1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_generic.c Generic packet scheduler routines. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 7 * - Ingress support 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/module.h> 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/netdevice.h> 18 #include <linux/skbuff.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/init.h> 21 #include <linux/rcupdate.h> 22 #include <linux/list.h> 23 #include <linux/slab.h> 24 #include <linux/if_vlan.h> 25 #include <linux/skb_array.h> 26 #include <linux/if_macvlan.h> 27 #include <linux/bpf.h> 28 #include <net/sch_generic.h> 29 #include <net/pkt_sched.h> 30 #include <net/dst.h> 31 #include <net/hotdata.h> 32 #include <trace/events/qdisc.h> 33 #include <trace/events/net.h> 34 #include <net/xfrm.h> 35 36 /* Qdisc to use by default */ 37 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 38 EXPORT_SYMBOL(default_qdisc_ops); 39 40 static void qdisc_maybe_clear_missed(struct Qdisc *q, 41 const struct netdev_queue *txq) 42 { 43 clear_bit(__QDISC_STATE_MISSED, &q->state); 44 45 /* Make sure the below netif_xmit_frozen_or_stopped() 46 * checking happens after clearing STATE_MISSED. 47 */ 48 smp_mb__after_atomic(); 49 50 /* Checking netif_xmit_frozen_or_stopped() again to 51 * make sure STATE_MISSED is set if the STATE_MISSED 52 * set by netif_tx_wake_queue()'s rescheduling of 53 * net_tx_action() is cleared by the above clear_bit(). 54 */ 55 if (!netif_xmit_frozen_or_stopped(txq)) 56 set_bit(__QDISC_STATE_MISSED, &q->state); 57 else 58 set_bit(__QDISC_STATE_DRAINING, &q->state); 59 } 60 61 /* Main transmission queue. */ 62 63 /* Modifications to data participating in scheduling must be protected with 64 * qdisc_lock(qdisc) spinlock. 65 * 66 * The idea is the following: 67 * - enqueue, dequeue are serialized via qdisc root lock 68 * - ingress filtering is also serialized via qdisc root lock 69 * - updates to tree and tree walking are only done under the rtnl mutex. 70 */ 71 72 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL) 73 74 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q) 75 { 76 const struct netdev_queue *txq = q->dev_queue; 77 spinlock_t *lock = NULL; 78 struct sk_buff *skb; 79 80 if (q->flags & TCQ_F_NOLOCK) { 81 lock = qdisc_lock(q); 82 spin_lock(lock); 83 } 84 85 skb = skb_peek(&q->skb_bad_txq); 86 if (skb) { 87 /* check the reason of requeuing without tx lock first */ 88 txq = skb_get_tx_queue(txq->dev, skb); 89 if (!netif_xmit_frozen_or_stopped(txq)) { 90 skb = __skb_dequeue(&q->skb_bad_txq); 91 if (qdisc_is_percpu_stats(q)) { 92 qdisc_qstats_cpu_backlog_dec(q, skb); 93 qdisc_qstats_cpu_qlen_dec(q); 94 } else { 95 qdisc_qstats_backlog_dec(q, skb); 96 q->q.qlen--; 97 } 98 } else { 99 skb = SKB_XOFF_MAGIC; 100 qdisc_maybe_clear_missed(q, txq); 101 } 102 } 103 104 if (lock) 105 spin_unlock(lock); 106 107 return skb; 108 } 109 110 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q) 111 { 112 struct sk_buff *skb = skb_peek(&q->skb_bad_txq); 113 114 if (unlikely(skb)) 115 skb = __skb_dequeue_bad_txq(q); 116 117 return skb; 118 } 119 120 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q, 121 struct sk_buff *skb) 122 { 123 spinlock_t *lock = NULL; 124 125 if (q->flags & TCQ_F_NOLOCK) { 126 lock = qdisc_lock(q); 127 spin_lock(lock); 128 } 129 130 __skb_queue_tail(&q->skb_bad_txq, skb); 131 132 if (qdisc_is_percpu_stats(q)) { 133 qdisc_qstats_cpu_backlog_inc(q, skb); 134 qdisc_qstats_cpu_qlen_inc(q); 135 } else { 136 qdisc_qstats_backlog_inc(q, skb); 137 q->q.qlen++; 138 } 139 140 if (lock) 141 spin_unlock(lock); 142 } 143 144 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 145 { 146 spinlock_t *lock = NULL; 147 148 if (q->flags & TCQ_F_NOLOCK) { 149 lock = qdisc_lock(q); 150 spin_lock(lock); 151 } 152 153 while (skb) { 154 struct sk_buff *next = skb->next; 155 156 __skb_queue_tail(&q->gso_skb, skb); 157 158 /* it's still part of the queue */ 159 if (qdisc_is_percpu_stats(q)) { 160 qdisc_qstats_cpu_requeues_inc(q); 161 qdisc_qstats_cpu_backlog_inc(q, skb); 162 qdisc_qstats_cpu_qlen_inc(q); 163 } else { 164 q->qstats.requeues++; 165 qdisc_qstats_backlog_inc(q, skb); 166 q->q.qlen++; 167 } 168 169 skb = next; 170 } 171 172 if (lock) { 173 spin_unlock(lock); 174 set_bit(__QDISC_STATE_MISSED, &q->state); 175 } else { 176 __netif_schedule(q); 177 } 178 } 179 180 static void try_bulk_dequeue_skb(struct Qdisc *q, 181 struct sk_buff *skb, 182 const struct netdev_queue *txq, 183 int *packets) 184 { 185 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len; 186 187 while (bytelimit > 0) { 188 struct sk_buff *nskb = q->dequeue(q); 189 190 if (!nskb) 191 break; 192 193 bytelimit -= nskb->len; /* covers GSO len */ 194 skb->next = nskb; 195 skb = nskb; 196 (*packets)++; /* GSO counts as one pkt */ 197 } 198 skb_mark_not_on_list(skb); 199 } 200 201 /* This variant of try_bulk_dequeue_skb() makes sure 202 * all skbs in the chain are for the same txq 203 */ 204 static void try_bulk_dequeue_skb_slow(struct Qdisc *q, 205 struct sk_buff *skb, 206 int *packets) 207 { 208 int mapping = skb_get_queue_mapping(skb); 209 struct sk_buff *nskb; 210 int cnt = 0; 211 212 do { 213 nskb = q->dequeue(q); 214 if (!nskb) 215 break; 216 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) { 217 qdisc_enqueue_skb_bad_txq(q, nskb); 218 break; 219 } 220 skb->next = nskb; 221 skb = nskb; 222 } while (++cnt < 8); 223 (*packets) += cnt; 224 skb_mark_not_on_list(skb); 225 } 226 227 /* Note that dequeue_skb can possibly return a SKB list (via skb->next). 228 * A requeued skb (via q->gso_skb) can also be a SKB list. 229 */ 230 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate, 231 int *packets) 232 { 233 const struct netdev_queue *txq = q->dev_queue; 234 struct sk_buff *skb = NULL; 235 236 *packets = 1; 237 if (unlikely(!skb_queue_empty(&q->gso_skb))) { 238 spinlock_t *lock = NULL; 239 240 if (q->flags & TCQ_F_NOLOCK) { 241 lock = qdisc_lock(q); 242 spin_lock(lock); 243 } 244 245 skb = skb_peek(&q->gso_skb); 246 247 /* skb may be null if another cpu pulls gso_skb off in between 248 * empty check and lock. 249 */ 250 if (!skb) { 251 if (lock) 252 spin_unlock(lock); 253 goto validate; 254 } 255 256 /* skb in gso_skb were already validated */ 257 *validate = false; 258 if (xfrm_offload(skb)) 259 *validate = true; 260 /* check the reason of requeuing without tx lock first */ 261 txq = skb_get_tx_queue(txq->dev, skb); 262 if (!netif_xmit_frozen_or_stopped(txq)) { 263 skb = __skb_dequeue(&q->gso_skb); 264 if (qdisc_is_percpu_stats(q)) { 265 qdisc_qstats_cpu_backlog_dec(q, skb); 266 qdisc_qstats_cpu_qlen_dec(q); 267 } else { 268 qdisc_qstats_backlog_dec(q, skb); 269 q->q.qlen--; 270 } 271 } else { 272 skb = NULL; 273 qdisc_maybe_clear_missed(q, txq); 274 } 275 if (lock) 276 spin_unlock(lock); 277 goto trace; 278 } 279 validate: 280 *validate = true; 281 282 if ((q->flags & TCQ_F_ONETXQUEUE) && 283 netif_xmit_frozen_or_stopped(txq)) { 284 qdisc_maybe_clear_missed(q, txq); 285 return skb; 286 } 287 288 skb = qdisc_dequeue_skb_bad_txq(q); 289 if (unlikely(skb)) { 290 if (skb == SKB_XOFF_MAGIC) 291 return NULL; 292 goto bulk; 293 } 294 skb = q->dequeue(q); 295 if (skb) { 296 bulk: 297 if (qdisc_may_bulk(q)) 298 try_bulk_dequeue_skb(q, skb, txq, packets); 299 else 300 try_bulk_dequeue_skb_slow(q, skb, packets); 301 } 302 trace: 303 trace_qdisc_dequeue(q, txq, *packets, skb); 304 return skb; 305 } 306 307 /* 308 * Transmit possibly several skbs, and handle the return status as 309 * required. Owning qdisc running bit guarantees that only one CPU 310 * can execute this function. 311 * 312 * Returns to the caller: 313 * false - hardware queue frozen backoff 314 * true - feel free to send more pkts 315 */ 316 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 317 struct net_device *dev, struct netdev_queue *txq, 318 spinlock_t *root_lock, bool validate) 319 { 320 int ret = NETDEV_TX_BUSY; 321 bool again = false; 322 323 /* And release qdisc */ 324 if (root_lock) 325 spin_unlock(root_lock); 326 327 /* Note that we validate skb (GSO, checksum, ...) outside of locks */ 328 if (validate) 329 skb = validate_xmit_skb_list(skb, dev, &again); 330 331 #ifdef CONFIG_XFRM_OFFLOAD 332 if (unlikely(again)) { 333 if (root_lock) 334 spin_lock(root_lock); 335 336 dev_requeue_skb(skb, q); 337 return false; 338 } 339 #endif 340 341 if (likely(skb)) { 342 HARD_TX_LOCK(dev, txq, smp_processor_id()); 343 if (!netif_xmit_frozen_or_stopped(txq)) 344 skb = dev_hard_start_xmit(skb, dev, txq, &ret); 345 else 346 qdisc_maybe_clear_missed(q, txq); 347 348 HARD_TX_UNLOCK(dev, txq); 349 } else { 350 if (root_lock) 351 spin_lock(root_lock); 352 return true; 353 } 354 355 if (root_lock) 356 spin_lock(root_lock); 357 358 if (!dev_xmit_complete(ret)) { 359 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 360 if (unlikely(ret != NETDEV_TX_BUSY)) 361 net_warn_ratelimited("BUG %s code %d qlen %d\n", 362 dev->name, ret, q->q.qlen); 363 364 dev_requeue_skb(skb, q); 365 return false; 366 } 367 368 return true; 369 } 370 371 /* 372 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 373 * 374 * running seqcount guarantees only one CPU can process 375 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 376 * this queue. 377 * 378 * netif_tx_lock serializes accesses to device driver. 379 * 380 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 381 * if one is grabbed, another must be free. 382 * 383 * Note, that this procedure can be called by a watchdog timer 384 * 385 * Returns to the caller: 386 * 0 - queue is empty or throttled. 387 * >0 - queue is not empty. 388 * 389 */ 390 static inline bool qdisc_restart(struct Qdisc *q, int *packets) 391 { 392 spinlock_t *root_lock = NULL; 393 struct netdev_queue *txq; 394 struct net_device *dev; 395 struct sk_buff *skb; 396 bool validate; 397 398 /* Dequeue packet */ 399 skb = dequeue_skb(q, &validate, packets); 400 if (unlikely(!skb)) 401 return false; 402 403 if (!(q->flags & TCQ_F_NOLOCK)) 404 root_lock = qdisc_lock(q); 405 406 dev = qdisc_dev(q); 407 txq = skb_get_tx_queue(dev, skb); 408 409 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate); 410 } 411 412 void __qdisc_run(struct Qdisc *q) 413 { 414 int quota = READ_ONCE(net_hotdata.dev_tx_weight); 415 int packets; 416 417 while (qdisc_restart(q, &packets)) { 418 quota -= packets; 419 if (quota <= 0) { 420 if (q->flags & TCQ_F_NOLOCK) 421 set_bit(__QDISC_STATE_MISSED, &q->state); 422 else 423 __netif_schedule(q); 424 425 break; 426 } 427 } 428 } 429 430 unsigned long dev_trans_start(struct net_device *dev) 431 { 432 unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start); 433 unsigned long val; 434 unsigned int i; 435 436 for (i = 1; i < dev->num_tx_queues; i++) { 437 val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start); 438 if (val && time_after(val, res)) 439 res = val; 440 } 441 442 return res; 443 } 444 EXPORT_SYMBOL(dev_trans_start); 445 446 static void netif_freeze_queues(struct net_device *dev) 447 { 448 unsigned int i; 449 int cpu; 450 451 cpu = smp_processor_id(); 452 for (i = 0; i < dev->num_tx_queues; i++) { 453 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 454 455 /* We are the only thread of execution doing a 456 * freeze, but we have to grab the _xmit_lock in 457 * order to synchronize with threads which are in 458 * the ->hard_start_xmit() handler and already 459 * checked the frozen bit. 460 */ 461 __netif_tx_lock(txq, cpu); 462 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 463 __netif_tx_unlock(txq); 464 } 465 } 466 467 void netif_tx_lock(struct net_device *dev) 468 { 469 spin_lock(&dev->tx_global_lock); 470 netif_freeze_queues(dev); 471 } 472 EXPORT_SYMBOL(netif_tx_lock); 473 474 static void netif_unfreeze_queues(struct net_device *dev) 475 { 476 unsigned int i; 477 478 for (i = 0; i < dev->num_tx_queues; i++) { 479 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 480 481 /* No need to grab the _xmit_lock here. If the 482 * queue is not stopped for another reason, we 483 * force a schedule. 484 */ 485 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 486 netif_schedule_queue(txq); 487 } 488 } 489 490 void netif_tx_unlock(struct net_device *dev) 491 { 492 netif_unfreeze_queues(dev); 493 spin_unlock(&dev->tx_global_lock); 494 } 495 EXPORT_SYMBOL(netif_tx_unlock); 496 497 static void dev_watchdog(struct timer_list *t) 498 { 499 struct net_device *dev = timer_container_of(dev, t, watchdog_timer); 500 bool release = true; 501 502 spin_lock(&dev->tx_global_lock); 503 if (!qdisc_tx_is_noop(dev)) { 504 if (netif_device_present(dev) && 505 netif_running(dev) && 506 netif_carrier_ok(dev)) { 507 unsigned int timedout_ms = 0; 508 unsigned int i; 509 unsigned long trans_start; 510 unsigned long oldest_start = jiffies; 511 512 for (i = 0; i < dev->num_tx_queues; i++) { 513 struct netdev_queue *txq; 514 515 txq = netdev_get_tx_queue(dev, i); 516 if (!netif_xmit_stopped(txq)) 517 continue; 518 519 /* Paired with WRITE_ONCE() + smp_mb...() in 520 * netdev_tx_sent_queue() and netif_tx_stop_queue(). 521 */ 522 smp_mb(); 523 trans_start = READ_ONCE(txq->trans_start); 524 525 if (time_after(jiffies, trans_start + dev->watchdog_timeo)) { 526 timedout_ms = jiffies_to_msecs(jiffies - trans_start); 527 atomic_long_inc(&txq->trans_timeout); 528 break; 529 } 530 if (time_after(oldest_start, trans_start)) 531 oldest_start = trans_start; 532 } 533 534 if (unlikely(timedout_ms)) { 535 trace_net_dev_xmit_timeout(dev, i); 536 netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n", 537 raw_smp_processor_id(), 538 i, timedout_ms); 539 netif_freeze_queues(dev); 540 dev->netdev_ops->ndo_tx_timeout(dev, i); 541 netif_unfreeze_queues(dev); 542 } 543 if (!mod_timer(&dev->watchdog_timer, 544 round_jiffies(oldest_start + 545 dev->watchdog_timeo))) 546 release = false; 547 } 548 } 549 spin_unlock(&dev->tx_global_lock); 550 551 if (release) 552 netdev_put(dev, &dev->watchdog_dev_tracker); 553 } 554 555 void netdev_watchdog_up(struct net_device *dev) 556 { 557 if (!dev->netdev_ops->ndo_tx_timeout) 558 return; 559 if (dev->watchdog_timeo <= 0) 560 dev->watchdog_timeo = 5*HZ; 561 if (!mod_timer(&dev->watchdog_timer, 562 round_jiffies(jiffies + dev->watchdog_timeo))) 563 netdev_hold(dev, &dev->watchdog_dev_tracker, 564 GFP_ATOMIC); 565 } 566 EXPORT_SYMBOL_GPL(netdev_watchdog_up); 567 568 static void netdev_watchdog_down(struct net_device *dev) 569 { 570 netif_tx_lock_bh(dev); 571 if (timer_delete(&dev->watchdog_timer)) 572 netdev_put(dev, &dev->watchdog_dev_tracker); 573 netif_tx_unlock_bh(dev); 574 } 575 576 /** 577 * netif_carrier_on - set carrier 578 * @dev: network device 579 * 580 * Device has detected acquisition of carrier. 581 */ 582 void netif_carrier_on(struct net_device *dev) 583 { 584 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 585 if (dev->reg_state == NETREG_UNINITIALIZED) 586 return; 587 atomic_inc(&dev->carrier_up_count); 588 linkwatch_fire_event(dev); 589 if (netif_running(dev)) 590 netdev_watchdog_up(dev); 591 } 592 } 593 EXPORT_SYMBOL(netif_carrier_on); 594 595 /** 596 * netif_carrier_off - clear carrier 597 * @dev: network device 598 * 599 * Device has detected loss of carrier. 600 */ 601 void netif_carrier_off(struct net_device *dev) 602 { 603 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 604 if (dev->reg_state == NETREG_UNINITIALIZED) 605 return; 606 atomic_inc(&dev->carrier_down_count); 607 linkwatch_fire_event(dev); 608 } 609 } 610 EXPORT_SYMBOL(netif_carrier_off); 611 612 /** 613 * netif_carrier_event - report carrier state event 614 * @dev: network device 615 * 616 * Device has detected a carrier event but the carrier state wasn't changed. 617 * Use in drivers when querying carrier state asynchronously, to avoid missing 618 * events (link flaps) if link recovers before it's queried. 619 */ 620 void netif_carrier_event(struct net_device *dev) 621 { 622 if (dev->reg_state == NETREG_UNINITIALIZED) 623 return; 624 atomic_inc(&dev->carrier_up_count); 625 atomic_inc(&dev->carrier_down_count); 626 linkwatch_fire_event(dev); 627 } 628 EXPORT_SYMBOL_GPL(netif_carrier_event); 629 630 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 631 under all circumstances. It is difficult to invent anything faster or 632 cheaper. 633 */ 634 635 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 636 struct sk_buff **to_free) 637 { 638 dev_core_stats_tx_dropped_inc(skb->dev); 639 __qdisc_drop(skb, to_free); 640 return NET_XMIT_CN; 641 } 642 643 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 644 { 645 return NULL; 646 } 647 648 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 649 .id = "noop", 650 .priv_size = 0, 651 .enqueue = noop_enqueue, 652 .dequeue = noop_dequeue, 653 .peek = noop_dequeue, 654 .owner = THIS_MODULE, 655 }; 656 657 static struct netdev_queue noop_netdev_queue = { 658 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc), 659 RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc), 660 }; 661 662 struct Qdisc noop_qdisc = { 663 .enqueue = noop_enqueue, 664 .dequeue = noop_dequeue, 665 .flags = TCQ_F_BUILTIN, 666 .ops = &noop_qdisc_ops, 667 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 668 .dev_queue = &noop_netdev_queue, 669 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 670 .gso_skb = { 671 .next = (struct sk_buff *)&noop_qdisc.gso_skb, 672 .prev = (struct sk_buff *)&noop_qdisc.gso_skb, 673 .qlen = 0, 674 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock), 675 }, 676 .skb_bad_txq = { 677 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 678 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 679 .qlen = 0, 680 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock), 681 }, 682 .owner = -1, 683 }; 684 EXPORT_SYMBOL(noop_qdisc); 685 686 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt, 687 struct netlink_ext_ack *extack) 688 { 689 /* register_qdisc() assigns a default of noop_enqueue if unset, 690 * but __dev_queue_xmit() treats noqueue only as such 691 * if this is NULL - so clear it here. */ 692 qdisc->enqueue = NULL; 693 return 0; 694 } 695 696 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 697 .id = "noqueue", 698 .priv_size = 0, 699 .init = noqueue_init, 700 .enqueue = noop_enqueue, 701 .dequeue = noop_dequeue, 702 .peek = noop_dequeue, 703 .owner = THIS_MODULE, 704 }; 705 706 const u8 sch_default_prio2band[TC_PRIO_MAX + 1] = { 707 1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 708 }; 709 EXPORT_SYMBOL(sch_default_prio2band); 710 711 /* 3-band FIFO queue: old style, but should be a bit faster than 712 generic prio+fifo combination. 713 */ 714 715 #define PFIFO_FAST_BANDS 3 716 717 /* 718 * Private data for a pfifo_fast scheduler containing: 719 * - rings for priority bands 720 */ 721 struct pfifo_fast_priv { 722 struct skb_array q[PFIFO_FAST_BANDS]; 723 }; 724 725 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv, 726 int band) 727 { 728 return &priv->q[band]; 729 } 730 731 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 732 struct sk_buff **to_free) 733 { 734 int band = sch_default_prio2band[skb->priority & TC_PRIO_MAX]; 735 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 736 struct skb_array *q = band2list(priv, band); 737 unsigned int pkt_len = qdisc_pkt_len(skb); 738 int err; 739 740 err = skb_array_produce(q, skb); 741 742 if (unlikely(err)) { 743 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_OVERLIMIT); 744 745 if (qdisc_is_percpu_stats(qdisc)) 746 return qdisc_drop_cpu(skb, qdisc, to_free); 747 else 748 return qdisc_drop(skb, qdisc, to_free); 749 } 750 751 qdisc_update_stats_at_enqueue(qdisc, pkt_len); 752 return NET_XMIT_SUCCESS; 753 } 754 755 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 756 { 757 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 758 struct sk_buff *skb = NULL; 759 bool need_retry = true; 760 int band; 761 762 retry: 763 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 764 struct skb_array *q = band2list(priv, band); 765 766 if (__skb_array_empty(q)) 767 continue; 768 769 skb = __skb_array_consume(q); 770 } 771 if (likely(skb)) { 772 qdisc_update_stats_at_dequeue(qdisc, skb); 773 } else if (need_retry && 774 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) { 775 /* Delay clearing the STATE_MISSED here to reduce 776 * the overhead of the second spin_trylock() in 777 * qdisc_run_begin() and __netif_schedule() calling 778 * in qdisc_run_end(). 779 */ 780 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 781 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 782 783 /* Make sure dequeuing happens after clearing 784 * STATE_MISSED. 785 */ 786 smp_mb__after_atomic(); 787 788 need_retry = false; 789 790 goto retry; 791 } 792 793 return skb; 794 } 795 796 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 797 { 798 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 799 struct sk_buff *skb = NULL; 800 int band; 801 802 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 803 struct skb_array *q = band2list(priv, band); 804 805 skb = __skb_array_peek(q); 806 } 807 808 return skb; 809 } 810 811 static void pfifo_fast_reset(struct Qdisc *qdisc) 812 { 813 int i, band; 814 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 815 816 for (band = 0; band < PFIFO_FAST_BANDS; band++) { 817 struct skb_array *q = band2list(priv, band); 818 struct sk_buff *skb; 819 820 /* NULL ring is possible if destroy path is due to a failed 821 * skb_array_init() in pfifo_fast_init() case. 822 */ 823 if (!q->ring.queue) 824 continue; 825 826 while ((skb = __skb_array_consume(q)) != NULL) 827 kfree_skb(skb); 828 } 829 830 if (qdisc_is_percpu_stats(qdisc)) { 831 for_each_possible_cpu(i) { 832 struct gnet_stats_queue *q; 833 834 q = per_cpu_ptr(qdisc->cpu_qstats, i); 835 q->backlog = 0; 836 q->qlen = 0; 837 } 838 } 839 } 840 841 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 842 { 843 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 844 845 memcpy(&opt.priomap, sch_default_prio2band, TC_PRIO_MAX + 1); 846 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 847 goto nla_put_failure; 848 return skb->len; 849 850 nla_put_failure: 851 return -1; 852 } 853 854 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt, 855 struct netlink_ext_ack *extack) 856 { 857 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len; 858 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 859 int prio; 860 861 /* guard against zero length rings */ 862 if (!qlen) 863 return -EINVAL; 864 865 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 866 struct skb_array *q = band2list(priv, prio); 867 int err; 868 869 err = skb_array_init(q, qlen, GFP_KERNEL); 870 if (err) 871 return -ENOMEM; 872 } 873 874 /* Can by-pass the queue discipline */ 875 qdisc->flags |= TCQ_F_CAN_BYPASS; 876 return 0; 877 } 878 879 static void pfifo_fast_destroy(struct Qdisc *sch) 880 { 881 struct pfifo_fast_priv *priv = qdisc_priv(sch); 882 int prio; 883 884 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 885 struct skb_array *q = band2list(priv, prio); 886 887 /* NULL ring is possible if destroy path is due to a failed 888 * skb_array_init() in pfifo_fast_init() case. 889 */ 890 if (!q->ring.queue) 891 continue; 892 /* Destroy ring but no need to kfree_skb because a call to 893 * pfifo_fast_reset() has already done that work. 894 */ 895 ptr_ring_cleanup(&q->ring, NULL); 896 } 897 } 898 899 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch, 900 unsigned int new_len) 901 { 902 struct pfifo_fast_priv *priv = qdisc_priv(sch); 903 struct skb_array *bands[PFIFO_FAST_BANDS]; 904 int prio; 905 906 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 907 struct skb_array *q = band2list(priv, prio); 908 909 bands[prio] = q; 910 } 911 912 return skb_array_resize_multiple_bh(bands, PFIFO_FAST_BANDS, new_len, 913 GFP_KERNEL); 914 } 915 916 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 917 .id = "pfifo_fast", 918 .priv_size = sizeof(struct pfifo_fast_priv), 919 .enqueue = pfifo_fast_enqueue, 920 .dequeue = pfifo_fast_dequeue, 921 .peek = pfifo_fast_peek, 922 .init = pfifo_fast_init, 923 .destroy = pfifo_fast_destroy, 924 .reset = pfifo_fast_reset, 925 .dump = pfifo_fast_dump, 926 .change_tx_queue_len = pfifo_fast_change_tx_queue_len, 927 .owner = THIS_MODULE, 928 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS, 929 }; 930 EXPORT_SYMBOL(pfifo_fast_ops); 931 932 static struct lock_class_key qdisc_tx_busylock; 933 934 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 935 const struct Qdisc_ops *ops, 936 struct netlink_ext_ack *extack) 937 { 938 struct Qdisc *sch; 939 unsigned int size = sizeof(*sch) + ops->priv_size; 940 int err = -ENOBUFS; 941 struct net_device *dev; 942 943 if (!dev_queue) { 944 NL_SET_ERR_MSG(extack, "No device queue given"); 945 err = -EINVAL; 946 goto errout; 947 } 948 949 dev = dev_queue->dev; 950 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue)); 951 952 if (!sch) 953 goto errout; 954 __skb_queue_head_init(&sch->gso_skb); 955 __skb_queue_head_init(&sch->skb_bad_txq); 956 gnet_stats_basic_sync_init(&sch->bstats); 957 lockdep_register_key(&sch->root_lock_key); 958 spin_lock_init(&sch->q.lock); 959 lockdep_set_class(&sch->q.lock, &sch->root_lock_key); 960 961 if (ops->static_flags & TCQ_F_CPUSTATS) { 962 sch->cpu_bstats = 963 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync); 964 if (!sch->cpu_bstats) 965 goto errout1; 966 967 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue); 968 if (!sch->cpu_qstats) { 969 free_percpu(sch->cpu_bstats); 970 goto errout1; 971 } 972 } 973 974 spin_lock_init(&sch->busylock); 975 lockdep_set_class(&sch->busylock, 976 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 977 978 /* seqlock has the same scope of busylock, for NOLOCK qdisc */ 979 spin_lock_init(&sch->seqlock); 980 lockdep_set_class(&sch->seqlock, 981 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 982 983 sch->ops = ops; 984 sch->flags = ops->static_flags; 985 sch->enqueue = ops->enqueue; 986 sch->dequeue = ops->dequeue; 987 sch->dev_queue = dev_queue; 988 sch->owner = -1; 989 netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL); 990 refcount_set(&sch->refcnt, 1); 991 992 return sch; 993 errout1: 994 lockdep_unregister_key(&sch->root_lock_key); 995 kfree(sch); 996 errout: 997 return ERR_PTR(err); 998 } 999 1000 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 1001 const struct Qdisc_ops *ops, 1002 unsigned int parentid, 1003 struct netlink_ext_ack *extack) 1004 { 1005 struct Qdisc *sch; 1006 1007 if (!bpf_try_module_get(ops, ops->owner)) { 1008 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter"); 1009 return NULL; 1010 } 1011 1012 sch = qdisc_alloc(dev_queue, ops, extack); 1013 if (IS_ERR(sch)) { 1014 bpf_module_put(ops, ops->owner); 1015 return NULL; 1016 } 1017 sch->parent = parentid; 1018 1019 if (!ops->init || ops->init(sch, NULL, extack) == 0) { 1020 trace_qdisc_create(ops, dev_queue->dev, parentid); 1021 return sch; 1022 } 1023 1024 qdisc_put(sch); 1025 return NULL; 1026 } 1027 EXPORT_SYMBOL(qdisc_create_dflt); 1028 1029 /* Under qdisc_lock(qdisc) and BH! */ 1030 1031 void qdisc_reset(struct Qdisc *qdisc) 1032 { 1033 const struct Qdisc_ops *ops = qdisc->ops; 1034 1035 trace_qdisc_reset(qdisc); 1036 1037 if (ops->reset) 1038 ops->reset(qdisc); 1039 1040 __skb_queue_purge(&qdisc->gso_skb); 1041 __skb_queue_purge(&qdisc->skb_bad_txq); 1042 1043 qdisc->q.qlen = 0; 1044 qdisc->qstats.backlog = 0; 1045 } 1046 EXPORT_SYMBOL(qdisc_reset); 1047 1048 void qdisc_free(struct Qdisc *qdisc) 1049 { 1050 if (qdisc_is_percpu_stats(qdisc)) { 1051 free_percpu(qdisc->cpu_bstats); 1052 free_percpu(qdisc->cpu_qstats); 1053 } 1054 1055 kfree(qdisc); 1056 } 1057 1058 static void qdisc_free_cb(struct rcu_head *head) 1059 { 1060 struct Qdisc *q = container_of(head, struct Qdisc, rcu); 1061 1062 qdisc_free(q); 1063 } 1064 1065 static void __qdisc_destroy(struct Qdisc *qdisc) 1066 { 1067 const struct Qdisc_ops *ops = qdisc->ops; 1068 struct net_device *dev = qdisc_dev(qdisc); 1069 1070 #ifdef CONFIG_NET_SCHED 1071 qdisc_hash_del(qdisc); 1072 1073 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 1074 #endif 1075 gen_kill_estimator(&qdisc->rate_est); 1076 1077 qdisc_reset(qdisc); 1078 1079 1080 if (ops->destroy) 1081 ops->destroy(qdisc); 1082 1083 lockdep_unregister_key(&qdisc->root_lock_key); 1084 bpf_module_put(ops, ops->owner); 1085 netdev_put(dev, &qdisc->dev_tracker); 1086 1087 trace_qdisc_destroy(qdisc); 1088 1089 call_rcu(&qdisc->rcu, qdisc_free_cb); 1090 } 1091 1092 void qdisc_destroy(struct Qdisc *qdisc) 1093 { 1094 if (qdisc->flags & TCQ_F_BUILTIN) 1095 return; 1096 1097 __qdisc_destroy(qdisc); 1098 } 1099 1100 void qdisc_put(struct Qdisc *qdisc) 1101 { 1102 if (!qdisc) 1103 return; 1104 1105 if (qdisc->flags & TCQ_F_BUILTIN || 1106 !refcount_dec_and_test(&qdisc->refcnt)) 1107 return; 1108 1109 __qdisc_destroy(qdisc); 1110 } 1111 EXPORT_SYMBOL(qdisc_put); 1112 1113 /* Version of qdisc_put() that is called with rtnl mutex unlocked. 1114 * Intended to be used as optimization, this function only takes rtnl lock if 1115 * qdisc reference counter reached zero. 1116 */ 1117 1118 void qdisc_put_unlocked(struct Qdisc *qdisc) 1119 { 1120 if (qdisc->flags & TCQ_F_BUILTIN || 1121 !refcount_dec_and_rtnl_lock(&qdisc->refcnt)) 1122 return; 1123 1124 __qdisc_destroy(qdisc); 1125 rtnl_unlock(); 1126 } 1127 EXPORT_SYMBOL(qdisc_put_unlocked); 1128 1129 /* Attach toplevel qdisc to device queue. */ 1130 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 1131 struct Qdisc *qdisc) 1132 { 1133 struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1134 spinlock_t *root_lock; 1135 1136 root_lock = qdisc_lock(oqdisc); 1137 spin_lock_bh(root_lock); 1138 1139 /* ... and graft new one */ 1140 if (qdisc == NULL) 1141 qdisc = &noop_qdisc; 1142 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1143 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1144 1145 spin_unlock_bh(root_lock); 1146 1147 return oqdisc; 1148 } 1149 EXPORT_SYMBOL(dev_graft_qdisc); 1150 1151 static void shutdown_scheduler_queue(struct net_device *dev, 1152 struct netdev_queue *dev_queue, 1153 void *_qdisc_default) 1154 { 1155 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1156 struct Qdisc *qdisc_default = _qdisc_default; 1157 1158 if (qdisc) { 1159 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1160 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default); 1161 1162 qdisc_put(qdisc); 1163 } 1164 } 1165 1166 static void attach_one_default_qdisc(struct net_device *dev, 1167 struct netdev_queue *dev_queue, 1168 void *_unused) 1169 { 1170 struct Qdisc *qdisc; 1171 const struct Qdisc_ops *ops = default_qdisc_ops; 1172 1173 if (dev->priv_flags & IFF_NO_QUEUE) 1174 ops = &noqueue_qdisc_ops; 1175 else if(dev->type == ARPHRD_CAN) 1176 ops = &pfifo_fast_ops; 1177 1178 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL); 1179 if (!qdisc) 1180 return; 1181 1182 if (!netif_is_multiqueue(dev)) 1183 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1184 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1185 } 1186 1187 static void attach_default_qdiscs(struct net_device *dev) 1188 { 1189 struct netdev_queue *txq; 1190 struct Qdisc *qdisc; 1191 1192 txq = netdev_get_tx_queue(dev, 0); 1193 1194 if (!netif_is_multiqueue(dev) || 1195 dev->priv_flags & IFF_NO_QUEUE) { 1196 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1197 qdisc = rtnl_dereference(txq->qdisc_sleeping); 1198 rcu_assign_pointer(dev->qdisc, qdisc); 1199 qdisc_refcount_inc(qdisc); 1200 } else { 1201 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL); 1202 if (qdisc) { 1203 rcu_assign_pointer(dev->qdisc, qdisc); 1204 qdisc->ops->attach(qdisc); 1205 } 1206 } 1207 qdisc = rtnl_dereference(dev->qdisc); 1208 1209 /* Detect default qdisc setup/init failed and fallback to "noqueue" */ 1210 if (qdisc == &noop_qdisc) { 1211 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n", 1212 default_qdisc_ops->id, noqueue_qdisc_ops.id); 1213 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1214 dev->priv_flags |= IFF_NO_QUEUE; 1215 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1216 qdisc = rtnl_dereference(txq->qdisc_sleeping); 1217 rcu_assign_pointer(dev->qdisc, qdisc); 1218 qdisc_refcount_inc(qdisc); 1219 dev->priv_flags ^= IFF_NO_QUEUE; 1220 } 1221 1222 #ifdef CONFIG_NET_SCHED 1223 if (qdisc != &noop_qdisc) 1224 qdisc_hash_add(qdisc, false); 1225 #endif 1226 } 1227 1228 static void transition_one_qdisc(struct net_device *dev, 1229 struct netdev_queue *dev_queue, 1230 void *_need_watchdog) 1231 { 1232 struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1233 int *need_watchdog_p = _need_watchdog; 1234 1235 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 1236 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 1237 1238 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 1239 if (need_watchdog_p) { 1240 WRITE_ONCE(dev_queue->trans_start, 0); 1241 *need_watchdog_p = 1; 1242 } 1243 } 1244 1245 void dev_activate(struct net_device *dev) 1246 { 1247 int need_watchdog; 1248 1249 /* No queueing discipline is attached to device; 1250 * create default one for devices, which need queueing 1251 * and noqueue_qdisc for virtual interfaces 1252 */ 1253 1254 if (rtnl_dereference(dev->qdisc) == &noop_qdisc) 1255 attach_default_qdiscs(dev); 1256 1257 if (!netif_carrier_ok(dev)) 1258 /* Delay activation until next carrier-on event */ 1259 return; 1260 1261 need_watchdog = 0; 1262 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 1263 if (dev_ingress_queue(dev)) 1264 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 1265 1266 if (need_watchdog) { 1267 netif_trans_update(dev); 1268 netdev_watchdog_up(dev); 1269 } 1270 } 1271 EXPORT_SYMBOL(dev_activate); 1272 1273 static void qdisc_deactivate(struct Qdisc *qdisc) 1274 { 1275 if (qdisc->flags & TCQ_F_BUILTIN) 1276 return; 1277 1278 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 1279 } 1280 1281 static void dev_deactivate_queue(struct net_device *dev, 1282 struct netdev_queue *dev_queue, 1283 void *_sync_needed) 1284 { 1285 bool *sync_needed = _sync_needed; 1286 struct Qdisc *qdisc; 1287 1288 qdisc = rtnl_dereference(dev_queue->qdisc); 1289 if (qdisc) { 1290 if (qdisc->enqueue) 1291 *sync_needed = true; 1292 qdisc_deactivate(qdisc); 1293 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1294 } 1295 } 1296 1297 static void dev_reset_queue(struct net_device *dev, 1298 struct netdev_queue *dev_queue, 1299 void *_unused) 1300 { 1301 struct Qdisc *qdisc; 1302 bool nolock; 1303 1304 qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1305 if (!qdisc) 1306 return; 1307 1308 nolock = qdisc->flags & TCQ_F_NOLOCK; 1309 1310 if (nolock) 1311 spin_lock_bh(&qdisc->seqlock); 1312 spin_lock_bh(qdisc_lock(qdisc)); 1313 1314 qdisc_reset(qdisc); 1315 1316 spin_unlock_bh(qdisc_lock(qdisc)); 1317 if (nolock) { 1318 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 1319 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 1320 spin_unlock_bh(&qdisc->seqlock); 1321 } 1322 } 1323 1324 static bool some_qdisc_is_busy(struct net_device *dev) 1325 { 1326 unsigned int i; 1327 1328 for (i = 0; i < dev->num_tx_queues; i++) { 1329 struct netdev_queue *dev_queue; 1330 spinlock_t *root_lock; 1331 struct Qdisc *q; 1332 int val; 1333 1334 dev_queue = netdev_get_tx_queue(dev, i); 1335 q = rtnl_dereference(dev_queue->qdisc_sleeping); 1336 1337 root_lock = qdisc_lock(q); 1338 spin_lock_bh(root_lock); 1339 1340 val = (qdisc_is_running(q) || 1341 test_bit(__QDISC_STATE_SCHED, &q->state)); 1342 1343 spin_unlock_bh(root_lock); 1344 1345 if (val) 1346 return true; 1347 } 1348 return false; 1349 } 1350 1351 /** 1352 * dev_deactivate_many - deactivate transmissions on several devices 1353 * @head: list of devices to deactivate 1354 * 1355 * This function returns only when all outstanding transmissions 1356 * have completed, unless all devices are in dismantle phase. 1357 */ 1358 void dev_deactivate_many(struct list_head *head) 1359 { 1360 bool sync_needed = false; 1361 struct net_device *dev; 1362 1363 list_for_each_entry(dev, head, close_list) { 1364 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 1365 &sync_needed); 1366 if (dev_ingress_queue(dev)) 1367 dev_deactivate_queue(dev, dev_ingress_queue(dev), 1368 &sync_needed); 1369 1370 netdev_watchdog_down(dev); 1371 } 1372 1373 /* Wait for outstanding qdisc enqueuing calls. */ 1374 if (sync_needed) 1375 synchronize_net(); 1376 1377 list_for_each_entry(dev, head, close_list) { 1378 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL); 1379 1380 if (dev_ingress_queue(dev)) 1381 dev_reset_queue(dev, dev_ingress_queue(dev), NULL); 1382 } 1383 1384 /* Wait for outstanding qdisc_run calls. */ 1385 list_for_each_entry(dev, head, close_list) { 1386 while (some_qdisc_is_busy(dev)) { 1387 /* wait_event() would avoid this sleep-loop but would 1388 * require expensive checks in the fast paths of packet 1389 * processing which isn't worth it. 1390 */ 1391 schedule_timeout_uninterruptible(1); 1392 } 1393 } 1394 } 1395 1396 void dev_deactivate(struct net_device *dev) 1397 { 1398 LIST_HEAD(single); 1399 1400 list_add(&dev->close_list, &single); 1401 dev_deactivate_many(&single); 1402 list_del(&single); 1403 } 1404 EXPORT_SYMBOL(dev_deactivate); 1405 1406 static int qdisc_change_tx_queue_len(struct net_device *dev, 1407 struct netdev_queue *dev_queue) 1408 { 1409 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1410 const struct Qdisc_ops *ops = qdisc->ops; 1411 1412 if (ops->change_tx_queue_len) 1413 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len); 1414 return 0; 1415 } 1416 1417 void dev_qdisc_change_real_num_tx(struct net_device *dev, 1418 unsigned int new_real_tx) 1419 { 1420 struct Qdisc *qdisc = rtnl_dereference(dev->qdisc); 1421 1422 if (qdisc->ops->change_real_num_tx) 1423 qdisc->ops->change_real_num_tx(qdisc, new_real_tx); 1424 } 1425 1426 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx) 1427 { 1428 #ifdef CONFIG_NET_SCHED 1429 struct net_device *dev = qdisc_dev(sch); 1430 struct Qdisc *qdisc; 1431 unsigned int i; 1432 1433 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) { 1434 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping); 1435 /* Only update the default qdiscs we created, 1436 * qdiscs with handles are always hashed. 1437 */ 1438 if (qdisc != &noop_qdisc && !qdisc->handle) 1439 qdisc_hash_del(qdisc); 1440 } 1441 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) { 1442 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping); 1443 if (qdisc != &noop_qdisc && !qdisc->handle) 1444 qdisc_hash_add(qdisc, false); 1445 } 1446 #endif 1447 } 1448 EXPORT_SYMBOL(mq_change_real_num_tx); 1449 1450 int dev_qdisc_change_tx_queue_len(struct net_device *dev) 1451 { 1452 bool up = dev->flags & IFF_UP; 1453 unsigned int i; 1454 int ret = 0; 1455 1456 if (up) 1457 dev_deactivate(dev); 1458 1459 for (i = 0; i < dev->num_tx_queues; i++) { 1460 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]); 1461 1462 /* TODO: revert changes on a partial failure */ 1463 if (ret) 1464 break; 1465 } 1466 1467 if (up) 1468 dev_activate(dev); 1469 return ret; 1470 } 1471 1472 static void dev_init_scheduler_queue(struct net_device *dev, 1473 struct netdev_queue *dev_queue, 1474 void *_qdisc) 1475 { 1476 struct Qdisc *qdisc = _qdisc; 1477 1478 rcu_assign_pointer(dev_queue->qdisc, qdisc); 1479 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1480 } 1481 1482 void dev_init_scheduler(struct net_device *dev) 1483 { 1484 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1485 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 1486 if (dev_ingress_queue(dev)) 1487 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1488 1489 timer_setup(&dev->watchdog_timer, dev_watchdog, 0); 1490 } 1491 1492 void dev_shutdown(struct net_device *dev) 1493 { 1494 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1495 if (dev_ingress_queue(dev)) 1496 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1497 qdisc_put(rtnl_dereference(dev->qdisc)); 1498 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1499 1500 WARN_ON(timer_pending(&dev->watchdog_timer)); 1501 } 1502 1503 /** 1504 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division 1505 * @rate: Rate to compute reciprocal division values of 1506 * @mult: Multiplier for reciprocal division 1507 * @shift: Shift for reciprocal division 1508 * 1509 * The multiplier and shift for reciprocal division by rate are stored 1510 * in mult and shift. 1511 * 1512 * The deal here is to replace a divide by a reciprocal one 1513 * in fast path (a reciprocal divide is a multiply and a shift) 1514 * 1515 * Normal formula would be : 1516 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 1517 * 1518 * We compute mult/shift to use instead : 1519 * time_in_ns = (len * mult) >> shift; 1520 * 1521 * We try to get the highest possible mult value for accuracy, 1522 * but have to make sure no overflows will ever happen. 1523 * 1524 * reciprocal_value() is not used here it doesn't handle 64-bit values. 1525 */ 1526 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift) 1527 { 1528 u64 factor = NSEC_PER_SEC; 1529 1530 *mult = 1; 1531 *shift = 0; 1532 1533 if (rate <= 0) 1534 return; 1535 1536 for (;;) { 1537 *mult = div64_u64(factor, rate); 1538 if (*mult & (1U << 31) || factor & (1ULL << 63)) 1539 break; 1540 factor <<= 1; 1541 (*shift)++; 1542 } 1543 } 1544 1545 void psched_ratecfg_precompute(struct psched_ratecfg *r, 1546 const struct tc_ratespec *conf, 1547 u64 rate64) 1548 { 1549 memset(r, 0, sizeof(*r)); 1550 r->overhead = conf->overhead; 1551 r->mpu = conf->mpu; 1552 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 1553 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 1554 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift); 1555 } 1556 EXPORT_SYMBOL(psched_ratecfg_precompute); 1557 1558 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64) 1559 { 1560 r->rate_pkts_ps = pktrate64; 1561 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift); 1562 } 1563 EXPORT_SYMBOL(psched_ppscfg_precompute); 1564 1565 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, 1566 struct tcf_proto *tp_head) 1567 { 1568 /* Protected with chain0->filter_chain_lock. 1569 * Can't access chain directly because tp_head can be NULL. 1570 */ 1571 struct mini_Qdisc *miniq_old = 1572 rcu_dereference_protected(*miniqp->p_miniq, 1); 1573 struct mini_Qdisc *miniq; 1574 1575 if (!tp_head) { 1576 RCU_INIT_POINTER(*miniqp->p_miniq, NULL); 1577 } else { 1578 miniq = miniq_old != &miniqp->miniq1 ? 1579 &miniqp->miniq1 : &miniqp->miniq2; 1580 1581 /* We need to make sure that readers won't see the miniq 1582 * we are about to modify. So ensure that at least one RCU 1583 * grace period has elapsed since the miniq was made 1584 * inactive. 1585 */ 1586 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1587 cond_synchronize_rcu(miniq->rcu_state); 1588 else if (!poll_state_synchronize_rcu(miniq->rcu_state)) 1589 synchronize_rcu_expedited(); 1590 1591 miniq->filter_list = tp_head; 1592 rcu_assign_pointer(*miniqp->p_miniq, miniq); 1593 } 1594 1595 if (miniq_old) 1596 /* This is counterpart of the rcu sync above. We need to 1597 * block potential new user of miniq_old until all readers 1598 * are not seeing it. 1599 */ 1600 miniq_old->rcu_state = start_poll_synchronize_rcu(); 1601 } 1602 EXPORT_SYMBOL(mini_qdisc_pair_swap); 1603 1604 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, 1605 struct tcf_block *block) 1606 { 1607 miniqp->miniq1.block = block; 1608 miniqp->miniq2.block = block; 1609 } 1610 EXPORT_SYMBOL(mini_qdisc_pair_block_init); 1611 1612 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, 1613 struct mini_Qdisc __rcu **p_miniq) 1614 { 1615 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats; 1616 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats; 1617 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats; 1618 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats; 1619 miniqp->miniq1.rcu_state = get_state_synchronize_rcu(); 1620 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state; 1621 miniqp->p_miniq = p_miniq; 1622 } 1623 EXPORT_SYMBOL(mini_qdisc_pair_init); 1624