xref: /linux/net/sched/sch_fq.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
5  *
6  *	This program is free software; you can redistribute it and/or
7  *	modify it under the terms of the GNU General Public License
8  *	as published by the Free Software Foundation; either version
9  *	2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for localy generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <net/netlink.h>
51 #include <net/pkt_sched.h>
52 #include <net/sock.h>
53 #include <net/tcp_states.h>
54 
55 /*
56  * Per flow structure, dynamically allocated
57  */
58 struct fq_flow {
59 	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
60 	union {
61 		struct sk_buff *tail;	/* last skb in the list */
62 		unsigned long  age;	/* jiffies when flow was emptied, for gc */
63 	};
64 	struct rb_node	fq_node; 	/* anchor in fq_root[] trees */
65 	struct sock	*sk;
66 	int		qlen;		/* number of packets in flow queue */
67 	int		credit;
68 	u32		socket_hash;	/* sk_hash */
69 	struct fq_flow *next;		/* next pointer in RR lists, or &detached */
70 
71 	struct rb_node  rate_node;	/* anchor in q->delayed tree */
72 	u64		time_next_packet;
73 };
74 
75 struct fq_flow_head {
76 	struct fq_flow *first;
77 	struct fq_flow *last;
78 };
79 
80 struct fq_sched_data {
81 	struct fq_flow_head new_flows;
82 
83 	struct fq_flow_head old_flows;
84 
85 	struct rb_root	delayed;	/* for rate limited flows */
86 	u64		time_next_delayed_flow;
87 
88 	struct fq_flow	internal;	/* for non classified or high prio packets */
89 	u32		quantum;
90 	u32		initial_quantum;
91 	u32		flow_refill_delay;
92 	u32		flow_max_rate;	/* optional max rate per flow */
93 	u32		flow_plimit;	/* max packets per flow */
94 	struct rb_root	*fq_root;
95 	u8		rate_enable;
96 	u8		fq_trees_log;
97 
98 	u32		flows;
99 	u32		inactive_flows;
100 	u32		throttled_flows;
101 
102 	u64		stat_gc_flows;
103 	u64		stat_internal_packets;
104 	u64		stat_tcp_retrans;
105 	u64		stat_throttled;
106 	u64		stat_flows_plimit;
107 	u64		stat_pkts_too_long;
108 	u64		stat_allocation_errors;
109 	struct qdisc_watchdog watchdog;
110 };
111 
112 /* special value to mark a detached flow (not on old/new list) */
113 static struct fq_flow detached, throttled;
114 
115 static void fq_flow_set_detached(struct fq_flow *f)
116 {
117 	f->next = &detached;
118 	f->age = jiffies;
119 }
120 
121 static bool fq_flow_is_detached(const struct fq_flow *f)
122 {
123 	return f->next == &detached;
124 }
125 
126 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
127 {
128 	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
129 
130 	while (*p) {
131 		struct fq_flow *aux;
132 
133 		parent = *p;
134 		aux = container_of(parent, struct fq_flow, rate_node);
135 		if (f->time_next_packet >= aux->time_next_packet)
136 			p = &parent->rb_right;
137 		else
138 			p = &parent->rb_left;
139 	}
140 	rb_link_node(&f->rate_node, parent, p);
141 	rb_insert_color(&f->rate_node, &q->delayed);
142 	q->throttled_flows++;
143 	q->stat_throttled++;
144 
145 	f->next = &throttled;
146 	if (q->time_next_delayed_flow > f->time_next_packet)
147 		q->time_next_delayed_flow = f->time_next_packet;
148 }
149 
150 
151 static struct kmem_cache *fq_flow_cachep __read_mostly;
152 
153 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
154 {
155 	if (head->first)
156 		head->last->next = flow;
157 	else
158 		head->first = flow;
159 	head->last = flow;
160 	flow->next = NULL;
161 }
162 
163 /* limit number of collected flows per round */
164 #define FQ_GC_MAX 8
165 #define FQ_GC_AGE (3*HZ)
166 
167 static bool fq_gc_candidate(const struct fq_flow *f)
168 {
169 	return fq_flow_is_detached(f) &&
170 	       time_after(jiffies, f->age + FQ_GC_AGE);
171 }
172 
173 static void fq_gc(struct fq_sched_data *q,
174 		  struct rb_root *root,
175 		  struct sock *sk)
176 {
177 	struct fq_flow *f, *tofree[FQ_GC_MAX];
178 	struct rb_node **p, *parent;
179 	int fcnt = 0;
180 
181 	p = &root->rb_node;
182 	parent = NULL;
183 	while (*p) {
184 		parent = *p;
185 
186 		f = container_of(parent, struct fq_flow, fq_node);
187 		if (f->sk == sk)
188 			break;
189 
190 		if (fq_gc_candidate(f)) {
191 			tofree[fcnt++] = f;
192 			if (fcnt == FQ_GC_MAX)
193 				break;
194 		}
195 
196 		if (f->sk > sk)
197 			p = &parent->rb_right;
198 		else
199 			p = &parent->rb_left;
200 	}
201 
202 	q->flows -= fcnt;
203 	q->inactive_flows -= fcnt;
204 	q->stat_gc_flows += fcnt;
205 	while (fcnt) {
206 		struct fq_flow *f = tofree[--fcnt];
207 
208 		rb_erase(&f->fq_node, root);
209 		kmem_cache_free(fq_flow_cachep, f);
210 	}
211 }
212 
213 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
214 {
215 	struct rb_node **p, *parent;
216 	struct sock *sk = skb->sk;
217 	struct rb_root *root;
218 	struct fq_flow *f;
219 
220 	/* warning: no starvation prevention... */
221 	if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
222 		return &q->internal;
223 
224 	if (unlikely(!sk)) {
225 		/* By forcing low order bit to 1, we make sure to not
226 		 * collide with a local flow (socket pointers are word aligned)
227 		 */
228 		sk = (struct sock *)(skb_get_rxhash(skb) | 1L);
229 	}
230 
231 	root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
232 
233 	if (q->flows >= (2U << q->fq_trees_log) &&
234 	    q->inactive_flows > q->flows/2)
235 		fq_gc(q, root, sk);
236 
237 	p = &root->rb_node;
238 	parent = NULL;
239 	while (*p) {
240 		parent = *p;
241 
242 		f = container_of(parent, struct fq_flow, fq_node);
243 		if (f->sk == sk) {
244 			/* socket might have been reallocated, so check
245 			 * if its sk_hash is the same.
246 			 * It not, we need to refill credit with
247 			 * initial quantum
248 			 */
249 			if (unlikely(skb->sk &&
250 				     f->socket_hash != sk->sk_hash)) {
251 				f->credit = q->initial_quantum;
252 				f->socket_hash = sk->sk_hash;
253 				f->time_next_packet = 0ULL;
254 			}
255 			return f;
256 		}
257 		if (f->sk > sk)
258 			p = &parent->rb_right;
259 		else
260 			p = &parent->rb_left;
261 	}
262 
263 	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
264 	if (unlikely(!f)) {
265 		q->stat_allocation_errors++;
266 		return &q->internal;
267 	}
268 	fq_flow_set_detached(f);
269 	f->sk = sk;
270 	if (skb->sk)
271 		f->socket_hash = sk->sk_hash;
272 	f->credit = q->initial_quantum;
273 
274 	rb_link_node(&f->fq_node, parent, p);
275 	rb_insert_color(&f->fq_node, root);
276 
277 	q->flows++;
278 	q->inactive_flows++;
279 	return f;
280 }
281 
282 
283 /* remove one skb from head of flow queue */
284 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
285 {
286 	struct sk_buff *skb = flow->head;
287 
288 	if (skb) {
289 		flow->head = skb->next;
290 		skb->next = NULL;
291 		flow->qlen--;
292 		sch->qstats.backlog -= qdisc_pkt_len(skb);
293 		sch->q.qlen--;
294 	}
295 	return skb;
296 }
297 
298 /* We might add in the future detection of retransmits
299  * For the time being, just return false
300  */
301 static bool skb_is_retransmit(struct sk_buff *skb)
302 {
303 	return false;
304 }
305 
306 /* add skb to flow queue
307  * flow queue is a linked list, kind of FIFO, except for TCP retransmits
308  * We special case tcp retransmits to be transmitted before other packets.
309  * We rely on fact that TCP retransmits are unlikely, so we do not waste
310  * a separate queue or a pointer.
311  * head->  [retrans pkt 1]
312  *         [retrans pkt 2]
313  *         [ normal pkt 1]
314  *         [ normal pkt 2]
315  *         [ normal pkt 3]
316  * tail->  [ normal pkt 4]
317  */
318 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
319 {
320 	struct sk_buff *prev, *head = flow->head;
321 
322 	skb->next = NULL;
323 	if (!head) {
324 		flow->head = skb;
325 		flow->tail = skb;
326 		return;
327 	}
328 	if (likely(!skb_is_retransmit(skb))) {
329 		flow->tail->next = skb;
330 		flow->tail = skb;
331 		return;
332 	}
333 
334 	/* This skb is a tcp retransmit,
335 	 * find the last retrans packet in the queue
336 	 */
337 	prev = NULL;
338 	while (skb_is_retransmit(head)) {
339 		prev = head;
340 		head = head->next;
341 		if (!head)
342 			break;
343 	}
344 	if (!prev) { /* no rtx packet in queue, become the new head */
345 		skb->next = flow->head;
346 		flow->head = skb;
347 	} else {
348 		if (prev == flow->tail)
349 			flow->tail = skb;
350 		else
351 			skb->next = prev->next;
352 		prev->next = skb;
353 	}
354 }
355 
356 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
357 {
358 	struct fq_sched_data *q = qdisc_priv(sch);
359 	struct fq_flow *f;
360 
361 	if (unlikely(sch->q.qlen >= sch->limit))
362 		return qdisc_drop(skb, sch);
363 
364 	f = fq_classify(skb, q);
365 	if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
366 		q->stat_flows_plimit++;
367 		return qdisc_drop(skb, sch);
368 	}
369 
370 	f->qlen++;
371 	if (skb_is_retransmit(skb))
372 		q->stat_tcp_retrans++;
373 	sch->qstats.backlog += qdisc_pkt_len(skb);
374 	if (fq_flow_is_detached(f)) {
375 		fq_flow_add_tail(&q->new_flows, f);
376 		if (time_after(jiffies, f->age + q->flow_refill_delay))
377 			f->credit = max_t(u32, f->credit, q->quantum);
378 		q->inactive_flows--;
379 		qdisc_unthrottled(sch);
380 	}
381 
382 	/* Note: this overwrites f->age */
383 	flow_queue_add(f, skb);
384 
385 	if (unlikely(f == &q->internal)) {
386 		q->stat_internal_packets++;
387 		qdisc_unthrottled(sch);
388 	}
389 	sch->q.qlen++;
390 
391 	return NET_XMIT_SUCCESS;
392 }
393 
394 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
395 {
396 	struct rb_node *p;
397 
398 	if (q->time_next_delayed_flow > now)
399 		return;
400 
401 	q->time_next_delayed_flow = ~0ULL;
402 	while ((p = rb_first(&q->delayed)) != NULL) {
403 		struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
404 
405 		if (f->time_next_packet > now) {
406 			q->time_next_delayed_flow = f->time_next_packet;
407 			break;
408 		}
409 		rb_erase(p, &q->delayed);
410 		q->throttled_flows--;
411 		fq_flow_add_tail(&q->old_flows, f);
412 	}
413 }
414 
415 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
416 {
417 	struct fq_sched_data *q = qdisc_priv(sch);
418 	u64 now = ktime_to_ns(ktime_get());
419 	struct fq_flow_head *head;
420 	struct sk_buff *skb;
421 	struct fq_flow *f;
422 	u32 rate;
423 
424 	skb = fq_dequeue_head(sch, &q->internal);
425 	if (skb)
426 		goto out;
427 	fq_check_throttled(q, now);
428 begin:
429 	head = &q->new_flows;
430 	if (!head->first) {
431 		head = &q->old_flows;
432 		if (!head->first) {
433 			if (q->time_next_delayed_flow != ~0ULL)
434 				qdisc_watchdog_schedule_ns(&q->watchdog,
435 							   q->time_next_delayed_flow);
436 			return NULL;
437 		}
438 	}
439 	f = head->first;
440 
441 	if (f->credit <= 0) {
442 		f->credit += q->quantum;
443 		head->first = f->next;
444 		fq_flow_add_tail(&q->old_flows, f);
445 		goto begin;
446 	}
447 
448 	if (unlikely(f->head && now < f->time_next_packet)) {
449 		head->first = f->next;
450 		fq_flow_set_throttled(q, f);
451 		goto begin;
452 	}
453 
454 	skb = fq_dequeue_head(sch, f);
455 	if (!skb) {
456 		head->first = f->next;
457 		/* force a pass through old_flows to prevent starvation */
458 		if ((head == &q->new_flows) && q->old_flows.first) {
459 			fq_flow_add_tail(&q->old_flows, f);
460 		} else {
461 			fq_flow_set_detached(f);
462 			q->inactive_flows++;
463 		}
464 		goto begin;
465 	}
466 	prefetch(&skb->end);
467 	f->time_next_packet = now;
468 	f->credit -= qdisc_pkt_len(skb);
469 
470 	if (f->credit > 0 || !q->rate_enable)
471 		goto out;
472 
473 	rate = q->flow_max_rate;
474 	if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT)
475 		rate = min(skb->sk->sk_pacing_rate, rate);
476 
477 	if (rate != ~0U) {
478 		u32 plen = max(qdisc_pkt_len(skb), q->quantum);
479 		u64 len = (u64)plen * NSEC_PER_SEC;
480 
481 		if (likely(rate))
482 			do_div(len, rate);
483 		/* Since socket rate can change later,
484 		 * clamp the delay to 125 ms.
485 		 * TODO: maybe segment the too big skb, as in commit
486 		 * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
487 		 */
488 		if (unlikely(len > 125 * NSEC_PER_MSEC)) {
489 			len = 125 * NSEC_PER_MSEC;
490 			q->stat_pkts_too_long++;
491 		}
492 
493 		f->time_next_packet = now + len;
494 	}
495 out:
496 	qdisc_bstats_update(sch, skb);
497 	qdisc_unthrottled(sch);
498 	return skb;
499 }
500 
501 static void fq_reset(struct Qdisc *sch)
502 {
503 	struct fq_sched_data *q = qdisc_priv(sch);
504 	struct rb_root *root;
505 	struct sk_buff *skb;
506 	struct rb_node *p;
507 	struct fq_flow *f;
508 	unsigned int idx;
509 
510 	while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
511 		kfree_skb(skb);
512 
513 	if (!q->fq_root)
514 		return;
515 
516 	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
517 		root = &q->fq_root[idx];
518 		while ((p = rb_first(root)) != NULL) {
519 			f = container_of(p, struct fq_flow, fq_node);
520 			rb_erase(p, root);
521 
522 			while ((skb = fq_dequeue_head(sch, f)) != NULL)
523 				kfree_skb(skb);
524 
525 			kmem_cache_free(fq_flow_cachep, f);
526 		}
527 	}
528 	q->new_flows.first	= NULL;
529 	q->old_flows.first	= NULL;
530 	q->delayed		= RB_ROOT;
531 	q->flows		= 0;
532 	q->inactive_flows	= 0;
533 	q->throttled_flows	= 0;
534 }
535 
536 static void fq_rehash(struct fq_sched_data *q,
537 		      struct rb_root *old_array, u32 old_log,
538 		      struct rb_root *new_array, u32 new_log)
539 {
540 	struct rb_node *op, **np, *parent;
541 	struct rb_root *oroot, *nroot;
542 	struct fq_flow *of, *nf;
543 	int fcnt = 0;
544 	u32 idx;
545 
546 	for (idx = 0; idx < (1U << old_log); idx++) {
547 		oroot = &old_array[idx];
548 		while ((op = rb_first(oroot)) != NULL) {
549 			rb_erase(op, oroot);
550 			of = container_of(op, struct fq_flow, fq_node);
551 			if (fq_gc_candidate(of)) {
552 				fcnt++;
553 				kmem_cache_free(fq_flow_cachep, of);
554 				continue;
555 			}
556 			nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
557 
558 			np = &nroot->rb_node;
559 			parent = NULL;
560 			while (*np) {
561 				parent = *np;
562 
563 				nf = container_of(parent, struct fq_flow, fq_node);
564 				BUG_ON(nf->sk == of->sk);
565 
566 				if (nf->sk > of->sk)
567 					np = &parent->rb_right;
568 				else
569 					np = &parent->rb_left;
570 			}
571 
572 			rb_link_node(&of->fq_node, parent, np);
573 			rb_insert_color(&of->fq_node, nroot);
574 		}
575 	}
576 	q->flows -= fcnt;
577 	q->inactive_flows -= fcnt;
578 	q->stat_gc_flows += fcnt;
579 }
580 
581 static int fq_resize(struct fq_sched_data *q, u32 log)
582 {
583 	struct rb_root *array;
584 	u32 idx;
585 
586 	if (q->fq_root && log == q->fq_trees_log)
587 		return 0;
588 
589 	array = kmalloc(sizeof(struct rb_root) << log, GFP_KERNEL);
590 	if (!array)
591 		return -ENOMEM;
592 
593 	for (idx = 0; idx < (1U << log); idx++)
594 		array[idx] = RB_ROOT;
595 
596 	if (q->fq_root) {
597 		fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
598 		kfree(q->fq_root);
599 	}
600 	q->fq_root = array;
601 	q->fq_trees_log = log;
602 
603 	return 0;
604 }
605 
606 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
607 	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
608 	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
609 	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
610 	[TCA_FQ_INITIAL_QUANTUM]	= { .type = NLA_U32 },
611 	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
612 	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
613 	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
614 	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
615 	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
616 };
617 
618 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
619 {
620 	struct fq_sched_data *q = qdisc_priv(sch);
621 	struct nlattr *tb[TCA_FQ_MAX + 1];
622 	int err, drop_count = 0;
623 	u32 fq_log;
624 
625 	if (!opt)
626 		return -EINVAL;
627 
628 	err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
629 	if (err < 0)
630 		return err;
631 
632 	sch_tree_lock(sch);
633 
634 	fq_log = q->fq_trees_log;
635 
636 	if (tb[TCA_FQ_BUCKETS_LOG]) {
637 		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
638 
639 		if (nval >= 1 && nval <= ilog2(256*1024))
640 			fq_log = nval;
641 		else
642 			err = -EINVAL;
643 	}
644 	if (tb[TCA_FQ_PLIMIT])
645 		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
646 
647 	if (tb[TCA_FQ_FLOW_PLIMIT])
648 		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
649 
650 	if (tb[TCA_FQ_QUANTUM])
651 		q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
652 
653 	if (tb[TCA_FQ_INITIAL_QUANTUM])
654 		q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
655 
656 	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
657 		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
658 				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
659 
660 	if (tb[TCA_FQ_FLOW_MAX_RATE])
661 		q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
662 
663 	if (tb[TCA_FQ_RATE_ENABLE]) {
664 		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
665 
666 		if (enable <= 1)
667 			q->rate_enable = enable;
668 		else
669 			err = -EINVAL;
670 	}
671 
672 	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
673 		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
674 
675 		q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
676 	}
677 
678 	if (!err)
679 		err = fq_resize(q, fq_log);
680 
681 	while (sch->q.qlen > sch->limit) {
682 		struct sk_buff *skb = fq_dequeue(sch);
683 
684 		if (!skb)
685 			break;
686 		kfree_skb(skb);
687 		drop_count++;
688 	}
689 	qdisc_tree_decrease_qlen(sch, drop_count);
690 
691 	sch_tree_unlock(sch);
692 	return err;
693 }
694 
695 static void fq_destroy(struct Qdisc *sch)
696 {
697 	struct fq_sched_data *q = qdisc_priv(sch);
698 
699 	fq_reset(sch);
700 	kfree(q->fq_root);
701 	qdisc_watchdog_cancel(&q->watchdog);
702 }
703 
704 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
705 {
706 	struct fq_sched_data *q = qdisc_priv(sch);
707 	int err;
708 
709 	sch->limit		= 10000;
710 	q->flow_plimit		= 100;
711 	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
712 	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
713 	q->flow_refill_delay	= msecs_to_jiffies(40);
714 	q->flow_max_rate	= ~0U;
715 	q->rate_enable		= 1;
716 	q->new_flows.first	= NULL;
717 	q->old_flows.first	= NULL;
718 	q->delayed		= RB_ROOT;
719 	q->fq_root		= NULL;
720 	q->fq_trees_log		= ilog2(1024);
721 	qdisc_watchdog_init(&q->watchdog, sch);
722 
723 	if (opt)
724 		err = fq_change(sch, opt);
725 	else
726 		err = fq_resize(q, q->fq_trees_log);
727 
728 	return err;
729 }
730 
731 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
732 {
733 	struct fq_sched_data *q = qdisc_priv(sch);
734 	struct nlattr *opts;
735 
736 	opts = nla_nest_start(skb, TCA_OPTIONS);
737 	if (opts == NULL)
738 		goto nla_put_failure;
739 
740 	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
741 
742 	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
743 	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
744 	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
745 	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
746 	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
747 	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
748 	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
749 			jiffies_to_usecs(q->flow_refill_delay)) ||
750 	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
751 		goto nla_put_failure;
752 
753 	nla_nest_end(skb, opts);
754 	return skb->len;
755 
756 nla_put_failure:
757 	return -1;
758 }
759 
760 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
761 {
762 	struct fq_sched_data *q = qdisc_priv(sch);
763 	u64 now = ktime_to_ns(ktime_get());
764 	struct tc_fq_qd_stats st = {
765 		.gc_flows		= q->stat_gc_flows,
766 		.highprio_packets	= q->stat_internal_packets,
767 		.tcp_retrans		= q->stat_tcp_retrans,
768 		.throttled		= q->stat_throttled,
769 		.flows_plimit		= q->stat_flows_plimit,
770 		.pkts_too_long		= q->stat_pkts_too_long,
771 		.allocation_errors	= q->stat_allocation_errors,
772 		.flows			= q->flows,
773 		.inactive_flows		= q->inactive_flows,
774 		.throttled_flows	= q->throttled_flows,
775 		.time_next_delayed_flow	= q->time_next_delayed_flow - now,
776 	};
777 
778 	return gnet_stats_copy_app(d, &st, sizeof(st));
779 }
780 
781 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
782 	.id		=	"fq",
783 	.priv_size	=	sizeof(struct fq_sched_data),
784 
785 	.enqueue	=	fq_enqueue,
786 	.dequeue	=	fq_dequeue,
787 	.peek		=	qdisc_peek_dequeued,
788 	.init		=	fq_init,
789 	.reset		=	fq_reset,
790 	.destroy	=	fq_destroy,
791 	.change		=	fq_change,
792 	.dump		=	fq_dump,
793 	.dump_stats	=	fq_dump_stats,
794 	.owner		=	THIS_MODULE,
795 };
796 
797 static int __init fq_module_init(void)
798 {
799 	int ret;
800 
801 	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
802 					   sizeof(struct fq_flow),
803 					   0, 0, NULL);
804 	if (!fq_flow_cachep)
805 		return -ENOMEM;
806 
807 	ret = register_qdisc(&fq_qdisc_ops);
808 	if (ret)
809 		kmem_cache_destroy(fq_flow_cachep);
810 	return ret;
811 }
812 
813 static void __exit fq_module_exit(void)
814 {
815 	unregister_qdisc(&fq_qdisc_ops);
816 	kmem_cache_destroy(fq_flow_cachep);
817 }
818 
819 module_init(fq_module_init)
820 module_exit(fq_module_exit)
821 MODULE_AUTHOR("Eric Dumazet");
822 MODULE_LICENSE("GPL");
823