1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Flow Queue PIE discipline 3 * 4 * Copyright (C) 2019 Mohit P. Tahiliani <tahiliani@nitk.edu.in> 5 * Copyright (C) 2019 Sachin D. Patil <sdp.sachin@gmail.com> 6 * Copyright (C) 2019 V. Saicharan <vsaicharan1998@gmail.com> 7 * Copyright (C) 2019 Mohit Bhasi <mohitbhasi1998@gmail.com> 8 * Copyright (C) 2019 Leslie Monis <lesliemonis@gmail.com> 9 * Copyright (C) 2019 Gautam Ramakrishnan <gautamramk@gmail.com> 10 */ 11 12 #include <linux/jhash.h> 13 #include <linux/sizes.h> 14 #include <linux/vmalloc.h> 15 #include <net/pkt_cls.h> 16 #include <net/pie.h> 17 18 /* Flow Queue PIE 19 * 20 * Principles: 21 * - Packets are classified on flows. 22 * - This is a Stochastic model (as we use a hash, several flows might 23 * be hashed to the same slot) 24 * - Each flow has a PIE managed queue. 25 * - Flows are linked onto two (Round Robin) lists, 26 * so that new flows have priority on old ones. 27 * - For a given flow, packets are not reordered. 28 * - Drops during enqueue only. 29 * - ECN capability is off by default. 30 * - ECN threshold (if ECN is enabled) is at 10% by default. 31 * - Uses timestamps to calculate queue delay by default. 32 */ 33 34 /** 35 * struct fq_pie_flow - contains data for each flow 36 * @vars: pie vars associated with the flow 37 * @deficit: number of remaining byte credits 38 * @backlog: size of data in the flow 39 * @qlen: number of packets in the flow 40 * @flowchain: flowchain for the flow 41 * @head: first packet in the flow 42 * @tail: last packet in the flow 43 */ 44 struct fq_pie_flow { 45 struct pie_vars vars; 46 s32 deficit; 47 u32 backlog; 48 u32 qlen; 49 struct list_head flowchain; 50 struct sk_buff *head; 51 struct sk_buff *tail; 52 }; 53 54 struct fq_pie_sched_data { 55 struct tcf_proto __rcu *filter_list; /* optional external classifier */ 56 struct tcf_block *block; 57 struct fq_pie_flow *flows; 58 struct Qdisc *sch; 59 struct list_head old_flows; 60 struct list_head new_flows; 61 struct pie_params p_params; 62 u32 ecn_prob; 63 u32 flows_cnt; 64 u32 quantum; 65 u32 memory_limit; 66 u32 new_flow_count; 67 u32 memory_usage; 68 u32 overmemory; 69 struct pie_stats stats; 70 struct timer_list adapt_timer; 71 }; 72 73 static unsigned int fq_pie_hash(const struct fq_pie_sched_data *q, 74 struct sk_buff *skb) 75 { 76 return reciprocal_scale(skb_get_hash(skb), q->flows_cnt); 77 } 78 79 static unsigned int fq_pie_classify(struct sk_buff *skb, struct Qdisc *sch, 80 int *qerr) 81 { 82 struct fq_pie_sched_data *q = qdisc_priv(sch); 83 struct tcf_proto *filter; 84 struct tcf_result res; 85 int result; 86 87 if (TC_H_MAJ(skb->priority) == sch->handle && 88 TC_H_MIN(skb->priority) > 0 && 89 TC_H_MIN(skb->priority) <= q->flows_cnt) 90 return TC_H_MIN(skb->priority); 91 92 filter = rcu_dereference_bh(q->filter_list); 93 if (!filter) 94 return fq_pie_hash(q, skb) + 1; 95 96 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 97 result = tcf_classify(skb, filter, &res, false); 98 if (result >= 0) { 99 #ifdef CONFIG_NET_CLS_ACT 100 switch (result) { 101 case TC_ACT_STOLEN: 102 case TC_ACT_QUEUED: 103 case TC_ACT_TRAP: 104 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 105 /* fall through */ 106 case TC_ACT_SHOT: 107 return 0; 108 } 109 #endif 110 if (TC_H_MIN(res.classid) <= q->flows_cnt) 111 return TC_H_MIN(res.classid); 112 } 113 return 0; 114 } 115 116 /* add skb to flow queue (tail add) */ 117 static inline void flow_queue_add(struct fq_pie_flow *flow, 118 struct sk_buff *skb) 119 { 120 if (!flow->head) 121 flow->head = skb; 122 else 123 flow->tail->next = skb; 124 flow->tail = skb; 125 skb->next = NULL; 126 } 127 128 static int fq_pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch, 129 struct sk_buff **to_free) 130 { 131 struct fq_pie_sched_data *q = qdisc_priv(sch); 132 struct fq_pie_flow *sel_flow; 133 int uninitialized_var(ret); 134 u8 memory_limited = false; 135 u8 enqueue = false; 136 u32 pkt_len; 137 u32 idx; 138 139 /* Classifies packet into corresponding flow */ 140 idx = fq_pie_classify(skb, sch, &ret); 141 sel_flow = &q->flows[idx]; 142 143 /* Checks whether adding a new packet would exceed memory limit */ 144 get_pie_cb(skb)->mem_usage = skb->truesize; 145 memory_limited = q->memory_usage > q->memory_limit + skb->truesize; 146 147 /* Checks if the qdisc is full */ 148 if (unlikely(qdisc_qlen(sch) >= sch->limit)) { 149 q->stats.overlimit++; 150 goto out; 151 } else if (unlikely(memory_limited)) { 152 q->overmemory++; 153 } 154 155 if (!pie_drop_early(sch, &q->p_params, &sel_flow->vars, 156 sel_flow->backlog, skb->len)) { 157 enqueue = true; 158 } else if (q->p_params.ecn && 159 sel_flow->vars.prob <= (MAX_PROB / 100) * q->ecn_prob && 160 INET_ECN_set_ce(skb)) { 161 /* If packet is ecn capable, mark it if drop probability 162 * is lower than the parameter ecn_prob, else drop it. 163 */ 164 q->stats.ecn_mark++; 165 enqueue = true; 166 } 167 if (enqueue) { 168 /* Set enqueue time only when dq_rate_estimator is disabled. */ 169 if (!q->p_params.dq_rate_estimator) 170 pie_set_enqueue_time(skb); 171 172 pkt_len = qdisc_pkt_len(skb); 173 q->stats.packets_in++; 174 q->memory_usage += skb->truesize; 175 sch->qstats.backlog += pkt_len; 176 sch->q.qlen++; 177 flow_queue_add(sel_flow, skb); 178 if (list_empty(&sel_flow->flowchain)) { 179 list_add_tail(&sel_flow->flowchain, &q->new_flows); 180 q->new_flow_count++; 181 sel_flow->deficit = q->quantum; 182 sel_flow->qlen = 0; 183 sel_flow->backlog = 0; 184 } 185 sel_flow->qlen++; 186 sel_flow->backlog += pkt_len; 187 return NET_XMIT_SUCCESS; 188 } 189 out: 190 q->stats.dropped++; 191 sel_flow->vars.accu_prob = 0; 192 __qdisc_drop(skb, to_free); 193 qdisc_qstats_drop(sch); 194 return NET_XMIT_CN; 195 } 196 197 static const struct nla_policy fq_pie_policy[TCA_FQ_PIE_MAX + 1] = { 198 [TCA_FQ_PIE_LIMIT] = {.type = NLA_U32}, 199 [TCA_FQ_PIE_FLOWS] = {.type = NLA_U32}, 200 [TCA_FQ_PIE_TARGET] = {.type = NLA_U32}, 201 [TCA_FQ_PIE_TUPDATE] = {.type = NLA_U32}, 202 [TCA_FQ_PIE_ALPHA] = {.type = NLA_U32}, 203 [TCA_FQ_PIE_BETA] = {.type = NLA_U32}, 204 [TCA_FQ_PIE_QUANTUM] = {.type = NLA_U32}, 205 [TCA_FQ_PIE_MEMORY_LIMIT] = {.type = NLA_U32}, 206 [TCA_FQ_PIE_ECN_PROB] = {.type = NLA_U32}, 207 [TCA_FQ_PIE_ECN] = {.type = NLA_U32}, 208 [TCA_FQ_PIE_BYTEMODE] = {.type = NLA_U32}, 209 [TCA_FQ_PIE_DQ_RATE_ESTIMATOR] = {.type = NLA_U32}, 210 }; 211 212 static inline struct sk_buff *dequeue_head(struct fq_pie_flow *flow) 213 { 214 struct sk_buff *skb = flow->head; 215 216 flow->head = skb->next; 217 skb->next = NULL; 218 return skb; 219 } 220 221 static struct sk_buff *fq_pie_qdisc_dequeue(struct Qdisc *sch) 222 { 223 struct fq_pie_sched_data *q = qdisc_priv(sch); 224 struct sk_buff *skb = NULL; 225 struct fq_pie_flow *flow; 226 struct list_head *head; 227 u32 pkt_len; 228 229 begin: 230 head = &q->new_flows; 231 if (list_empty(head)) { 232 head = &q->old_flows; 233 if (list_empty(head)) 234 return NULL; 235 } 236 237 flow = list_first_entry(head, struct fq_pie_flow, flowchain); 238 /* Flow has exhausted all its credits */ 239 if (flow->deficit <= 0) { 240 flow->deficit += q->quantum; 241 list_move_tail(&flow->flowchain, &q->old_flows); 242 goto begin; 243 } 244 245 if (flow->head) { 246 skb = dequeue_head(flow); 247 pkt_len = qdisc_pkt_len(skb); 248 sch->qstats.backlog -= pkt_len; 249 sch->q.qlen--; 250 qdisc_bstats_update(sch, skb); 251 } 252 253 if (!skb) { 254 /* force a pass through old_flows to prevent starvation */ 255 if (head == &q->new_flows && !list_empty(&q->old_flows)) 256 list_move_tail(&flow->flowchain, &q->old_flows); 257 else 258 list_del_init(&flow->flowchain); 259 goto begin; 260 } 261 262 flow->qlen--; 263 flow->deficit -= pkt_len; 264 flow->backlog -= pkt_len; 265 q->memory_usage -= get_pie_cb(skb)->mem_usage; 266 pie_process_dequeue(skb, &q->p_params, &flow->vars, flow->backlog); 267 return skb; 268 } 269 270 static int fq_pie_change(struct Qdisc *sch, struct nlattr *opt, 271 struct netlink_ext_ack *extack) 272 { 273 struct fq_pie_sched_data *q = qdisc_priv(sch); 274 struct nlattr *tb[TCA_FQ_PIE_MAX + 1]; 275 unsigned int len_dropped = 0; 276 unsigned int num_dropped = 0; 277 int err; 278 279 if (!opt) 280 return -EINVAL; 281 282 err = nla_parse_nested(tb, TCA_FQ_PIE_MAX, opt, fq_pie_policy, extack); 283 if (err < 0) 284 return err; 285 286 sch_tree_lock(sch); 287 if (tb[TCA_FQ_PIE_LIMIT]) { 288 u32 limit = nla_get_u32(tb[TCA_FQ_PIE_LIMIT]); 289 290 q->p_params.limit = limit; 291 sch->limit = limit; 292 } 293 if (tb[TCA_FQ_PIE_FLOWS]) { 294 if (q->flows) { 295 NL_SET_ERR_MSG_MOD(extack, 296 "Number of flows cannot be changed"); 297 goto flow_error; 298 } 299 q->flows_cnt = nla_get_u32(tb[TCA_FQ_PIE_FLOWS]); 300 if (!q->flows_cnt || q->flows_cnt >= 65536) { 301 NL_SET_ERR_MSG_MOD(extack, 302 "Number of flows must range in [1..65535]"); 303 goto flow_error; 304 } 305 } 306 307 /* convert from microseconds to pschedtime */ 308 if (tb[TCA_FQ_PIE_TARGET]) { 309 /* target is in us */ 310 u32 target = nla_get_u32(tb[TCA_FQ_PIE_TARGET]); 311 312 /* convert to pschedtime */ 313 q->p_params.target = 314 PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC); 315 } 316 317 /* tupdate is in jiffies */ 318 if (tb[TCA_FQ_PIE_TUPDATE]) 319 q->p_params.tupdate = 320 usecs_to_jiffies(nla_get_u32(tb[TCA_FQ_PIE_TUPDATE])); 321 322 if (tb[TCA_FQ_PIE_ALPHA]) 323 q->p_params.alpha = nla_get_u32(tb[TCA_FQ_PIE_ALPHA]); 324 325 if (tb[TCA_FQ_PIE_BETA]) 326 q->p_params.beta = nla_get_u32(tb[TCA_FQ_PIE_BETA]); 327 328 if (tb[TCA_FQ_PIE_QUANTUM]) 329 q->quantum = nla_get_u32(tb[TCA_FQ_PIE_QUANTUM]); 330 331 if (tb[TCA_FQ_PIE_MEMORY_LIMIT]) 332 q->memory_limit = nla_get_u32(tb[TCA_FQ_PIE_MEMORY_LIMIT]); 333 334 if (tb[TCA_FQ_PIE_ECN_PROB]) 335 q->ecn_prob = nla_get_u32(tb[TCA_FQ_PIE_ECN_PROB]); 336 337 if (tb[TCA_FQ_PIE_ECN]) 338 q->p_params.ecn = nla_get_u32(tb[TCA_FQ_PIE_ECN]); 339 340 if (tb[TCA_FQ_PIE_BYTEMODE]) 341 q->p_params.bytemode = nla_get_u32(tb[TCA_FQ_PIE_BYTEMODE]); 342 343 if (tb[TCA_FQ_PIE_DQ_RATE_ESTIMATOR]) 344 q->p_params.dq_rate_estimator = 345 nla_get_u32(tb[TCA_FQ_PIE_DQ_RATE_ESTIMATOR]); 346 347 /* Drop excess packets if new limit is lower */ 348 while (sch->q.qlen > sch->limit) { 349 struct sk_buff *skb = fq_pie_qdisc_dequeue(sch); 350 351 len_dropped += qdisc_pkt_len(skb); 352 num_dropped += 1; 353 rtnl_kfree_skbs(skb, skb); 354 } 355 qdisc_tree_reduce_backlog(sch, num_dropped, len_dropped); 356 357 sch_tree_unlock(sch); 358 return 0; 359 360 flow_error: 361 sch_tree_unlock(sch); 362 return -EINVAL; 363 } 364 365 static void fq_pie_timer(struct timer_list *t) 366 { 367 struct fq_pie_sched_data *q = from_timer(q, t, adapt_timer); 368 struct Qdisc *sch = q->sch; 369 spinlock_t *root_lock; /* to lock qdisc for probability calculations */ 370 u16 idx; 371 372 root_lock = qdisc_lock(qdisc_root_sleeping(sch)); 373 spin_lock(root_lock); 374 375 for (idx = 0; idx < q->flows_cnt; idx++) 376 pie_calculate_probability(&q->p_params, &q->flows[idx].vars, 377 q->flows[idx].backlog); 378 379 /* reset the timer to fire after 'tupdate' jiffies. */ 380 if (q->p_params.tupdate) 381 mod_timer(&q->adapt_timer, jiffies + q->p_params.tupdate); 382 383 spin_unlock(root_lock); 384 } 385 386 static int fq_pie_init(struct Qdisc *sch, struct nlattr *opt, 387 struct netlink_ext_ack *extack) 388 { 389 struct fq_pie_sched_data *q = qdisc_priv(sch); 390 int err; 391 u16 idx; 392 393 pie_params_init(&q->p_params); 394 sch->limit = 10 * 1024; 395 q->p_params.limit = sch->limit; 396 q->quantum = psched_mtu(qdisc_dev(sch)); 397 q->sch = sch; 398 q->ecn_prob = 10; 399 q->flows_cnt = 1024; 400 q->memory_limit = SZ_32M; 401 402 INIT_LIST_HEAD(&q->new_flows); 403 INIT_LIST_HEAD(&q->old_flows); 404 405 if (opt) { 406 err = fq_pie_change(sch, opt, extack); 407 408 if (err) 409 return err; 410 } 411 412 err = tcf_block_get(&q->block, &q->filter_list, sch, extack); 413 if (err) 414 goto init_failure; 415 416 q->flows = kvcalloc(q->flows_cnt, sizeof(struct fq_pie_flow), 417 GFP_KERNEL); 418 if (!q->flows) { 419 err = -ENOMEM; 420 goto init_failure; 421 } 422 for (idx = 0; idx < q->flows_cnt; idx++) { 423 struct fq_pie_flow *flow = q->flows + idx; 424 425 INIT_LIST_HEAD(&flow->flowchain); 426 pie_vars_init(&flow->vars); 427 } 428 429 timer_setup(&q->adapt_timer, fq_pie_timer, 0); 430 mod_timer(&q->adapt_timer, jiffies + HZ / 2); 431 432 return 0; 433 434 init_failure: 435 q->flows_cnt = 0; 436 437 return err; 438 } 439 440 static int fq_pie_dump(struct Qdisc *sch, struct sk_buff *skb) 441 { 442 struct fq_pie_sched_data *q = qdisc_priv(sch); 443 struct nlattr *opts; 444 445 opts = nla_nest_start(skb, TCA_OPTIONS); 446 if (!opts) 447 return -EMSGSIZE; 448 449 /* convert target from pschedtime to us */ 450 if (nla_put_u32(skb, TCA_FQ_PIE_LIMIT, sch->limit) || 451 nla_put_u32(skb, TCA_FQ_PIE_FLOWS, q->flows_cnt) || 452 nla_put_u32(skb, TCA_FQ_PIE_TARGET, 453 ((u32)PSCHED_TICKS2NS(q->p_params.target)) / 454 NSEC_PER_USEC) || 455 nla_put_u32(skb, TCA_FQ_PIE_TUPDATE, 456 jiffies_to_usecs(q->p_params.tupdate)) || 457 nla_put_u32(skb, TCA_FQ_PIE_ALPHA, q->p_params.alpha) || 458 nla_put_u32(skb, TCA_FQ_PIE_BETA, q->p_params.beta) || 459 nla_put_u32(skb, TCA_FQ_PIE_QUANTUM, q->quantum) || 460 nla_put_u32(skb, TCA_FQ_PIE_MEMORY_LIMIT, q->memory_limit) || 461 nla_put_u32(skb, TCA_FQ_PIE_ECN_PROB, q->ecn_prob) || 462 nla_put_u32(skb, TCA_FQ_PIE_ECN, q->p_params.ecn) || 463 nla_put_u32(skb, TCA_FQ_PIE_BYTEMODE, q->p_params.bytemode) || 464 nla_put_u32(skb, TCA_FQ_PIE_DQ_RATE_ESTIMATOR, 465 q->p_params.dq_rate_estimator)) 466 goto nla_put_failure; 467 468 return nla_nest_end(skb, opts); 469 470 nla_put_failure: 471 nla_nest_cancel(skb, opts); 472 return -EMSGSIZE; 473 } 474 475 static int fq_pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 476 { 477 struct fq_pie_sched_data *q = qdisc_priv(sch); 478 struct tc_fq_pie_xstats st = { 479 .packets_in = q->stats.packets_in, 480 .overlimit = q->stats.overlimit, 481 .overmemory = q->overmemory, 482 .dropped = q->stats.dropped, 483 .ecn_mark = q->stats.ecn_mark, 484 .new_flow_count = q->new_flow_count, 485 .memory_usage = q->memory_usage, 486 }; 487 struct list_head *pos; 488 489 sch_tree_lock(sch); 490 list_for_each(pos, &q->new_flows) 491 st.new_flows_len++; 492 493 list_for_each(pos, &q->old_flows) 494 st.old_flows_len++; 495 sch_tree_unlock(sch); 496 497 return gnet_stats_copy_app(d, &st, sizeof(st)); 498 } 499 500 static void fq_pie_reset(struct Qdisc *sch) 501 { 502 struct fq_pie_sched_data *q = qdisc_priv(sch); 503 u16 idx; 504 505 INIT_LIST_HEAD(&q->new_flows); 506 INIT_LIST_HEAD(&q->old_flows); 507 for (idx = 0; idx < q->flows_cnt; idx++) { 508 struct fq_pie_flow *flow = q->flows + idx; 509 510 /* Removes all packets from flow */ 511 rtnl_kfree_skbs(flow->head, flow->tail); 512 flow->head = NULL; 513 514 INIT_LIST_HEAD(&flow->flowchain); 515 pie_vars_init(&flow->vars); 516 } 517 518 sch->q.qlen = 0; 519 sch->qstats.backlog = 0; 520 } 521 522 static void fq_pie_destroy(struct Qdisc *sch) 523 { 524 struct fq_pie_sched_data *q = qdisc_priv(sch); 525 526 tcf_block_put(q->block); 527 del_timer_sync(&q->adapt_timer); 528 kvfree(q->flows); 529 } 530 531 static struct Qdisc_ops fq_pie_qdisc_ops __read_mostly = { 532 .id = "fq_pie", 533 .priv_size = sizeof(struct fq_pie_sched_data), 534 .enqueue = fq_pie_qdisc_enqueue, 535 .dequeue = fq_pie_qdisc_dequeue, 536 .peek = qdisc_peek_dequeued, 537 .init = fq_pie_init, 538 .destroy = fq_pie_destroy, 539 .reset = fq_pie_reset, 540 .change = fq_pie_change, 541 .dump = fq_pie_dump, 542 .dump_stats = fq_pie_dump_stats, 543 .owner = THIS_MODULE, 544 }; 545 546 static int __init fq_pie_module_init(void) 547 { 548 return register_qdisc(&fq_pie_qdisc_ops); 549 } 550 551 static void __exit fq_pie_module_exit(void) 552 { 553 unregister_qdisc(&fq_pie_qdisc_ops); 554 } 555 556 module_init(fq_pie_module_init); 557 module_exit(fq_pie_module_exit); 558 559 MODULE_DESCRIPTION("Flow Queue Proportional Integral controller Enhanced (FQ-PIE)"); 560 MODULE_AUTHOR("Mohit P. Tahiliani"); 561 MODULE_LICENSE("GPL"); 562