xref: /linux/net/sched/sch_fq.c (revision e23feb16685a8d1c62aa5bba7ebcddf4ba57ffcb)
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
5  *
6  *	This program is free software; you can redistribute it and/or
7  *	modify it under the terms of the GNU General Public License
8  *	as published by the Free Software Foundation; either version
9  *	2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for localy generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <net/netlink.h>
51 #include <net/pkt_sched.h>
52 #include <net/sock.h>
53 #include <net/tcp_states.h>
54 
55 /*
56  * Per flow structure, dynamically allocated
57  */
58 struct fq_flow {
59 	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
60 	union {
61 		struct sk_buff *tail;	/* last skb in the list */
62 		unsigned long  age;	/* jiffies when flow was emptied, for gc */
63 	};
64 	struct rb_node	fq_node; 	/* anchor in fq_root[] trees */
65 	struct sock	*sk;
66 	int		qlen;		/* number of packets in flow queue */
67 	int		credit;
68 	u32		socket_hash;	/* sk_hash */
69 	struct fq_flow *next;		/* next pointer in RR lists, or &detached */
70 
71 	struct rb_node  rate_node;	/* anchor in q->delayed tree */
72 	u64		time_next_packet;
73 };
74 
75 struct fq_flow_head {
76 	struct fq_flow *first;
77 	struct fq_flow *last;
78 };
79 
80 struct fq_sched_data {
81 	struct fq_flow_head new_flows;
82 
83 	struct fq_flow_head old_flows;
84 
85 	struct rb_root	delayed;	/* for rate limited flows */
86 	u64		time_next_delayed_flow;
87 
88 	struct fq_flow	internal;	/* for non classified or high prio packets */
89 	u32		quantum;
90 	u32		initial_quantum;
91 	u32		flow_default_rate;/* rate per flow : bytes per second */
92 	u32		flow_max_rate;	/* optional max rate per flow */
93 	u32		flow_plimit;	/* max packets per flow */
94 	struct rb_root	*fq_root;
95 	u8		rate_enable;
96 	u8		fq_trees_log;
97 
98 	u32		flows;
99 	u32		inactive_flows;
100 	u32		throttled_flows;
101 
102 	u64		stat_gc_flows;
103 	u64		stat_internal_packets;
104 	u64		stat_tcp_retrans;
105 	u64		stat_throttled;
106 	u64		stat_flows_plimit;
107 	u64		stat_pkts_too_long;
108 	u64		stat_allocation_errors;
109 	struct qdisc_watchdog watchdog;
110 };
111 
112 /* special value to mark a detached flow (not on old/new list) */
113 static struct fq_flow detached, throttled;
114 
115 static void fq_flow_set_detached(struct fq_flow *f)
116 {
117 	f->next = &detached;
118 }
119 
120 static bool fq_flow_is_detached(const struct fq_flow *f)
121 {
122 	return f->next == &detached;
123 }
124 
125 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
126 {
127 	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
128 
129 	while (*p) {
130 		struct fq_flow *aux;
131 
132 		parent = *p;
133 		aux = container_of(parent, struct fq_flow, rate_node);
134 		if (f->time_next_packet >= aux->time_next_packet)
135 			p = &parent->rb_right;
136 		else
137 			p = &parent->rb_left;
138 	}
139 	rb_link_node(&f->rate_node, parent, p);
140 	rb_insert_color(&f->rate_node, &q->delayed);
141 	q->throttled_flows++;
142 	q->stat_throttled++;
143 
144 	f->next = &throttled;
145 	if (q->time_next_delayed_flow > f->time_next_packet)
146 		q->time_next_delayed_flow = f->time_next_packet;
147 }
148 
149 
150 static struct kmem_cache *fq_flow_cachep __read_mostly;
151 
152 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
153 {
154 	if (head->first)
155 		head->last->next = flow;
156 	else
157 		head->first = flow;
158 	head->last = flow;
159 	flow->next = NULL;
160 }
161 
162 /* limit number of collected flows per round */
163 #define FQ_GC_MAX 8
164 #define FQ_GC_AGE (3*HZ)
165 
166 static bool fq_gc_candidate(const struct fq_flow *f)
167 {
168 	return fq_flow_is_detached(f) &&
169 	       time_after(jiffies, f->age + FQ_GC_AGE);
170 }
171 
172 static void fq_gc(struct fq_sched_data *q,
173 		  struct rb_root *root,
174 		  struct sock *sk)
175 {
176 	struct fq_flow *f, *tofree[FQ_GC_MAX];
177 	struct rb_node **p, *parent;
178 	int fcnt = 0;
179 
180 	p = &root->rb_node;
181 	parent = NULL;
182 	while (*p) {
183 		parent = *p;
184 
185 		f = container_of(parent, struct fq_flow, fq_node);
186 		if (f->sk == sk)
187 			break;
188 
189 		if (fq_gc_candidate(f)) {
190 			tofree[fcnt++] = f;
191 			if (fcnt == FQ_GC_MAX)
192 				break;
193 		}
194 
195 		if (f->sk > sk)
196 			p = &parent->rb_right;
197 		else
198 			p = &parent->rb_left;
199 	}
200 
201 	q->flows -= fcnt;
202 	q->inactive_flows -= fcnt;
203 	q->stat_gc_flows += fcnt;
204 	while (fcnt) {
205 		struct fq_flow *f = tofree[--fcnt];
206 
207 		rb_erase(&f->fq_node, root);
208 		kmem_cache_free(fq_flow_cachep, f);
209 	}
210 }
211 
212 static const u8 prio2band[TC_PRIO_MAX + 1] = {
213 	1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
214 };
215 
216 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
217 {
218 	struct rb_node **p, *parent;
219 	struct sock *sk = skb->sk;
220 	struct rb_root *root;
221 	struct fq_flow *f;
222 	int band;
223 
224 	/* warning: no starvation prevention... */
225 	band = prio2band[skb->priority & TC_PRIO_MAX];
226 	if (unlikely(band == 0))
227 		return &q->internal;
228 
229 	if (unlikely(!sk)) {
230 		/* By forcing low order bit to 1, we make sure to not
231 		 * collide with a local flow (socket pointers are word aligned)
232 		 */
233 		sk = (struct sock *)(skb_get_rxhash(skb) | 1L);
234 	}
235 
236 	root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
237 
238 	if (q->flows >= (2U << q->fq_trees_log) &&
239 	    q->inactive_flows > q->flows/2)
240 		fq_gc(q, root, sk);
241 
242 	p = &root->rb_node;
243 	parent = NULL;
244 	while (*p) {
245 		parent = *p;
246 
247 		f = container_of(parent, struct fq_flow, fq_node);
248 		if (f->sk == sk) {
249 			/* socket might have been reallocated, so check
250 			 * if its sk_hash is the same.
251 			 * It not, we need to refill credit with
252 			 * initial quantum
253 			 */
254 			if (unlikely(skb->sk &&
255 				     f->socket_hash != sk->sk_hash)) {
256 				f->credit = q->initial_quantum;
257 				f->socket_hash = sk->sk_hash;
258 			}
259 			return f;
260 		}
261 		if (f->sk > sk)
262 			p = &parent->rb_right;
263 		else
264 			p = &parent->rb_left;
265 	}
266 
267 	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
268 	if (unlikely(!f)) {
269 		q->stat_allocation_errors++;
270 		return &q->internal;
271 	}
272 	fq_flow_set_detached(f);
273 	f->sk = sk;
274 	if (skb->sk)
275 		f->socket_hash = sk->sk_hash;
276 	f->credit = q->initial_quantum;
277 
278 	rb_link_node(&f->fq_node, parent, p);
279 	rb_insert_color(&f->fq_node, root);
280 
281 	q->flows++;
282 	q->inactive_flows++;
283 	return f;
284 }
285 
286 
287 /* remove one skb from head of flow queue */
288 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
289 {
290 	struct sk_buff *skb = flow->head;
291 
292 	if (skb) {
293 		flow->head = skb->next;
294 		skb->next = NULL;
295 		flow->qlen--;
296 		sch->qstats.backlog -= qdisc_pkt_len(skb);
297 		sch->q.qlen--;
298 	}
299 	return skb;
300 }
301 
302 /* We might add in the future detection of retransmits
303  * For the time being, just return false
304  */
305 static bool skb_is_retransmit(struct sk_buff *skb)
306 {
307 	return false;
308 }
309 
310 /* add skb to flow queue
311  * flow queue is a linked list, kind of FIFO, except for TCP retransmits
312  * We special case tcp retransmits to be transmitted before other packets.
313  * We rely on fact that TCP retransmits are unlikely, so we do not waste
314  * a separate queue or a pointer.
315  * head->  [retrans pkt 1]
316  *         [retrans pkt 2]
317  *         [ normal pkt 1]
318  *         [ normal pkt 2]
319  *         [ normal pkt 3]
320  * tail->  [ normal pkt 4]
321  */
322 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
323 {
324 	struct sk_buff *prev, *head = flow->head;
325 
326 	skb->next = NULL;
327 	if (!head) {
328 		flow->head = skb;
329 		flow->tail = skb;
330 		return;
331 	}
332 	if (likely(!skb_is_retransmit(skb))) {
333 		flow->tail->next = skb;
334 		flow->tail = skb;
335 		return;
336 	}
337 
338 	/* This skb is a tcp retransmit,
339 	 * find the last retrans packet in the queue
340 	 */
341 	prev = NULL;
342 	while (skb_is_retransmit(head)) {
343 		prev = head;
344 		head = head->next;
345 		if (!head)
346 			break;
347 	}
348 	if (!prev) { /* no rtx packet in queue, become the new head */
349 		skb->next = flow->head;
350 		flow->head = skb;
351 	} else {
352 		if (prev == flow->tail)
353 			flow->tail = skb;
354 		else
355 			skb->next = prev->next;
356 		prev->next = skb;
357 	}
358 }
359 
360 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
361 {
362 	struct fq_sched_data *q = qdisc_priv(sch);
363 	struct fq_flow *f;
364 
365 	if (unlikely(sch->q.qlen >= sch->limit))
366 		return qdisc_drop(skb, sch);
367 
368 	f = fq_classify(skb, q);
369 	if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
370 		q->stat_flows_plimit++;
371 		return qdisc_drop(skb, sch);
372 	}
373 
374 	f->qlen++;
375 	flow_queue_add(f, skb);
376 	if (skb_is_retransmit(skb))
377 		q->stat_tcp_retrans++;
378 	sch->qstats.backlog += qdisc_pkt_len(skb);
379 	if (fq_flow_is_detached(f)) {
380 		fq_flow_add_tail(&q->new_flows, f);
381 		if (q->quantum > f->credit)
382 			f->credit = q->quantum;
383 		q->inactive_flows--;
384 		qdisc_unthrottled(sch);
385 	}
386 	if (unlikely(f == &q->internal)) {
387 		q->stat_internal_packets++;
388 		qdisc_unthrottled(sch);
389 	}
390 	sch->q.qlen++;
391 
392 	return NET_XMIT_SUCCESS;
393 }
394 
395 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
396 {
397 	struct rb_node *p;
398 
399 	if (q->time_next_delayed_flow > now)
400 		return;
401 
402 	q->time_next_delayed_flow = ~0ULL;
403 	while ((p = rb_first(&q->delayed)) != NULL) {
404 		struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
405 
406 		if (f->time_next_packet > now) {
407 			q->time_next_delayed_flow = f->time_next_packet;
408 			break;
409 		}
410 		rb_erase(p, &q->delayed);
411 		q->throttled_flows--;
412 		fq_flow_add_tail(&q->old_flows, f);
413 	}
414 }
415 
416 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
417 {
418 	struct fq_sched_data *q = qdisc_priv(sch);
419 	u64 now = ktime_to_ns(ktime_get());
420 	struct fq_flow_head *head;
421 	struct sk_buff *skb;
422 	struct fq_flow *f;
423 	u32 rate;
424 
425 	skb = fq_dequeue_head(sch, &q->internal);
426 	if (skb)
427 		goto out;
428 	fq_check_throttled(q, now);
429 begin:
430 	head = &q->new_flows;
431 	if (!head->first) {
432 		head = &q->old_flows;
433 		if (!head->first) {
434 			if (q->time_next_delayed_flow != ~0ULL)
435 				qdisc_watchdog_schedule_ns(&q->watchdog,
436 							   q->time_next_delayed_flow);
437 			return NULL;
438 		}
439 	}
440 	f = head->first;
441 
442 	if (f->credit <= 0) {
443 		f->credit += q->quantum;
444 		head->first = f->next;
445 		fq_flow_add_tail(&q->old_flows, f);
446 		goto begin;
447 	}
448 
449 	if (unlikely(f->head && now < f->time_next_packet)) {
450 		head->first = f->next;
451 		fq_flow_set_throttled(q, f);
452 		goto begin;
453 	}
454 
455 	skb = fq_dequeue_head(sch, f);
456 	if (!skb) {
457 		head->first = f->next;
458 		/* force a pass through old_flows to prevent starvation */
459 		if ((head == &q->new_flows) && q->old_flows.first) {
460 			fq_flow_add_tail(&q->old_flows, f);
461 		} else {
462 			fq_flow_set_detached(f);
463 			f->age = jiffies;
464 			q->inactive_flows++;
465 		}
466 		goto begin;
467 	}
468 	prefetch(&skb->end);
469 	f->time_next_packet = now;
470 	f->credit -= qdisc_pkt_len(skb);
471 
472 	if (f->credit > 0 || !q->rate_enable)
473 		goto out;
474 
475 	if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT) {
476 		rate = skb->sk->sk_pacing_rate ?: q->flow_default_rate;
477 
478 		rate = min(rate, q->flow_max_rate);
479 	} else {
480 		rate = q->flow_max_rate;
481 		if (rate == ~0U)
482 			goto out;
483 	}
484 	if (rate) {
485 		u32 plen = max(qdisc_pkt_len(skb), q->quantum);
486 		u64 len = (u64)plen * NSEC_PER_SEC;
487 
488 		do_div(len, rate);
489 		/* Since socket rate can change later,
490 		 * clamp the delay to 125 ms.
491 		 * TODO: maybe segment the too big skb, as in commit
492 		 * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
493 		 */
494 		if (unlikely(len > 125 * NSEC_PER_MSEC)) {
495 			len = 125 * NSEC_PER_MSEC;
496 			q->stat_pkts_too_long++;
497 		}
498 
499 		f->time_next_packet = now + len;
500 	}
501 out:
502 	qdisc_bstats_update(sch, skb);
503 	qdisc_unthrottled(sch);
504 	return skb;
505 }
506 
507 static void fq_reset(struct Qdisc *sch)
508 {
509 	struct fq_sched_data *q = qdisc_priv(sch);
510 	struct rb_root *root;
511 	struct sk_buff *skb;
512 	struct rb_node *p;
513 	struct fq_flow *f;
514 	unsigned int idx;
515 
516 	while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
517 		kfree_skb(skb);
518 
519 	if (!q->fq_root)
520 		return;
521 
522 	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
523 		root = &q->fq_root[idx];
524 		while ((p = rb_first(root)) != NULL) {
525 			f = container_of(p, struct fq_flow, fq_node);
526 			rb_erase(p, root);
527 
528 			while ((skb = fq_dequeue_head(sch, f)) != NULL)
529 				kfree_skb(skb);
530 
531 			kmem_cache_free(fq_flow_cachep, f);
532 		}
533 	}
534 	q->new_flows.first	= NULL;
535 	q->old_flows.first	= NULL;
536 	q->delayed		= RB_ROOT;
537 	q->flows		= 0;
538 	q->inactive_flows	= 0;
539 	q->throttled_flows	= 0;
540 }
541 
542 static void fq_rehash(struct fq_sched_data *q,
543 		      struct rb_root *old_array, u32 old_log,
544 		      struct rb_root *new_array, u32 new_log)
545 {
546 	struct rb_node *op, **np, *parent;
547 	struct rb_root *oroot, *nroot;
548 	struct fq_flow *of, *nf;
549 	int fcnt = 0;
550 	u32 idx;
551 
552 	for (idx = 0; idx < (1U << old_log); idx++) {
553 		oroot = &old_array[idx];
554 		while ((op = rb_first(oroot)) != NULL) {
555 			rb_erase(op, oroot);
556 			of = container_of(op, struct fq_flow, fq_node);
557 			if (fq_gc_candidate(of)) {
558 				fcnt++;
559 				kmem_cache_free(fq_flow_cachep, of);
560 				continue;
561 			}
562 			nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
563 
564 			np = &nroot->rb_node;
565 			parent = NULL;
566 			while (*np) {
567 				parent = *np;
568 
569 				nf = container_of(parent, struct fq_flow, fq_node);
570 				BUG_ON(nf->sk == of->sk);
571 
572 				if (nf->sk > of->sk)
573 					np = &parent->rb_right;
574 				else
575 					np = &parent->rb_left;
576 			}
577 
578 			rb_link_node(&of->fq_node, parent, np);
579 			rb_insert_color(&of->fq_node, nroot);
580 		}
581 	}
582 	q->flows -= fcnt;
583 	q->inactive_flows -= fcnt;
584 	q->stat_gc_flows += fcnt;
585 }
586 
587 static int fq_resize(struct fq_sched_data *q, u32 log)
588 {
589 	struct rb_root *array;
590 	u32 idx;
591 
592 	if (q->fq_root && log == q->fq_trees_log)
593 		return 0;
594 
595 	array = kmalloc(sizeof(struct rb_root) << log, GFP_KERNEL);
596 	if (!array)
597 		return -ENOMEM;
598 
599 	for (idx = 0; idx < (1U << log); idx++)
600 		array[idx] = RB_ROOT;
601 
602 	if (q->fq_root) {
603 		fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
604 		kfree(q->fq_root);
605 	}
606 	q->fq_root = array;
607 	q->fq_trees_log = log;
608 
609 	return 0;
610 }
611 
612 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
613 	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
614 	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
615 	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
616 	[TCA_FQ_INITIAL_QUANTUM]	= { .type = NLA_U32 },
617 	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
618 	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
619 	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
620 	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
621 };
622 
623 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
624 {
625 	struct fq_sched_data *q = qdisc_priv(sch);
626 	struct nlattr *tb[TCA_FQ_MAX + 1];
627 	int err, drop_count = 0;
628 	u32 fq_log;
629 
630 	if (!opt)
631 		return -EINVAL;
632 
633 	err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
634 	if (err < 0)
635 		return err;
636 
637 	sch_tree_lock(sch);
638 
639 	fq_log = q->fq_trees_log;
640 
641 	if (tb[TCA_FQ_BUCKETS_LOG]) {
642 		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
643 
644 		if (nval >= 1 && nval <= ilog2(256*1024))
645 			fq_log = nval;
646 		else
647 			err = -EINVAL;
648 	}
649 	if (tb[TCA_FQ_PLIMIT])
650 		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
651 
652 	if (tb[TCA_FQ_FLOW_PLIMIT])
653 		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
654 
655 	if (tb[TCA_FQ_QUANTUM])
656 		q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
657 
658 	if (tb[TCA_FQ_INITIAL_QUANTUM])
659 		q->quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
660 
661 	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
662 		q->flow_default_rate = nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]);
663 
664 	if (tb[TCA_FQ_FLOW_MAX_RATE])
665 		q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
666 
667 	if (tb[TCA_FQ_RATE_ENABLE]) {
668 		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
669 
670 		if (enable <= 1)
671 			q->rate_enable = enable;
672 		else
673 			err = -EINVAL;
674 	}
675 
676 	if (!err)
677 		err = fq_resize(q, fq_log);
678 
679 	while (sch->q.qlen > sch->limit) {
680 		struct sk_buff *skb = fq_dequeue(sch);
681 
682 		if (!skb)
683 			break;
684 		kfree_skb(skb);
685 		drop_count++;
686 	}
687 	qdisc_tree_decrease_qlen(sch, drop_count);
688 
689 	sch_tree_unlock(sch);
690 	return err;
691 }
692 
693 static void fq_destroy(struct Qdisc *sch)
694 {
695 	struct fq_sched_data *q = qdisc_priv(sch);
696 
697 	fq_reset(sch);
698 	kfree(q->fq_root);
699 	qdisc_watchdog_cancel(&q->watchdog);
700 }
701 
702 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
703 {
704 	struct fq_sched_data *q = qdisc_priv(sch);
705 	int err;
706 
707 	sch->limit		= 10000;
708 	q->flow_plimit		= 100;
709 	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
710 	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
711 	q->flow_default_rate	= 0;
712 	q->flow_max_rate	= ~0U;
713 	q->rate_enable		= 1;
714 	q->new_flows.first	= NULL;
715 	q->old_flows.first	= NULL;
716 	q->delayed		= RB_ROOT;
717 	q->fq_root		= NULL;
718 	q->fq_trees_log		= ilog2(1024);
719 	qdisc_watchdog_init(&q->watchdog, sch);
720 
721 	if (opt)
722 		err = fq_change(sch, opt);
723 	else
724 		err = fq_resize(q, q->fq_trees_log);
725 
726 	return err;
727 }
728 
729 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
730 {
731 	struct fq_sched_data *q = qdisc_priv(sch);
732 	struct nlattr *opts;
733 
734 	opts = nla_nest_start(skb, TCA_OPTIONS);
735 	if (opts == NULL)
736 		goto nla_put_failure;
737 
738 	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
739 	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
740 	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
741 	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
742 	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
743 	    nla_put_u32(skb, TCA_FQ_FLOW_DEFAULT_RATE, q->flow_default_rate) ||
744 	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
745 	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
746 		goto nla_put_failure;
747 
748 	nla_nest_end(skb, opts);
749 	return skb->len;
750 
751 nla_put_failure:
752 	return -1;
753 }
754 
755 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
756 {
757 	struct fq_sched_data *q = qdisc_priv(sch);
758 	u64 now = ktime_to_ns(ktime_get());
759 	struct tc_fq_qd_stats st = {
760 		.gc_flows		= q->stat_gc_flows,
761 		.highprio_packets	= q->stat_internal_packets,
762 		.tcp_retrans		= q->stat_tcp_retrans,
763 		.throttled		= q->stat_throttled,
764 		.flows_plimit		= q->stat_flows_plimit,
765 		.pkts_too_long		= q->stat_pkts_too_long,
766 		.allocation_errors	= q->stat_allocation_errors,
767 		.flows			= q->flows,
768 		.inactive_flows		= q->inactive_flows,
769 		.throttled_flows	= q->throttled_flows,
770 		.time_next_delayed_flow	= q->time_next_delayed_flow - now,
771 	};
772 
773 	return gnet_stats_copy_app(d, &st, sizeof(st));
774 }
775 
776 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
777 	.id		=	"fq",
778 	.priv_size	=	sizeof(struct fq_sched_data),
779 
780 	.enqueue	=	fq_enqueue,
781 	.dequeue	=	fq_dequeue,
782 	.peek		=	qdisc_peek_dequeued,
783 	.init		=	fq_init,
784 	.reset		=	fq_reset,
785 	.destroy	=	fq_destroy,
786 	.change		=	fq_change,
787 	.dump		=	fq_dump,
788 	.dump_stats	=	fq_dump_stats,
789 	.owner		=	THIS_MODULE,
790 };
791 
792 static int __init fq_module_init(void)
793 {
794 	int ret;
795 
796 	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
797 					   sizeof(struct fq_flow),
798 					   0, 0, NULL);
799 	if (!fq_flow_cachep)
800 		return -ENOMEM;
801 
802 	ret = register_qdisc(&fq_qdisc_ops);
803 	if (ret)
804 		kmem_cache_destroy(fq_flow_cachep);
805 	return ret;
806 }
807 
808 static void __exit fq_module_exit(void)
809 {
810 	unregister_qdisc(&fq_qdisc_ops);
811 	kmem_cache_destroy(fq_flow_cachep);
812 }
813 
814 module_init(fq_module_init)
815 module_exit(fq_module_exit)
816 MODULE_AUTHOR("Eric Dumazet");
817 MODULE_LICENSE("GPL");
818