xref: /linux/net/sched/sch_fq.c (revision b6ebbac51bedf9e98e837688bc838f400196da5e)
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
5  *
6  *	This program is free software; you can redistribute it and/or
7  *	modify it under the terms of the GNU General Public License
8  *	as published by the Free Software Foundation; either version
9  *	2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for locally generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
53 #include <net/sock.h>
54 #include <net/tcp_states.h>
55 #include <net/tcp.h>
56 
57 /*
58  * Per flow structure, dynamically allocated
59  */
60 struct fq_flow {
61 	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
62 	union {
63 		struct sk_buff *tail;	/* last skb in the list */
64 		unsigned long  age;	/* jiffies when flow was emptied, for gc */
65 	};
66 	struct rb_node	fq_node;	/* anchor in fq_root[] trees */
67 	struct sock	*sk;
68 	int		qlen;		/* number of packets in flow queue */
69 	int		credit;
70 	u32		socket_hash;	/* sk_hash */
71 	struct fq_flow *next;		/* next pointer in RR lists, or &detached */
72 
73 	struct rb_node  rate_node;	/* anchor in q->delayed tree */
74 	u64		time_next_packet;
75 };
76 
77 struct fq_flow_head {
78 	struct fq_flow *first;
79 	struct fq_flow *last;
80 };
81 
82 struct fq_sched_data {
83 	struct fq_flow_head new_flows;
84 
85 	struct fq_flow_head old_flows;
86 
87 	struct rb_root	delayed;	/* for rate limited flows */
88 	u64		time_next_delayed_flow;
89 
90 	struct fq_flow	internal;	/* for non classified or high prio packets */
91 	u32		quantum;
92 	u32		initial_quantum;
93 	u32		flow_refill_delay;
94 	u32		flow_max_rate;	/* optional max rate per flow */
95 	u32		flow_plimit;	/* max packets per flow */
96 	u32		orphan_mask;	/* mask for orphaned skb */
97 	struct rb_root	*fq_root;
98 	u8		rate_enable;
99 	u8		fq_trees_log;
100 
101 	u32		flows;
102 	u32		inactive_flows;
103 	u32		throttled_flows;
104 
105 	u64		stat_gc_flows;
106 	u64		stat_internal_packets;
107 	u64		stat_tcp_retrans;
108 	u64		stat_throttled;
109 	u64		stat_flows_plimit;
110 	u64		stat_pkts_too_long;
111 	u64		stat_allocation_errors;
112 	struct qdisc_watchdog watchdog;
113 };
114 
115 /* special value to mark a detached flow (not on old/new list) */
116 static struct fq_flow detached, throttled;
117 
118 static void fq_flow_set_detached(struct fq_flow *f)
119 {
120 	f->next = &detached;
121 	f->age = jiffies;
122 }
123 
124 static bool fq_flow_is_detached(const struct fq_flow *f)
125 {
126 	return f->next == &detached;
127 }
128 
129 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
130 {
131 	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
132 
133 	while (*p) {
134 		struct fq_flow *aux;
135 
136 		parent = *p;
137 		aux = container_of(parent, struct fq_flow, rate_node);
138 		if (f->time_next_packet >= aux->time_next_packet)
139 			p = &parent->rb_right;
140 		else
141 			p = &parent->rb_left;
142 	}
143 	rb_link_node(&f->rate_node, parent, p);
144 	rb_insert_color(&f->rate_node, &q->delayed);
145 	q->throttled_flows++;
146 	q->stat_throttled++;
147 
148 	f->next = &throttled;
149 	if (q->time_next_delayed_flow > f->time_next_packet)
150 		q->time_next_delayed_flow = f->time_next_packet;
151 }
152 
153 
154 static struct kmem_cache *fq_flow_cachep __read_mostly;
155 
156 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
157 {
158 	if (head->first)
159 		head->last->next = flow;
160 	else
161 		head->first = flow;
162 	head->last = flow;
163 	flow->next = NULL;
164 }
165 
166 /* limit number of collected flows per round */
167 #define FQ_GC_MAX 8
168 #define FQ_GC_AGE (3*HZ)
169 
170 static bool fq_gc_candidate(const struct fq_flow *f)
171 {
172 	return fq_flow_is_detached(f) &&
173 	       time_after(jiffies, f->age + FQ_GC_AGE);
174 }
175 
176 static void fq_gc(struct fq_sched_data *q,
177 		  struct rb_root *root,
178 		  struct sock *sk)
179 {
180 	struct fq_flow *f, *tofree[FQ_GC_MAX];
181 	struct rb_node **p, *parent;
182 	int fcnt = 0;
183 
184 	p = &root->rb_node;
185 	parent = NULL;
186 	while (*p) {
187 		parent = *p;
188 
189 		f = container_of(parent, struct fq_flow, fq_node);
190 		if (f->sk == sk)
191 			break;
192 
193 		if (fq_gc_candidate(f)) {
194 			tofree[fcnt++] = f;
195 			if (fcnt == FQ_GC_MAX)
196 				break;
197 		}
198 
199 		if (f->sk > sk)
200 			p = &parent->rb_right;
201 		else
202 			p = &parent->rb_left;
203 	}
204 
205 	q->flows -= fcnt;
206 	q->inactive_flows -= fcnt;
207 	q->stat_gc_flows += fcnt;
208 	while (fcnt) {
209 		struct fq_flow *f = tofree[--fcnt];
210 
211 		rb_erase(&f->fq_node, root);
212 		kmem_cache_free(fq_flow_cachep, f);
213 	}
214 }
215 
216 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
217 {
218 	struct rb_node **p, *parent;
219 	struct sock *sk = skb->sk;
220 	struct rb_root *root;
221 	struct fq_flow *f;
222 
223 	/* warning: no starvation prevention... */
224 	if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
225 		return &q->internal;
226 
227 	/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
228 	 * or a listener (SYNCOOKIE mode)
229 	 * 1) request sockets are not full blown,
230 	 *    they do not contain sk_pacing_rate
231 	 * 2) They are not part of a 'flow' yet
232 	 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
233 	 *    especially if the listener set SO_MAX_PACING_RATE
234 	 * 4) We pretend they are orphaned
235 	 */
236 	if (!sk || sk_listener(sk)) {
237 		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
238 
239 		/* By forcing low order bit to 1, we make sure to not
240 		 * collide with a local flow (socket pointers are word aligned)
241 		 */
242 		sk = (struct sock *)((hash << 1) | 1UL);
243 		skb_orphan(skb);
244 	}
245 
246 	root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
247 
248 	if (q->flows >= (2U << q->fq_trees_log) &&
249 	    q->inactive_flows > q->flows/2)
250 		fq_gc(q, root, sk);
251 
252 	p = &root->rb_node;
253 	parent = NULL;
254 	while (*p) {
255 		parent = *p;
256 
257 		f = container_of(parent, struct fq_flow, fq_node);
258 		if (f->sk == sk) {
259 			/* socket might have been reallocated, so check
260 			 * if its sk_hash is the same.
261 			 * It not, we need to refill credit with
262 			 * initial quantum
263 			 */
264 			if (unlikely(skb->sk &&
265 				     f->socket_hash != sk->sk_hash)) {
266 				f->credit = q->initial_quantum;
267 				f->socket_hash = sk->sk_hash;
268 				f->time_next_packet = 0ULL;
269 			}
270 			return f;
271 		}
272 		if (f->sk > sk)
273 			p = &parent->rb_right;
274 		else
275 			p = &parent->rb_left;
276 	}
277 
278 	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
279 	if (unlikely(!f)) {
280 		q->stat_allocation_errors++;
281 		return &q->internal;
282 	}
283 	fq_flow_set_detached(f);
284 	f->sk = sk;
285 	if (skb->sk)
286 		f->socket_hash = sk->sk_hash;
287 	f->credit = q->initial_quantum;
288 
289 	rb_link_node(&f->fq_node, parent, p);
290 	rb_insert_color(&f->fq_node, root);
291 
292 	q->flows++;
293 	q->inactive_flows++;
294 	return f;
295 }
296 
297 
298 /* remove one skb from head of flow queue */
299 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
300 {
301 	struct sk_buff *skb = flow->head;
302 
303 	if (skb) {
304 		flow->head = skb->next;
305 		skb->next = NULL;
306 		flow->qlen--;
307 		qdisc_qstats_backlog_dec(sch, skb);
308 		sch->q.qlen--;
309 	}
310 	return skb;
311 }
312 
313 /* We might add in the future detection of retransmits
314  * For the time being, just return false
315  */
316 static bool skb_is_retransmit(struct sk_buff *skb)
317 {
318 	return false;
319 }
320 
321 /* add skb to flow queue
322  * flow queue is a linked list, kind of FIFO, except for TCP retransmits
323  * We special case tcp retransmits to be transmitted before other packets.
324  * We rely on fact that TCP retransmits are unlikely, so we do not waste
325  * a separate queue or a pointer.
326  * head->  [retrans pkt 1]
327  *         [retrans pkt 2]
328  *         [ normal pkt 1]
329  *         [ normal pkt 2]
330  *         [ normal pkt 3]
331  * tail->  [ normal pkt 4]
332  */
333 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
334 {
335 	struct sk_buff *prev, *head = flow->head;
336 
337 	skb->next = NULL;
338 	if (!head) {
339 		flow->head = skb;
340 		flow->tail = skb;
341 		return;
342 	}
343 	if (likely(!skb_is_retransmit(skb))) {
344 		flow->tail->next = skb;
345 		flow->tail = skb;
346 		return;
347 	}
348 
349 	/* This skb is a tcp retransmit,
350 	 * find the last retrans packet in the queue
351 	 */
352 	prev = NULL;
353 	while (skb_is_retransmit(head)) {
354 		prev = head;
355 		head = head->next;
356 		if (!head)
357 			break;
358 	}
359 	if (!prev) { /* no rtx packet in queue, become the new head */
360 		skb->next = flow->head;
361 		flow->head = skb;
362 	} else {
363 		if (prev == flow->tail)
364 			flow->tail = skb;
365 		else
366 			skb->next = prev->next;
367 		prev->next = skb;
368 	}
369 }
370 
371 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
372 		      struct sk_buff **to_free)
373 {
374 	struct fq_sched_data *q = qdisc_priv(sch);
375 	struct fq_flow *f;
376 
377 	if (unlikely(sch->q.qlen >= sch->limit))
378 		return qdisc_drop(skb, sch, to_free);
379 
380 	f = fq_classify(skb, q);
381 	if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
382 		q->stat_flows_plimit++;
383 		return qdisc_drop(skb, sch, to_free);
384 	}
385 
386 	f->qlen++;
387 	if (skb_is_retransmit(skb))
388 		q->stat_tcp_retrans++;
389 	qdisc_qstats_backlog_inc(sch, skb);
390 	if (fq_flow_is_detached(f)) {
391 		fq_flow_add_tail(&q->new_flows, f);
392 		if (time_after(jiffies, f->age + q->flow_refill_delay))
393 			f->credit = max_t(u32, f->credit, q->quantum);
394 		q->inactive_flows--;
395 	}
396 
397 	/* Note: this overwrites f->age */
398 	flow_queue_add(f, skb);
399 
400 	if (unlikely(f == &q->internal)) {
401 		q->stat_internal_packets++;
402 	}
403 	sch->q.qlen++;
404 
405 	return NET_XMIT_SUCCESS;
406 }
407 
408 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
409 {
410 	struct rb_node *p;
411 
412 	if (q->time_next_delayed_flow > now)
413 		return;
414 
415 	q->time_next_delayed_flow = ~0ULL;
416 	while ((p = rb_first(&q->delayed)) != NULL) {
417 		struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
418 
419 		if (f->time_next_packet > now) {
420 			q->time_next_delayed_flow = f->time_next_packet;
421 			break;
422 		}
423 		rb_erase(p, &q->delayed);
424 		q->throttled_flows--;
425 		fq_flow_add_tail(&q->old_flows, f);
426 	}
427 }
428 
429 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
430 {
431 	struct fq_sched_data *q = qdisc_priv(sch);
432 	u64 now = ktime_get_ns();
433 	struct fq_flow_head *head;
434 	struct sk_buff *skb;
435 	struct fq_flow *f;
436 	u32 rate;
437 
438 	skb = fq_dequeue_head(sch, &q->internal);
439 	if (skb)
440 		goto out;
441 	fq_check_throttled(q, now);
442 begin:
443 	head = &q->new_flows;
444 	if (!head->first) {
445 		head = &q->old_flows;
446 		if (!head->first) {
447 			if (q->time_next_delayed_flow != ~0ULL)
448 				qdisc_watchdog_schedule_ns(&q->watchdog,
449 							   q->time_next_delayed_flow);
450 			return NULL;
451 		}
452 	}
453 	f = head->first;
454 
455 	if (f->credit <= 0) {
456 		f->credit += q->quantum;
457 		head->first = f->next;
458 		fq_flow_add_tail(&q->old_flows, f);
459 		goto begin;
460 	}
461 
462 	skb = f->head;
463 	if (unlikely(skb && now < f->time_next_packet &&
464 		     !skb_is_tcp_pure_ack(skb))) {
465 		head->first = f->next;
466 		fq_flow_set_throttled(q, f);
467 		goto begin;
468 	}
469 
470 	skb = fq_dequeue_head(sch, f);
471 	if (!skb) {
472 		head->first = f->next;
473 		/* force a pass through old_flows to prevent starvation */
474 		if ((head == &q->new_flows) && q->old_flows.first) {
475 			fq_flow_add_tail(&q->old_flows, f);
476 		} else {
477 			fq_flow_set_detached(f);
478 			q->inactive_flows++;
479 		}
480 		goto begin;
481 	}
482 	prefetch(&skb->end);
483 	f->credit -= qdisc_pkt_len(skb);
484 
485 	if (f->credit > 0 || !q->rate_enable)
486 		goto out;
487 
488 	/* Do not pace locally generated ack packets */
489 	if (skb_is_tcp_pure_ack(skb))
490 		goto out;
491 
492 	rate = q->flow_max_rate;
493 	if (skb->sk)
494 		rate = min(skb->sk->sk_pacing_rate, rate);
495 
496 	if (rate != ~0U) {
497 		u32 plen = max(qdisc_pkt_len(skb), q->quantum);
498 		u64 len = (u64)plen * NSEC_PER_SEC;
499 
500 		if (likely(rate))
501 			do_div(len, rate);
502 		/* Since socket rate can change later,
503 		 * clamp the delay to 1 second.
504 		 * Really, providers of too big packets should be fixed !
505 		 */
506 		if (unlikely(len > NSEC_PER_SEC)) {
507 			len = NSEC_PER_SEC;
508 			q->stat_pkts_too_long++;
509 		}
510 
511 		f->time_next_packet = now + len;
512 	}
513 out:
514 	qdisc_bstats_update(sch, skb);
515 	return skb;
516 }
517 
518 static void fq_flow_purge(struct fq_flow *flow)
519 {
520 	rtnl_kfree_skbs(flow->head, flow->tail);
521 	flow->head = NULL;
522 	flow->qlen = 0;
523 }
524 
525 static void fq_reset(struct Qdisc *sch)
526 {
527 	struct fq_sched_data *q = qdisc_priv(sch);
528 	struct rb_root *root;
529 	struct rb_node *p;
530 	struct fq_flow *f;
531 	unsigned int idx;
532 
533 	sch->q.qlen = 0;
534 	sch->qstats.backlog = 0;
535 
536 	fq_flow_purge(&q->internal);
537 
538 	if (!q->fq_root)
539 		return;
540 
541 	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
542 		root = &q->fq_root[idx];
543 		while ((p = rb_first(root)) != NULL) {
544 			f = container_of(p, struct fq_flow, fq_node);
545 			rb_erase(p, root);
546 
547 			fq_flow_purge(f);
548 
549 			kmem_cache_free(fq_flow_cachep, f);
550 		}
551 	}
552 	q->new_flows.first	= NULL;
553 	q->old_flows.first	= NULL;
554 	q->delayed		= RB_ROOT;
555 	q->flows		= 0;
556 	q->inactive_flows	= 0;
557 	q->throttled_flows	= 0;
558 }
559 
560 static void fq_rehash(struct fq_sched_data *q,
561 		      struct rb_root *old_array, u32 old_log,
562 		      struct rb_root *new_array, u32 new_log)
563 {
564 	struct rb_node *op, **np, *parent;
565 	struct rb_root *oroot, *nroot;
566 	struct fq_flow *of, *nf;
567 	int fcnt = 0;
568 	u32 idx;
569 
570 	for (idx = 0; idx < (1U << old_log); idx++) {
571 		oroot = &old_array[idx];
572 		while ((op = rb_first(oroot)) != NULL) {
573 			rb_erase(op, oroot);
574 			of = container_of(op, struct fq_flow, fq_node);
575 			if (fq_gc_candidate(of)) {
576 				fcnt++;
577 				kmem_cache_free(fq_flow_cachep, of);
578 				continue;
579 			}
580 			nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
581 
582 			np = &nroot->rb_node;
583 			parent = NULL;
584 			while (*np) {
585 				parent = *np;
586 
587 				nf = container_of(parent, struct fq_flow, fq_node);
588 				BUG_ON(nf->sk == of->sk);
589 
590 				if (nf->sk > of->sk)
591 					np = &parent->rb_right;
592 				else
593 					np = &parent->rb_left;
594 			}
595 
596 			rb_link_node(&of->fq_node, parent, np);
597 			rb_insert_color(&of->fq_node, nroot);
598 		}
599 	}
600 	q->flows -= fcnt;
601 	q->inactive_flows -= fcnt;
602 	q->stat_gc_flows += fcnt;
603 }
604 
605 static void *fq_alloc_node(size_t sz, int node)
606 {
607 	void *ptr;
608 
609 	ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
610 	if (!ptr)
611 		ptr = vmalloc_node(sz, node);
612 	return ptr;
613 }
614 
615 static void fq_free(void *addr)
616 {
617 	kvfree(addr);
618 }
619 
620 static int fq_resize(struct Qdisc *sch, u32 log)
621 {
622 	struct fq_sched_data *q = qdisc_priv(sch);
623 	struct rb_root *array;
624 	void *old_fq_root;
625 	u32 idx;
626 
627 	if (q->fq_root && log == q->fq_trees_log)
628 		return 0;
629 
630 	/* If XPS was setup, we can allocate memory on right NUMA node */
631 	array = fq_alloc_node(sizeof(struct rb_root) << log,
632 			      netdev_queue_numa_node_read(sch->dev_queue));
633 	if (!array)
634 		return -ENOMEM;
635 
636 	for (idx = 0; idx < (1U << log); idx++)
637 		array[idx] = RB_ROOT;
638 
639 	sch_tree_lock(sch);
640 
641 	old_fq_root = q->fq_root;
642 	if (old_fq_root)
643 		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
644 
645 	q->fq_root = array;
646 	q->fq_trees_log = log;
647 
648 	sch_tree_unlock(sch);
649 
650 	fq_free(old_fq_root);
651 
652 	return 0;
653 }
654 
655 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
656 	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
657 	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
658 	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
659 	[TCA_FQ_INITIAL_QUANTUM]	= { .type = NLA_U32 },
660 	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
661 	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
662 	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
663 	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
664 	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
665 };
666 
667 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
668 {
669 	struct fq_sched_data *q = qdisc_priv(sch);
670 	struct nlattr *tb[TCA_FQ_MAX + 1];
671 	int err, drop_count = 0;
672 	unsigned drop_len = 0;
673 	u32 fq_log;
674 
675 	if (!opt)
676 		return -EINVAL;
677 
678 	err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
679 	if (err < 0)
680 		return err;
681 
682 	sch_tree_lock(sch);
683 
684 	fq_log = q->fq_trees_log;
685 
686 	if (tb[TCA_FQ_BUCKETS_LOG]) {
687 		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
688 
689 		if (nval >= 1 && nval <= ilog2(256*1024))
690 			fq_log = nval;
691 		else
692 			err = -EINVAL;
693 	}
694 	if (tb[TCA_FQ_PLIMIT])
695 		sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
696 
697 	if (tb[TCA_FQ_FLOW_PLIMIT])
698 		q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
699 
700 	if (tb[TCA_FQ_QUANTUM]) {
701 		u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
702 
703 		if (quantum > 0)
704 			q->quantum = quantum;
705 		else
706 			err = -EINVAL;
707 	}
708 
709 	if (tb[TCA_FQ_INITIAL_QUANTUM])
710 		q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
711 
712 	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
713 		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
714 				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
715 
716 	if (tb[TCA_FQ_FLOW_MAX_RATE])
717 		q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
718 
719 	if (tb[TCA_FQ_RATE_ENABLE]) {
720 		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
721 
722 		if (enable <= 1)
723 			q->rate_enable = enable;
724 		else
725 			err = -EINVAL;
726 	}
727 
728 	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
729 		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
730 
731 		q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
732 	}
733 
734 	if (tb[TCA_FQ_ORPHAN_MASK])
735 		q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
736 
737 	if (!err) {
738 		sch_tree_unlock(sch);
739 		err = fq_resize(sch, fq_log);
740 		sch_tree_lock(sch);
741 	}
742 	while (sch->q.qlen > sch->limit) {
743 		struct sk_buff *skb = fq_dequeue(sch);
744 
745 		if (!skb)
746 			break;
747 		drop_len += qdisc_pkt_len(skb);
748 		rtnl_kfree_skbs(skb, skb);
749 		drop_count++;
750 	}
751 	qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
752 
753 	sch_tree_unlock(sch);
754 	return err;
755 }
756 
757 static void fq_destroy(struct Qdisc *sch)
758 {
759 	struct fq_sched_data *q = qdisc_priv(sch);
760 
761 	fq_reset(sch);
762 	fq_free(q->fq_root);
763 	qdisc_watchdog_cancel(&q->watchdog);
764 }
765 
766 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
767 {
768 	struct fq_sched_data *q = qdisc_priv(sch);
769 	int err;
770 
771 	sch->limit		= 10000;
772 	q->flow_plimit		= 100;
773 	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
774 	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
775 	q->flow_refill_delay	= msecs_to_jiffies(40);
776 	q->flow_max_rate	= ~0U;
777 	q->rate_enable		= 1;
778 	q->new_flows.first	= NULL;
779 	q->old_flows.first	= NULL;
780 	q->delayed		= RB_ROOT;
781 	q->fq_root		= NULL;
782 	q->fq_trees_log		= ilog2(1024);
783 	q->orphan_mask		= 1024 - 1;
784 	qdisc_watchdog_init(&q->watchdog, sch);
785 
786 	if (opt)
787 		err = fq_change(sch, opt);
788 	else
789 		err = fq_resize(sch, q->fq_trees_log);
790 
791 	return err;
792 }
793 
794 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
795 {
796 	struct fq_sched_data *q = qdisc_priv(sch);
797 	struct nlattr *opts;
798 
799 	opts = nla_nest_start(skb, TCA_OPTIONS);
800 	if (opts == NULL)
801 		goto nla_put_failure;
802 
803 	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
804 
805 	if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
806 	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
807 	    nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
808 	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
809 	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
810 	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
811 	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
812 			jiffies_to_usecs(q->flow_refill_delay)) ||
813 	    nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
814 	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
815 		goto nla_put_failure;
816 
817 	return nla_nest_end(skb, opts);
818 
819 nla_put_failure:
820 	return -1;
821 }
822 
823 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
824 {
825 	struct fq_sched_data *q = qdisc_priv(sch);
826 	u64 now = ktime_get_ns();
827 	struct tc_fq_qd_stats st = {
828 		.gc_flows		= q->stat_gc_flows,
829 		.highprio_packets	= q->stat_internal_packets,
830 		.tcp_retrans		= q->stat_tcp_retrans,
831 		.throttled		= q->stat_throttled,
832 		.flows_plimit		= q->stat_flows_plimit,
833 		.pkts_too_long		= q->stat_pkts_too_long,
834 		.allocation_errors	= q->stat_allocation_errors,
835 		.flows			= q->flows,
836 		.inactive_flows		= q->inactive_flows,
837 		.throttled_flows	= q->throttled_flows,
838 		.time_next_delayed_flow	= q->time_next_delayed_flow - now,
839 	};
840 
841 	return gnet_stats_copy_app(d, &st, sizeof(st));
842 }
843 
844 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
845 	.id		=	"fq",
846 	.priv_size	=	sizeof(struct fq_sched_data),
847 
848 	.enqueue	=	fq_enqueue,
849 	.dequeue	=	fq_dequeue,
850 	.peek		=	qdisc_peek_dequeued,
851 	.init		=	fq_init,
852 	.reset		=	fq_reset,
853 	.destroy	=	fq_destroy,
854 	.change		=	fq_change,
855 	.dump		=	fq_dump,
856 	.dump_stats	=	fq_dump_stats,
857 	.owner		=	THIS_MODULE,
858 };
859 
860 static int __init fq_module_init(void)
861 {
862 	int ret;
863 
864 	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
865 					   sizeof(struct fq_flow),
866 					   0, 0, NULL);
867 	if (!fq_flow_cachep)
868 		return -ENOMEM;
869 
870 	ret = register_qdisc(&fq_qdisc_ops);
871 	if (ret)
872 		kmem_cache_destroy(fq_flow_cachep);
873 	return ret;
874 }
875 
876 static void __exit fq_module_exit(void)
877 {
878 	unregister_qdisc(&fq_qdisc_ops);
879 	kmem_cache_destroy(fq_flow_cachep);
880 }
881 
882 module_init(fq_module_init)
883 module_exit(fq_module_exit)
884 MODULE_AUTHOR("Eric Dumazet");
885 MODULE_LICENSE("GPL");
886