracker,
562 				    GFP_ATOMIC);
563 	}
564 }
565 EXPORT_SYMBOL_GPL(__netdev_watchdog_up);
566 
567 static void dev_watchdog_up(struct net_device *dev)
568 {
569 	__netdev_watchdog_up(dev);
570 }
571 
572 static void dev_watchdog_down(struct net_device *dev)
573 {
574 	netif_tx_lock_bh(dev);
575 	if (del_timer(&dev->watchdog_timer))
576 		netdev_put(dev, &dev->watchdog_dev_tracker);
577 	netif_tx_unlock_bh(dev);
578 }
579 
580 /**
581  *	netif_carrier_on - set carrier
582  *	@dev: network device
583  *
584  * Device has detected acquisition of carrier.
585  */
586 void netif_carrier_on(struct net_device *dev)
587 {
588 	if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
589 		if (dev->reg_state == NETREG_UNINITIALIZED)
590 			return;
591 		atomic_inc(&dev->carrier_up_count);
592 		linkwatch_fire_event(dev);
593 		if (netif_running(dev))
594 			__netdev_watchdog_up(dev);
595 	}
596 }
597 EXPORT_SYMBOL(netif_carrier_on);
598 
599 /**
600  *	netif_carrier_off - clear carrier
601  *	@dev: network device
602  *
603  * Device has detected loss of carrier.
604  */
605 void netif_carrier_off(struct net_device *dev)
606 {
607 	if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
608 		if (dev->reg_state == NETREG_UNINITIALIZED)
609 			return;
610 		atomic_inc(&dev->carrier_down_count);
611 		linkwatch_fire_event(dev);
612 	}
613 }
614 EXPORT_SYMBOL(netif_carrier_off);
615 
616 /**
617  *	netif_carrier_event - report carrier state event
618  *	@dev: network device
619  *
620  * Device has detected a carrier event but the carrier state wasn't changed.
621  * Use in drivers when querying carrier state asynchronously, to avoid missing
622  * events (link flaps) if link recovers before it's queried.
623  */
624 void netif_carrier_event(struct net_device *dev)
625 {
626 	if (dev->reg_state == NETREG_UNINITIALIZED)
627 		return;
628 	atomic_inc(&dev->carrier_up_count);
629 	atomic_inc(&dev->carrier_down_count);
630 	linkwatch_fire_event(dev);
631 }
632 EXPORT_SYMBOL_GPL(netif_carrier_event);
633 
634 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces
635    under all circumstances. It is difficult to invent anything faster or
636    cheaper.
637  */
638 
639 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
640 			struct sk_buff **to_free)
641 {
642 	dev_core_stats_tx_dropped_inc(skb->dev);
643 	__qdisc_drop(skb, to_free);
644 	return NET_XMIT_CN;
645 }
646 
647 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
648 {
649 	return NULL;
650 }
651 
652 struct Qdisc_ops noop_qdisc_ops __read_mostly = {
653 	.id		=	"noop",
654 	.priv_size	=	0,
655 	.enqueue	=	noop_enqueue,
656 	.dequeue	=	noop_dequeue,
657 	.peek		=	noop_dequeue,
658 	.owner		=	THIS_MODULE,
659 };
660 
661 static struct netdev_queue noop_netdev_queue = {
662 	RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc),
663 	RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc),
664 };
665 
666 struct Qdisc noop_qdisc = {
667 	.enqueue	=	noop_enqueue,
668 	.dequeue	=	noop_dequeue,
669 	.flags		=	TCQ_F_BUILTIN,
670 	.ops		=	&noop_qdisc_ops,
671 	.q.lock		=	__SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
672 	.dev_queue	=	&noop_netdev_queue,
673 	.busylock	=	__SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
674 	.gso_skb = {
675 		.next = (struct sk_buff *)&noop_qdisc.gso_skb,
676 		.prev = (struct sk_buff *)&noop_qdisc.gso_skb,
677 		.qlen = 0,
678 		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
679 	},
680 	.skb_bad_txq = {
681 		.next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
682 		.prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
683 		.qlen = 0,
684 		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
685 	},
686 	.owner = -1,
687 };
688 EXPORT_SYMBOL(noop_qdisc);
689 
690 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
691 			struct netlink_ext_ack *extack)
692 {
693 	/* register_qdisc() assigns a default of noop_enqueue if unset,
694 	 * but __dev_queue_xmit() treats noqueue only as such
695 	 * if this is NULL - so clear it here. */
696 	qdisc->enqueue = NULL;
697 	return 0;
698 }
699 
700 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
701 	.id		=	"noqueue",
702 	.priv_size	=	0,
703 	.init		=	noqueue_init,
704 	.enqueue	=	noop_enqueue,
705 	.dequeue	=	noop_dequeue,
706 	.peek		=	noop_dequeue,
707 	.owner		=	THIS_MODULE,
708 };
709 
710 const u8 sch_default_prio2band[TC_PRIO_MAX + 1] = {
711 	1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
712 };
713 EXPORT_SYMBOL(sch_default_prio2band);
714 
715 /* 3-band FIFO queue: old style, but should be a bit faster than
716    generic prio+fifo combination.
717  */
718 
719 #define PFIFO_FAST_BANDS 3
720 
721 /*
722  * Private data for a pfifo_fast scheduler containing:
723  *	- rings for priority bands
724  */
725 struct pfifo_fast_priv {
726 	struct skb_array q[PFIFO_FAST_BANDS];
727 };
728 
729 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
730 					  int band)
731 {
732 	return &priv->q[band];
733 }
734 
735 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
736 			      struct sk_buff **to_free)
737 {
738 	int band = sch_default_prio2band[skb->priority & TC_PRIO_MAX];
739 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
740 	struct skb_array *q = band2list(priv, band);
741 	unsigned int pkt_len = qdisc_pkt_len(skb);
742 	int err;
743 
744 	err = skb_array_produce(q, skb);
745 
746 	if (unlikely(err)) {
747 		if (qdisc_is_percpu_stats(qdisc))
748 			return qdisc_drop_cpu(skb, qdisc, to_free);
749 		else
750 			return qdisc_drop(skb, qdisc, to_free);
751 	}
752 
753 	qdisc_update_stats_at_enqueue(qdisc, pkt_len);
754 	return NET_XMIT_SUCCESS;
755 }
756 
757 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
758 {
759 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
760 	struct sk_buff *skb = NULL;
761 	bool need_retry = true;
762 	int band;
763 
764 retry:
765 	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
766 		struct skb_array *q = band2list(priv, band);
767 
768 		if (__skb_array_empty(q))
769 			continue;
770 
771 		skb = __skb_array_consume(q);
772 	}
773 	if (likely(skb)) {
774 		qdisc_update_stats_at_dequeue(qdisc, skb);
775 	} else if (need_retry &&
776 		   READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) {
777 		/* Delay clearing the STATE_MISSED here to reduce
778 		 * the overhead of the second spin_trylock() in
779 		 * qdisc_run_begin() and __netif_schedule() calling
780 		 * in qdisc_run_end().
781 		 */
782 		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
783 		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
784 
785 		/* Make sure dequeuing happens after clearing
786 		 * STATE_MISSED.
787 		 */
788 		smp_mb__after_atomic();
789 
790 		need_retry = false;
791 
792 		goto retry;
793 	}
794 
795 	return skb;
796 }
797 
798 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
799 {
800 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
801 	struct sk_buff *skb = NULL;
802 	int band;
803 
804 	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
805 		struct skb_array *q = band2list(priv, band);
806 
807 		skb = __skb_array_peek(q);
808 	}
809 
810 	return skb;
811 }
812 
813 static void pfifo_fast_reset(struct Qdisc *qdisc)
814 {
815 	int i, band;
816 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
817 
818 	for (band = 0; band < PFIFO_FAST_BANDS; band++) {
819 		struct skb_array *q = band2list(priv, band);
820 		struct sk_buff *skb;
821 
822 		/* NULL ring is possible if destroy path is due to a failed
823 		 * skb_array_init() in pfifo_fast_init() case.
824 		 */
825 		if (!q->ring.queue)
826 			continue;
827 
828 		while ((skb = __skb_array_consume(q)) != NULL)
829 			kfree_skb(skb);
830 	}
831 
832 	if (qdisc_is_percpu_stats(qdisc)) {
833 		for_each_possible_cpu(i) {
834 			struct gnet_stats_queue *q;
835 
836 			q = per_cpu_ptr(qdisc->cpu_qstats, i);
837 			q->backlog = 0;
838 			q->qlen = 0;
839 		}
840 	}
841 }
842 
843 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
844 {
845 	struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
846 
847 	memcpy(&opt.priomap, sch_default_prio2band, TC_PRIO_MAX + 1);
848 	if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
849 		goto nla_put_failure;
850 	return skb->len;
851 
852 nla_put_failure:
853 	return -1;
854 }
855 
856 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
857 			   struct netlink_ext_ack *extack)
858 {
859 	unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
860 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
861 	int prio;
862 
863 	/* guard against zero length rings */
864 	if (!qlen)
865 		return -EINVAL;
866 
867 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
868 		struct skb_array *q = band2list(priv, prio);
869 		int err;
870 
871 		err = skb_array_init(q, qlen, GFP_KERNEL);
872 		if (err)
873 			return -ENOMEM;
874 	}
875 
876 	/* Can by-pass the queue discipline */
877 	qdisc->flags |= TCQ_F_CAN_BYPASS;
878 	return 0;
879 }
880 
881 static void pfifo_fast_destroy(struct Qdisc *sch)
882 {
883 	struct pfifo_fast_priv *priv = qdisc_priv(sch);
884 	int prio;
885 
886 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
887 		struct skb_array *q = band2list(priv, prio);
888 
889 		/* NULL ring is possible if destroy path is due to a failed
890 		 * skb_array_init() in pfifo_fast_init() case.
891 		 */
892 		if (!q->ring.queue)
893 			continue;
894 		/* Destroy ring but no need to kfree_skb because a call to
895 		 * pfifo_fast_reset() has already done that work.
896 		 */
897 		ptr_ring_cleanup(&q->ring, NULL);
898 	}
899 }
900 
901 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
902 					  unsigned int new_len)
903 {
904 	struct pfifo_fast_priv *priv = qdisc_priv(sch);
905 	struct skb_array *bands[PFIFO_FAST_BANDS];
906 	int prio;
907 
908 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
909 		struct skb_array *q = band2list(priv, prio);
910 
911 		bands[prio] = q;
912 	}
913 
914 	return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len,
915 					 GFP_KERNEL);
916 }
917 
918 struct Qdisc_ops pfifo_fast_ops __read_mostly = {
919 	.id		=	"pfifo_fast",
920 	.priv_size	=	sizeof(struct pfifo_fast_priv),
921 	.enqueue	=	pfifo_fast_enqueue,
922 	.dequeue	=	pfifo_fast_dequeue,
923 	.peek		=	pfifo_fast_peek,
924 	.init		=	pfifo_fast_init,
925 	.destroy	=	pfifo_fast_destroy,
926 	.reset		=	pfifo_fast_reset,
927 	.dump		=	pfifo_fast_dump,
928 	.change_tx_queue_len =  pfifo_fast_change_tx_queue_len,
929 	.owner		=	THIS_MODULE,
930 	.static_flags	=	TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
931 };
932 EXPORT_SYMBOL(pfifo_fast_ops);
933 
934 static struct lock_class_key qdisc_tx_busylock;
935 
936 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
937 			  const struct Qdisc_ops *ops,
938 			  struct netlink_ext_ack *extack)
939 {
940 	struct Qdisc *sch;
941 	unsigned int size = sizeof(*sch) + ops->priv_size;
942 	int err = -ENOBUFS;
943 	struct net_device *dev;
944 
945 	if (!dev_queue) {
946 		NL_SET_ERR_MSG(extack, "No device queue given");
947 		err = -EINVAL;
948 		goto errout;
949 	}
950 
951 	dev = dev_queue->dev;
952 	sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue));
953 
954 	if (!sch)
955 		goto errout;
956 	__skb_queue_head_init(&sch->gso_skb);
957 	__skb_queue_head_init(&sch->skb_bad_txq);
958 	gnet_stats_basic_sync_init(&sch->bstats);
959 	lockdep_register_key(&sch->root_lock_key);
960 	spin_lock_init(&sch->q.lock);
961 	lockdep_set_class(&sch->q.lock, &sch->root_lock_key);
962 
963 	if (ops->static_flags & TCQ_F_CPUSTATS) {
964 		sch->cpu_bstats =
965 			netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
966 		if (!sch->cpu_bstats)
967 			goto errout1;
968 
969 		sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
970 		if (!sch->cpu_qstats) {
971 			free_percpu(sch->cpu_bstats);
972 			goto errout1;
973 		}
974 	}
975 
976 	spin_lock_init(&sch->busylock);
977 	lockdep_set_class(&sch->busylock,
978 			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
979 
980 	/* seqlock has the same scope of busylock, for NOLOCK qdisc */
981 	spin_lock_init(&sch->seqlock);
982 	lockdep_set_class(&sch->seqlock,
983 			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
984 
985 	sch->ops = ops;
986 	sch->flags = ops->static_flags;
987 	sch->enqueue = ops->enqueue;
988 	sch->dequeue = ops->dequeue;
989 	sch->dev_queue = dev_queue;
990 	sch->owner = -1;
991 	netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL);
992 	refcount_set(&sch->refcnt, 1);
993 
994 	return sch;
995 errout1:
996 	lockdep_unregister_key(&sch->root_lock_key);
997 	kfree(sch);
998 errout:
999 	return ERR_PTR(err);
1000 }
1001 
1002 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
1003 				const struct Qdisc_ops *ops,
1004 				unsigned int parentid,
1005 				struct netlink_ext_ack *extack)
1006 {
1007 	struct Qdisc *sch;
1008 
1009 	if (!try_module_get(ops->owner)) {
1010 		NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
1011 		return NULL;
1012 	}
1013 
1014 	sch = qdisc_alloc(dev_queue, ops, extack);
1015 	if (IS_ERR(sch)) {
1016 		module_put(ops->owner);
1017 		return NULL;
1018 	}
1019 	sch->parent = parentid;
1020 
1021 	if (!ops->init || ops->init(sch, NULL, extack) == 0) {
1022 		trace_qdisc_create(ops, dev_queue->dev, parentid);
1023 		return sch;
1024 	}
1025 
1026 	qdisc_put(sch);
1027 	return NULL;
1028 }
1029 EXPORT_SYMBOL(qdisc_create_dflt);
1030 
1031 /* Under qdisc_lock(qdisc) and BH! */
1032 
1033 void qdisc_reset(struct Qdisc *qdisc)
1034 {
1035 	const struct Qdisc_ops *ops = qdisc->ops;
1036 
1037 	trace_qdisc_reset(qdisc);
1038 
1039 	if (ops->reset)
1040 		ops->reset(qdisc);
1041 
1042 	__skb_queue_purge(&qdisc->gso_skb);
1043 	__skb_queue_purge(&qdisc->skb_bad_txq);
1044 
1045 	qdisc->q.qlen = 0;
1046 	qdisc->qstats.backlog = 0;
1047 }
1048 EXPORT_SYMBOL(qdisc_reset);
1049 
1050 void qdisc_free(struct Qdisc *qdisc)
1051 {
1052 	if (qdisc_is_percpu_stats(qdisc)) {
1053 		free_percpu(qdisc->cpu_bstats);
1054 		free_percpu(qdisc->cpu_qstats);
1055 	}
1056 
1057 	kfree(qdisc);
1058 }
1059 
1060 static void qdisc_free_cb(struct rcu_head *head)
1061 {
1062 	struct Qdisc *q = container_of(head, struct Qdisc, rcu);
1063 
1064 	qdisc_free(q);
1065 }
1066 
1067 static void __qdisc_destroy(struct Qdisc *qdisc)
1068 {
1069 	const struct Qdisc_ops  *ops = qdisc->ops;
1070 	struct net_device *dev = qdisc_dev(qdisc);
1071 
1072 #ifdef CONFIG_NET_SCHED
1073 	qdisc_hash_del(qdisc);
1074 
1075 	qdisc_put_stab(rtnl_dereference(qdisc->stab));
1076 #endif
1077 	gen_kill_estimator(&qdisc->rate_est);
1078 
1079 	qdisc_reset(qdisc);
1080 
1081 
1082 	if (ops->destroy)
1083 		ops->destroy(qdisc);
1084 
1085 	lockdep_unregister_key(&qdisc->root_lock_key);
1086 	module_put(ops->owner);
1087 	netdev_put(dev, &qdisc->dev_tracker);
1088 
1089 	trace_qdisc_destroy(qdisc);
1090 
1091 	call_rcu(&qdisc->rcu, qdisc_free_cb);
1092 }
1093 
1094 void qdisc_destroy(struct Qdisc *qdisc)
1095 {
1096 	if (qdisc->flags & TCQ_F_BUILTIN)
1097 		return;
1098 
1099 	__qdisc_destroy(qdisc);
1100 }
1101 
1102 void qdisc_put(struct Qdisc *qdisc)
1103 {
1104 	if (!qdisc)
1105 		return;
1106 
1107 	if (qdisc->flags & TCQ_F_BUILTIN ||
1108 	    !refcount_dec_and_test(&qdisc->refcnt))
1109 		return;
1110 
1111 	__qdisc_destroy(qdisc);
1112 }
1113 EXPORT_SYMBOL(qdisc_put);
1114 
1115 /* Version of qdisc_put() that is called with rtnl mutex unlocked.
1116  * Intended to be used as optimization, this function only takes rtnl lock if
1117  * qdisc reference counter reached zero.
1118  */
1119 
1120 void qdisc_put_unlocked(struct Qdisc *qdisc)
1121 {
1122 	if (qdisc->flags & TCQ_F_BUILTIN ||
1123 	    !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1124 		return;
1125 
1126 	__qdisc_destroy(qdisc);
1127 	rtnl_unlock();
1128 }
1129 EXPORT_SYMBOL(qdisc_put_unlocked);
1130 
1131 /* Attach toplevel qdisc to device queue. */
1132 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1133 			      struct Qdisc *qdisc)
1134 {
1135 	struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1136 	spinlock_t *root_lock;
1137 
1138 	root_lock = qdisc_lock(oqdisc);
1139 	spin_lock_bh(root_lock);
1140 
1141 	/* ... and graft new one */
1142 	if (qdisc == NULL)
1143 		qdisc = &noop_qdisc;
1144 	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1145 	rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1146 
1147 	spin_unlock_bh(root_lock);
1148 
1149 	return oqdisc;
1150 }
1151 EXPORT_SYMBOL(dev_graft_qdisc);
1152 
1153 static void shutdown_scheduler_queue(struct net_device *dev,
1154 				     struct netdev_queue *dev_queue,
1155 				     void *_qdisc_default)
1156 {
1157 	struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1158 	struct Qdisc *qdisc_default = _qdisc_default;
1159 
1160 	if (qdisc) {
1161 		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1162 		rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default);
1163 
1164 		qdisc_put(qdisc);
1165 	}
1166 }
1167 
1168 static void attach_one_default_qdisc(struct net_device *dev,
1169 				     struct netdev_queue *dev_queue,
1170 				     void *_unused)
1171 {
1172 	struct Qdisc *qdisc;
1173 	const struct Qdisc_ops *ops = default_qdisc_ops;
1174 
1175 	if (dev->priv_flags & IFF_NO_QUEUE)
1176 		ops = &noqueue_qdisc_ops;
1177 	else if(dev->type == ARPHRD_CAN)
1178 		ops = &pfifo_fast_ops;
1179 
1180 	qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1181 	if (!qdisc)
1182 		return;
1183 
1184 	if (!netif_is_multiqueue(dev))
1185 		qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1186 	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1187 }
1188 
1189 static void attach_default_qdiscs(struct net_device *dev)
1190 {
1191 	struct netdev_queue *txq;
1192 	struct Qdisc *qdisc;
1193 
1194 	txq = netdev_get_tx_queue(dev, 0);
1195 
1196 	if (!netif_is_multiqueue(dev) ||
1197 	    dev->priv_flags & IFF_NO_QUEUE) {
1198 		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1199 		qdisc = rtnl_dereference(txq->qdisc_sleeping);
1200 		rcu_assign_pointer(dev->qdisc, qdisc);
1201 		qdisc_refcount_inc(qdisc);
1202 	} else {
1203 		qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1204 		if (qdisc) {
1205 			rcu_assign_pointer(dev->qdisc, qdisc);
1206 			qdisc->ops->attach(qdisc);
1207 		}
1208 	}
1209 	qdisc = rtnl_dereference(dev->qdisc);
1210 
1211 	/* Detect default qdisc setup/init failed and fallback to "noqueue" */
1212 	if (qdisc == &noop_qdisc) {
1213 		netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n",
1214 			    default_qdisc_ops->id, noqueue_qdisc_ops.id);
1215 		netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1216 		dev->priv_flags |= IFF_NO_QUEUE;
1217 		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1218 		qdisc = rtnl_dereference(txq->qdisc_sleeping);
1219 		rcu_assign_pointer(dev->qdisc, qdisc);
1220 		qdisc_refcount_inc(qdisc);
1221 		dev->priv_flags ^= IFF_NO_QUEUE;
1222 	}
1223 
1224 #ifdef CONFIG_NET_SCHED
1225 	if (qdisc != &noop_qdisc)
1226 		qdisc_hash_add(qdisc, false);
1227 #endif
1228 }
1229 
1230 static void transition_one_qdisc(struct net_device *dev,
1231 				 struct netdev_queue *dev_queue,
1232 				 void *_need_watchdog)
1233 {
1234 	struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1235 	int *need_watchdog_p = _need_watchdog;
1236 
1237 	if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1238 		clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1239 
1240 	rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1241 	if (need_watchdog_p) {
1242 		WRITE_ONCE(dev_queue->trans_start, 0);
1243 		*need_watchdog_p = 1;
1244 	}
1245 }
1246 
1247 void dev_activate(struct net_device *dev)
1248 {
1249 	int need_watchdog;
1250 
1251 	/* No queueing discipline is attached to device;
1252 	 * create default one for devices, which need queueing
1253 	 * and noqueue_qdisc for virtual interfaces
1254 	 */
1255 
1256 	if (rtnl_dereference(dev->qdisc) == &noop_qdisc)
1257 		attach_default_qdiscs(dev);
1258 
1259 	if (!netif_carrier_ok(dev))
1260 		/* Delay activation until next carrier-on event */
1261 		return;
1262 
1263 	need_watchdog = 0;
1264 	netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1265 	if (dev_ingress_queue(dev))
1266 		transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1267 
1268 	if (need_watchdog) {
1269 		netif_trans_update(dev);
1270 		dev_watchdog_up(dev);
1271 	}
1272 }
1273 EXPORT_SYMBOL(dev_activate);
1274 
1275 static void qdisc_deactivate(struct Qdisc *qdisc)
1276 {
1277 	if (qdisc->flags & TCQ_F_BUILTIN)
1278 		return;
1279 
1280 	set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
1281 }
1282 
1283 static void dev_deactivate_queue(struct net_device *dev,
1284 				 struct netdev_queue *dev_queue,
1285 				 void *_qdisc_default)
1286 {
1287 	struct Qdisc *qdisc_default = _qdisc_default;
1288 	struct Qdisc *qdisc;
1289 
1290 	qdisc = rtnl_dereference(dev_queue->qdisc);
1291 	if (qdisc) {
1292 		qdisc_deactivate(qdisc);
1293 		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1294 	}
1295 }
1296 
1297 static void dev_reset_queue(struct net_device *dev,
1298 			    struct netdev_queue *dev_queue,
1299 			    void *_unused)
1300 {
1301 	struct Qdisc *qdisc;
1302 	bool nolock;
1303 
1304 	qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1305 	if (!qdisc)
1306 		return;
1307 
1308 	nolock = qdisc->flags & TCQ_F_NOLOCK;
1309 
1310 	if (nolock)
1311 		spin_lock_bh(&qdisc->seqlock);
1312 	spin_lock_bh(qdisc_lock(qdisc));
1313 
1314 	qdisc_reset(qdisc);
1315 
1316 	spin_unlock_bh(qdisc_lock(qdisc));
1317 	if (nolock) {
1318 		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
1319 		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
1320 		spin_unlock_bh(&qdisc->seqlock);
1321 	}
1322 }
1323 
1324 static bool some_qdisc_is_busy(struct net_device *dev)
1325 {
1326 	unsigned int i;
1327 
1328 	for (i = 0; i < dev->num_tx_queues; i++) {
1329 		struct netdev_queue *dev_queue;
1330 		spinlock_t *root_lock;
1331 		struct Qdisc *q;
1332 		int val;
1333 
1334 		dev_queue = netdev_get_tx_queue(dev, i);
1335 		q = rtnl_dereference(dev_queue->qdisc_sleeping);
1336 
1337 		root_lock = qdisc_lock(q);
1338 		spin_lock_bh(root_lock);
1339 
1340 		val = (qdisc_is_running(q) ||
1341 		       test_bit(__QDISC_STATE_SCHED, &q->state));
1342 
1343 		spin_unlock_bh(root_lock);
1344 
1345 		if (val)
1346 			return true;
1347 	}
1348 	return false;
1349 }
1350 
1351 /**
1352  * 	dev_deactivate_many - deactivate transmissions on several devices
1353  * 	@head: list of devices to deactivate
1354  *
1355  *	This function returns only when all outstanding transmissions
1356  *	have completed, unless all devices are in dismantle phase.
1357  */
1358 void dev_deactivate_many(struct list_head *head)
1359 {
1360 	struct net_device *dev;
1361 
1362 	list_for_each_entry(dev, head, close_list) {
1363 		netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1364 					 &noop_qdisc);
1365 		if (dev_ingress_queue(dev))
1366 			dev_deactivate_queue(dev, dev_ingress_queue(dev),
1367 					     &noop_qdisc);
1368 
1369 		dev_watchdog_down(dev);
1370 	}
1371 
1372 	/* Wait for outstanding qdisc-less dev_queue_xmit calls or
1373 	 * outstanding qdisc enqueuing calls.
1374 	 * This is avoided if all devices are in dismantle phase :
1375 	 * Caller will call synchronize_net() for us
1376 	 */
1377 	synchronize_net();
1378 
1379 	list_for_each_entry(dev, head, close_list) {
1380 		netdev_for_each_tx_queue(dev, dev_reset_queue, NULL);
1381 
1382 		if (dev_ingress_queue(dev))
1383 			dev_reset_queue(dev, dev_ingress_queue(dev), NULL);
1384 	}
1385 
1386 	/* Wait for outstanding qdisc_run calls. */
1387 	list_for_each_entry(dev, head, close_list) {
1388 		while (some_qdisc_is_busy(dev)) {
1389 			/* wait_event() would avoid this sleep-loop but would
1390 			 * require expensive checks in the fast paths of packet
1391 			 * processing which isn't worth it.
1392 			 */
1393 			schedule_timeout_uninterruptible(1);
1394 		}
1395 	}
1396 }
1397 
1398 void dev_deactivate(struct net_device *dev)
1399 {
1400 	LIST_HEAD(single);
1401 
1402 	list_add(&dev->close_list, &single);
1403 	dev_deactivate_many(&single);
1404 	list_del(&single);
1405 }
1406 EXPORT_SYMBOL(dev_deactivate);
1407 
1408 static int qdisc_change_tx_queue_len(struct net_device *dev,
1409 				     struct netdev_queue *dev_queue)
1410 {
1411 	struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1412 	const struct Qdisc_ops *ops = qdisc->ops;
1413 
1414 	if (ops->change_tx_queue_len)
1415 		return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1416 	return 0;
1417 }
1418 
1419 void dev_qdisc_change_real_num_tx(struct net_device *dev,
1420 				  unsigned int new_real_tx)
1421 {
1422 	struct Qdisc *qdisc = rtnl_dereference(dev->qdisc);
1423 
1424 	if (qdisc->ops->change_real_num_tx)
1425 		qdisc->ops->change_real_num_tx(qdisc, new_real_tx);
1426 }
1427 
1428 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx)
1429 {
1430 #ifdef CONFIG_NET_SCHED
1431 	struct net_device *dev = qdisc_dev(sch);
1432 	struct Qdisc *qdisc;
1433 	unsigned int i;
1434 
1435 	for (i = new_real_tx; i < dev->real_num_tx_queues; i++) {
1436 		qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1437 		/* Only update the default qdiscs we created,
1438 		 * qdiscs with handles are always hashed.
1439 		 */
1440 		if (qdisc != &noop_qdisc && !qdisc->handle)
1441 			qdisc_hash_del(qdisc);
1442 	}
1443 	for (i = dev->real_num_tx_queues; i < new_real_tx; i++) {
1444 		qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1445 		if (qdisc != &noop_qdisc && !qdisc->handle)
1446 			qdisc_hash_add(qdisc, false);
1447 	}
1448 #endif
1449 }
1450 EXPORT_SYMBOL(mq_change_real_num_tx);
1451 
1452 int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1453 {
1454 	bool up = dev->flags & IFF_UP;
1455 	unsigned int i;
1456 	int ret = 0;
1457 
1458 	if (up)
1459 		dev_deactivate(dev);
1460 
1461 	for (i = 0; i < dev->num_tx_queues; i++) {
1462 		ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1463 
1464 		/* TODO: revert changes on a partial failure */
1465 		if (ret)
1466 			break;
1467 	}
1468 
1469 	if (up)
1470 		dev_activate(dev);
1471 	return ret;
1472 }
1473 
1474 static void dev_init_scheduler_queue(struct net_device *dev,
1475 				     struct netdev_queue *dev_queue,
1476 				     void *_qdisc)
1477 {
1478 	struct Qdisc *qdisc = _qdisc;
1479 
1480 	rcu_assign_pointer(dev_queue->qdisc, qdisc);
1481 	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1482 }
1483 
1484 void dev_init_scheduler(struct net_device *dev)
1485 {
1486 	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1487 	netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1488 	if (dev_ingress_queue(dev))
1489 		dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1490 
1491 	timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
1492 }
1493 
1494 void dev_shutdown(struct net_device *dev)
1495 {
1496 	netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1497 	if (dev_ingress_queue(dev))
1498 		shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1499 	qdisc_put(rtnl_dereference(dev->qdisc));
1500 	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1501 
1502 	WARN_ON(timer_pending(&dev->watchdog_timer));
1503 }
1504 
1505 /**
1506  * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division
1507  * @rate:   Rate to compute reciprocal division values of
1508  * @mult:   Multiplier for reciprocal division
1509  * @shift:  Shift for reciprocal division
1510  *
1511  * The multiplier and shift for reciprocal division by rate are stored
1512  * in mult and shift.
1513  *
1514  * The deal here is to replace a divide by a reciprocal one
1515  * in fast path (a reciprocal divide is a multiply and a shift)
1516  *
1517  * Normal formula would be :
1518  *  time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1519  *
1520  * We compute mult/shift to use instead :
1521  *  time_in_ns = (len * mult) >> shift;
1522  *
1523  * We try to get the highest possible mult value for accuracy,
1524  * but have to make sure no overflows will ever happen.
1525  *
1526  * reciprocal_value() is not used here it doesn't handle 64-bit values.
1527  */
1528 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift)
1529 {
1530 	u64 factor = NSEC_PER_SEC;
1531 
1532 	*mult = 1;
1533 	*shift = 0;
1534 
1535 	if (rate <= 0)
1536 		return;
1537 
1538 	for (;;) {
1539 		*mult = div64_u64(factor, rate);
1540 		if (*mult & (1U << 31) || factor & (1ULL << 63))
1541 			break;
1542 		factor <<= 1;
1543 		(*shift)++;
1544 	}
1545 }
1546 
1547 void psched_ratecfg_precompute(struct psched_ratecfg *r,
1548 			       const struct tc_ratespec *conf,
1549 			       u64 rate64)
1550 {
1551 	memset(r, 0, sizeof(*r));
1552 	r->overhead = conf->overhead;
1553 	r->mpu = conf->mpu;
1554 	r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1555 	r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1556 	psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift);
1557 }
1558 EXPORT_SYMBOL(psched_ratecfg_precompute);
1559 
1560 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64)
1561 {
1562 	r->rate_pkts_ps = pktrate64;
1563 	psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift);
1564 }
1565 EXPORT_SYMBOL(psched_ppscfg_precompute);
1566 
1567 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1568 			  struct tcf_proto *tp_head)
1569 {
1570 	/* Protected with chain0->filter_chain_lock.
1571 	 * Can't access chain directly because tp_head can be NULL.
1572 	 */
1573 	struct mini_Qdisc *miniq_old =
1574 		rcu_dereference_protected(*miniqp->p_miniq, 1);
1575 	struct mini_Qdisc *miniq;
1576 
1577 	if (!tp_head) {
1578 		RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1579 	} else {
1580 		miniq = miniq_old != &miniqp->miniq1 ?
1581 			&miniqp->miniq1 : &miniqp->miniq2;
1582 
1583 		/* We need to make sure that readers won't see the miniq
1584 		 * we are about to modify. So ensure that at least one RCU
1585 		 * grace period has elapsed since the miniq was made
1586 		 * inactive.
1587 		 */
1588 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
1589 			cond_synchronize_rcu(miniq->rcu_state);
1590 		else if (!poll_state_synchronize_rcu(miniq->rcu_state))
1591 			synchronize_rcu_expedited();
1592 
1593 		miniq->filter_list = tp_head;
1594 		rcu_assign_pointer(*miniqp->p_miniq, miniq);
1595 	}
1596 
1597 	if (miniq_old)
1598 		/* This is counterpart of the rcu sync above. We need to
1599 		 * block potential new user of miniq_old until all readers
1600 		 * are not seeing it.
1601 		 */
1602 		miniq_old->rcu_state = start_poll_synchronize_rcu();
1603 }
1604 EXPORT_SYMBOL(mini_qdisc_pair_swap);
1605 
1606 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp,
1607 				struct tcf_block *block)
1608 {
1609 	miniqp->miniq1.block = block;
1610 	miniqp->miniq2.block = block;
1611 }
1612 EXPORT_SYMBOL(mini_qdisc_pair_block_init);
1613 
1614 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1615 			  struct mini_Qdisc __rcu **p_miniq)
1616 {
1617 	miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1618 	miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1619 	miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1620 	miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1621 	miniqp->miniq1.rcu_state = get_state_synchronize_rcu();
1622 	miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state;
1623 	miniqp->p_miniq = p_miniq;
1624 }
1625 EXPORT_SYMBOL(mini_qdisc_pair_init);
1626