1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing) 4 * 5 * Copyright (C) 2013-2023 Eric Dumazet <edumazet@google.com> 6 * 7 * Meant to be mostly used for locally generated traffic : 8 * Fast classification depends on skb->sk being set before reaching us. 9 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash. 10 * All packets belonging to a socket are considered as a 'flow'. 11 * 12 * Flows are dynamically allocated and stored in a hash table of RB trees 13 * They are also part of one Round Robin 'queues' (new or old flows) 14 * 15 * Burst avoidance (aka pacing) capability : 16 * 17 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a 18 * bunch of packets, and this packet scheduler adds delay between 19 * packets to respect rate limitation. 20 * 21 * enqueue() : 22 * - lookup one RB tree (out of 1024 or more) to find the flow. 23 * If non existent flow, create it, add it to the tree. 24 * Add skb to the per flow list of skb (fifo). 25 * - Use a special fifo for high prio packets 26 * 27 * dequeue() : serves flows in Round Robin 28 * Note : When a flow becomes empty, we do not immediately remove it from 29 * rb trees, for performance reasons (its expected to send additional packets, 30 * or SLAB cache will reuse socket for another flow) 31 */ 32 33 #include <linux/module.h> 34 #include <linux/types.h> 35 #include <linux/kernel.h> 36 #include <linux/jiffies.h> 37 #include <linux/string.h> 38 #include <linux/in.h> 39 #include <linux/errno.h> 40 #include <linux/init.h> 41 #include <linux/skbuff.h> 42 #include <linux/slab.h> 43 #include <linux/rbtree.h> 44 #include <linux/hash.h> 45 #include <linux/prefetch.h> 46 #include <linux/vmalloc.h> 47 #include <net/netlink.h> 48 #include <net/pkt_sched.h> 49 #include <net/sock.h> 50 #include <net/tcp_states.h> 51 #include <net/tcp.h> 52 53 struct fq_skb_cb { 54 u64 time_to_send; 55 }; 56 57 static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb) 58 { 59 qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb)); 60 return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data; 61 } 62 63 /* 64 * Per flow structure, dynamically allocated. 65 * If packets have monotically increasing time_to_send, they are placed in O(1) 66 * in linear list (head,tail), otherwise are placed in a rbtree (t_root). 67 */ 68 struct fq_flow { 69 /* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */ 70 struct rb_root t_root; 71 struct sk_buff *head; /* list of skbs for this flow : first skb */ 72 union { 73 struct sk_buff *tail; /* last skb in the list */ 74 unsigned long age; /* (jiffies | 1UL) when flow was emptied, for gc */ 75 }; 76 union { 77 struct rb_node fq_node; /* anchor in fq_root[] trees */ 78 /* Following field is only used for q->internal, 79 * because q->internal is not hashed in fq_root[] 80 */ 81 u64 stat_fastpath_packets; 82 }; 83 struct sock *sk; 84 u32 socket_hash; /* sk_hash */ 85 int qlen; /* number of packets in flow queue */ 86 87 /* Second cache line, used in fq_dequeue() */ 88 int credit; 89 /* 32bit hole on 64bit arches */ 90 91 struct fq_flow *next; /* next pointer in RR lists */ 92 93 struct rb_node rate_node; /* anchor in q->delayed tree */ 94 u64 time_next_packet; 95 } ____cacheline_aligned_in_smp; 96 97 struct fq_flow_head { 98 struct fq_flow *first; 99 struct fq_flow *last; 100 }; 101 102 struct fq_sched_data { 103 struct fq_flow_head new_flows; 104 105 struct fq_flow_head old_flows; 106 107 struct rb_root delayed; /* for rate limited flows */ 108 u64 time_next_delayed_flow; 109 u64 ktime_cache; /* copy of last ktime_get_ns() */ 110 unsigned long unthrottle_latency_ns; 111 112 struct fq_flow internal; /* for non classified or high prio packets */ 113 114 /* Read mostly cache line */ 115 116 u32 quantum; 117 u32 initial_quantum; 118 u32 flow_refill_delay; 119 u32 flow_plimit; /* max packets per flow */ 120 unsigned long flow_max_rate; /* optional max rate per flow */ 121 u64 ce_threshold; 122 u64 horizon; /* horizon in ns */ 123 u32 orphan_mask; /* mask for orphaned skb */ 124 u32 low_rate_threshold; 125 struct rb_root *fq_root; 126 u8 rate_enable; 127 u8 fq_trees_log; 128 u8 horizon_drop; 129 u32 timer_slack; /* hrtimer slack in ns */ 130 131 /* Read/Write fields. */ 132 133 u32 flows; 134 u32 inactive_flows; /* Flows with no packet to send. */ 135 u32 throttled_flows; 136 137 u64 stat_throttled; 138 struct qdisc_watchdog watchdog; 139 u64 stat_gc_flows; 140 141 /* Seldom used fields. */ 142 143 u64 stat_internal_packets; /* aka highprio */ 144 u64 stat_ce_mark; 145 u64 stat_horizon_drops; 146 u64 stat_horizon_caps; 147 u64 stat_flows_plimit; 148 u64 stat_pkts_too_long; 149 u64 stat_allocation_errors; 150 }; 151 152 /* 153 * f->tail and f->age share the same location. 154 * We can use the low order bit to differentiate if this location points 155 * to a sk_buff or contains a jiffies value, if we force this value to be odd. 156 * This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2 157 */ 158 static void fq_flow_set_detached(struct fq_flow *f) 159 { 160 f->age = jiffies | 1UL; 161 } 162 163 static bool fq_flow_is_detached(const struct fq_flow *f) 164 { 165 return !!(f->age & 1UL); 166 } 167 168 /* special value to mark a throttled flow (not on old/new list) */ 169 static struct fq_flow throttled; 170 171 static bool fq_flow_is_throttled(const struct fq_flow *f) 172 { 173 return f->next == &throttled; 174 } 175 176 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow) 177 { 178 if (head->first) 179 head->last->next = flow; 180 else 181 head->first = flow; 182 head->last = flow; 183 flow->next = NULL; 184 } 185 186 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f) 187 { 188 rb_erase(&f->rate_node, &q->delayed); 189 q->throttled_flows--; 190 fq_flow_add_tail(&q->old_flows, f); 191 } 192 193 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f) 194 { 195 struct rb_node **p = &q->delayed.rb_node, *parent = NULL; 196 197 while (*p) { 198 struct fq_flow *aux; 199 200 parent = *p; 201 aux = rb_entry(parent, struct fq_flow, rate_node); 202 if (f->time_next_packet >= aux->time_next_packet) 203 p = &parent->rb_right; 204 else 205 p = &parent->rb_left; 206 } 207 rb_link_node(&f->rate_node, parent, p); 208 rb_insert_color(&f->rate_node, &q->delayed); 209 q->throttled_flows++; 210 q->stat_throttled++; 211 212 f->next = &throttled; 213 if (q->time_next_delayed_flow > f->time_next_packet) 214 q->time_next_delayed_flow = f->time_next_packet; 215 } 216 217 218 static struct kmem_cache *fq_flow_cachep __read_mostly; 219 220 221 /* limit number of collected flows per round */ 222 #define FQ_GC_MAX 8 223 #define FQ_GC_AGE (3*HZ) 224 225 static bool fq_gc_candidate(const struct fq_flow *f) 226 { 227 return fq_flow_is_detached(f) && 228 time_after(jiffies, f->age + FQ_GC_AGE); 229 } 230 231 static void fq_gc(struct fq_sched_data *q, 232 struct rb_root *root, 233 struct sock *sk) 234 { 235 struct rb_node **p, *parent; 236 void *tofree[FQ_GC_MAX]; 237 struct fq_flow *f; 238 int i, fcnt = 0; 239 240 p = &root->rb_node; 241 parent = NULL; 242 while (*p) { 243 parent = *p; 244 245 f = rb_entry(parent, struct fq_flow, fq_node); 246 if (f->sk == sk) 247 break; 248 249 if (fq_gc_candidate(f)) { 250 tofree[fcnt++] = f; 251 if (fcnt == FQ_GC_MAX) 252 break; 253 } 254 255 if (f->sk > sk) 256 p = &parent->rb_right; 257 else 258 p = &parent->rb_left; 259 } 260 261 if (!fcnt) 262 return; 263 264 for (i = fcnt; i > 0; ) { 265 f = tofree[--i]; 266 rb_erase(&f->fq_node, root); 267 } 268 q->flows -= fcnt; 269 q->inactive_flows -= fcnt; 270 q->stat_gc_flows += fcnt; 271 272 kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree); 273 } 274 275 /* Fast path can be used if : 276 * 1) Packet tstamp is in the past. 277 * 2) FQ qlen == 0 OR 278 * (no flow is currently eligible for transmit, 279 * AND fast path queue has less than 8 packets) 280 * 3) No SO_MAX_PACING_RATE on the socket (if any). 281 * 4) No @maxrate attribute on this qdisc, 282 * 283 * FQ can not use generic TCQ_F_CAN_BYPASS infrastructure. 284 */ 285 static bool fq_fastpath_check(const struct Qdisc *sch, struct sk_buff *skb) 286 { 287 const struct fq_sched_data *q = qdisc_priv(sch); 288 const struct sock *sk; 289 290 if (fq_skb_cb(skb)->time_to_send > q->ktime_cache) 291 return false; 292 293 if (sch->q.qlen != 0) { 294 /* Even if some packets are stored in this qdisc, 295 * we can still enable fast path if all of them are 296 * scheduled in the future (ie no flows are eligible) 297 * or in the fast path queue. 298 */ 299 if (q->flows != q->inactive_flows + q->throttled_flows) 300 return false; 301 302 /* Do not allow fast path queue to explode, we want Fair Queue mode 303 * under pressure. 304 */ 305 if (q->internal.qlen >= 8) 306 return false; 307 } 308 309 sk = skb->sk; 310 if (sk && sk_fullsock(sk) && !sk_is_tcp(sk) && 311 sk->sk_max_pacing_rate != ~0UL) 312 return false; 313 314 if (q->flow_max_rate != ~0UL) 315 return false; 316 317 return true; 318 } 319 320 static struct fq_flow *fq_classify(struct Qdisc *sch, struct sk_buff *skb) 321 { 322 struct fq_sched_data *q = qdisc_priv(sch); 323 struct rb_node **p, *parent; 324 struct sock *sk = skb->sk; 325 struct rb_root *root; 326 struct fq_flow *f; 327 328 /* warning: no starvation prevention... */ 329 if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL)) { 330 q->stat_internal_packets++; /* highprio packet */ 331 return &q->internal; 332 } 333 /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket 334 * or a listener (SYNCOOKIE mode) 335 * 1) request sockets are not full blown, 336 * they do not contain sk_pacing_rate 337 * 2) They are not part of a 'flow' yet 338 * 3) We do not want to rate limit them (eg SYNFLOOD attack), 339 * especially if the listener set SO_MAX_PACING_RATE 340 * 4) We pretend they are orphaned 341 */ 342 if (!sk || sk_listener(sk)) { 343 unsigned long hash = skb_get_hash(skb) & q->orphan_mask; 344 345 /* By forcing low order bit to 1, we make sure to not 346 * collide with a local flow (socket pointers are word aligned) 347 */ 348 sk = (struct sock *)((hash << 1) | 1UL); 349 skb_orphan(skb); 350 } else if (sk->sk_state == TCP_CLOSE) { 351 unsigned long hash = skb_get_hash(skb) & q->orphan_mask; 352 /* 353 * Sockets in TCP_CLOSE are non connected. 354 * Typical use case is UDP sockets, they can send packets 355 * with sendto() to many different destinations. 356 * We probably could use a generic bit advertising 357 * non connected sockets, instead of sk_state == TCP_CLOSE, 358 * if we care enough. 359 */ 360 sk = (struct sock *)((hash << 1) | 1UL); 361 } 362 363 if (fq_fastpath_check(sch, skb)) { 364 q->internal.stat_fastpath_packets++; 365 return &q->internal; 366 } 367 368 root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)]; 369 370 fq_gc(q, root, sk); 371 372 p = &root->rb_node; 373 parent = NULL; 374 while (*p) { 375 parent = *p; 376 377 f = rb_entry(parent, struct fq_flow, fq_node); 378 if (f->sk == sk) { 379 /* socket might have been reallocated, so check 380 * if its sk_hash is the same. 381 * It not, we need to refill credit with 382 * initial quantum 383 */ 384 if (unlikely(skb->sk == sk && 385 f->socket_hash != sk->sk_hash)) { 386 f->credit = q->initial_quantum; 387 f->socket_hash = sk->sk_hash; 388 if (q->rate_enable) 389 smp_store_release(&sk->sk_pacing_status, 390 SK_PACING_FQ); 391 if (fq_flow_is_throttled(f)) 392 fq_flow_unset_throttled(q, f); 393 f->time_next_packet = 0ULL; 394 } 395 return f; 396 } 397 if (f->sk > sk) 398 p = &parent->rb_right; 399 else 400 p = &parent->rb_left; 401 } 402 403 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN); 404 if (unlikely(!f)) { 405 q->stat_allocation_errors++; 406 return &q->internal; 407 } 408 /* f->t_root is already zeroed after kmem_cache_zalloc() */ 409 410 fq_flow_set_detached(f); 411 f->sk = sk; 412 if (skb->sk == sk) { 413 f->socket_hash = sk->sk_hash; 414 if (q->rate_enable) 415 smp_store_release(&sk->sk_pacing_status, 416 SK_PACING_FQ); 417 } 418 f->credit = q->initial_quantum; 419 420 rb_link_node(&f->fq_node, parent, p); 421 rb_insert_color(&f->fq_node, root); 422 423 q->flows++; 424 q->inactive_flows++; 425 return f; 426 } 427 428 static struct sk_buff *fq_peek(struct fq_flow *flow) 429 { 430 struct sk_buff *skb = skb_rb_first(&flow->t_root); 431 struct sk_buff *head = flow->head; 432 433 if (!skb) 434 return head; 435 436 if (!head) 437 return skb; 438 439 if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send) 440 return skb; 441 return head; 442 } 443 444 static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow, 445 struct sk_buff *skb) 446 { 447 if (skb == flow->head) { 448 flow->head = skb->next; 449 } else { 450 rb_erase(&skb->rbnode, &flow->t_root); 451 skb->dev = qdisc_dev(sch); 452 } 453 } 454 455 /* Remove one skb from flow queue. 456 * This skb must be the return value of prior fq_peek(). 457 */ 458 static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow, 459 struct sk_buff *skb) 460 { 461 fq_erase_head(sch, flow, skb); 462 skb_mark_not_on_list(skb); 463 qdisc_qstats_backlog_dec(sch, skb); 464 sch->q.qlen--; 465 } 466 467 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb) 468 { 469 struct rb_node **p, *parent; 470 struct sk_buff *head, *aux; 471 472 head = flow->head; 473 if (!head || 474 fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) { 475 if (!head) 476 flow->head = skb; 477 else 478 flow->tail->next = skb; 479 flow->tail = skb; 480 skb->next = NULL; 481 return; 482 } 483 484 p = &flow->t_root.rb_node; 485 parent = NULL; 486 487 while (*p) { 488 parent = *p; 489 aux = rb_to_skb(parent); 490 if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send) 491 p = &parent->rb_right; 492 else 493 p = &parent->rb_left; 494 } 495 rb_link_node(&skb->rbnode, parent, p); 496 rb_insert_color(&skb->rbnode, &flow->t_root); 497 } 498 499 static bool fq_packet_beyond_horizon(const struct sk_buff *skb, 500 const struct fq_sched_data *q) 501 { 502 return unlikely((s64)skb->tstamp > (s64)(q->ktime_cache + q->horizon)); 503 } 504 505 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch, 506 struct sk_buff **to_free) 507 { 508 struct fq_sched_data *q = qdisc_priv(sch); 509 struct fq_flow *f; 510 511 if (unlikely(sch->q.qlen >= sch->limit)) 512 return qdisc_drop(skb, sch, to_free); 513 514 q->ktime_cache = ktime_get_ns(); 515 if (!skb->tstamp) { 516 fq_skb_cb(skb)->time_to_send = q->ktime_cache; 517 } else { 518 /* Check if packet timestamp is too far in the future. */ 519 if (fq_packet_beyond_horizon(skb, q)) { 520 if (q->horizon_drop) { 521 q->stat_horizon_drops++; 522 return qdisc_drop(skb, sch, to_free); 523 } 524 q->stat_horizon_caps++; 525 skb->tstamp = q->ktime_cache + q->horizon; 526 } 527 fq_skb_cb(skb)->time_to_send = skb->tstamp; 528 } 529 530 f = fq_classify(sch, skb); 531 532 if (f != &q->internal) { 533 if (unlikely(f->qlen >= q->flow_plimit)) { 534 q->stat_flows_plimit++; 535 return qdisc_drop(skb, sch, to_free); 536 } 537 538 if (fq_flow_is_detached(f)) { 539 fq_flow_add_tail(&q->new_flows, f); 540 if (time_after(jiffies, f->age + q->flow_refill_delay)) 541 f->credit = max_t(u32, f->credit, q->quantum); 542 } 543 544 if (f->qlen == 0) 545 q->inactive_flows--; 546 } 547 548 f->qlen++; 549 /* Note: this overwrites f->age */ 550 flow_queue_add(f, skb); 551 552 qdisc_qstats_backlog_inc(sch, skb); 553 sch->q.qlen++; 554 555 return NET_XMIT_SUCCESS; 556 } 557 558 static void fq_check_throttled(struct fq_sched_data *q, u64 now) 559 { 560 unsigned long sample; 561 struct rb_node *p; 562 563 if (q->time_next_delayed_flow > now) 564 return; 565 566 /* Update unthrottle latency EWMA. 567 * This is cheap and can help diagnosing timer/latency problems. 568 */ 569 sample = (unsigned long)(now - q->time_next_delayed_flow); 570 q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3; 571 q->unthrottle_latency_ns += sample >> 3; 572 573 q->time_next_delayed_flow = ~0ULL; 574 while ((p = rb_first(&q->delayed)) != NULL) { 575 struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node); 576 577 if (f->time_next_packet > now) { 578 q->time_next_delayed_flow = f->time_next_packet; 579 break; 580 } 581 fq_flow_unset_throttled(q, f); 582 } 583 } 584 585 static struct sk_buff *fq_dequeue(struct Qdisc *sch) 586 { 587 struct fq_sched_data *q = qdisc_priv(sch); 588 struct fq_flow_head *head; 589 struct sk_buff *skb; 590 struct fq_flow *f; 591 unsigned long rate; 592 u32 plen; 593 u64 now; 594 595 if (!sch->q.qlen) 596 return NULL; 597 598 skb = fq_peek(&q->internal); 599 if (unlikely(skb)) { 600 q->internal.qlen--; 601 fq_dequeue_skb(sch, &q->internal, skb); 602 goto out; 603 } 604 605 q->ktime_cache = now = ktime_get_ns(); 606 fq_check_throttled(q, now); 607 begin: 608 head = &q->new_flows; 609 if (!head->first) { 610 head = &q->old_flows; 611 if (!head->first) { 612 if (q->time_next_delayed_flow != ~0ULL) 613 qdisc_watchdog_schedule_range_ns(&q->watchdog, 614 q->time_next_delayed_flow, 615 q->timer_slack); 616 return NULL; 617 } 618 } 619 f = head->first; 620 621 if (f->credit <= 0) { 622 f->credit += q->quantum; 623 head->first = f->next; 624 fq_flow_add_tail(&q->old_flows, f); 625 goto begin; 626 } 627 628 skb = fq_peek(f); 629 if (skb) { 630 u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send, 631 f->time_next_packet); 632 633 if (now < time_next_packet) { 634 head->first = f->next; 635 f->time_next_packet = time_next_packet; 636 fq_flow_set_throttled(q, f); 637 goto begin; 638 } 639 prefetch(&skb->end); 640 if ((s64)(now - time_next_packet - q->ce_threshold) > 0) { 641 INET_ECN_set_ce(skb); 642 q->stat_ce_mark++; 643 } 644 if (--f->qlen == 0) 645 q->inactive_flows++; 646 fq_dequeue_skb(sch, f, skb); 647 } else { 648 head->first = f->next; 649 /* force a pass through old_flows to prevent starvation */ 650 if ((head == &q->new_flows) && q->old_flows.first) { 651 fq_flow_add_tail(&q->old_flows, f); 652 } else { 653 fq_flow_set_detached(f); 654 } 655 goto begin; 656 } 657 plen = qdisc_pkt_len(skb); 658 f->credit -= plen; 659 660 if (!q->rate_enable) 661 goto out; 662 663 rate = q->flow_max_rate; 664 665 /* If EDT time was provided for this skb, we need to 666 * update f->time_next_packet only if this qdisc enforces 667 * a flow max rate. 668 */ 669 if (!skb->tstamp) { 670 if (skb->sk) 671 rate = min(READ_ONCE(skb->sk->sk_pacing_rate), rate); 672 673 if (rate <= q->low_rate_threshold) { 674 f->credit = 0; 675 } else { 676 plen = max(plen, q->quantum); 677 if (f->credit > 0) 678 goto out; 679 } 680 } 681 if (rate != ~0UL) { 682 u64 len = (u64)plen * NSEC_PER_SEC; 683 684 if (likely(rate)) 685 len = div64_ul(len, rate); 686 /* Since socket rate can change later, 687 * clamp the delay to 1 second. 688 * Really, providers of too big packets should be fixed ! 689 */ 690 if (unlikely(len > NSEC_PER_SEC)) { 691 len = NSEC_PER_SEC; 692 q->stat_pkts_too_long++; 693 } 694 /* Account for schedule/timers drifts. 695 * f->time_next_packet was set when prior packet was sent, 696 * and current time (@now) can be too late by tens of us. 697 */ 698 if (f->time_next_packet) 699 len -= min(len/2, now - f->time_next_packet); 700 f->time_next_packet = now + len; 701 } 702 out: 703 qdisc_bstats_update(sch, skb); 704 return skb; 705 } 706 707 static void fq_flow_purge(struct fq_flow *flow) 708 { 709 struct rb_node *p = rb_first(&flow->t_root); 710 711 while (p) { 712 struct sk_buff *skb = rb_to_skb(p); 713 714 p = rb_next(p); 715 rb_erase(&skb->rbnode, &flow->t_root); 716 rtnl_kfree_skbs(skb, skb); 717 } 718 rtnl_kfree_skbs(flow->head, flow->tail); 719 flow->head = NULL; 720 flow->qlen = 0; 721 } 722 723 static void fq_reset(struct Qdisc *sch) 724 { 725 struct fq_sched_data *q = qdisc_priv(sch); 726 struct rb_root *root; 727 struct rb_node *p; 728 struct fq_flow *f; 729 unsigned int idx; 730 731 sch->q.qlen = 0; 732 sch->qstats.backlog = 0; 733 734 fq_flow_purge(&q->internal); 735 736 if (!q->fq_root) 737 return; 738 739 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) { 740 root = &q->fq_root[idx]; 741 while ((p = rb_first(root)) != NULL) { 742 f = rb_entry(p, struct fq_flow, fq_node); 743 rb_erase(p, root); 744 745 fq_flow_purge(f); 746 747 kmem_cache_free(fq_flow_cachep, f); 748 } 749 } 750 q->new_flows.first = NULL; 751 q->old_flows.first = NULL; 752 q->delayed = RB_ROOT; 753 q->flows = 0; 754 q->inactive_flows = 0; 755 q->throttled_flows = 0; 756 } 757 758 static void fq_rehash(struct fq_sched_data *q, 759 struct rb_root *old_array, u32 old_log, 760 struct rb_root *new_array, u32 new_log) 761 { 762 struct rb_node *op, **np, *parent; 763 struct rb_root *oroot, *nroot; 764 struct fq_flow *of, *nf; 765 int fcnt = 0; 766 u32 idx; 767 768 for (idx = 0; idx < (1U << old_log); idx++) { 769 oroot = &old_array[idx]; 770 while ((op = rb_first(oroot)) != NULL) { 771 rb_erase(op, oroot); 772 of = rb_entry(op, struct fq_flow, fq_node); 773 if (fq_gc_candidate(of)) { 774 fcnt++; 775 kmem_cache_free(fq_flow_cachep, of); 776 continue; 777 } 778 nroot = &new_array[hash_ptr(of->sk, new_log)]; 779 780 np = &nroot->rb_node; 781 parent = NULL; 782 while (*np) { 783 parent = *np; 784 785 nf = rb_entry(parent, struct fq_flow, fq_node); 786 BUG_ON(nf->sk == of->sk); 787 788 if (nf->sk > of->sk) 789 np = &parent->rb_right; 790 else 791 np = &parent->rb_left; 792 } 793 794 rb_link_node(&of->fq_node, parent, np); 795 rb_insert_color(&of->fq_node, nroot); 796 } 797 } 798 q->flows -= fcnt; 799 q->inactive_flows -= fcnt; 800 q->stat_gc_flows += fcnt; 801 } 802 803 static void fq_free(void *addr) 804 { 805 kvfree(addr); 806 } 807 808 static int fq_resize(struct Qdisc *sch, u32 log) 809 { 810 struct fq_sched_data *q = qdisc_priv(sch); 811 struct rb_root *array; 812 void *old_fq_root; 813 u32 idx; 814 815 if (q->fq_root && log == q->fq_trees_log) 816 return 0; 817 818 /* If XPS was setup, we can allocate memory on right NUMA node */ 819 array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL, 820 netdev_queue_numa_node_read(sch->dev_queue)); 821 if (!array) 822 return -ENOMEM; 823 824 for (idx = 0; idx < (1U << log); idx++) 825 array[idx] = RB_ROOT; 826 827 sch_tree_lock(sch); 828 829 old_fq_root = q->fq_root; 830 if (old_fq_root) 831 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log); 832 833 q->fq_root = array; 834 q->fq_trees_log = log; 835 836 sch_tree_unlock(sch); 837 838 fq_free(old_fq_root); 839 840 return 0; 841 } 842 843 static struct netlink_range_validation iq_range = { 844 .max = INT_MAX, 845 }; 846 847 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = { 848 [TCA_FQ_UNSPEC] = { .strict_start_type = TCA_FQ_TIMER_SLACK }, 849 850 [TCA_FQ_PLIMIT] = { .type = NLA_U32 }, 851 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 }, 852 [TCA_FQ_QUANTUM] = { .type = NLA_U32 }, 853 [TCA_FQ_INITIAL_QUANTUM] = NLA_POLICY_FULL_RANGE(NLA_U32, &iq_range), 854 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 }, 855 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 }, 856 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 }, 857 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 }, 858 [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 }, 859 [TCA_FQ_ORPHAN_MASK] = { .type = NLA_U32 }, 860 [TCA_FQ_LOW_RATE_THRESHOLD] = { .type = NLA_U32 }, 861 [TCA_FQ_CE_THRESHOLD] = { .type = NLA_U32 }, 862 [TCA_FQ_TIMER_SLACK] = { .type = NLA_U32 }, 863 [TCA_FQ_HORIZON] = { .type = NLA_U32 }, 864 [TCA_FQ_HORIZON_DROP] = { .type = NLA_U8 }, 865 }; 866 867 static int fq_change(struct Qdisc *sch, struct nlattr *opt, 868 struct netlink_ext_ack *extack) 869 { 870 struct fq_sched_data *q = qdisc_priv(sch); 871 struct nlattr *tb[TCA_FQ_MAX + 1]; 872 int err, drop_count = 0; 873 unsigned drop_len = 0; 874 u32 fq_log; 875 876 err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy, 877 NULL); 878 if (err < 0) 879 return err; 880 881 sch_tree_lock(sch); 882 883 fq_log = q->fq_trees_log; 884 885 if (tb[TCA_FQ_BUCKETS_LOG]) { 886 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]); 887 888 if (nval >= 1 && nval <= ilog2(256*1024)) 889 fq_log = nval; 890 else 891 err = -EINVAL; 892 } 893 if (tb[TCA_FQ_PLIMIT]) 894 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]); 895 896 if (tb[TCA_FQ_FLOW_PLIMIT]) 897 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]); 898 899 if (tb[TCA_FQ_QUANTUM]) { 900 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]); 901 902 if (quantum > 0 && quantum <= (1 << 20)) { 903 q->quantum = quantum; 904 } else { 905 NL_SET_ERR_MSG_MOD(extack, "invalid quantum"); 906 err = -EINVAL; 907 } 908 } 909 910 if (tb[TCA_FQ_INITIAL_QUANTUM]) 911 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]); 912 913 if (tb[TCA_FQ_FLOW_DEFAULT_RATE]) 914 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n", 915 nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE])); 916 917 if (tb[TCA_FQ_FLOW_MAX_RATE]) { 918 u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]); 919 920 q->flow_max_rate = (rate == ~0U) ? ~0UL : rate; 921 } 922 if (tb[TCA_FQ_LOW_RATE_THRESHOLD]) 923 q->low_rate_threshold = 924 nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]); 925 926 if (tb[TCA_FQ_RATE_ENABLE]) { 927 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]); 928 929 if (enable <= 1) 930 q->rate_enable = enable; 931 else 932 err = -EINVAL; 933 } 934 935 if (tb[TCA_FQ_FLOW_REFILL_DELAY]) { 936 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ; 937 938 q->flow_refill_delay = usecs_to_jiffies(usecs_delay); 939 } 940 941 if (tb[TCA_FQ_ORPHAN_MASK]) 942 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]); 943 944 if (tb[TCA_FQ_CE_THRESHOLD]) 945 q->ce_threshold = (u64)NSEC_PER_USEC * 946 nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]); 947 948 if (tb[TCA_FQ_TIMER_SLACK]) 949 q->timer_slack = nla_get_u32(tb[TCA_FQ_TIMER_SLACK]); 950 951 if (tb[TCA_FQ_HORIZON]) 952 q->horizon = (u64)NSEC_PER_USEC * 953 nla_get_u32(tb[TCA_FQ_HORIZON]); 954 955 if (tb[TCA_FQ_HORIZON_DROP]) 956 q->horizon_drop = nla_get_u8(tb[TCA_FQ_HORIZON_DROP]); 957 958 if (!err) { 959 960 sch_tree_unlock(sch); 961 err = fq_resize(sch, fq_log); 962 sch_tree_lock(sch); 963 } 964 while (sch->q.qlen > sch->limit) { 965 struct sk_buff *skb = fq_dequeue(sch); 966 967 if (!skb) 968 break; 969 drop_len += qdisc_pkt_len(skb); 970 rtnl_kfree_skbs(skb, skb); 971 drop_count++; 972 } 973 qdisc_tree_reduce_backlog(sch, drop_count, drop_len); 974 975 sch_tree_unlock(sch); 976 return err; 977 } 978 979 static void fq_destroy(struct Qdisc *sch) 980 { 981 struct fq_sched_data *q = qdisc_priv(sch); 982 983 fq_reset(sch); 984 fq_free(q->fq_root); 985 qdisc_watchdog_cancel(&q->watchdog); 986 } 987 988 static int fq_init(struct Qdisc *sch, struct nlattr *opt, 989 struct netlink_ext_ack *extack) 990 { 991 struct fq_sched_data *q = qdisc_priv(sch); 992 int err; 993 994 sch->limit = 10000; 995 q->flow_plimit = 100; 996 q->quantum = 2 * psched_mtu(qdisc_dev(sch)); 997 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch)); 998 q->flow_refill_delay = msecs_to_jiffies(40); 999 q->flow_max_rate = ~0UL; 1000 q->time_next_delayed_flow = ~0ULL; 1001 q->rate_enable = 1; 1002 q->new_flows.first = NULL; 1003 q->old_flows.first = NULL; 1004 q->delayed = RB_ROOT; 1005 q->fq_root = NULL; 1006 q->fq_trees_log = ilog2(1024); 1007 q->orphan_mask = 1024 - 1; 1008 q->low_rate_threshold = 550000 / 8; 1009 1010 q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */ 1011 1012 q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */ 1013 q->horizon_drop = 1; /* by default, drop packets beyond horizon */ 1014 1015 /* Default ce_threshold of 4294 seconds */ 1016 q->ce_threshold = (u64)NSEC_PER_USEC * ~0U; 1017 1018 qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC); 1019 1020 if (opt) 1021 err = fq_change(sch, opt, extack); 1022 else 1023 err = fq_resize(sch, q->fq_trees_log); 1024 1025 return err; 1026 } 1027 1028 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb) 1029 { 1030 struct fq_sched_data *q = qdisc_priv(sch); 1031 u64 ce_threshold = q->ce_threshold; 1032 u64 horizon = q->horizon; 1033 struct nlattr *opts; 1034 1035 opts = nla_nest_start_noflag(skb, TCA_OPTIONS); 1036 if (opts == NULL) 1037 goto nla_put_failure; 1038 1039 /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */ 1040 1041 do_div(ce_threshold, NSEC_PER_USEC); 1042 do_div(horizon, NSEC_PER_USEC); 1043 1044 if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) || 1045 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) || 1046 nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) || 1047 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) || 1048 nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) || 1049 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, 1050 min_t(unsigned long, q->flow_max_rate, ~0U)) || 1051 nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY, 1052 jiffies_to_usecs(q->flow_refill_delay)) || 1053 nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) || 1054 nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD, 1055 q->low_rate_threshold) || 1056 nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) || 1057 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log) || 1058 nla_put_u32(skb, TCA_FQ_TIMER_SLACK, q->timer_slack) || 1059 nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) || 1060 nla_put_u8(skb, TCA_FQ_HORIZON_DROP, q->horizon_drop)) 1061 goto nla_put_failure; 1062 1063 return nla_nest_end(skb, opts); 1064 1065 nla_put_failure: 1066 return -1; 1067 } 1068 1069 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 1070 { 1071 struct fq_sched_data *q = qdisc_priv(sch); 1072 struct tc_fq_qd_stats st; 1073 1074 sch_tree_lock(sch); 1075 1076 st.gc_flows = q->stat_gc_flows; 1077 st.highprio_packets = q->stat_internal_packets; 1078 st.fastpath_packets = q->internal.stat_fastpath_packets; 1079 st.tcp_retrans = 0; 1080 st.throttled = q->stat_throttled; 1081 st.flows_plimit = q->stat_flows_plimit; 1082 st.pkts_too_long = q->stat_pkts_too_long; 1083 st.allocation_errors = q->stat_allocation_errors; 1084 st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack - 1085 ktime_get_ns(); 1086 st.flows = q->flows; 1087 st.inactive_flows = q->inactive_flows; 1088 st.throttled_flows = q->throttled_flows; 1089 st.unthrottle_latency_ns = min_t(unsigned long, 1090 q->unthrottle_latency_ns, ~0U); 1091 st.ce_mark = q->stat_ce_mark; 1092 st.horizon_drops = q->stat_horizon_drops; 1093 st.horizon_caps = q->stat_horizon_caps; 1094 sch_tree_unlock(sch); 1095 1096 return gnet_stats_copy_app(d, &st, sizeof(st)); 1097 } 1098 1099 static struct Qdisc_ops fq_qdisc_ops __read_mostly = { 1100 .id = "fq", 1101 .priv_size = sizeof(struct fq_sched_data), 1102 1103 .enqueue = fq_enqueue, 1104 .dequeue = fq_dequeue, 1105 .peek = qdisc_peek_dequeued, 1106 .init = fq_init, 1107 .reset = fq_reset, 1108 .destroy = fq_destroy, 1109 .change = fq_change, 1110 .dump = fq_dump, 1111 .dump_stats = fq_dump_stats, 1112 .owner = THIS_MODULE, 1113 }; 1114 1115 static int __init fq_module_init(void) 1116 { 1117 int ret; 1118 1119 fq_flow_cachep = kmem_cache_create("fq_flow_cache", 1120 sizeof(struct fq_flow), 1121 0, 0, NULL); 1122 if (!fq_flow_cachep) 1123 return -ENOMEM; 1124 1125 ret = register_qdisc(&fq_qdisc_ops); 1126 if (ret) 1127 kmem_cache_destroy(fq_flow_cachep); 1128 return ret; 1129 } 1130 1131 static void __exit fq_module_exit(void) 1132 { 1133 unregister_qdisc(&fq_qdisc_ops); 1134 kmem_cache_destroy(fq_flow_cachep); 1135 } 1136 1137 module_init(fq_module_init) 1138 module_exit(fq_module_exit) 1139 MODULE_AUTHOR("Eric Dumazet"); 1140 MODULE_LICENSE("GPL"); 1141 MODULE_DESCRIPTION("Fair Queue Packet Scheduler"); 1142