xref: /linux/net/sched/sch_fq.c (revision 95f68e06b41b9e88291796efa3969409d13fdd4c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
4  *
5  *  Copyright (C) 2013-2023 Eric Dumazet <edumazet@google.com>
6  *
7  *  Meant to be mostly used for locally generated traffic :
8  *  Fast classification depends on skb->sk being set before reaching us.
9  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
10  *  All packets belonging to a socket are considered as a 'flow'.
11  *
12  *  Flows are dynamically allocated and stored in a hash table of RB trees
13  *  They are also part of one Round Robin 'queues' (new or old flows)
14  *
15  *  Burst avoidance (aka pacing) capability :
16  *
17  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
18  *  bunch of packets, and this packet scheduler adds delay between
19  *  packets to respect rate limitation.
20  *
21  *  enqueue() :
22  *   - lookup one RB tree (out of 1024 or more) to find the flow.
23  *     If non existent flow, create it, add it to the tree.
24  *     Add skb to the per flow list of skb (fifo).
25  *   - Use a special fifo for high prio packets
26  *
27  *  dequeue() : serves flows in Round Robin
28  *  Note : When a flow becomes empty, we do not immediately remove it from
29  *  rb trees, for performance reasons (its expected to send additional packets,
30  *  or SLAB cache will reuse socket for another flow)
31  */
32 
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/jiffies.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/errno.h>
40 #include <linux/init.h>
41 #include <linux/skbuff.h>
42 #include <linux/slab.h>
43 #include <linux/rbtree.h>
44 #include <linux/hash.h>
45 #include <linux/prefetch.h>
46 #include <linux/vmalloc.h>
47 #include <net/netlink.h>
48 #include <net/pkt_sched.h>
49 #include <net/sock.h>
50 #include <net/tcp_states.h>
51 #include <net/tcp.h>
52 
53 struct fq_skb_cb {
54 	u64	time_to_send;
55 	u8	band;
56 };
57 
58 static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
59 {
60 	qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
61 	return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
62 }
63 
64 /*
65  * Per flow structure, dynamically allocated.
66  * If packets have monotically increasing time_to_send, they are placed in O(1)
67  * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
68  */
69 struct fq_flow {
70 /* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
71 	struct rb_root	t_root;
72 	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
73 	union {
74 		struct sk_buff *tail;	/* last skb in the list */
75 		unsigned long  age;	/* (jiffies | 1UL) when flow was emptied, for gc */
76 	};
77 	union {
78 		struct rb_node	fq_node;	/* anchor in fq_root[] trees */
79 		/* Following field is only used for q->internal,
80 		 * because q->internal is not hashed in fq_root[]
81 		 */
82 		u64		stat_fastpath_packets;
83 	};
84 	struct sock	*sk;
85 	u32		socket_hash;	/* sk_hash */
86 	int		qlen;		/* number of packets in flow queue */
87 
88 /* Second cache line */
89 	int		credit;
90 	int		band;
91 	struct fq_flow *next;		/* next pointer in RR lists */
92 
93 	struct rb_node  rate_node;	/* anchor in q->delayed tree */
94 	u64		time_next_packet;
95 };
96 
97 struct fq_flow_head {
98 	struct fq_flow *first;
99 	struct fq_flow *last;
100 };
101 
102 struct fq_perband_flows {
103 	struct fq_flow_head new_flows;
104 	struct fq_flow_head old_flows;
105 	int		    credit;
106 	int		    quantum; /* based on band nr : 576KB, 192KB, 64KB */
107 };
108 
109 #define FQ_PRIO2BAND_CRUMB_SIZE ((TC_PRIO_MAX + 1) >> 2)
110 
111 struct fq_sched_data {
112 /* Read mostly cache line */
113 
114 	u64		offload_horizon;
115 	u32		quantum;
116 	u32		initial_quantum;
117 	u32		flow_refill_delay;
118 	u32		flow_plimit;	/* max packets per flow */
119 	unsigned long	flow_max_rate;	/* optional max rate per flow */
120 	u64		ce_threshold;
121 	u64		horizon;	/* horizon in ns */
122 	u32		orphan_mask;	/* mask for orphaned skb */
123 	u32		low_rate_threshold;
124 	struct rb_root	*fq_root;
125 	u8		rate_enable;
126 	u8		fq_trees_log;
127 	u8		horizon_drop;
128 	u8		prio2band[FQ_PRIO2BAND_CRUMB_SIZE];
129 	u32		timer_slack; /* hrtimer slack in ns */
130 
131 /* Read/Write fields. */
132 
133 	unsigned int band_nr; /* band being serviced in fq_dequeue() */
134 
135 	struct fq_perband_flows band_flows[FQ_BANDS];
136 
137 	struct fq_flow	internal;	/* fastpath queue. */
138 	struct rb_root	delayed;	/* for rate limited flows */
139 	u64		time_next_delayed_flow;
140 	unsigned long	unthrottle_latency_ns;
141 
142 	u32		band_pkt_count[FQ_BANDS];
143 	u32		flows;
144 	u32		inactive_flows; /* Flows with no packet to send. */
145 	u32		throttled_flows;
146 
147 	u64		stat_throttled;
148 	struct qdisc_watchdog watchdog;
149 	u64		stat_gc_flows;
150 
151 /* Seldom used fields. */
152 
153 	u64		stat_band_drops[FQ_BANDS];
154 	u64		stat_ce_mark;
155 	u64		stat_horizon_drops;
156 	u64		stat_horizon_caps;
157 	u64		stat_flows_plimit;
158 	u64		stat_pkts_too_long;
159 	u64		stat_allocation_errors;
160 };
161 
162 /* return the i-th 2-bit value ("crumb") */
163 static u8 fq_prio2band(const u8 *prio2band, unsigned int prio)
164 {
165 	return (READ_ONCE(prio2band[prio / 4]) >> (2 * (prio & 0x3))) & 0x3;
166 }
167 
168 /*
169  * f->tail and f->age share the same location.
170  * We can use the low order bit to differentiate if this location points
171  * to a sk_buff or contains a jiffies value, if we force this value to be odd.
172  * This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
173  */
174 static void fq_flow_set_detached(struct fq_flow *f)
175 {
176 	f->age = jiffies | 1UL;
177 }
178 
179 static bool fq_flow_is_detached(const struct fq_flow *f)
180 {
181 	return !!(f->age & 1UL);
182 }
183 
184 /* special value to mark a throttled flow (not on old/new list) */
185 static struct fq_flow throttled;
186 
187 static bool fq_flow_is_throttled(const struct fq_flow *f)
188 {
189 	return f->next == &throttled;
190 }
191 
192 enum new_flow {
193 	NEW_FLOW,
194 	OLD_FLOW
195 };
196 
197 static void fq_flow_add_tail(struct fq_sched_data *q, struct fq_flow *flow,
198 			     enum new_flow list_sel)
199 {
200 	struct fq_perband_flows *pband = &q->band_flows[flow->band];
201 	struct fq_flow_head *head = (list_sel == NEW_FLOW) ?
202 					&pband->new_flows :
203 					&pband->old_flows;
204 
205 	if (head->first)
206 		head->last->next = flow;
207 	else
208 		head->first = flow;
209 	head->last = flow;
210 	flow->next = NULL;
211 }
212 
213 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
214 {
215 	rb_erase(&f->rate_node, &q->delayed);
216 	q->throttled_flows--;
217 	fq_flow_add_tail(q, f, OLD_FLOW);
218 }
219 
220 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
221 {
222 	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
223 
224 	while (*p) {
225 		struct fq_flow *aux;
226 
227 		parent = *p;
228 		aux = rb_entry(parent, struct fq_flow, rate_node);
229 		if (f->time_next_packet >= aux->time_next_packet)
230 			p = &parent->rb_right;
231 		else
232 			p = &parent->rb_left;
233 	}
234 	rb_link_node(&f->rate_node, parent, p);
235 	rb_insert_color(&f->rate_node, &q->delayed);
236 	q->throttled_flows++;
237 	q->stat_throttled++;
238 
239 	f->next = &throttled;
240 	if (q->time_next_delayed_flow > f->time_next_packet)
241 		q->time_next_delayed_flow = f->time_next_packet;
242 }
243 
244 
245 static struct kmem_cache *fq_flow_cachep __read_mostly;
246 
247 
248 /* limit number of collected flows per round */
249 #define FQ_GC_MAX 8
250 #define FQ_GC_AGE (3*HZ)
251 
252 static bool fq_gc_candidate(const struct fq_flow *f)
253 {
254 	return fq_flow_is_detached(f) &&
255 	       time_after(jiffies, f->age + FQ_GC_AGE);
256 }
257 
258 static void fq_gc(struct fq_sched_data *q,
259 		  struct rb_root *root,
260 		  struct sock *sk)
261 {
262 	struct rb_node **p, *parent;
263 	void *tofree[FQ_GC_MAX];
264 	struct fq_flow *f;
265 	int i, fcnt = 0;
266 
267 	p = &root->rb_node;
268 	parent = NULL;
269 	while (*p) {
270 		parent = *p;
271 
272 		f = rb_entry(parent, struct fq_flow, fq_node);
273 		if (f->sk == sk)
274 			break;
275 
276 		if (fq_gc_candidate(f)) {
277 			tofree[fcnt++] = f;
278 			if (fcnt == FQ_GC_MAX)
279 				break;
280 		}
281 
282 		if (f->sk > sk)
283 			p = &parent->rb_right;
284 		else
285 			p = &parent->rb_left;
286 	}
287 
288 	if (!fcnt)
289 		return;
290 
291 	for (i = fcnt; i > 0; ) {
292 		f = tofree[--i];
293 		rb_erase(&f->fq_node, root);
294 	}
295 	q->flows -= fcnt;
296 	q->inactive_flows -= fcnt;
297 	q->stat_gc_flows += fcnt;
298 
299 	kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree);
300 }
301 
302 /* Fast path can be used if :
303  * 1) Packet tstamp is in the past, or within the pacing offload horizon.
304  * 2) FQ qlen == 0   OR
305  *   (no flow is currently eligible for transmit,
306  *    AND fast path queue has less than 8 packets)
307  * 3) No SO_MAX_PACING_RATE on the socket (if any).
308  * 4) No @maxrate attribute on this qdisc,
309  *
310  * FQ can not use generic TCQ_F_CAN_BYPASS infrastructure.
311  */
312 static bool fq_fastpath_check(const struct Qdisc *sch, struct sk_buff *skb,
313 			      u64 now)
314 {
315 	const struct fq_sched_data *q = qdisc_priv(sch);
316 	const struct sock *sk;
317 
318 	if (fq_skb_cb(skb)->time_to_send > now + q->offload_horizon)
319 		return false;
320 
321 	if (sch->q.qlen != 0) {
322 		/* Even if some packets are stored in this qdisc,
323 		 * we can still enable fast path if all of them are
324 		 * scheduled in the future (ie no flows are eligible)
325 		 * or in the fast path queue.
326 		 */
327 		if (q->flows != q->inactive_flows + q->throttled_flows)
328 			return false;
329 
330 		/* Do not allow fast path queue to explode, we want Fair Queue mode
331 		 * under pressure.
332 		 */
333 		if (q->internal.qlen >= 8)
334 			return false;
335 
336 		/* Ordering invariants fall apart if some delayed flows
337 		 * are ready but we haven't serviced them, yet.
338 		 */
339 		if (q->time_next_delayed_flow <= now + q->offload_horizon)
340 			return false;
341 	}
342 
343 	sk = skb->sk;
344 	if (sk && sk_fullsock(sk) && !sk_is_tcp(sk) &&
345 	    sk->sk_max_pacing_rate != ~0UL)
346 		return false;
347 
348 	if (q->flow_max_rate != ~0UL)
349 		return false;
350 
351 	return true;
352 }
353 
354 static struct fq_flow *fq_classify(struct Qdisc *sch, struct sk_buff *skb,
355 				   u64 now)
356 {
357 	struct fq_sched_data *q = qdisc_priv(sch);
358 	struct rb_node **p, *parent;
359 	struct sock *sk = skb->sk;
360 	struct rb_root *root;
361 	struct fq_flow *f;
362 
363 	/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
364 	 * or a listener (SYNCOOKIE mode)
365 	 * 1) request sockets are not full blown,
366 	 *    they do not contain sk_pacing_rate
367 	 * 2) They are not part of a 'flow' yet
368 	 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
369 	 *    especially if the listener set SO_MAX_PACING_RATE
370 	 * 4) We pretend they are orphaned
371 	 * TCP can also associate TIME_WAIT sockets with RST or ACK packets.
372 	 */
373 	if (!sk || sk_listener_or_tw(sk)) {
374 		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
375 
376 		/* By forcing low order bit to 1, we make sure to not
377 		 * collide with a local flow (socket pointers are word aligned)
378 		 */
379 		sk = (struct sock *)((hash << 1) | 1UL);
380 		skb_orphan(skb);
381 	} else if (sk->sk_state == TCP_CLOSE) {
382 		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
383 		/*
384 		 * Sockets in TCP_CLOSE are non connected.
385 		 * Typical use case is UDP sockets, they can send packets
386 		 * with sendto() to many different destinations.
387 		 * We probably could use a generic bit advertising
388 		 * non connected sockets, instead of sk_state == TCP_CLOSE,
389 		 * if we care enough.
390 		 */
391 		sk = (struct sock *)((hash << 1) | 1UL);
392 	}
393 
394 	if (fq_fastpath_check(sch, skb, now)) {
395 		q->internal.stat_fastpath_packets++;
396 		if (skb->sk == sk && q->rate_enable &&
397 		    READ_ONCE(sk->sk_pacing_status) != SK_PACING_FQ)
398 			smp_store_release(&sk->sk_pacing_status,
399 					  SK_PACING_FQ);
400 		return &q->internal;
401 	}
402 
403 	root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
404 
405 	fq_gc(q, root, sk);
406 
407 	p = &root->rb_node;
408 	parent = NULL;
409 	while (*p) {
410 		parent = *p;
411 
412 		f = rb_entry(parent, struct fq_flow, fq_node);
413 		if (f->sk == sk) {
414 			/* socket might have been reallocated, so check
415 			 * if its sk_hash is the same.
416 			 * It not, we need to refill credit with
417 			 * initial quantum
418 			 */
419 			if (unlikely(skb->sk == sk &&
420 				     f->socket_hash != sk->sk_hash)) {
421 				f->credit = q->initial_quantum;
422 				f->socket_hash = sk->sk_hash;
423 				if (q->rate_enable)
424 					smp_store_release(&sk->sk_pacing_status,
425 							  SK_PACING_FQ);
426 				if (fq_flow_is_throttled(f))
427 					fq_flow_unset_throttled(q, f);
428 				f->time_next_packet = 0ULL;
429 			}
430 			return f;
431 		}
432 		if (f->sk > sk)
433 			p = &parent->rb_right;
434 		else
435 			p = &parent->rb_left;
436 	}
437 
438 	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
439 	if (unlikely(!f)) {
440 		q->stat_allocation_errors++;
441 		return &q->internal;
442 	}
443 	/* f->t_root is already zeroed after kmem_cache_zalloc() */
444 
445 	fq_flow_set_detached(f);
446 	f->sk = sk;
447 	if (skb->sk == sk) {
448 		f->socket_hash = sk->sk_hash;
449 		if (q->rate_enable)
450 			smp_store_release(&sk->sk_pacing_status,
451 					  SK_PACING_FQ);
452 	}
453 	f->credit = q->initial_quantum;
454 
455 	rb_link_node(&f->fq_node, parent, p);
456 	rb_insert_color(&f->fq_node, root);
457 
458 	q->flows++;
459 	q->inactive_flows++;
460 	return f;
461 }
462 
463 static struct sk_buff *fq_peek(struct fq_flow *flow)
464 {
465 	struct sk_buff *skb = skb_rb_first(&flow->t_root);
466 	struct sk_buff *head = flow->head;
467 
468 	if (!skb)
469 		return head;
470 
471 	if (!head)
472 		return skb;
473 
474 	if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
475 		return skb;
476 	return head;
477 }
478 
479 static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
480 			  struct sk_buff *skb)
481 {
482 	if (skb == flow->head) {
483 		flow->head = skb->next;
484 	} else {
485 		rb_erase(&skb->rbnode, &flow->t_root);
486 		skb->dev = qdisc_dev(sch);
487 	}
488 }
489 
490 /* Remove one skb from flow queue.
491  * This skb must be the return value of prior fq_peek().
492  */
493 static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow,
494 			   struct sk_buff *skb)
495 {
496 	fq_erase_head(sch, flow, skb);
497 	skb_mark_not_on_list(skb);
498 	qdisc_qstats_backlog_dec(sch, skb);
499 	sch->q.qlen--;
500 }
501 
502 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
503 {
504 	struct rb_node **p, *parent;
505 	struct sk_buff *head, *aux;
506 
507 	head = flow->head;
508 	if (!head ||
509 	    fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
510 		if (!head)
511 			flow->head = skb;
512 		else
513 			flow->tail->next = skb;
514 		flow->tail = skb;
515 		skb->next = NULL;
516 		return;
517 	}
518 
519 	p = &flow->t_root.rb_node;
520 	parent = NULL;
521 
522 	while (*p) {
523 		parent = *p;
524 		aux = rb_to_skb(parent);
525 		if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
526 			p = &parent->rb_right;
527 		else
528 			p = &parent->rb_left;
529 	}
530 	rb_link_node(&skb->rbnode, parent, p);
531 	rb_insert_color(&skb->rbnode, &flow->t_root);
532 }
533 
534 static bool fq_packet_beyond_horizon(const struct sk_buff *skb,
535 				     const struct fq_sched_data *q, u64 now)
536 {
537 	return unlikely((s64)skb->tstamp > (s64)(now + q->horizon));
538 }
539 
540 #define FQDR(reason) SKB_DROP_REASON_FQ_##reason
541 
542 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
543 		      struct sk_buff **to_free)
544 {
545 	struct fq_sched_data *q = qdisc_priv(sch);
546 	struct fq_flow *f;
547 	u64 now;
548 	u8 band;
549 
550 	band = fq_prio2band(q->prio2band, skb->priority & TC_PRIO_MAX);
551 	if (unlikely(q->band_pkt_count[band] >= sch->limit)) {
552 		q->stat_band_drops[band]++;
553 		return qdisc_drop_reason(skb, sch, to_free,
554 					 FQDR(BAND_LIMIT));
555 	}
556 
557 	now = ktime_get_ns();
558 	if (!skb->tstamp) {
559 		fq_skb_cb(skb)->time_to_send = now;
560 	} else {
561 		/* Check if packet timestamp is too far in the future. */
562 		if (fq_packet_beyond_horizon(skb, q, now)) {
563 			if (q->horizon_drop) {
564 				q->stat_horizon_drops++;
565 				return qdisc_drop_reason(skb, sch, to_free,
566 							 FQDR(HORIZON_LIMIT));
567 			}
568 			q->stat_horizon_caps++;
569 			skb->tstamp = now + q->horizon;
570 		}
571 		fq_skb_cb(skb)->time_to_send = skb->tstamp;
572 	}
573 
574 	f = fq_classify(sch, skb, now);
575 
576 	if (f != &q->internal) {
577 		if (unlikely(f->qlen >= q->flow_plimit)) {
578 			q->stat_flows_plimit++;
579 			return qdisc_drop_reason(skb, sch, to_free,
580 						 FQDR(FLOW_LIMIT));
581 		}
582 
583 		if (fq_flow_is_detached(f)) {
584 			fq_flow_add_tail(q, f, NEW_FLOW);
585 			if (time_after(jiffies, f->age + q->flow_refill_delay))
586 				f->credit = max_t(u32, f->credit, q->quantum);
587 		}
588 
589 		f->band = band;
590 		q->band_pkt_count[band]++;
591 		fq_skb_cb(skb)->band = band;
592 		if (f->qlen == 0)
593 			q->inactive_flows--;
594 	}
595 
596 	f->qlen++;
597 	/* Note: this overwrites f->age */
598 	flow_queue_add(f, skb);
599 
600 	qdisc_qstats_backlog_inc(sch, skb);
601 	sch->q.qlen++;
602 
603 	return NET_XMIT_SUCCESS;
604 }
605 #undef FQDR
606 
607 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
608 {
609 	unsigned long sample;
610 	struct rb_node *p;
611 
612 	if (q->time_next_delayed_flow > now + q->offload_horizon)
613 		return;
614 
615 	/* Update unthrottle latency EWMA.
616 	 * This is cheap and can help diagnosing timer/latency problems.
617 	 */
618 	sample = (unsigned long)(now - q->time_next_delayed_flow);
619 	if ((long)sample > 0) {
620 		q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
621 		q->unthrottle_latency_ns += sample >> 3;
622 	}
623 	now += q->offload_horizon;
624 
625 	q->time_next_delayed_flow = ~0ULL;
626 	while ((p = rb_first(&q->delayed)) != NULL) {
627 		struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
628 
629 		if (f->time_next_packet > now) {
630 			q->time_next_delayed_flow = f->time_next_packet;
631 			break;
632 		}
633 		fq_flow_unset_throttled(q, f);
634 	}
635 }
636 
637 static struct fq_flow_head *fq_pband_head_select(struct fq_perband_flows *pband)
638 {
639 	if (pband->credit <= 0)
640 		return NULL;
641 
642 	if (pband->new_flows.first)
643 		return &pband->new_flows;
644 
645 	return pband->old_flows.first ? &pband->old_flows : NULL;
646 }
647 
648 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
649 {
650 	struct fq_sched_data *q = qdisc_priv(sch);
651 	struct fq_perband_flows *pband;
652 	struct fq_flow_head *head;
653 	struct sk_buff *skb;
654 	struct fq_flow *f;
655 	unsigned long rate;
656 	int retry;
657 	u32 plen;
658 	u64 now;
659 
660 	if (!sch->q.qlen)
661 		return NULL;
662 
663 	skb = fq_peek(&q->internal);
664 	if (unlikely(skb)) {
665 		q->internal.qlen--;
666 		fq_dequeue_skb(sch, &q->internal, skb);
667 		goto out;
668 	}
669 
670 	now = ktime_get_ns();
671 	fq_check_throttled(q, now);
672 	retry = 0;
673 	pband = &q->band_flows[q->band_nr];
674 begin:
675 	head = fq_pband_head_select(pband);
676 	if (!head) {
677 		while (++retry <= FQ_BANDS) {
678 			if (++q->band_nr == FQ_BANDS)
679 				q->band_nr = 0;
680 			pband = &q->band_flows[q->band_nr];
681 			pband->credit = min(pband->credit + pband->quantum,
682 					    pband->quantum);
683 			if (pband->credit > 0)
684 				goto begin;
685 			retry = 0;
686 		}
687 		if (q->time_next_delayed_flow != ~0ULL)
688 			qdisc_watchdog_schedule_range_ns(&q->watchdog,
689 							q->time_next_delayed_flow,
690 							q->timer_slack);
691 		return NULL;
692 	}
693 	f = head->first;
694 	retry = 0;
695 	if (f->credit <= 0) {
696 		f->credit += q->quantum;
697 		head->first = f->next;
698 		fq_flow_add_tail(q, f, OLD_FLOW);
699 		goto begin;
700 	}
701 
702 	skb = fq_peek(f);
703 	if (skb) {
704 		u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
705 					     f->time_next_packet);
706 
707 		if (now + q->offload_horizon < time_next_packet) {
708 			head->first = f->next;
709 			f->time_next_packet = time_next_packet;
710 			fq_flow_set_throttled(q, f);
711 			goto begin;
712 		}
713 		prefetch(&skb->end);
714 		if ((s64)(now - time_next_packet - q->ce_threshold) > 0) {
715 			INET_ECN_set_ce(skb);
716 			q->stat_ce_mark++;
717 		}
718 		if (--f->qlen == 0)
719 			q->inactive_flows++;
720 		q->band_pkt_count[fq_skb_cb(skb)->band]--;
721 		fq_dequeue_skb(sch, f, skb);
722 	} else {
723 		head->first = f->next;
724 		/* force a pass through old_flows to prevent starvation */
725 		if (head == &pband->new_flows) {
726 			fq_flow_add_tail(q, f, OLD_FLOW);
727 		} else {
728 			fq_flow_set_detached(f);
729 		}
730 		goto begin;
731 	}
732 	plen = qdisc_pkt_len(skb);
733 	f->credit -= plen;
734 	pband->credit -= plen;
735 
736 	if (!q->rate_enable)
737 		goto out;
738 
739 	rate = q->flow_max_rate;
740 
741 	/* If EDT time was provided for this skb, we need to
742 	 * update f->time_next_packet only if this qdisc enforces
743 	 * a flow max rate.
744 	 */
745 	if (!skb->tstamp) {
746 		if (skb->sk)
747 			rate = min(READ_ONCE(skb->sk->sk_pacing_rate), rate);
748 
749 		if (rate <= q->low_rate_threshold) {
750 			f->credit = 0;
751 		} else {
752 			plen = max(plen, q->quantum);
753 			if (f->credit > 0)
754 				goto out;
755 		}
756 	}
757 	if (rate != ~0UL) {
758 		u64 len = (u64)plen * NSEC_PER_SEC;
759 
760 		if (likely(rate))
761 			len = div64_ul(len, rate);
762 		/* Since socket rate can change later,
763 		 * clamp the delay to 1 second.
764 		 * Really, providers of too big packets should be fixed !
765 		 */
766 		if (unlikely(len > NSEC_PER_SEC)) {
767 			len = NSEC_PER_SEC;
768 			q->stat_pkts_too_long++;
769 		}
770 		/* Account for schedule/timers drifts.
771 		 * f->time_next_packet was set when prior packet was sent,
772 		 * and current time (@now) can be too late by tens of us.
773 		 */
774 		if (f->time_next_packet)
775 			len -= min(len/2, now - f->time_next_packet);
776 		f->time_next_packet = now + len;
777 	}
778 out:
779 	qdisc_bstats_update(sch, skb);
780 	return skb;
781 }
782 
783 static void fq_flow_purge(struct fq_flow *flow)
784 {
785 	struct rb_node *p = rb_first(&flow->t_root);
786 
787 	while (p) {
788 		struct sk_buff *skb = rb_to_skb(p);
789 
790 		p = rb_next(p);
791 		rb_erase(&skb->rbnode, &flow->t_root);
792 		rtnl_kfree_skbs(skb, skb);
793 	}
794 	rtnl_kfree_skbs(flow->head, flow->tail);
795 	flow->head = NULL;
796 	flow->qlen = 0;
797 }
798 
799 static void fq_reset(struct Qdisc *sch)
800 {
801 	struct fq_sched_data *q = qdisc_priv(sch);
802 	struct rb_root *root;
803 	struct rb_node *p;
804 	struct fq_flow *f;
805 	unsigned int idx;
806 
807 	sch->q.qlen = 0;
808 	sch->qstats.backlog = 0;
809 
810 	fq_flow_purge(&q->internal);
811 
812 	if (!q->fq_root)
813 		return;
814 
815 	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
816 		root = &q->fq_root[idx];
817 		while ((p = rb_first(root)) != NULL) {
818 			f = rb_entry(p, struct fq_flow, fq_node);
819 			rb_erase(p, root);
820 
821 			fq_flow_purge(f);
822 
823 			kmem_cache_free(fq_flow_cachep, f);
824 		}
825 	}
826 	for (idx = 0; idx < FQ_BANDS; idx++) {
827 		q->band_flows[idx].new_flows.first = NULL;
828 		q->band_flows[idx].old_flows.first = NULL;
829 	}
830 	q->delayed		= RB_ROOT;
831 	q->flows		= 0;
832 	q->inactive_flows	= 0;
833 	q->throttled_flows	= 0;
834 }
835 
836 static void fq_rehash(struct fq_sched_data *q,
837 		      struct rb_root *old_array, u32 old_log,
838 		      struct rb_root *new_array, u32 new_log)
839 {
840 	struct rb_node *op, **np, *parent;
841 	struct rb_root *oroot, *nroot;
842 	struct fq_flow *of, *nf;
843 	int fcnt = 0;
844 	u32 idx;
845 
846 	for (idx = 0; idx < (1U << old_log); idx++) {
847 		oroot = &old_array[idx];
848 		while ((op = rb_first(oroot)) != NULL) {
849 			rb_erase(op, oroot);
850 			of = rb_entry(op, struct fq_flow, fq_node);
851 			if (fq_gc_candidate(of)) {
852 				fcnt++;
853 				kmem_cache_free(fq_flow_cachep, of);
854 				continue;
855 			}
856 			nroot = &new_array[hash_ptr(of->sk, new_log)];
857 
858 			np = &nroot->rb_node;
859 			parent = NULL;
860 			while (*np) {
861 				parent = *np;
862 
863 				nf = rb_entry(parent, struct fq_flow, fq_node);
864 				BUG_ON(nf->sk == of->sk);
865 
866 				if (nf->sk > of->sk)
867 					np = &parent->rb_right;
868 				else
869 					np = &parent->rb_left;
870 			}
871 
872 			rb_link_node(&of->fq_node, parent, np);
873 			rb_insert_color(&of->fq_node, nroot);
874 		}
875 	}
876 	q->flows -= fcnt;
877 	q->inactive_flows -= fcnt;
878 	q->stat_gc_flows += fcnt;
879 }
880 
881 static void fq_free(void *addr)
882 {
883 	kvfree(addr);
884 }
885 
886 static int fq_resize(struct Qdisc *sch, u32 log)
887 {
888 	struct fq_sched_data *q = qdisc_priv(sch);
889 	struct rb_root *array;
890 	void *old_fq_root;
891 	u32 idx;
892 
893 	if (q->fq_root && log == q->fq_trees_log)
894 		return 0;
895 
896 	/* If XPS was setup, we can allocate memory on right NUMA node */
897 	array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
898 			      netdev_queue_numa_node_read(sch->dev_queue));
899 	if (!array)
900 		return -ENOMEM;
901 
902 	for (idx = 0; idx < (1U << log); idx++)
903 		array[idx] = RB_ROOT;
904 
905 	sch_tree_lock(sch);
906 
907 	old_fq_root = q->fq_root;
908 	if (old_fq_root)
909 		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
910 
911 	q->fq_root = array;
912 	WRITE_ONCE(q->fq_trees_log, log);
913 
914 	sch_tree_unlock(sch);
915 
916 	fq_free(old_fq_root);
917 
918 	return 0;
919 }
920 
921 static const struct netlink_range_validation iq_range = {
922 	.max = INT_MAX,
923 };
924 
925 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
926 	[TCA_FQ_UNSPEC]			= { .strict_start_type = TCA_FQ_TIMER_SLACK },
927 
928 	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
929 	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
930 	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
931 	[TCA_FQ_INITIAL_QUANTUM]	= NLA_POLICY_FULL_RANGE(NLA_U32, &iq_range),
932 	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
933 	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
934 	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
935 	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
936 	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
937 	[TCA_FQ_ORPHAN_MASK]		= { .type = NLA_U32 },
938 	[TCA_FQ_LOW_RATE_THRESHOLD]	= { .type = NLA_U32 },
939 	[TCA_FQ_CE_THRESHOLD]		= { .type = NLA_U32 },
940 	[TCA_FQ_TIMER_SLACK]		= { .type = NLA_U32 },
941 	[TCA_FQ_HORIZON]		= { .type = NLA_U32 },
942 	[TCA_FQ_HORIZON_DROP]		= { .type = NLA_U8 },
943 	[TCA_FQ_PRIOMAP]		= NLA_POLICY_EXACT_LEN(sizeof(struct tc_prio_qopt)),
944 	[TCA_FQ_WEIGHTS]		= NLA_POLICY_EXACT_LEN(FQ_BANDS * sizeof(s32)),
945 	[TCA_FQ_OFFLOAD_HORIZON]	= { .type = NLA_U32 },
946 };
947 
948 /* compress a u8 array with all elems <= 3 to an array of 2-bit fields */
949 static void fq_prio2band_compress_crumb(const u8 *in, u8 *out)
950 {
951 	const int num_elems = TC_PRIO_MAX + 1;
952 	u8 tmp[FQ_PRIO2BAND_CRUMB_SIZE];
953 	int i;
954 
955 	memset(tmp, 0, sizeof(tmp));
956 	for (i = 0; i < num_elems; i++)
957 		tmp[i / 4] |= in[i] << (2 * (i & 0x3));
958 
959 	for (i = 0; i < FQ_PRIO2BAND_CRUMB_SIZE; i++)
960 		WRITE_ONCE(out[i], tmp[i]);
961 }
962 
963 static void fq_prio2band_decompress_crumb(const u8 *in, u8 *out)
964 {
965 	const int num_elems = TC_PRIO_MAX + 1;
966 	int i;
967 
968 	for (i = 0; i < num_elems; i++)
969 		out[i] = fq_prio2band(in, i);
970 }
971 
972 static int fq_load_weights(struct fq_sched_data *q,
973 			   const struct nlattr *attr,
974 			   struct netlink_ext_ack *extack)
975 {
976 	s32 *weights = nla_data(attr);
977 	int i;
978 
979 	for (i = 0; i < FQ_BANDS; i++) {
980 		if (weights[i] < FQ_MIN_WEIGHT) {
981 			NL_SET_ERR_MSG_FMT_MOD(extack, "Weight %d less that minimum allowed %d",
982 					       weights[i], FQ_MIN_WEIGHT);
983 			return -EINVAL;
984 		}
985 	}
986 	for (i = 0; i < FQ_BANDS; i++)
987 		WRITE_ONCE(q->band_flows[i].quantum, weights[i]);
988 	return 0;
989 }
990 
991 static int fq_load_priomap(struct fq_sched_data *q,
992 			   const struct nlattr *attr,
993 			   struct netlink_ext_ack *extack)
994 {
995 	const struct tc_prio_qopt *map = nla_data(attr);
996 	int i;
997 
998 	if (map->bands != FQ_BANDS) {
999 		NL_SET_ERR_MSG_MOD(extack, "FQ only supports 3 bands");
1000 		return -EINVAL;
1001 	}
1002 	for (i = 0; i < TC_PRIO_MAX + 1; i++) {
1003 		if (map->priomap[i] >= FQ_BANDS) {
1004 			NL_SET_ERR_MSG_FMT_MOD(extack, "FQ priomap field %d maps to a too high band %d",
1005 					       i, map->priomap[i]);
1006 			return -EINVAL;
1007 		}
1008 	}
1009 	fq_prio2band_compress_crumb(map->priomap, q->prio2band);
1010 	return 0;
1011 }
1012 
1013 static int fq_change(struct Qdisc *sch, struct nlattr *opt,
1014 		     struct netlink_ext_ack *extack)
1015 {
1016 	struct fq_sched_data *q = qdisc_priv(sch);
1017 	struct nlattr *tb[TCA_FQ_MAX + 1];
1018 	int err, drop_count = 0;
1019 	unsigned drop_len = 0;
1020 	u32 fq_log;
1021 
1022 	err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
1023 					  NULL);
1024 	if (err < 0)
1025 		return err;
1026 
1027 	sch_tree_lock(sch);
1028 
1029 	fq_log = q->fq_trees_log;
1030 
1031 	if (tb[TCA_FQ_BUCKETS_LOG]) {
1032 		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
1033 
1034 		if (nval >= 1 && nval <= ilog2(256*1024))
1035 			fq_log = nval;
1036 		else
1037 			err = -EINVAL;
1038 	}
1039 	if (tb[TCA_FQ_PLIMIT])
1040 		WRITE_ONCE(sch->limit,
1041 			   nla_get_u32(tb[TCA_FQ_PLIMIT]));
1042 
1043 	if (tb[TCA_FQ_FLOW_PLIMIT])
1044 		WRITE_ONCE(q->flow_plimit,
1045 			   nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]));
1046 
1047 	if (tb[TCA_FQ_QUANTUM]) {
1048 		u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
1049 
1050 		if (quantum > 0 && quantum <= (1 << 20)) {
1051 			WRITE_ONCE(q->quantum, quantum);
1052 		} else {
1053 			NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
1054 			err = -EINVAL;
1055 		}
1056 	}
1057 
1058 	if (tb[TCA_FQ_INITIAL_QUANTUM])
1059 		WRITE_ONCE(q->initial_quantum,
1060 			   nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]));
1061 
1062 	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
1063 		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
1064 				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
1065 
1066 	if (tb[TCA_FQ_FLOW_MAX_RATE]) {
1067 		u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
1068 
1069 		WRITE_ONCE(q->flow_max_rate,
1070 			   (rate == ~0U) ? ~0UL : rate);
1071 	}
1072 	if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
1073 		WRITE_ONCE(q->low_rate_threshold,
1074 			   nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]));
1075 
1076 	if (tb[TCA_FQ_RATE_ENABLE]) {
1077 		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
1078 
1079 		if (enable <= 1)
1080 			WRITE_ONCE(q->rate_enable,
1081 				   enable);
1082 		else
1083 			err = -EINVAL;
1084 	}
1085 
1086 	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
1087 		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
1088 
1089 		WRITE_ONCE(q->flow_refill_delay,
1090 			   usecs_to_jiffies(usecs_delay));
1091 	}
1092 
1093 	if (!err && tb[TCA_FQ_PRIOMAP])
1094 		err = fq_load_priomap(q, tb[TCA_FQ_PRIOMAP], extack);
1095 
1096 	if (!err && tb[TCA_FQ_WEIGHTS])
1097 		err = fq_load_weights(q, tb[TCA_FQ_WEIGHTS], extack);
1098 
1099 	if (tb[TCA_FQ_ORPHAN_MASK])
1100 		WRITE_ONCE(q->orphan_mask,
1101 			   nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]));
1102 
1103 	if (tb[TCA_FQ_CE_THRESHOLD])
1104 		WRITE_ONCE(q->ce_threshold,
1105 			   (u64)NSEC_PER_USEC *
1106 			   nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]));
1107 
1108 	if (tb[TCA_FQ_TIMER_SLACK])
1109 		WRITE_ONCE(q->timer_slack,
1110 			   nla_get_u32(tb[TCA_FQ_TIMER_SLACK]));
1111 
1112 	if (tb[TCA_FQ_HORIZON])
1113 		WRITE_ONCE(q->horizon,
1114 			   (u64)NSEC_PER_USEC *
1115 			   nla_get_u32(tb[TCA_FQ_HORIZON]));
1116 
1117 	if (tb[TCA_FQ_HORIZON_DROP])
1118 		WRITE_ONCE(q->horizon_drop,
1119 			   nla_get_u8(tb[TCA_FQ_HORIZON_DROP]));
1120 
1121 	if (tb[TCA_FQ_OFFLOAD_HORIZON]) {
1122 		u64 offload_horizon = (u64)NSEC_PER_USEC *
1123 				      nla_get_u32(tb[TCA_FQ_OFFLOAD_HORIZON]);
1124 
1125 		if (offload_horizon <= qdisc_dev(sch)->max_pacing_offload_horizon) {
1126 			WRITE_ONCE(q->offload_horizon, offload_horizon);
1127 		} else {
1128 			NL_SET_ERR_MSG_MOD(extack, "invalid offload_horizon");
1129 			err = -EINVAL;
1130 		}
1131 	}
1132 	if (!err) {
1133 
1134 		sch_tree_unlock(sch);
1135 		err = fq_resize(sch, fq_log);
1136 		sch_tree_lock(sch);
1137 	}
1138 	while (sch->q.qlen > sch->limit) {
1139 		struct sk_buff *skb = fq_dequeue(sch);
1140 
1141 		if (!skb)
1142 			break;
1143 		drop_len += qdisc_pkt_len(skb);
1144 		rtnl_kfree_skbs(skb, skb);
1145 		drop_count++;
1146 	}
1147 	qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
1148 
1149 	sch_tree_unlock(sch);
1150 	return err;
1151 }
1152 
1153 static void fq_destroy(struct Qdisc *sch)
1154 {
1155 	struct fq_sched_data *q = qdisc_priv(sch);
1156 
1157 	fq_reset(sch);
1158 	fq_free(q->fq_root);
1159 	qdisc_watchdog_cancel(&q->watchdog);
1160 }
1161 
1162 static int fq_init(struct Qdisc *sch, struct nlattr *opt,
1163 		   struct netlink_ext_ack *extack)
1164 {
1165 	struct fq_sched_data *q = qdisc_priv(sch);
1166 	int i, err;
1167 
1168 	sch->limit		= 10000;
1169 	q->flow_plimit		= 100;
1170 	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
1171 	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
1172 	q->flow_refill_delay	= msecs_to_jiffies(40);
1173 	q->flow_max_rate	= ~0UL;
1174 	q->time_next_delayed_flow = ~0ULL;
1175 	q->rate_enable		= 1;
1176 	for (i = 0; i < FQ_BANDS; i++) {
1177 		q->band_flows[i].new_flows.first = NULL;
1178 		q->band_flows[i].old_flows.first = NULL;
1179 	}
1180 	q->band_flows[0].quantum = 9 << 16;
1181 	q->band_flows[1].quantum = 3 << 16;
1182 	q->band_flows[2].quantum = 1 << 16;
1183 	q->delayed		= RB_ROOT;
1184 	q->fq_root		= NULL;
1185 	q->fq_trees_log		= ilog2(1024);
1186 	q->orphan_mask		= 1024 - 1;
1187 	q->low_rate_threshold	= 550000 / 8;
1188 
1189 	q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */
1190 
1191 	q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */
1192 	q->horizon_drop = 1; /* by default, drop packets beyond horizon */
1193 
1194 	/* Default ce_threshold of 4294 seconds */
1195 	q->ce_threshold		= (u64)NSEC_PER_USEC * ~0U;
1196 
1197 	fq_prio2band_compress_crumb(sch_default_prio2band, q->prio2band);
1198 	qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
1199 
1200 	if (opt)
1201 		err = fq_change(sch, opt, extack);
1202 	else
1203 		err = fq_resize(sch, q->fq_trees_log);
1204 
1205 	return err;
1206 }
1207 
1208 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
1209 {
1210 	struct fq_sched_data *q = qdisc_priv(sch);
1211 	struct tc_prio_qopt prio = {
1212 		.bands = FQ_BANDS,
1213 	};
1214 	struct nlattr *opts;
1215 	u64 offload_horizon;
1216 	u64 ce_threshold;
1217 	s32 weights[3];
1218 	u64 horizon;
1219 
1220 	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
1221 	if (opts == NULL)
1222 		goto nla_put_failure;
1223 
1224 	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
1225 
1226 	ce_threshold = READ_ONCE(q->ce_threshold);
1227 	do_div(ce_threshold, NSEC_PER_USEC);
1228 
1229 	horizon = READ_ONCE(q->horizon);
1230 	do_div(horizon, NSEC_PER_USEC);
1231 
1232 	offload_horizon = READ_ONCE(q->offload_horizon);
1233 	do_div(offload_horizon, NSEC_PER_USEC);
1234 
1235 	if (nla_put_u32(skb, TCA_FQ_PLIMIT,
1236 			READ_ONCE(sch->limit)) ||
1237 	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT,
1238 			READ_ONCE(q->flow_plimit)) ||
1239 	    nla_put_u32(skb, TCA_FQ_QUANTUM,
1240 			READ_ONCE(q->quantum)) ||
1241 	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM,
1242 			READ_ONCE(q->initial_quantum)) ||
1243 	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE,
1244 			READ_ONCE(q->rate_enable)) ||
1245 	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
1246 			min_t(unsigned long,
1247 			      READ_ONCE(q->flow_max_rate), ~0U)) ||
1248 	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
1249 			jiffies_to_usecs(READ_ONCE(q->flow_refill_delay))) ||
1250 	    nla_put_u32(skb, TCA_FQ_ORPHAN_MASK,
1251 			READ_ONCE(q->orphan_mask)) ||
1252 	    nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
1253 			READ_ONCE(q->low_rate_threshold)) ||
1254 	    nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
1255 	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG,
1256 			READ_ONCE(q->fq_trees_log)) ||
1257 	    nla_put_u32(skb, TCA_FQ_TIMER_SLACK,
1258 			READ_ONCE(q->timer_slack)) ||
1259 	    nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
1260 	    nla_put_u32(skb, TCA_FQ_OFFLOAD_HORIZON, (u32)offload_horizon) ||
1261 	    nla_put_u8(skb, TCA_FQ_HORIZON_DROP,
1262 		       READ_ONCE(q->horizon_drop)))
1263 		goto nla_put_failure;
1264 
1265 	fq_prio2band_decompress_crumb(q->prio2band, prio.priomap);
1266 	if (nla_put(skb, TCA_FQ_PRIOMAP, sizeof(prio), &prio))
1267 		goto nla_put_failure;
1268 
1269 	weights[0] = READ_ONCE(q->band_flows[0].quantum);
1270 	weights[1] = READ_ONCE(q->band_flows[1].quantum);
1271 	weights[2] = READ_ONCE(q->band_flows[2].quantum);
1272 	if (nla_put(skb, TCA_FQ_WEIGHTS, sizeof(weights), &weights))
1273 		goto nla_put_failure;
1274 
1275 	return nla_nest_end(skb, opts);
1276 
1277 nla_put_failure:
1278 	return -1;
1279 }
1280 
1281 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
1282 {
1283 	struct fq_sched_data *q = qdisc_priv(sch);
1284 	struct tc_fq_qd_stats st;
1285 	int i;
1286 
1287 	st.pad = 0;
1288 
1289 	sch_tree_lock(sch);
1290 
1291 	st.gc_flows		  = q->stat_gc_flows;
1292 	st.highprio_packets	  = 0;
1293 	st.fastpath_packets	  = q->internal.stat_fastpath_packets;
1294 	st.tcp_retrans		  = 0;
1295 	st.throttled		  = q->stat_throttled;
1296 	st.flows_plimit		  = q->stat_flows_plimit;
1297 	st.pkts_too_long	  = q->stat_pkts_too_long;
1298 	st.allocation_errors	  = q->stat_allocation_errors;
1299 	st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack -
1300 				    ktime_get_ns();
1301 	st.flows		  = q->flows;
1302 	st.inactive_flows	  = q->inactive_flows;
1303 	st.throttled_flows	  = q->throttled_flows;
1304 	st.unthrottle_latency_ns  = min_t(unsigned long,
1305 					  q->unthrottle_latency_ns, ~0U);
1306 	st.ce_mark		  = q->stat_ce_mark;
1307 	st.horizon_drops	  = q->stat_horizon_drops;
1308 	st.horizon_caps		  = q->stat_horizon_caps;
1309 	for (i = 0; i < FQ_BANDS; i++) {
1310 		st.band_drops[i]  = q->stat_band_drops[i];
1311 		st.band_pkt_count[i] = q->band_pkt_count[i];
1312 	}
1313 	sch_tree_unlock(sch);
1314 
1315 	return gnet_stats_copy_app(d, &st, sizeof(st));
1316 }
1317 
1318 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
1319 	.id		=	"fq",
1320 	.priv_size	=	sizeof(struct fq_sched_data),
1321 
1322 	.enqueue	=	fq_enqueue,
1323 	.dequeue	=	fq_dequeue,
1324 	.peek		=	qdisc_peek_dequeued,
1325 	.init		=	fq_init,
1326 	.reset		=	fq_reset,
1327 	.destroy	=	fq_destroy,
1328 	.change		=	fq_change,
1329 	.dump		=	fq_dump,
1330 	.dump_stats	=	fq_dump_stats,
1331 	.owner		=	THIS_MODULE,
1332 };
1333 MODULE_ALIAS_NET_SCH("fq");
1334 
1335 static int __init fq_module_init(void)
1336 {
1337 	int ret;
1338 
1339 	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
1340 					   sizeof(struct fq_flow),
1341 					   0, SLAB_HWCACHE_ALIGN, NULL);
1342 	if (!fq_flow_cachep)
1343 		return -ENOMEM;
1344 
1345 	ret = register_qdisc(&fq_qdisc_ops);
1346 	if (ret)
1347 		kmem_cache_destroy(fq_flow_cachep);
1348 	return ret;
1349 }
1350 
1351 static void __exit fq_module_exit(void)
1352 {
1353 	unregister_qdisc(&fq_qdisc_ops);
1354 	kmem_cache_destroy(fq_flow_cachep);
1355 }
1356 
1357 module_init(fq_module_init)
1358 module_exit(fq_module_exit)
1359 MODULE_AUTHOR("Eric Dumazet");
1360 MODULE_LICENSE("GPL");
1361 MODULE_DESCRIPTION("Fair Queue Packet Scheduler");
1362