xref: /linux/net/sched/sch_generic.c (revision 14ea4cd1b19162888f629c4ce1ba268c683b0f12)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net/sched/sch_generic.c	Generic packet scheduler routines.
4  *
5  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6  *              Jamal Hadi Salim, <hadi@cyberus.ca> 990601
7  *              - Ingress support
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/init.h>
21 #include <linux/rcupdate.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/if_vlan.h>
25 #include <linux/skb_array.h>
26 #include <linux/if_macvlan.h>
27 #include <net/sch_generic.h>
28 #include <net/pkt_sched.h>
29 #include <net/dst.h>
30 #include <net/hotdata.h>
31 #include <trace/events/qdisc.h>
32 #include <trace/events/net.h>
33 #include <net/xfrm.h>
34 
35 /* Qdisc to use by default */
36 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
37 EXPORT_SYMBOL(default_qdisc_ops);
38 
39 static void qdisc_maybe_clear_missed(struct Qdisc *q,
40 				     const struct netdev_queue *txq)
41 {
42 	clear_bit(__QDISC_STATE_MISSED, &q->state);
43 
44 	/* Make sure the below netif_xmit_frozen_or_stopped()
45 	 * checking happens after clearing STATE_MISSED.
46 	 */
47 	smp_mb__after_atomic();
48 
49 	/* Checking netif_xmit_frozen_or_stopped() again to
50 	 * make sure STATE_MISSED is set if the STATE_MISSED
51 	 * set by netif_tx_wake_queue()'s rescheduling of
52 	 * net_tx_action() is cleared by the above clear_bit().
53 	 */
54 	if (!netif_xmit_frozen_or_stopped(txq))
55 		set_bit(__QDISC_STATE_MISSED, &q->state);
56 	else
57 		set_bit(__QDISC_STATE_DRAINING, &q->state);
58 }
59 
60 /* Main transmission queue. */
61 
62 /* Modifications to data participating in scheduling must be protected with
63  * qdisc_lock(qdisc) spinlock.
64  *
65  * The idea is the following:
66  * - enqueue, dequeue are serialized via qdisc root lock
67  * - ingress filtering is also serialized via qdisc root lock
68  * - updates to tree and tree walking are only done under the rtnl mutex.
69  */
70 
71 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL)
72 
73 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
74 {
75 	const struct netdev_queue *txq = q->dev_queue;
76 	spinlock_t *lock = NULL;
77 	struct sk_buff *skb;
78 
79 	if (q->flags & TCQ_F_NOLOCK) {
80 		lock = qdisc_lock(q);
81 		spin_lock(lock);
82 	}
83 
84 	skb = skb_peek(&q->skb_bad_txq);
85 	if (skb) {
86 		/* check the reason of requeuing without tx lock first */
87 		txq = skb_get_tx_queue(txq->dev, skb);
88 		if (!netif_xmit_frozen_or_stopped(txq)) {
89 			skb = __skb_dequeue(&q->skb_bad_txq);
90 			if (qdisc_is_percpu_stats(q)) {
91 				qdisc_qstats_cpu_backlog_dec(q, skb);
92 				qdisc_qstats_cpu_qlen_dec(q);
93 			} else {
94 				qdisc_qstats_backlog_dec(q, skb);
95 				q->q.qlen--;
96 			}
97 		} else {
98 			skb = SKB_XOFF_MAGIC;
99 			qdisc_maybe_clear_missed(q, txq);
100 		}
101 	}
102 
103 	if (lock)
104 		spin_unlock(lock);
105 
106 	return skb;
107 }
108 
109 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
110 {
111 	struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
112 
113 	if (unlikely(skb))
114 		skb = __skb_dequeue_bad_txq(q);
115 
116 	return skb;
117 }
118 
119 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
120 					     struct sk_buff *skb)
121 {
122 	spinlock_t *lock = NULL;
123 
124 	if (q->flags & TCQ_F_NOLOCK) {
125 		lock = qdisc_lock(q);
126 		spin_lock(lock);
127 	}
128 
129 	__skb_queue_tail(&q->skb_bad_txq, skb);
130 
131 	if (qdisc_is_percpu_stats(q)) {
132 		qdisc_qstats_cpu_backlog_inc(q, skb);
133 		qdisc_qstats_cpu_qlen_inc(q);
134 	} else {
135 		qdisc_qstats_backlog_inc(q, skb);
136 		q->q.qlen++;
137 	}
138 
139 	if (lock)
140 		spin_unlock(lock);
141 }
142 
143 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
144 {
145 	spinlock_t *lock = NULL;
146 
147 	if (q->flags & TCQ_F_NOLOCK) {
148 		lock = qdisc_lock(q);
149 		spin_lock(lock);
150 	}
151 
152 	while (skb) {
153 		struct sk_buff *next = skb->next;
154 
155 		__skb_queue_tail(&q->gso_skb, skb);
156 
157 		/* it's still part of the queue */
158 		if (qdisc_is_percpu_stats(q)) {
159 			qdisc_qstats_cpu_requeues_inc(q);
160 			qdisc_qstats_cpu_backlog_inc(q, skb);
161 			qdisc_qstats_cpu_qlen_inc(q);
162 		} else {
163 			q->qstats.requeues++;
164 			qdisc_qstats_backlog_inc(q, skb);
165 			q->q.qlen++;
166 		}
167 
168 		skb = next;
169 	}
170 
171 	if (lock) {
172 		spin_unlock(lock);
173 		set_bit(__QDISC_STATE_MISSED, &q->state);
174 	} else {
175 		__netif_schedule(q);
176 	}
177 }
178 
179 static void try_bulk_dequeue_skb(struct Qdisc *q,
180 				 struct sk_buff *skb,
181 				 const struct netdev_queue *txq,
182 				 int *packets)
183 {
184 	int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
185 
186 	while (bytelimit > 0) {
187 		struct sk_buff *nskb = q->dequeue(q);
188 
189 		if (!nskb)
190 			break;
191 
192 		bytelimit -= nskb->len; /* covers GSO len */
193 		skb->next = nskb;
194 		skb = nskb;
195 		(*packets)++; /* GSO counts as one pkt */
196 	}
197 	skb_mark_not_on_list(skb);
198 }
199 
200 /* This variant of try_bulk_dequeue_skb() makes sure
201  * all skbs in the chain are for the same txq
202  */
203 static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
204 				      struct sk_buff *skb,
205 				      int *packets)
206 {
207 	int mapping = skb_get_queue_mapping(skb);
208 	struct sk_buff *nskb;
209 	int cnt = 0;
210 
211 	do {
212 		nskb = q->dequeue(q);
213 		if (!nskb)
214 			break;
215 		if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
216 			qdisc_enqueue_skb_bad_txq(q, nskb);
217 			break;
218 		}
219 		skb->next = nskb;
220 		skb = nskb;
221 	} while (++cnt < 8);
222 	(*packets) += cnt;
223 	skb_mark_not_on_list(skb);
224 }
225 
226 /* Note that dequeue_skb can possibly return a SKB list (via skb->next).
227  * A requeued skb (via q->gso_skb) can also be a SKB list.
228  */
229 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
230 				   int *packets)
231 {
232 	const struct netdev_queue *txq = q->dev_queue;
233 	struct sk_buff *skb = NULL;
234 
235 	*packets = 1;
236 	if (unlikely(!skb_queue_empty(&q->gso_skb))) {
237 		spinlock_t *lock = NULL;
238 
239 		if (q->flags & TCQ_F_NOLOCK) {
240 			lock = qdisc_lock(q);
241 			spin_lock(lock);
242 		}
243 
244 		skb = skb_peek(&q->gso_skb);
245 
246 		/* skb may be null if another cpu pulls gso_skb off in between
247 		 * empty check and lock.
248 		 */
249 		if (!skb) {
250 			if (lock)
251 				spin_unlock(lock);
252 			goto validate;
253 		}
254 
255 		/* skb in gso_skb were already validated */
256 		*validate = false;
257 		if (xfrm_offload(skb))
258 			*validate = true;
259 		/* check the reason of requeuing without tx lock first */
260 		txq = skb_get_tx_queue(txq->dev, skb);
261 		if (!netif_xmit_frozen_or_stopped(txq)) {
262 			skb = __skb_dequeue(&q->gso_skb);
263 			if (qdisc_is_percpu_stats(q)) {
264 				qdisc_qstats_cpu_backlog_dec(q, skb);
265 				qdisc_qstats_cpu_qlen_dec(q);
266 			} else {
267 				qdisc_qstats_backlog_dec(q, skb);
268 				q->q.qlen--;
269 			}
270 		} else {
271 			skb = NULL;
272 			qdisc_maybe_clear_missed(q, txq);
273 		}
274 		if (lock)
275 			spin_unlock(lock);
276 		goto trace;
277 	}
278 validate:
279 	*validate = true;
280 
281 	if ((q->flags & TCQ_F_ONETXQUEUE) &&
282 	    netif_xmit_frozen_or_stopped(txq)) {
283 		qdisc_maybe_clear_missed(q, txq);
284 		return skb;
285 	}
286 
287 	skb = qdisc_dequeue_skb_bad_txq(q);
288 	if (unlikely(skb)) {
289 		if (skb == SKB_XOFF_MAGIC)
290 			return NULL;
291 		goto bulk;
292 	}
293 	skb = q->dequeue(q);
294 	if (skb) {
295 bulk:
296 		if (qdisc_may_bulk(q))
297 			try_bulk_dequeue_skb(q, skb, txq, packets);
298 		else
299 			try_bulk_dequeue_skb_slow(q, skb, packets);
300 	}
301 trace:
302 	trace_qdisc_dequeue(q, txq, *packets, skb);
303 	return skb;
304 }
305 
306 /*
307  * Transmit possibly several skbs, and handle the return status as
308  * required. Owning qdisc running bit guarantees that only one CPU
309  * can execute this function.
310  *
311  * Returns to the caller:
312  *				false  - hardware queue frozen backoff
313  *				true   - feel free to send more pkts
314  */
315 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
316 		     struct net_device *dev, struct netdev_queue *txq,
317 		     spinlock_t *root_lock, bool validate)
318 {
319 	int ret = NETDEV_TX_BUSY;
320 	bool again = false;
321 
322 	/* And release qdisc */
323 	if (root_lock)
324 		spin_unlock(root_lock);
325 
326 	/* Note that we validate skb (GSO, checksum, ...) outside of locks */
327 	if (validate)
328 		skb = validate_xmit_skb_list(skb, dev, &again);
329 
330 #ifdef CONFIG_XFRM_OFFLOAD
331 	if (unlikely(again)) {
332 		if (root_lock)
333 			spin_lock(root_lock);
334 
335 		dev_requeue_skb(skb, q);
336 		return false;
337 	}
338 #endif
339 
340 	if (likely(skb)) {
341 		HARD_TX_LOCK(dev, txq, smp_processor_id());
342 		if (!netif_xmit_frozen_or_stopped(txq))
343 			skb = dev_hard_start_xmit(skb, dev, txq, &ret);
344 		else
345 			qdisc_maybe_clear_missed(q, txq);
346 
347 		HARD_TX_UNLOCK(dev, txq);
348 	} else {
349 		if (root_lock)
350 			spin_lock(root_lock);
351 		return true;
352 	}
353 
354 	if (root_lock)
355 		spin_lock(root_lock);
356 
357 	if (!dev_xmit_complete(ret)) {
358 		/* Driver returned NETDEV_TX_BUSY - requeue skb */
359 		if (unlikely(ret != NETDEV_TX_BUSY))
360 			net_warn_ratelimited("BUG %s code %d qlen %d\n",
361 					     dev->name, ret, q->q.qlen);
362 
363 		dev_requeue_skb(skb, q);
364 		return false;
365 	}
366 
367 	return true;
368 }
369 
370 /*
371  * NOTE: Called under qdisc_lock(q) with locally disabled BH.
372  *
373  * running seqcount guarantees only one CPU can process
374  * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
375  * this queue.
376  *
377  *  netif_tx_lock serializes accesses to device driver.
378  *
379  *  qdisc_lock(q) and netif_tx_lock are mutually exclusive,
380  *  if one is grabbed, another must be free.
381  *
382  * Note, that this procedure can be called by a watchdog timer
383  *
384  * Returns to the caller:
385  *				0  - queue is empty or throttled.
386  *				>0 - queue is not empty.
387  *
388  */
389 static inline bool qdisc_restart(struct Qdisc *q, int *packets)
390 {
391 	spinlock_t *root_lock = NULL;
392 	struct netdev_queue *txq;
393 	struct net_device *dev;
394 	struct sk_buff *skb;
395 	bool validate;
396 
397 	/* Dequeue packet */
398 	skb = dequeue_skb(q, &validate, packets);
399 	if (unlikely(!skb))
400 		return false;
401 
402 	if (!(q->flags & TCQ_F_NOLOCK))
403 		root_lock = qdisc_lock(q);
404 
405 	dev = qdisc_dev(q);
406 	txq = skb_get_tx_queue(dev, skb);
407 
408 	return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
409 }
410 
411 void __qdisc_run(struct Qdisc *q)
412 {
413 	int quota = READ_ONCE(net_hotdata.dev_tx_weight);
414 	int packets;
415 
416 	while (qdisc_restart(q, &packets)) {
417 		quota -= packets;
418 		if (quota <= 0) {
419 			if (q->flags & TCQ_F_NOLOCK)
420 				set_bit(__QDISC_STATE_MISSED, &q->state);
421 			else
422 				__netif_schedule(q);
423 
424 			break;
425 		}
426 	}
427 }
428 
429 unsigned long dev_trans_start(struct net_device *dev)
430 {
431 	unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start);
432 	unsigned long val;
433 	unsigned int i;
434 
435 	for (i = 1; i < dev->num_tx_queues; i++) {
436 		val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start);
437 		if (val && time_after(val, res))
438 			res = val;
439 	}
440 
441 	return res;
442 }
443 EXPORT_SYMBOL(dev_trans_start);
444 
445 static void netif_freeze_queues(struct net_device *dev)
446 {
447 	unsigned int i;
448 	int cpu;
449 
450 	cpu = smp_processor_id();
451 	for (i = 0; i < dev->num_tx_queues; i++) {
452 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
453 
454 		/* We are the only thread of execution doing a
455 		 * freeze, but we have to grab the _xmit_lock in
456 		 * order to synchronize with threads which are in
457 		 * the ->hard_start_xmit() handler and already
458 		 * checked the frozen bit.
459 		 */
460 		__netif_tx_lock(txq, cpu);
461 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
462 		__netif_tx_unlock(txq);
463 	}
464 }
465 
466 void netif_tx_lock(struct net_device *dev)
467 {
468 	spin_lock(&dev->tx_global_lock);
469 	netif_freeze_queues(dev);
470 }
471 EXPORT_SYMBOL(netif_tx_lock);
472 
473 static void netif_unfreeze_queues(struct net_device *dev)
474 {
475 	unsigned int i;
476 
477 	for (i = 0; i < dev->num_tx_queues; i++) {
478 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
479 
480 		/* No need to grab the _xmit_lock here.  If the
481 		 * queue is not stopped for another reason, we
482 		 * force a schedule.
483 		 */
484 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
485 		netif_schedule_queue(txq);
486 	}
487 }
488 
489 void netif_tx_unlock(struct net_device *dev)
490 {
491 	netif_unfreeze_queues(dev);
492 	spin_unlock(&dev->tx_global_lock);
493 }
494 EXPORT_SYMBOL(netif_tx_unlock);
495 
496 static void dev_watchdog(struct timer_list *t)
497 {
498 	struct net_device *dev = from_timer(dev, t, watchdog_timer);
499 	bool release = true;
500 
501 	spin_lock(&dev->tx_global_lock);
502 	if (!qdisc_tx_is_noop(dev)) {
503 		if (netif_device_present(dev) &&
504 		    netif_running(dev) &&
505 		    netif_carrier_ok(dev)) {
506 			unsigned int timedout_ms = 0;
507 			unsigned int i;
508 			unsigned long trans_start;
509 			unsigned long oldest_start = jiffies;
510 
511 			for (i = 0; i < dev->num_tx_queues; i++) {
512 				struct netdev_queue *txq;
513 
514 				txq = netdev_get_tx_queue(dev, i);
515 				if (!netif_xmit_stopped(txq))
516 					continue;
517 
518 				/* Paired with WRITE_ONCE() + smp_mb...() in
519 				 * netdev_tx_sent_queue() and netif_tx_stop_queue().
520 				 */
521 				smp_mb();
522 				trans_start = READ_ONCE(txq->trans_start);
523 
524 				if (time_after(jiffies, trans_start + dev->watchdog_timeo)) {
525 					timedout_ms = jiffies_to_msecs(jiffies - trans_start);
526 					atomic_long_inc(&txq->trans_timeout);
527 					break;
528 				}
529 				if (time_after(oldest_start, trans_start))
530 					oldest_start = trans_start;
531 			}
532 
533 			if (unlikely(timedout_ms)) {
534 				trace_net_dev_xmit_timeout(dev, i);
535 				netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n",
536 					    raw_smp_processor_id(),
537 					    i, timedout_ms);
538 				netif_freeze_queues(dev);
539 				dev->netdev_ops->ndo_tx_timeout(dev, i);
540 				netif_unfreeze_queues(dev);
541 			}
542 			if (!mod_timer(&dev->watchdog_timer,
543 				       round_jiffies(oldest_start +
544 						     dev->watchdog_timeo)))
545 				release = false;
546 		}
547 	}
548 	spin_unlock(&dev->tx_global_lock);
549 
550 	if (release)
551 		netdev_put(dev, &dev->watchdog_dev_tracker);
552 }
553 
554 void netdev_watchdog_up(struct net_device *dev)
555 {
556 	if (!dev->netdev_ops->ndo_tx_timeout)
557 		return;
558 	if (dev->watchdog_timeo <= 0)
559 		dev->watchdog_timeo = 5*HZ;
560 	if (!mod_timer(&dev->watchdog_timer,
561 		       round_jiffies(jiffies + dev->watchdog_timeo)))
562 		netdev_hold(dev, &dev->watchdog_dev_tracker,
563 			    GFP_ATOMIC);
564 }
565 EXPORT_SYMBOL_GPL(netdev_watchdog_up);
566 
567 static void netdev_watchdog_down(struct net_device *dev)
568 {
569 	netif_tx_lock_bh(dev);
570 	if (del_timer(&dev->watchdog_timer))
571 		netdev_put(dev, &dev->watchdog_dev_tracker);
572 	netif_tx_unlock_bh(dev);
573 }
574 
575 /**
576  *	netif_carrier_on - set carrier
577  *	@dev: network device
578  *
579  * Device has detected acquisition of carrier.
580  */
581 void netif_carrier_on(struct net_device *dev)
582 {
583 	if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
584 		if (dev->reg_state == NETREG_UNINITIALIZED)
585 			return;
586 		atomic_inc(&dev->carrier_up_count);
587 		linkwatch_fire_event(dev);
588 		if (netif_running(dev))
589 			netdev_watchdog_up(dev);
590 	}
591 }
592 EXPORT_SYMBOL(netif_carrier_on);
593 
594 /**
595  *	netif_carrier_off - clear carrier
596  *	@dev: network device
597  *
598  * Device has detected loss of carrier.
599  */
600 void netif_carrier_off(struct net_device *dev)
601 {
602 	if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
603 		if (dev->reg_state == NETREG_UNINITIALIZED)
604 			return;
605 		atomic_inc(&dev->carrier_down_count);
606 		linkwatch_fire_event(dev);
607 	}
608 }
609 EXPORT_SYMBOL(netif_carrier_off);
610 
611 /**
612  *	netif_carrier_event - report carrier state event
613  *	@dev: network device
614  *
615  * Device has detected a carrier event but the carrier state wasn't changed.
616  * Use in drivers when querying carrier state asynchronously, to avoid missing
617  * events (link flaps) if link recovers before it's queried.
618  */
619 void netif_carrier_event(struct net_device *dev)
620 {
621 	if (dev->reg_state == NETREG_UNINITIALIZED)
622 		return;
623 	atomic_inc(&dev->carrier_up_count);
624 	atomic_inc(&dev->carrier_down_count);
625 	linkwatch_fire_event(dev);
626 }
627 EXPORT_SYMBOL_GPL(netif_carrier_event);
628 
629 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces
630    under all circumstances. It is difficult to invent anything faster or
631    cheaper.
632  */
633 
634 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
635 			struct sk_buff **to_free)
636 {
637 	dev_core_stats_tx_dropped_inc(skb->dev);
638 	__qdisc_drop(skb, to_free);
639 	return NET_XMIT_CN;
640 }
641 
642 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
643 {
644 	return NULL;
645 }
646 
647 struct Qdisc_ops noop_qdisc_ops __read_mostly = {
648 	.id		=	"noop",
649 	.priv_size	=	0,
650 	.enqueue	=	noop_enqueue,
651 	.dequeue	=	noop_dequeue,
652 	.peek		=	noop_dequeue,
653 	.owner		=	THIS_MODULE,
654 };
655 
656 static struct netdev_queue noop_netdev_queue = {
657 	RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc),
658 	RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc),
659 };
660 
661 struct Qdisc noop_qdisc = {
662 	.enqueue	=	noop_enqueue,
663 	.dequeue	=	noop_dequeue,
664 	.flags		=	TCQ_F_BUILTIN,
665 	.ops		=	&noop_qdisc_ops,
666 	.q.lock		=	__SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
667 	.dev_queue	=	&noop_netdev_queue,
668 	.busylock	=	__SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
669 	.gso_skb = {
670 		.next = (struct sk_buff *)&noop_qdisc.gso_skb,
671 		.prev = (struct sk_buff *)&noop_qdisc.gso_skb,
672 		.qlen = 0,
673 		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
674 	},
675 	.skb_bad_txq = {
676 		.next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
677 		.prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
678 		.qlen = 0,
679 		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
680 	},
681 	.owner = -1,
682 };
683 EXPORT_SYMBOL(noop_qdisc);
684 
685 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
686 			struct netlink_ext_ack *extack)
687 {
688 	/* register_qdisc() assigns a default of noop_enqueue if unset,
689 	 * but __dev_queue_xmit() treats noqueue only as such
690 	 * if this is NULL - so clear it here. */
691 	qdisc->enqueue = NULL;
692 	return 0;
693 }
694 
695 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
696 	.id		=	"noqueue",
697 	.priv_size	=	0,
698 	.init		=	noqueue_init,
699 	.enqueue	=	noop_enqueue,
700 	.dequeue	=	noop_dequeue,
701 	.peek		=	noop_dequeue,
702 	.owner		=	THIS_MODULE,
703 };
704 
705 const u8 sch_default_prio2band[TC_PRIO_MAX + 1] = {
706 	1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
707 };
708 EXPORT_SYMBOL(sch_default_prio2band);
709 
710 /* 3-band FIFO queue: old style, but should be a bit faster than
711    generic prio+fifo combination.
712  */
713 
714 #define PFIFO_FAST_BANDS 3
715 
716 /*
717  * Private data for a pfifo_fast scheduler containing:
718  *	- rings for priority bands
719  */
720 struct pfifo_fast_priv {
721 	struct skb_array q[PFIFO_FAST_BANDS];
722 };
723 
724 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
725 					  int band)
726 {
727 	return &priv->q[band];
728 }
729 
730 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
731 			      struct sk_buff **to_free)
732 {
733 	int band = sch_default_prio2band[skb->priority & TC_PRIO_MAX];
734 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
735 	struct skb_array *q = band2list(priv, band);
736 	unsigned int pkt_len = qdisc_pkt_len(skb);
737 	int err;
738 
739 	err = skb_array_produce(q, skb);
740 
741 	if (unlikely(err)) {
742 		if (qdisc_is_percpu_stats(qdisc))
743 			return qdisc_drop_cpu(skb, qdisc, to_free);
744 		else
745 			return qdisc_drop(skb, qdisc, to_free);
746 	}
747 
748 	qdisc_update_stats_at_enqueue(qdisc, pkt_len);
749 	return NET_XMIT_SUCCESS;
750 }
751 
752 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
753 {
754 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
755 	struct sk_buff *skb = NULL;
756 	bool need_retry = true;
757 	int band;
758 
759 retry:
760 	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
761 		struct skb_array *q = band2list(priv, band);
762 
763 		if (__skb_array_empty(q))
764 			continue;
765 
766 		skb = __skb_array_consume(q);
767 	}
768 	if (likely(skb)) {
769 		qdisc_update_stats_at_dequeue(qdisc, skb);
770 	} else if (need_retry &&
771 		   READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) {
772 		/* Delay clearing the STATE_MISSED here to reduce
773 		 * the overhead of the second spin_trylock() in
774 		 * qdisc_run_begin() and __netif_schedule() calling
775 		 * in qdisc_run_end().
776 		 */
777 		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
778 		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
779 
780 		/* Make sure dequeuing happens after clearing
781 		 * STATE_MISSED.
782 		 */
783 		smp_mb__after_atomic();
784 
785 		need_retry = false;
786 
787 		goto retry;
788 	}
789 
790 	return skb;
791 }
792 
793 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
794 {
795 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
796 	struct sk_buff *skb = NULL;
797 	int band;
798 
799 	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
800 		struct skb_array *q = band2list(priv, band);
801 
802 		skb = __skb_array_peek(q);
803 	}
804 
805 	return skb;
806 }
807 
808 static void pfifo_fast_reset(struct Qdisc *qdisc)
809 {
810 	int i, band;
811 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
812 
813 	for (band = 0; band < PFIFO_FAST_BANDS; band++) {
814 		struct skb_array *q = band2list(priv, band);
815 		struct sk_buff *skb;
816 
817 		/* NULL ring is possible if destroy path is due to a failed
818 		 * skb_array_init() in pfifo_fast_init() case.
819 		 */
820 		if (!q->ring.queue)
821 			continue;
822 
823 		while ((skb = __skb_array_consume(q)) != NULL)
824 			kfree_skb(skb);
825 	}
826 
827 	if (qdisc_is_percpu_stats(qdisc)) {
828 		for_each_possible_cpu(i) {
829 			struct gnet_stats_queue *q;
830 
831 			q = per_cpu_ptr(qdisc->cpu_qstats, i);
832 			q->backlog = 0;
833 			q->qlen = 0;
834 		}
835 	}
836 }
837 
838 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
839 {
840 	struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
841 
842 	memcpy(&opt.priomap, sch_default_prio2band, TC_PRIO_MAX + 1);
843 	if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
844 		goto nla_put_failure;
845 	return skb->len;
846 
847 nla_put_failure:
848 	return -1;
849 }
850 
851 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
852 			   struct netlink_ext_ack *extack)
853 {
854 	unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
855 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
856 	int prio;
857 
858 	/* guard against zero length rings */
859 	if (!qlen)
860 		return -EINVAL;
861 
862 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
863 		struct skb_array *q = band2list(priv, prio);
864 		int err;
865 
866 		err = skb_array_init(q, qlen, GFP_KERNEL);
867 		if (err)
868 			return -ENOMEM;
869 	}
870 
871 	/* Can by-pass the queue discipline */
872 	qdisc->flags |= TCQ_F_CAN_BYPASS;
873 	return 0;
874 }
875 
876 static void pfifo_fast_destroy(struct Qdisc *sch)
877 {
878 	struct pfifo_fast_priv *priv = qdisc_priv(sch);
879 	int prio;
880 
881 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
882 		struct skb_array *q = band2list(priv, prio);
883 
884 		/* NULL ring is possible if destroy path is due to a failed
885 		 * skb_array_init() in pfifo_fast_init() case.
886 		 */
887 		if (!q->ring.queue)
888 			continue;
889 		/* Destroy ring but no need to kfree_skb because a call to
890 		 * pfifo_fast_reset() has already done that work.
891 		 */
892 		ptr_ring_cleanup(&q->ring, NULL);
893 	}
894 }
895 
896 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
897 					  unsigned int new_len)
898 {
899 	struct pfifo_fast_priv *priv = qdisc_priv(sch);
900 	struct skb_array *bands[PFIFO_FAST_BANDS];
901 	int prio;
902 
903 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
904 		struct skb_array *q = band2list(priv, prio);
905 
906 		bands[prio] = q;
907 	}
908 
909 	return skb_array_resize_multiple_bh(bands, PFIFO_FAST_BANDS, new_len,
910 					    GFP_KERNEL);
911 }
912 
913 struct Qdisc_ops pfifo_fast_ops __read_mostly = {
914 	.id		=	"pfifo_fast",
915 	.priv_size	=	sizeof(struct pfifo_fast_priv),
916 	.enqueue	=	pfifo_fast_enqueue,
917 	.dequeue	=	pfifo_fast_dequeue,
918 	.peek		=	pfifo_fast_peek,
919 	.init		=	pfifo_fast_init,
920 	.destroy	=	pfifo_fast_destroy,
921 	.reset		=	pfifo_fast_reset,
922 	.dump		=	pfifo_fast_dump,
923 	.change_tx_queue_len =  pfifo_fast_change_tx_queue_len,
924 	.owner		=	THIS_MODULE,
925 	.static_flags	=	TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
926 };
927 EXPORT_SYMBOL(pfifo_fast_ops);
928 
929 static struct lock_class_key qdisc_tx_busylock;
930 
931 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
932 			  const struct Qdisc_ops *ops,
933 			  struct netlink_ext_ack *extack)
934 {
935 	struct Qdisc *sch;
936 	unsigned int size = sizeof(*sch) + ops->priv_size;
937 	int err = -ENOBUFS;
938 	struct net_device *dev;
939 
940 	if (!dev_queue) {
941 		NL_SET_ERR_MSG(extack, "No device queue given");
942 		err = -EINVAL;
943 		goto errout;
944 	}
945 
946 	dev = dev_queue->dev;
947 	sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue));
948 
949 	if (!sch)
950 		goto errout;
951 	__skb_queue_head_init(&sch->gso_skb);
952 	__skb_queue_head_init(&sch->skb_bad_txq);
953 	gnet_stats_basic_sync_init(&sch->bstats);
954 	lockdep_register_key(&sch->root_lock_key);
955 	spin_lock_init(&sch->q.lock);
956 	lockdep_set_class(&sch->q.lock, &sch->root_lock_key);
957 
958 	if (ops->static_flags & TCQ_F_CPUSTATS) {
959 		sch->cpu_bstats =
960 			netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
961 		if (!sch->cpu_bstats)
962 			goto errout1;
963 
964 		sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
965 		if (!sch->cpu_qstats) {
966 			free_percpu(sch->cpu_bstats);
967 			goto errout1;
968 		}
969 	}
970 
971 	spin_lock_init(&sch->busylock);
972 	lockdep_set_class(&sch->busylock,
973 			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
974 
975 	/* seqlock has the same scope of busylock, for NOLOCK qdisc */
976 	spin_lock_init(&sch->seqlock);
977 	lockdep_set_class(&sch->seqlock,
978 			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
979 
980 	sch->ops = ops;
981 	sch->flags = ops->static_flags;
982 	sch->enqueue = ops->enqueue;
983 	sch->dequeue = ops->dequeue;
984 	sch->dev_queue = dev_queue;
985 	sch->owner = -1;
986 	netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL);
987 	refcount_set(&sch->refcnt, 1);
988 
989 	return sch;
990 errout1:
991 	lockdep_unregister_key(&sch->root_lock_key);
992 	kfree(sch);
993 errout:
994 	return ERR_PTR(err);
995 }
996 
997 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
998 				const struct Qdisc_ops *ops,
999 				unsigned int parentid,
1000 				struct netlink_ext_ack *extack)
1001 {
1002 	struct Qdisc *sch;
1003 
1004 	if (!try_module_get(ops->owner)) {
1005 		NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
1006 		return NULL;
1007 	}
1008 
1009 	sch = qdisc_alloc(dev_queue, ops, extack);
1010 	if (IS_ERR(sch)) {
1011 		module_put(ops->owner);
1012 		return NULL;
1013 	}
1014 	sch->parent = parentid;
1015 
1016 	if (!ops->init || ops->init(sch, NULL, extack) == 0) {
1017 		trace_qdisc_create(ops, dev_queue->dev, parentid);
1018 		return sch;
1019 	}
1020 
1021 	qdisc_put(sch);
1022 	return NULL;
1023 }
1024 EXPORT_SYMBOL(qdisc_create_dflt);
1025 
1026 /* Under qdisc_lock(qdisc) and BH! */
1027 
1028 void qdisc_reset(struct Qdisc *qdisc)
1029 {
1030 	const struct Qdisc_ops *ops = qdisc->ops;
1031 
1032 	trace_qdisc_reset(qdisc);
1033 
1034 	if (ops->reset)
1035 		ops->reset(qdisc);
1036 
1037 	__skb_queue_purge(&qdisc->gso_skb);
1038 	__skb_queue_purge(&qdisc->skb_bad_txq);
1039 
1040 	qdisc->q.qlen = 0;
1041 	qdisc->qstats.backlog = 0;
1042 }
1043 EXPORT_SYMBOL(qdisc_reset);
1044 
1045 void qdisc_free(struct Qdisc *qdisc)
1046 {
1047 	if (qdisc_is_percpu_stats(qdisc)) {
1048 		free_percpu(qdisc->cpu_bstats);
1049 		free_percpu(qdisc->cpu_qstats);
1050 	}
1051 
1052 	kfree(qdisc);
1053 }
1054 
1055 static void qdisc_free_cb(struct rcu_head *head)
1056 {
1057 	struct Qdisc *q = container_of(head, struct Qdisc, rcu);
1058 
1059 	qdisc_free(q);
1060 }
1061 
1062 static void __qdisc_destroy(struct Qdisc *qdisc)
1063 {
1064 	const struct Qdisc_ops  *ops = qdisc->ops;
1065 	struct net_device *dev = qdisc_dev(qdisc);
1066 
1067 #ifdef CONFIG_NET_SCHED
1068 	qdisc_hash_del(qdisc);
1069 
1070 	qdisc_put_stab(rtnl_dereference(qdisc->stab));
1071 #endif
1072 	gen_kill_estimator(&qdisc->rate_est);
1073 
1074 	qdisc_reset(qdisc);
1075 
1076 
1077 	if (ops->destroy)
1078 		ops->destroy(qdisc);
1079 
1080 	lockdep_unregister_key(&qdisc->root_lock_key);
1081 	module_put(ops->owner);
1082 	netdev_put(dev, &qdisc->dev_tracker);
1083 
1084 	trace_qdisc_destroy(qdisc);
1085 
1086 	call_rcu(&qdisc->rcu, qdisc_free_cb);
1087 }
1088 
1089 void qdisc_destroy(struct Qdisc *qdisc)
1090 {
1091 	if (qdisc->flags & TCQ_F_BUILTIN)
1092 		return;
1093 
1094 	__qdisc_destroy(qdisc);
1095 }
1096 
1097 void qdisc_put(struct Qdisc *qdisc)
1098 {
1099 	if (!qdisc)
1100 		return;
1101 
1102 	if (qdisc->flags & TCQ_F_BUILTIN ||
1103 	    !refcount_dec_and_test(&qdisc->refcnt))
1104 		return;
1105 
1106 	__qdisc_destroy(qdisc);
1107 }
1108 EXPORT_SYMBOL(qdisc_put);
1109 
1110 /* Version of qdisc_put() that is called with rtnl mutex unlocked.
1111  * Intended to be used as optimization, this function only takes rtnl lock if
1112  * qdisc reference counter reached zero.
1113  */
1114 
1115 void qdisc_put_unlocked(struct Qdisc *qdisc)
1116 {
1117 	if (qdisc->flags & TCQ_F_BUILTIN ||
1118 	    !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1119 		return;
1120 
1121 	__qdisc_destroy(qdisc);
1122 	rtnl_unlock();
1123 }
1124 EXPORT_SYMBOL(qdisc_put_unlocked);
1125 
1126 /* Attach toplevel qdisc to device queue. */
1127 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1128 			      struct Qdisc *qdisc)
1129 {
1130 	struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1131 	spinlock_t *root_lock;
1132 
1133 	root_lock = qdisc_lock(oqdisc);
1134 	spin_lock_bh(root_lock);
1135 
1136 	/* ... and graft new one */
1137 	if (qdisc == NULL)
1138 		qdisc = &noop_qdisc;
1139 	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1140 	rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1141 
1142 	spin_unlock_bh(root_lock);
1143 
1144 	return oqdisc;
1145 }
1146 EXPORT_SYMBOL(dev_graft_qdisc);
1147 
1148 static void shutdown_scheduler_queue(struct net_device *dev,
1149 				     struct netdev_queue *dev_queue,
1150 				     void *_qdisc_default)
1151 {
1152 	struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1153 	struct Qdisc *qdisc_default = _qdisc_default;
1154 
1155 	if (qdisc) {
1156 		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1157 		rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default);
1158 
1159 		qdisc_put(qdisc);
1160 	}
1161 }
1162 
1163 static void attach_one_default_qdisc(struct net_device *dev,
1164 				     struct netdev_queue *dev_queue,
1165 				     void *_unused)
1166 {
1167 	struct Qdisc *qdisc;
1168 	const struct Qdisc_ops *ops = default_qdisc_ops;
1169 
1170 	if (dev->priv_flags & IFF_NO_QUEUE)
1171 		ops = &noqueue_qdisc_ops;
1172 	else if(dev->type == ARPHRD_CAN)
1173 		ops = &pfifo_fast_ops;
1174 
1175 	qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1176 	if (!qdisc)
1177 		return;
1178 
1179 	if (!netif_is_multiqueue(dev))
1180 		qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1181 	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1182 }
1183 
1184 static void attach_default_qdiscs(struct net_device *dev)
1185 {
1186 	struct netdev_queue *txq;
1187 	struct Qdisc *qdisc;
1188 
1189 	txq = netdev_get_tx_queue(dev, 0);
1190 
1191 	if (!netif_is_multiqueue(dev) ||
1192 	    dev->priv_flags & IFF_NO_QUEUE) {
1193 		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1194 		qdisc = rtnl_dereference(txq->qdisc_sleeping);
1195 		rcu_assign_pointer(dev->qdisc, qdisc);
1196 		qdisc_refcount_inc(qdisc);
1197 	} else {
1198 		qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1199 		if (qdisc) {
1200 			rcu_assign_pointer(dev->qdisc, qdisc);
1201 			qdisc->ops->attach(qdisc);
1202 		}
1203 	}
1204 	qdisc = rtnl_dereference(dev->qdisc);
1205 
1206 	/* Detect default qdisc setup/init failed and fallback to "noqueue" */
1207 	if (qdisc == &noop_qdisc) {
1208 		netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n",
1209 			    default_qdisc_ops->id, noqueue_qdisc_ops.id);
1210 		netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1211 		dev->priv_flags |= IFF_NO_QUEUE;
1212 		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1213 		qdisc = rtnl_dereference(txq->qdisc_sleeping);
1214 		rcu_assign_pointer(dev->qdisc, qdisc);
1215 		qdisc_refcount_inc(qdisc);
1216 		dev->priv_flags ^= IFF_NO_QUEUE;
1217 	}
1218 
1219 #ifdef CONFIG_NET_SCHED
1220 	if (qdisc != &noop_qdisc)
1221 		qdisc_hash_add(qdisc, false);
1222 #endif
1223 }
1224 
1225 static void transition_one_qdisc(struct net_device *dev,
1226 				 struct netdev_queue *dev_queue,
1227 				 void *_need_watchdog)
1228 {
1229 	struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1230 	int *need_watchdog_p = _need_watchdog;
1231 
1232 	if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1233 		clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1234 
1235 	rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1236 	if (need_watchdog_p) {
1237 		WRITE_ONCE(dev_queue->trans_start, 0);
1238 		*need_watchdog_p = 1;
1239 	}
1240 }
1241 
1242 void dev_activate(struct net_device *dev)
1243 {
1244 	int need_watchdog;
1245 
1246 	/* No queueing discipline is attached to device;
1247 	 * create default one for devices, which need queueing
1248 	 * and noqueue_qdisc for virtual interfaces
1249 	 */
1250 
1251 	if (rtnl_dereference(dev->qdisc) == &noop_qdisc)
1252 		attach_default_qdiscs(dev);
1253 
1254 	if (!netif_carrier_ok(dev))
1255 		/* Delay activation until next carrier-on event */
1256 		return;
1257 
1258 	need_watchdog = 0;
1259 	netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1260 	if (dev_ingress_queue(dev))
1261 		transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1262 
1263 	if (need_watchdog) {
1264 		netif_trans_update(dev);
1265 		netdev_watchdog_up(dev);
1266 	}
1267 }
1268 EXPORT_SYMBOL(dev_activate);
1269 
1270 static void qdisc_deactivate(struct Qdisc *qdisc)
1271 {
1272 	if (qdisc->flags & TCQ_F_BUILTIN)
1273 		return;
1274 
1275 	set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
1276 }
1277 
1278 static void dev_deactivate_queue(struct net_device *dev,
1279 				 struct netdev_queue *dev_queue,
1280 				 void *_qdisc_default)
1281 {
1282 	struct Qdisc *qdisc_default = _qdisc_default;
1283 	struct Qdisc *qdisc;
1284 
1285 	qdisc = rtnl_dereference(dev_queue->qdisc);
1286 	if (qdisc) {
1287 		qdisc_deactivate(qdisc);
1288 		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1289 	}
1290 }
1291 
1292 static void dev_reset_queue(struct net_device *dev,
1293 			    struct netdev_queue *dev_queue,
1294 			    void *_unused)
1295 {
1296 	struct Qdisc *qdisc;
1297 	bool nolock;
1298 
1299 	qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1300 	if (!qdisc)
1301 		return;
1302 
1303 	nolock = qdisc->flags & TCQ_F_NOLOCK;
1304 
1305 	if (nolock)
1306 		spin_lock_bh(&qdisc->seqlock);
1307 	spin_lock_bh(qdisc_lock(qdisc));
1308 
1309 	qdisc_reset(qdisc);
1310 
1311 	spin_unlock_bh(qdisc_lock(qdisc));
1312 	if (nolock) {
1313 		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
1314 		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
1315 		spin_unlock_bh(&qdisc->seqlock);
1316 	}
1317 }
1318 
1319 static bool some_qdisc_is_busy(struct net_device *dev)
1320 {
1321 	unsigned int i;
1322 
1323 	for (i = 0; i < dev->num_tx_queues; i++) {
1324 		struct netdev_queue *dev_queue;
1325 		spinlock_t *root_lock;
1326 		struct Qdisc *q;
1327 		int val;
1328 
1329 		dev_queue = netdev_get_tx_queue(dev, i);
1330 		q = rtnl_dereference(dev_queue->qdisc_sleeping);
1331 
1332 		root_lock = qdisc_lock(q);
1333 		spin_lock_bh(root_lock);
1334 
1335 		val = (qdisc_is_running(q) ||
1336 		       test_bit(__QDISC_STATE_SCHED, &q->state));
1337 
1338 		spin_unlock_bh(root_lock);
1339 
1340 		if (val)
1341 			return true;
1342 	}
1343 	return false;
1344 }
1345 
1346 /**
1347  * 	dev_deactivate_many - deactivate transmissions on several devices
1348  * 	@head: list of devices to deactivate
1349  *
1350  *	This function returns only when all outstanding transmissions
1351  *	have completed, unless all devices are in dismantle phase.
1352  */
1353 void dev_deactivate_many(struct list_head *head)
1354 {
1355 	struct net_device *dev;
1356 
1357 	list_for_each_entry(dev, head, close_list) {
1358 		netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1359 					 &noop_qdisc);
1360 		if (dev_ingress_queue(dev))
1361 			dev_deactivate_queue(dev, dev_ingress_queue(dev),
1362 					     &noop_qdisc);
1363 
1364 		netdev_watchdog_down(dev);
1365 	}
1366 
1367 	/* Wait for outstanding qdisc-less dev_queue_xmit calls or
1368 	 * outstanding qdisc enqueuing calls.
1369 	 * This is avoided if all devices are in dismantle phase :
1370 	 * Caller will call synchronize_net() for us
1371 	 */
1372 	synchronize_net();
1373 
1374 	list_for_each_entry(dev, head, close_list) {
1375 		netdev_for_each_tx_queue(dev, dev_reset_queue, NULL);
1376 
1377 		if (dev_ingress_queue(dev))
1378 			dev_reset_queue(dev, dev_ingress_queue(dev), NULL);
1379 	}
1380 
1381 	/* Wait for outstanding qdisc_run calls. */
1382 	list_for_each_entry(dev, head, close_list) {
1383 		while (some_qdisc_is_busy(dev)) {
1384 			/* wait_event() would avoid this sleep-loop but would
1385 			 * require expensive checks in the fast paths of packet
1386 			 * processing which isn't worth it.
1387 			 */
1388 			schedule_timeout_uninterruptible(1);
1389 		}
1390 	}
1391 }
1392 
1393 void dev_deactivate(struct net_device *dev)
1394 {
1395 	LIST_HEAD(single);
1396 
1397 	list_add(&dev->close_list, &single);
1398 	dev_deactivate_many(&single);
1399 	list_del(&single);
1400 }
1401 EXPORT_SYMBOL(dev_deactivate);
1402 
1403 static int qdisc_change_tx_queue_len(struct net_device *dev,
1404 				     struct netdev_queue *dev_queue)
1405 {
1406 	struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1407 	const struct Qdisc_ops *ops = qdisc->ops;
1408 
1409 	if (ops->change_tx_queue_len)
1410 		return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1411 	return 0;
1412 }
1413 
1414 void dev_qdisc_change_real_num_tx(struct net_device *dev,
1415 				  unsigned int new_real_tx)
1416 {
1417 	struct Qdisc *qdisc = rtnl_dereference(dev->qdisc);
1418 
1419 	if (qdisc->ops->change_real_num_tx)
1420 		qdisc->ops->change_real_num_tx(qdisc, new_real_tx);
1421 }
1422 
1423 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx)
1424 {
1425 #ifdef CONFIG_NET_SCHED
1426 	struct net_device *dev = qdisc_dev(sch);
1427 	struct Qdisc *qdisc;
1428 	unsigned int i;
1429 
1430 	for (i = new_real_tx; i < dev->real_num_tx_queues; i++) {
1431 		qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1432 		/* Only update the default qdiscs we created,
1433 		 * qdiscs with handles are always hashed.
1434 		 */
1435 		if (qdisc != &noop_qdisc && !qdisc->handle)
1436 			qdisc_hash_del(qdisc);
1437 	}
1438 	for (i = dev->real_num_tx_queues; i < new_real_tx; i++) {
1439 		qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1440 		if (qdisc != &noop_qdisc && !qdisc->handle)
1441 			qdisc_hash_add(qdisc, false);
1442 	}
1443 #endif
1444 }
1445 EXPORT_SYMBOL(mq_change_real_num_tx);
1446 
1447 int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1448 {
1449 	bool up = dev->flags & IFF_UP;
1450 	unsigned int i;
1451 	int ret = 0;
1452 
1453 	if (up)
1454 		dev_deactivate(dev);
1455 
1456 	for (i = 0; i < dev->num_tx_queues; i++) {
1457 		ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1458 
1459 		/* TODO: revert changes on a partial failure */
1460 		if (ret)
1461 			break;
1462 	}
1463 
1464 	if (up)
1465 		dev_activate(dev);
1466 	return ret;
1467 }
1468 
1469 static void dev_init_scheduler_queue(struct net_device *dev,
1470 				     struct netdev_queue *dev_queue,
1471 				     void *_qdisc)
1472 {
1473 	struct Qdisc *qdisc = _qdisc;
1474 
1475 	rcu_assign_pointer(dev_queue->qdisc, qdisc);
1476 	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1477 }
1478 
1479 void dev_init_scheduler(struct net_device *dev)
1480 {
1481 	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1482 	netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1483 	if (dev_ingress_queue(dev))
1484 		dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1485 
1486 	timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
1487 }
1488 
1489 void dev_shutdown(struct net_device *dev)
1490 {
1491 	netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1492 	if (dev_ingress_queue(dev))
1493 		shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1494 	qdisc_put(rtnl_dereference(dev->qdisc));
1495 	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1496 
1497 	WARN_ON(timer_pending(&dev->watchdog_timer));
1498 }
1499 
1500 /**
1501  * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division
1502  * @rate:   Rate to compute reciprocal division values of
1503  * @mult:   Multiplier for reciprocal division
1504  * @shift:  Shift for reciprocal division
1505  *
1506  * The multiplier and shift for reciprocal division by rate are stored
1507  * in mult and shift.
1508  *
1509  * The deal here is to replace a divide by a reciprocal one
1510  * in fast path (a reciprocal divide is a multiply and a shift)
1511  *
1512  * Normal formula would be :
1513  *  time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1514  *
1515  * We compute mult/shift to use instead :
1516  *  time_in_ns = (len * mult) >> shift;
1517  *
1518  * We try to get the highest possible mult value for accuracy,
1519  * but have to make sure no overflows will ever happen.
1520  *
1521  * reciprocal_value() is not used here it doesn't handle 64-bit values.
1522  */
1523 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift)
1524 {
1525 	u64 factor = NSEC_PER_SEC;
1526 
1527 	*mult = 1;
1528 	*shift = 0;
1529 
1530 	if (rate <= 0)
1531 		return;
1532 
1533 	for (;;) {
1534 		*mult = div64_u64(factor, rate);
1535 		if (*mult & (1U << 31) || factor & (1ULL << 63))
1536 			break;
1537 		factor <<= 1;
1538 		(*shift)++;
1539 	}
1540 }
1541 
1542 void psched_ratecfg_precompute(struct psched_ratecfg *r,
1543 			       const struct tc_ratespec *conf,
1544 			       u64 rate64)
1545 {
1546 	memset(r, 0, sizeof(*r));
1547 	r->overhead = conf->overhead;
1548 	r->mpu = conf->mpu;
1549 	r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1550 	r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1551 	psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift);
1552 }
1553 EXPORT_SYMBOL(psched_ratecfg_precompute);
1554 
1555 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64)
1556 {
1557 	r->rate_pkts_ps = pktrate64;
1558 	psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift);
1559 }
1560 EXPORT_SYMBOL(psched_ppscfg_precompute);
1561 
1562 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1563 			  struct tcf_proto *tp_head)
1564 {
1565 	/* Protected with chain0->filter_chain_lock.
1566 	 * Can't access chain directly because tp_head can be NULL.
1567 	 */
1568 	struct mini_Qdisc *miniq_old =
1569 		rcu_dereference_protected(*miniqp->p_miniq, 1);
1570 	struct mini_Qdisc *miniq;
1571 
1572 	if (!tp_head) {
1573 		RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1574 	} else {
1575 		miniq = miniq_old != &miniqp->miniq1 ?
1576 			&miniqp->miniq1 : &miniqp->miniq2;
1577 
1578 		/* We need to make sure that readers won't see the miniq
1579 		 * we are about to modify. So ensure that at least one RCU
1580 		 * grace period has elapsed since the miniq was made
1581 		 * inactive.
1582 		 */
1583 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
1584 			cond_synchronize_rcu(miniq->rcu_state);
1585 		else if (!poll_state_synchronize_rcu(miniq->rcu_state))
1586 			synchronize_rcu_expedited();
1587 
1588 		miniq->filter_list = tp_head;
1589 		rcu_assign_pointer(*miniqp->p_miniq, miniq);
1590 	}
1591 
1592 	if (miniq_old)
1593 		/* This is counterpart of the rcu sync above. We need to
1594 		 * block potential new user of miniq_old until all readers
1595 		 * are not seeing it.
1596 		 */
1597 		miniq_old->rcu_state = start_poll_synchronize_rcu();
1598 }
1599 EXPORT_SYMBOL(mini_qdisc_pair_swap);
1600 
1601 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp,
1602 				struct tcf_block *block)
1603 {
1604 	miniqp->miniq1.block = block;
1605 	miniqp->miniq2.block = block;
1606 }
1607 EXPORT_SYMBOL(mini_qdisc_pair_block_init);
1608 
1609 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1610 			  struct mini_Qdisc __rcu **p_miniq)
1611 {
1612 	miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1613 	miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1614 	miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1615 	miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1616 	miniqp->miniq1.rcu_state = get_state_synchronize_rcu();
1617 	miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state;
1618 	miniqp->p_miniq = p_miniq;
1619 }
1620 EXPORT_SYMBOL(mini_qdisc_pair_init);
1621