xref: /linux/net/sched/sch_fq.c (revision 2eff01ee2881becc9daaa0d53477ec202136b1f4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
4  *
5  *  Copyright (C) 2013-2023 Eric Dumazet <edumazet@google.com>
6  *
7  *  Meant to be mostly used for locally generated traffic :
8  *  Fast classification depends on skb->sk being set before reaching us.
9  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
10  *  All packets belonging to a socket are considered as a 'flow'.
11  *
12  *  Flows are dynamically allocated and stored in a hash table of RB trees
13  *  They are also part of one Round Robin 'queues' (new or old flows)
14  *
15  *  Burst avoidance (aka pacing) capability :
16  *
17  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
18  *  bunch of packets, and this packet scheduler adds delay between
19  *  packets to respect rate limitation.
20  *
21  *  enqueue() :
22  *   - lookup one RB tree (out of 1024 or more) to find the flow.
23  *     If non existent flow, create it, add it to the tree.
24  *     Add skb to the per flow list of skb (fifo).
25  *   - Use a special fifo for high prio packets
26  *
27  *  dequeue() : serves flows in Round Robin
28  *  Note : When a flow becomes empty, we do not immediately remove it from
29  *  rb trees, for performance reasons (its expected to send additional packets,
30  *  or SLAB cache will reuse socket for another flow)
31  */
32 
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/jiffies.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/errno.h>
40 #include <linux/init.h>
41 #include <linux/skbuff.h>
42 #include <linux/slab.h>
43 #include <linux/rbtree.h>
44 #include <linux/hash.h>
45 #include <linux/prefetch.h>
46 #include <linux/vmalloc.h>
47 #include <net/netlink.h>
48 #include <net/pkt_sched.h>
49 #include <net/sock.h>
50 #include <net/tcp_states.h>
51 #include <net/tcp.h>
52 
53 struct fq_skb_cb {
54 	u64	time_to_send;
55 	u8	band;
56 };
57 
58 static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
59 {
60 	qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
61 	return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
62 }
63 
64 /*
65  * Per flow structure, dynamically allocated.
66  * If packets have monotically increasing time_to_send, they are placed in O(1)
67  * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
68  */
69 struct fq_flow {
70 /* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
71 	struct rb_root	t_root;
72 	struct sk_buff	*head;		/* list of skbs for this flow : first skb */
73 	union {
74 		struct sk_buff *tail;	/* last skb in the list */
75 		unsigned long  age;	/* (jiffies | 1UL) when flow was emptied, for gc */
76 	};
77 	union {
78 		struct rb_node	fq_node;	/* anchor in fq_root[] trees */
79 		/* Following field is only used for q->internal,
80 		 * because q->internal is not hashed in fq_root[]
81 		 */
82 		u64		stat_fastpath_packets;
83 	};
84 	struct sock	*sk;
85 	u32		socket_hash;	/* sk_hash */
86 	int		qlen;		/* number of packets in flow queue */
87 
88 /* Second cache line */
89 	int		credit;
90 	int		band;
91 	struct fq_flow *next;		/* next pointer in RR lists */
92 
93 	struct rb_node  rate_node;	/* anchor in q->delayed tree */
94 	u64		time_next_packet;
95 };
96 
97 struct fq_flow_head {
98 	struct fq_flow *first;
99 	struct fq_flow *last;
100 };
101 
102 struct fq_perband_flows {
103 	struct fq_flow_head new_flows;
104 	struct fq_flow_head old_flows;
105 	int		    credit;
106 	int		    quantum; /* based on band nr : 576KB, 192KB, 64KB */
107 };
108 
109 #define FQ_PRIO2BAND_CRUMB_SIZE ((TC_PRIO_MAX + 1) >> 2)
110 
111 struct fq_sched_data {
112 /* Read mostly cache line */
113 
114 	u64		offload_horizon;
115 	u32		quantum;
116 	u32		initial_quantum;
117 	u32		flow_refill_delay;
118 	u32		flow_plimit;	/* max packets per flow */
119 	unsigned long	flow_max_rate;	/* optional max rate per flow */
120 	u64		ce_threshold;
121 	u64		horizon;	/* horizon in ns */
122 	u32		orphan_mask;	/* mask for orphaned skb */
123 	u32		low_rate_threshold;
124 	struct rb_root	*fq_root;
125 	u8		rate_enable;
126 	u8		fq_trees_log;
127 	u8		horizon_drop;
128 	u8		prio2band[FQ_PRIO2BAND_CRUMB_SIZE];
129 	u32		timer_slack; /* hrtimer slack in ns */
130 
131 /* Read/Write fields. */
132 
133 	unsigned int band_nr; /* band being serviced in fq_dequeue() */
134 
135 	struct fq_perband_flows band_flows[FQ_BANDS];
136 
137 	struct fq_flow	internal;	/* fastpath queue. */
138 	struct rb_root	delayed;	/* for rate limited flows */
139 	u64		time_next_delayed_flow;
140 	unsigned long	unthrottle_latency_ns;
141 
142 	u32		band_pkt_count[FQ_BANDS];
143 	u32		flows;
144 	u32		inactive_flows; /* Flows with no packet to send. */
145 	u32		throttled_flows;
146 
147 	u64		stat_throttled;
148 	struct qdisc_watchdog watchdog;
149 	u64		stat_gc_flows;
150 
151 /* Seldom used fields. */
152 
153 	u64		stat_band_drops[FQ_BANDS];
154 	u64		stat_ce_mark;
155 	u64		stat_horizon_drops;
156 	u64		stat_horizon_caps;
157 	u64		stat_flows_plimit;
158 	u64		stat_pkts_too_long;
159 	u64		stat_allocation_errors;
160 };
161 
162 /* return the i-th 2-bit value ("crumb") */
163 static u8 fq_prio2band(const u8 *prio2band, unsigned int prio)
164 {
165 	return (READ_ONCE(prio2band[prio / 4]) >> (2 * (prio & 0x3))) & 0x3;
166 }
167 
168 /*
169  * f->tail and f->age share the same location.
170  * We can use the low order bit to differentiate if this location points
171  * to a sk_buff or contains a jiffies value, if we force this value to be odd.
172  * This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
173  */
174 static void fq_flow_set_detached(struct fq_flow *f)
175 {
176 	f->age = jiffies | 1UL;
177 }
178 
179 static bool fq_flow_is_detached(const struct fq_flow *f)
180 {
181 	return !!(f->age & 1UL);
182 }
183 
184 /* special value to mark a throttled flow (not on old/new list) */
185 static struct fq_flow throttled;
186 
187 static bool fq_flow_is_throttled(const struct fq_flow *f)
188 {
189 	return f->next == &throttled;
190 }
191 
192 enum new_flow {
193 	NEW_FLOW,
194 	OLD_FLOW
195 };
196 
197 static void fq_flow_add_tail(struct fq_sched_data *q, struct fq_flow *flow,
198 			     enum new_flow list_sel)
199 {
200 	struct fq_perband_flows *pband = &q->band_flows[flow->band];
201 	struct fq_flow_head *head = (list_sel == NEW_FLOW) ?
202 					&pband->new_flows :
203 					&pband->old_flows;
204 
205 	if (head->first)
206 		head->last->next = flow;
207 	else
208 		head->first = flow;
209 	head->last = flow;
210 	flow->next = NULL;
211 }
212 
213 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
214 {
215 	rb_erase(&f->rate_node, &q->delayed);
216 	q->throttled_flows--;
217 	fq_flow_add_tail(q, f, OLD_FLOW);
218 }
219 
220 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
221 {
222 	struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
223 
224 	while (*p) {
225 		struct fq_flow *aux;
226 
227 		parent = *p;
228 		aux = rb_entry(parent, struct fq_flow, rate_node);
229 		if (f->time_next_packet >= aux->time_next_packet)
230 			p = &parent->rb_right;
231 		else
232 			p = &parent->rb_left;
233 	}
234 	rb_link_node(&f->rate_node, parent, p);
235 	rb_insert_color(&f->rate_node, &q->delayed);
236 	q->throttled_flows++;
237 	q->stat_throttled++;
238 
239 	f->next = &throttled;
240 	if (q->time_next_delayed_flow > f->time_next_packet)
241 		q->time_next_delayed_flow = f->time_next_packet;
242 }
243 
244 
245 static struct kmem_cache *fq_flow_cachep __read_mostly;
246 
247 
248 /* limit number of collected flows per round */
249 #define FQ_GC_MAX 8
250 #define FQ_GC_AGE (3*HZ)
251 
252 static bool fq_gc_candidate(const struct fq_flow *f)
253 {
254 	return fq_flow_is_detached(f) &&
255 	       time_after(jiffies, f->age + FQ_GC_AGE);
256 }
257 
258 static void fq_gc(struct fq_sched_data *q,
259 		  struct rb_root *root,
260 		  struct sock *sk)
261 {
262 	struct rb_node **p, *parent;
263 	void *tofree[FQ_GC_MAX];
264 	struct fq_flow *f;
265 	int i, fcnt = 0;
266 
267 	p = &root->rb_node;
268 	parent = NULL;
269 	while (*p) {
270 		parent = *p;
271 
272 		f = rb_entry(parent, struct fq_flow, fq_node);
273 		if (f->sk == sk)
274 			break;
275 
276 		if (fq_gc_candidate(f)) {
277 			tofree[fcnt++] = f;
278 			if (fcnt == FQ_GC_MAX)
279 				break;
280 		}
281 
282 		if (f->sk > sk)
283 			p = &parent->rb_right;
284 		else
285 			p = &parent->rb_left;
286 	}
287 
288 	if (!fcnt)
289 		return;
290 
291 	for (i = fcnt; i > 0; ) {
292 		f = tofree[--i];
293 		rb_erase(&f->fq_node, root);
294 	}
295 	q->flows -= fcnt;
296 	q->inactive_flows -= fcnt;
297 	q->stat_gc_flows += fcnt;
298 
299 	kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree);
300 }
301 
302 /* Fast path can be used if :
303  * 1) Packet tstamp is in the past, or within the pacing offload horizon.
304  * 2) FQ qlen == 0   OR
305  *   (no flow is currently eligible for transmit,
306  *    AND fast path queue has less than 8 packets)
307  * 3) No SO_MAX_PACING_RATE on the socket (if any).
308  * 4) No @maxrate attribute on this qdisc,
309  *
310  * FQ can not use generic TCQ_F_CAN_BYPASS infrastructure.
311  */
312 static bool fq_fastpath_check(const struct Qdisc *sch, struct sk_buff *skb,
313 			      u64 now)
314 {
315 	const struct fq_sched_data *q = qdisc_priv(sch);
316 	const struct sock *sk;
317 
318 	if (fq_skb_cb(skb)->time_to_send > now + q->offload_horizon)
319 		return false;
320 
321 	if (sch->q.qlen != 0) {
322 		/* Even if some packets are stored in this qdisc,
323 		 * we can still enable fast path if all of them are
324 		 * scheduled in the future (ie no flows are eligible)
325 		 * or in the fast path queue.
326 		 */
327 		if (q->flows != q->inactive_flows + q->throttled_flows)
328 			return false;
329 
330 		/* Do not allow fast path queue to explode, we want Fair Queue mode
331 		 * under pressure.
332 		 */
333 		if (q->internal.qlen >= 8)
334 			return false;
335 
336 		/* Ordering invariants fall apart if some delayed flows
337 		 * are ready but we haven't serviced them, yet.
338 		 */
339 		if (q->time_next_delayed_flow <= now + q->offload_horizon)
340 			return false;
341 	}
342 
343 	sk = skb->sk;
344 	if (sk && sk_fullsock(sk) && !sk_is_tcp(sk) &&
345 	    sk->sk_max_pacing_rate != ~0UL)
346 		return false;
347 
348 	if (q->flow_max_rate != ~0UL)
349 		return false;
350 
351 	return true;
352 }
353 
354 static struct fq_flow *fq_classify(struct Qdisc *sch, struct sk_buff *skb,
355 				   u64 now)
356 {
357 	struct fq_sched_data *q = qdisc_priv(sch);
358 	struct rb_node **p, *parent;
359 	struct sock *sk = skb->sk;
360 	struct rb_root *root;
361 	struct fq_flow *f;
362 
363 	/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
364 	 * or a listener (SYNCOOKIE mode)
365 	 * 1) request sockets are not full blown,
366 	 *    they do not contain sk_pacing_rate
367 	 * 2) They are not part of a 'flow' yet
368 	 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
369 	 *    especially if the listener set SO_MAX_PACING_RATE
370 	 * 4) We pretend they are orphaned
371 	 * TCP can also associate TIME_WAIT sockets with RST or ACK packets.
372 	 */
373 	if (!sk || sk_listener_or_tw(sk)) {
374 		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
375 
376 		/* By forcing low order bit to 1, we make sure to not
377 		 * collide with a local flow (socket pointers are word aligned)
378 		 */
379 		sk = (struct sock *)((hash << 1) | 1UL);
380 		skb_orphan(skb);
381 	} else if (sk->sk_state == TCP_CLOSE) {
382 		unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
383 		/*
384 		 * Sockets in TCP_CLOSE are non connected.
385 		 * Typical use case is UDP sockets, they can send packets
386 		 * with sendto() to many different destinations.
387 		 * We probably could use a generic bit advertising
388 		 * non connected sockets, instead of sk_state == TCP_CLOSE,
389 		 * if we care enough.
390 		 */
391 		sk = (struct sock *)((hash << 1) | 1UL);
392 	}
393 
394 	if (fq_fastpath_check(sch, skb, now)) {
395 		q->internal.stat_fastpath_packets++;
396 		if (skb->sk == sk && q->rate_enable &&
397 		    READ_ONCE(sk->sk_pacing_status) != SK_PACING_FQ)
398 			smp_store_release(&sk->sk_pacing_status,
399 					  SK_PACING_FQ);
400 		return &q->internal;
401 	}
402 
403 	root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
404 
405 	fq_gc(q, root, sk);
406 
407 	p = &root->rb_node;
408 	parent = NULL;
409 	while (*p) {
410 		parent = *p;
411 
412 		f = rb_entry(parent, struct fq_flow, fq_node);
413 		if (f->sk == sk) {
414 			/* socket might have been reallocated, so check
415 			 * if its sk_hash is the same.
416 			 * It not, we need to refill credit with
417 			 * initial quantum
418 			 */
419 			if (unlikely(skb->sk == sk &&
420 				     f->socket_hash != sk->sk_hash)) {
421 				f->credit = q->initial_quantum;
422 				f->socket_hash = sk->sk_hash;
423 				if (q->rate_enable)
424 					smp_store_release(&sk->sk_pacing_status,
425 							  SK_PACING_FQ);
426 				if (fq_flow_is_throttled(f))
427 					fq_flow_unset_throttled(q, f);
428 				f->time_next_packet = 0ULL;
429 			}
430 			return f;
431 		}
432 		if (f->sk > sk)
433 			p = &parent->rb_right;
434 		else
435 			p = &parent->rb_left;
436 	}
437 
438 	f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
439 	if (unlikely(!f)) {
440 		q->stat_allocation_errors++;
441 		return &q->internal;
442 	}
443 	/* f->t_root is already zeroed after kmem_cache_zalloc() */
444 
445 	fq_flow_set_detached(f);
446 	f->sk = sk;
447 	if (skb->sk == sk) {
448 		f->socket_hash = sk->sk_hash;
449 		if (q->rate_enable)
450 			smp_store_release(&sk->sk_pacing_status,
451 					  SK_PACING_FQ);
452 	}
453 	f->credit = q->initial_quantum;
454 
455 	rb_link_node(&f->fq_node, parent, p);
456 	rb_insert_color(&f->fq_node, root);
457 
458 	q->flows++;
459 	q->inactive_flows++;
460 	return f;
461 }
462 
463 static struct sk_buff *fq_peek(struct fq_flow *flow)
464 {
465 	struct sk_buff *skb = skb_rb_first(&flow->t_root);
466 	struct sk_buff *head = flow->head;
467 
468 	if (!skb)
469 		return head;
470 
471 	if (!head)
472 		return skb;
473 
474 	if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
475 		return skb;
476 	return head;
477 }
478 
479 static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
480 			  struct sk_buff *skb)
481 {
482 	if (skb == flow->head) {
483 		flow->head = skb->next;
484 	} else {
485 		rb_erase(&skb->rbnode, &flow->t_root);
486 		skb->dev = qdisc_dev(sch);
487 	}
488 }
489 
490 /* Remove one skb from flow queue.
491  * This skb must be the return value of prior fq_peek().
492  */
493 static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow,
494 			   struct sk_buff *skb)
495 {
496 	fq_erase_head(sch, flow, skb);
497 	skb_mark_not_on_list(skb);
498 	qdisc_qstats_backlog_dec(sch, skb);
499 	sch->q.qlen--;
500 }
501 
502 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
503 {
504 	struct rb_node **p, *parent;
505 	struct sk_buff *head, *aux;
506 
507 	head = flow->head;
508 	if (!head ||
509 	    fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
510 		if (!head)
511 			flow->head = skb;
512 		else
513 			flow->tail->next = skb;
514 		flow->tail = skb;
515 		skb->next = NULL;
516 		return;
517 	}
518 
519 	p = &flow->t_root.rb_node;
520 	parent = NULL;
521 
522 	while (*p) {
523 		parent = *p;
524 		aux = rb_to_skb(parent);
525 		if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
526 			p = &parent->rb_right;
527 		else
528 			p = &parent->rb_left;
529 	}
530 	rb_link_node(&skb->rbnode, parent, p);
531 	rb_insert_color(&skb->rbnode, &flow->t_root);
532 }
533 
534 static bool fq_packet_beyond_horizon(const struct sk_buff *skb,
535 				     const struct fq_sched_data *q, u64 now)
536 {
537 	return unlikely((s64)skb->tstamp > (s64)(now + q->horizon));
538 }
539 
540 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
541 		      struct sk_buff **to_free)
542 {
543 	struct fq_sched_data *q = qdisc_priv(sch);
544 	struct fq_flow *f;
545 	u64 now;
546 	u8 band;
547 
548 	band = fq_prio2band(q->prio2band, skb->priority & TC_PRIO_MAX);
549 	if (unlikely(q->band_pkt_count[band] >= sch->limit)) {
550 		q->stat_band_drops[band]++;
551 		return qdisc_drop(skb, sch, to_free);
552 	}
553 
554 	now = ktime_get_ns();
555 	if (!skb->tstamp) {
556 		fq_skb_cb(skb)->time_to_send = now;
557 	} else {
558 		/* Check if packet timestamp is too far in the future. */
559 		if (fq_packet_beyond_horizon(skb, q, now)) {
560 			if (q->horizon_drop) {
561 					q->stat_horizon_drops++;
562 					return qdisc_drop(skb, sch, to_free);
563 			}
564 			q->stat_horizon_caps++;
565 			skb->tstamp = now + q->horizon;
566 		}
567 		fq_skb_cb(skb)->time_to_send = skb->tstamp;
568 	}
569 
570 	f = fq_classify(sch, skb, now);
571 
572 	if (f != &q->internal) {
573 		if (unlikely(f->qlen >= q->flow_plimit)) {
574 			q->stat_flows_plimit++;
575 			return qdisc_drop(skb, sch, to_free);
576 		}
577 
578 		if (fq_flow_is_detached(f)) {
579 			fq_flow_add_tail(q, f, NEW_FLOW);
580 			if (time_after(jiffies, f->age + q->flow_refill_delay))
581 				f->credit = max_t(u32, f->credit, q->quantum);
582 		}
583 
584 		f->band = band;
585 		q->band_pkt_count[band]++;
586 		fq_skb_cb(skb)->band = band;
587 		if (f->qlen == 0)
588 			q->inactive_flows--;
589 	}
590 
591 	f->qlen++;
592 	/* Note: this overwrites f->age */
593 	flow_queue_add(f, skb);
594 
595 	qdisc_qstats_backlog_inc(sch, skb);
596 	sch->q.qlen++;
597 
598 	return NET_XMIT_SUCCESS;
599 }
600 
601 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
602 {
603 	unsigned long sample;
604 	struct rb_node *p;
605 
606 	if (q->time_next_delayed_flow > now + q->offload_horizon)
607 		return;
608 
609 	/* Update unthrottle latency EWMA.
610 	 * This is cheap and can help diagnosing timer/latency problems.
611 	 */
612 	sample = (unsigned long)(now - q->time_next_delayed_flow);
613 	if ((long)sample > 0) {
614 		q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
615 		q->unthrottle_latency_ns += sample >> 3;
616 	}
617 	now += q->offload_horizon;
618 
619 	q->time_next_delayed_flow = ~0ULL;
620 	while ((p = rb_first(&q->delayed)) != NULL) {
621 		struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
622 
623 		if (f->time_next_packet > now) {
624 			q->time_next_delayed_flow = f->time_next_packet;
625 			break;
626 		}
627 		fq_flow_unset_throttled(q, f);
628 	}
629 }
630 
631 static struct fq_flow_head *fq_pband_head_select(struct fq_perband_flows *pband)
632 {
633 	if (pband->credit <= 0)
634 		return NULL;
635 
636 	if (pband->new_flows.first)
637 		return &pband->new_flows;
638 
639 	return pband->old_flows.first ? &pband->old_flows : NULL;
640 }
641 
642 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
643 {
644 	struct fq_sched_data *q = qdisc_priv(sch);
645 	struct fq_perband_flows *pband;
646 	struct fq_flow_head *head;
647 	struct sk_buff *skb;
648 	struct fq_flow *f;
649 	unsigned long rate;
650 	int retry;
651 	u32 plen;
652 	u64 now;
653 
654 	if (!sch->q.qlen)
655 		return NULL;
656 
657 	skb = fq_peek(&q->internal);
658 	if (unlikely(skb)) {
659 		q->internal.qlen--;
660 		fq_dequeue_skb(sch, &q->internal, skb);
661 		goto out;
662 	}
663 
664 	now = ktime_get_ns();
665 	fq_check_throttled(q, now);
666 	retry = 0;
667 	pband = &q->band_flows[q->band_nr];
668 begin:
669 	head = fq_pband_head_select(pband);
670 	if (!head) {
671 		while (++retry <= FQ_BANDS) {
672 			if (++q->band_nr == FQ_BANDS)
673 				q->band_nr = 0;
674 			pband = &q->band_flows[q->band_nr];
675 			pband->credit = min(pband->credit + pband->quantum,
676 					    pband->quantum);
677 			if (pband->credit > 0)
678 				goto begin;
679 			retry = 0;
680 		}
681 		if (q->time_next_delayed_flow != ~0ULL)
682 			qdisc_watchdog_schedule_range_ns(&q->watchdog,
683 							q->time_next_delayed_flow,
684 							q->timer_slack);
685 		return NULL;
686 	}
687 	f = head->first;
688 	retry = 0;
689 	if (f->credit <= 0) {
690 		f->credit += q->quantum;
691 		head->first = f->next;
692 		fq_flow_add_tail(q, f, OLD_FLOW);
693 		goto begin;
694 	}
695 
696 	skb = fq_peek(f);
697 	if (skb) {
698 		u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
699 					     f->time_next_packet);
700 
701 		if (now + q->offload_horizon < time_next_packet) {
702 			head->first = f->next;
703 			f->time_next_packet = time_next_packet;
704 			fq_flow_set_throttled(q, f);
705 			goto begin;
706 		}
707 		prefetch(&skb->end);
708 		if ((s64)(now - time_next_packet - q->ce_threshold) > 0) {
709 			INET_ECN_set_ce(skb);
710 			q->stat_ce_mark++;
711 		}
712 		if (--f->qlen == 0)
713 			q->inactive_flows++;
714 		q->band_pkt_count[fq_skb_cb(skb)->band]--;
715 		fq_dequeue_skb(sch, f, skb);
716 	} else {
717 		head->first = f->next;
718 		/* force a pass through old_flows to prevent starvation */
719 		if (head == &pband->new_flows) {
720 			fq_flow_add_tail(q, f, OLD_FLOW);
721 		} else {
722 			fq_flow_set_detached(f);
723 		}
724 		goto begin;
725 	}
726 	plen = qdisc_pkt_len(skb);
727 	f->credit -= plen;
728 	pband->credit -= plen;
729 
730 	if (!q->rate_enable)
731 		goto out;
732 
733 	rate = q->flow_max_rate;
734 
735 	/* If EDT time was provided for this skb, we need to
736 	 * update f->time_next_packet only if this qdisc enforces
737 	 * a flow max rate.
738 	 */
739 	if (!skb->tstamp) {
740 		if (skb->sk)
741 			rate = min(READ_ONCE(skb->sk->sk_pacing_rate), rate);
742 
743 		if (rate <= q->low_rate_threshold) {
744 			f->credit = 0;
745 		} else {
746 			plen = max(plen, q->quantum);
747 			if (f->credit > 0)
748 				goto out;
749 		}
750 	}
751 	if (rate != ~0UL) {
752 		u64 len = (u64)plen * NSEC_PER_SEC;
753 
754 		if (likely(rate))
755 			len = div64_ul(len, rate);
756 		/* Since socket rate can change later,
757 		 * clamp the delay to 1 second.
758 		 * Really, providers of too big packets should be fixed !
759 		 */
760 		if (unlikely(len > NSEC_PER_SEC)) {
761 			len = NSEC_PER_SEC;
762 			q->stat_pkts_too_long++;
763 		}
764 		/* Account for schedule/timers drifts.
765 		 * f->time_next_packet was set when prior packet was sent,
766 		 * and current time (@now) can be too late by tens of us.
767 		 */
768 		if (f->time_next_packet)
769 			len -= min(len/2, now - f->time_next_packet);
770 		f->time_next_packet = now + len;
771 	}
772 out:
773 	qdisc_bstats_update(sch, skb);
774 	return skb;
775 }
776 
777 static void fq_flow_purge(struct fq_flow *flow)
778 {
779 	struct rb_node *p = rb_first(&flow->t_root);
780 
781 	while (p) {
782 		struct sk_buff *skb = rb_to_skb(p);
783 
784 		p = rb_next(p);
785 		rb_erase(&skb->rbnode, &flow->t_root);
786 		rtnl_kfree_skbs(skb, skb);
787 	}
788 	rtnl_kfree_skbs(flow->head, flow->tail);
789 	flow->head = NULL;
790 	flow->qlen = 0;
791 }
792 
793 static void fq_reset(struct Qdisc *sch)
794 {
795 	struct fq_sched_data *q = qdisc_priv(sch);
796 	struct rb_root *root;
797 	struct rb_node *p;
798 	struct fq_flow *f;
799 	unsigned int idx;
800 
801 	sch->q.qlen = 0;
802 	sch->qstats.backlog = 0;
803 
804 	fq_flow_purge(&q->internal);
805 
806 	if (!q->fq_root)
807 		return;
808 
809 	for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
810 		root = &q->fq_root[idx];
811 		while ((p = rb_first(root)) != NULL) {
812 			f = rb_entry(p, struct fq_flow, fq_node);
813 			rb_erase(p, root);
814 
815 			fq_flow_purge(f);
816 
817 			kmem_cache_free(fq_flow_cachep, f);
818 		}
819 	}
820 	for (idx = 0; idx < FQ_BANDS; idx++) {
821 		q->band_flows[idx].new_flows.first = NULL;
822 		q->band_flows[idx].old_flows.first = NULL;
823 	}
824 	q->delayed		= RB_ROOT;
825 	q->flows		= 0;
826 	q->inactive_flows	= 0;
827 	q->throttled_flows	= 0;
828 }
829 
830 static void fq_rehash(struct fq_sched_data *q,
831 		      struct rb_root *old_array, u32 old_log,
832 		      struct rb_root *new_array, u32 new_log)
833 {
834 	struct rb_node *op, **np, *parent;
835 	struct rb_root *oroot, *nroot;
836 	struct fq_flow *of, *nf;
837 	int fcnt = 0;
838 	u32 idx;
839 
840 	for (idx = 0; idx < (1U << old_log); idx++) {
841 		oroot = &old_array[idx];
842 		while ((op = rb_first(oroot)) != NULL) {
843 			rb_erase(op, oroot);
844 			of = rb_entry(op, struct fq_flow, fq_node);
845 			if (fq_gc_candidate(of)) {
846 				fcnt++;
847 				kmem_cache_free(fq_flow_cachep, of);
848 				continue;
849 			}
850 			nroot = &new_array[hash_ptr(of->sk, new_log)];
851 
852 			np = &nroot->rb_node;
853 			parent = NULL;
854 			while (*np) {
855 				parent = *np;
856 
857 				nf = rb_entry(parent, struct fq_flow, fq_node);
858 				BUG_ON(nf->sk == of->sk);
859 
860 				if (nf->sk > of->sk)
861 					np = &parent->rb_right;
862 				else
863 					np = &parent->rb_left;
864 			}
865 
866 			rb_link_node(&of->fq_node, parent, np);
867 			rb_insert_color(&of->fq_node, nroot);
868 		}
869 	}
870 	q->flows -= fcnt;
871 	q->inactive_flows -= fcnt;
872 	q->stat_gc_flows += fcnt;
873 }
874 
875 static void fq_free(void *addr)
876 {
877 	kvfree(addr);
878 }
879 
880 static int fq_resize(struct Qdisc *sch, u32 log)
881 {
882 	struct fq_sched_data *q = qdisc_priv(sch);
883 	struct rb_root *array;
884 	void *old_fq_root;
885 	u32 idx;
886 
887 	if (q->fq_root && log == q->fq_trees_log)
888 		return 0;
889 
890 	/* If XPS was setup, we can allocate memory on right NUMA node */
891 	array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
892 			      netdev_queue_numa_node_read(sch->dev_queue));
893 	if (!array)
894 		return -ENOMEM;
895 
896 	for (idx = 0; idx < (1U << log); idx++)
897 		array[idx] = RB_ROOT;
898 
899 	sch_tree_lock(sch);
900 
901 	old_fq_root = q->fq_root;
902 	if (old_fq_root)
903 		fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
904 
905 	q->fq_root = array;
906 	WRITE_ONCE(q->fq_trees_log, log);
907 
908 	sch_tree_unlock(sch);
909 
910 	fq_free(old_fq_root);
911 
912 	return 0;
913 }
914 
915 static const struct netlink_range_validation iq_range = {
916 	.max = INT_MAX,
917 };
918 
919 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
920 	[TCA_FQ_UNSPEC]			= { .strict_start_type = TCA_FQ_TIMER_SLACK },
921 
922 	[TCA_FQ_PLIMIT]			= { .type = NLA_U32 },
923 	[TCA_FQ_FLOW_PLIMIT]		= { .type = NLA_U32 },
924 	[TCA_FQ_QUANTUM]		= { .type = NLA_U32 },
925 	[TCA_FQ_INITIAL_QUANTUM]	= NLA_POLICY_FULL_RANGE(NLA_U32, &iq_range),
926 	[TCA_FQ_RATE_ENABLE]		= { .type = NLA_U32 },
927 	[TCA_FQ_FLOW_DEFAULT_RATE]	= { .type = NLA_U32 },
928 	[TCA_FQ_FLOW_MAX_RATE]		= { .type = NLA_U32 },
929 	[TCA_FQ_BUCKETS_LOG]		= { .type = NLA_U32 },
930 	[TCA_FQ_FLOW_REFILL_DELAY]	= { .type = NLA_U32 },
931 	[TCA_FQ_ORPHAN_MASK]		= { .type = NLA_U32 },
932 	[TCA_FQ_LOW_RATE_THRESHOLD]	= { .type = NLA_U32 },
933 	[TCA_FQ_CE_THRESHOLD]		= { .type = NLA_U32 },
934 	[TCA_FQ_TIMER_SLACK]		= { .type = NLA_U32 },
935 	[TCA_FQ_HORIZON]		= { .type = NLA_U32 },
936 	[TCA_FQ_HORIZON_DROP]		= { .type = NLA_U8 },
937 	[TCA_FQ_PRIOMAP]		= NLA_POLICY_EXACT_LEN(sizeof(struct tc_prio_qopt)),
938 	[TCA_FQ_WEIGHTS]		= NLA_POLICY_EXACT_LEN(FQ_BANDS * sizeof(s32)),
939 	[TCA_FQ_OFFLOAD_HORIZON]	= { .type = NLA_U32 },
940 };
941 
942 /* compress a u8 array with all elems <= 3 to an array of 2-bit fields */
943 static void fq_prio2band_compress_crumb(const u8 *in, u8 *out)
944 {
945 	const int num_elems = TC_PRIO_MAX + 1;
946 	u8 tmp[FQ_PRIO2BAND_CRUMB_SIZE];
947 	int i;
948 
949 	memset(tmp, 0, sizeof(tmp));
950 	for (i = 0; i < num_elems; i++)
951 		tmp[i / 4] |= in[i] << (2 * (i & 0x3));
952 
953 	for (i = 0; i < FQ_PRIO2BAND_CRUMB_SIZE; i++)
954 		WRITE_ONCE(out[i], tmp[i]);
955 }
956 
957 static void fq_prio2band_decompress_crumb(const u8 *in, u8 *out)
958 {
959 	const int num_elems = TC_PRIO_MAX + 1;
960 	int i;
961 
962 	for (i = 0; i < num_elems; i++)
963 		out[i] = fq_prio2band(in, i);
964 }
965 
966 static int fq_load_weights(struct fq_sched_data *q,
967 			   const struct nlattr *attr,
968 			   struct netlink_ext_ack *extack)
969 {
970 	s32 *weights = nla_data(attr);
971 	int i;
972 
973 	for (i = 0; i < FQ_BANDS; i++) {
974 		if (weights[i] < FQ_MIN_WEIGHT) {
975 			NL_SET_ERR_MSG_FMT_MOD(extack, "Weight %d less that minimum allowed %d",
976 					       weights[i], FQ_MIN_WEIGHT);
977 			return -EINVAL;
978 		}
979 	}
980 	for (i = 0; i < FQ_BANDS; i++)
981 		WRITE_ONCE(q->band_flows[i].quantum, weights[i]);
982 	return 0;
983 }
984 
985 static int fq_load_priomap(struct fq_sched_data *q,
986 			   const struct nlattr *attr,
987 			   struct netlink_ext_ack *extack)
988 {
989 	const struct tc_prio_qopt *map = nla_data(attr);
990 	int i;
991 
992 	if (map->bands != FQ_BANDS) {
993 		NL_SET_ERR_MSG_MOD(extack, "FQ only supports 3 bands");
994 		return -EINVAL;
995 	}
996 	for (i = 0; i < TC_PRIO_MAX + 1; i++) {
997 		if (map->priomap[i] >= FQ_BANDS) {
998 			NL_SET_ERR_MSG_FMT_MOD(extack, "FQ priomap field %d maps to a too high band %d",
999 					       i, map->priomap[i]);
1000 			return -EINVAL;
1001 		}
1002 	}
1003 	fq_prio2band_compress_crumb(map->priomap, q->prio2band);
1004 	return 0;
1005 }
1006 
1007 static int fq_change(struct Qdisc *sch, struct nlattr *opt,
1008 		     struct netlink_ext_ack *extack)
1009 {
1010 	struct fq_sched_data *q = qdisc_priv(sch);
1011 	struct nlattr *tb[TCA_FQ_MAX + 1];
1012 	int err, drop_count = 0;
1013 	unsigned drop_len = 0;
1014 	u32 fq_log;
1015 
1016 	err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
1017 					  NULL);
1018 	if (err < 0)
1019 		return err;
1020 
1021 	sch_tree_lock(sch);
1022 
1023 	fq_log = q->fq_trees_log;
1024 
1025 	if (tb[TCA_FQ_BUCKETS_LOG]) {
1026 		u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
1027 
1028 		if (nval >= 1 && nval <= ilog2(256*1024))
1029 			fq_log = nval;
1030 		else
1031 			err = -EINVAL;
1032 	}
1033 	if (tb[TCA_FQ_PLIMIT])
1034 		WRITE_ONCE(sch->limit,
1035 			   nla_get_u32(tb[TCA_FQ_PLIMIT]));
1036 
1037 	if (tb[TCA_FQ_FLOW_PLIMIT])
1038 		WRITE_ONCE(q->flow_plimit,
1039 			   nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]));
1040 
1041 	if (tb[TCA_FQ_QUANTUM]) {
1042 		u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
1043 
1044 		if (quantum > 0 && quantum <= (1 << 20)) {
1045 			WRITE_ONCE(q->quantum, quantum);
1046 		} else {
1047 			NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
1048 			err = -EINVAL;
1049 		}
1050 	}
1051 
1052 	if (tb[TCA_FQ_INITIAL_QUANTUM])
1053 		WRITE_ONCE(q->initial_quantum,
1054 			   nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]));
1055 
1056 	if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
1057 		pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
1058 				    nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
1059 
1060 	if (tb[TCA_FQ_FLOW_MAX_RATE]) {
1061 		u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
1062 
1063 		WRITE_ONCE(q->flow_max_rate,
1064 			   (rate == ~0U) ? ~0UL : rate);
1065 	}
1066 	if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
1067 		WRITE_ONCE(q->low_rate_threshold,
1068 			   nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]));
1069 
1070 	if (tb[TCA_FQ_RATE_ENABLE]) {
1071 		u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
1072 
1073 		if (enable <= 1)
1074 			WRITE_ONCE(q->rate_enable,
1075 				   enable);
1076 		else
1077 			err = -EINVAL;
1078 	}
1079 
1080 	if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
1081 		u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
1082 
1083 		WRITE_ONCE(q->flow_refill_delay,
1084 			   usecs_to_jiffies(usecs_delay));
1085 	}
1086 
1087 	if (!err && tb[TCA_FQ_PRIOMAP])
1088 		err = fq_load_priomap(q, tb[TCA_FQ_PRIOMAP], extack);
1089 
1090 	if (!err && tb[TCA_FQ_WEIGHTS])
1091 		err = fq_load_weights(q, tb[TCA_FQ_WEIGHTS], extack);
1092 
1093 	if (tb[TCA_FQ_ORPHAN_MASK])
1094 		WRITE_ONCE(q->orphan_mask,
1095 			   nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]));
1096 
1097 	if (tb[TCA_FQ_CE_THRESHOLD])
1098 		WRITE_ONCE(q->ce_threshold,
1099 			   (u64)NSEC_PER_USEC *
1100 			   nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]));
1101 
1102 	if (tb[TCA_FQ_TIMER_SLACK])
1103 		WRITE_ONCE(q->timer_slack,
1104 			   nla_get_u32(tb[TCA_FQ_TIMER_SLACK]));
1105 
1106 	if (tb[TCA_FQ_HORIZON])
1107 		WRITE_ONCE(q->horizon,
1108 			   (u64)NSEC_PER_USEC *
1109 			   nla_get_u32(tb[TCA_FQ_HORIZON]));
1110 
1111 	if (tb[TCA_FQ_HORIZON_DROP])
1112 		WRITE_ONCE(q->horizon_drop,
1113 			   nla_get_u8(tb[TCA_FQ_HORIZON_DROP]));
1114 
1115 	if (tb[TCA_FQ_OFFLOAD_HORIZON]) {
1116 		u64 offload_horizon = (u64)NSEC_PER_USEC *
1117 				      nla_get_u32(tb[TCA_FQ_OFFLOAD_HORIZON]);
1118 
1119 		if (offload_horizon <= qdisc_dev(sch)->max_pacing_offload_horizon) {
1120 			WRITE_ONCE(q->offload_horizon, offload_horizon);
1121 		} else {
1122 			NL_SET_ERR_MSG_MOD(extack, "invalid offload_horizon");
1123 			err = -EINVAL;
1124 		}
1125 	}
1126 	if (!err) {
1127 
1128 		sch_tree_unlock(sch);
1129 		err = fq_resize(sch, fq_log);
1130 		sch_tree_lock(sch);
1131 	}
1132 	while (sch->q.qlen > sch->limit) {
1133 		struct sk_buff *skb = fq_dequeue(sch);
1134 
1135 		if (!skb)
1136 			break;
1137 		drop_len += qdisc_pkt_len(skb);
1138 		rtnl_kfree_skbs(skb, skb);
1139 		drop_count++;
1140 	}
1141 	qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
1142 
1143 	sch_tree_unlock(sch);
1144 	return err;
1145 }
1146 
1147 static void fq_destroy(struct Qdisc *sch)
1148 {
1149 	struct fq_sched_data *q = qdisc_priv(sch);
1150 
1151 	fq_reset(sch);
1152 	fq_free(q->fq_root);
1153 	qdisc_watchdog_cancel(&q->watchdog);
1154 }
1155 
1156 static int fq_init(struct Qdisc *sch, struct nlattr *opt,
1157 		   struct netlink_ext_ack *extack)
1158 {
1159 	struct fq_sched_data *q = qdisc_priv(sch);
1160 	int i, err;
1161 
1162 	sch->limit		= 10000;
1163 	q->flow_plimit		= 100;
1164 	q->quantum		= 2 * psched_mtu(qdisc_dev(sch));
1165 	q->initial_quantum	= 10 * psched_mtu(qdisc_dev(sch));
1166 	q->flow_refill_delay	= msecs_to_jiffies(40);
1167 	q->flow_max_rate	= ~0UL;
1168 	q->time_next_delayed_flow = ~0ULL;
1169 	q->rate_enable		= 1;
1170 	for (i = 0; i < FQ_BANDS; i++) {
1171 		q->band_flows[i].new_flows.first = NULL;
1172 		q->band_flows[i].old_flows.first = NULL;
1173 	}
1174 	q->band_flows[0].quantum = 9 << 16;
1175 	q->band_flows[1].quantum = 3 << 16;
1176 	q->band_flows[2].quantum = 1 << 16;
1177 	q->delayed		= RB_ROOT;
1178 	q->fq_root		= NULL;
1179 	q->fq_trees_log		= ilog2(1024);
1180 	q->orphan_mask		= 1024 - 1;
1181 	q->low_rate_threshold	= 550000 / 8;
1182 
1183 	q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */
1184 
1185 	q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */
1186 	q->horizon_drop = 1; /* by default, drop packets beyond horizon */
1187 
1188 	/* Default ce_threshold of 4294 seconds */
1189 	q->ce_threshold		= (u64)NSEC_PER_USEC * ~0U;
1190 
1191 	fq_prio2band_compress_crumb(sch_default_prio2band, q->prio2band);
1192 	qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
1193 
1194 	if (opt)
1195 		err = fq_change(sch, opt, extack);
1196 	else
1197 		err = fq_resize(sch, q->fq_trees_log);
1198 
1199 	return err;
1200 }
1201 
1202 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
1203 {
1204 	struct fq_sched_data *q = qdisc_priv(sch);
1205 	struct tc_prio_qopt prio = {
1206 		.bands = FQ_BANDS,
1207 	};
1208 	struct nlattr *opts;
1209 	u64 offload_horizon;
1210 	u64 ce_threshold;
1211 	s32 weights[3];
1212 	u64 horizon;
1213 
1214 	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
1215 	if (opts == NULL)
1216 		goto nla_put_failure;
1217 
1218 	/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
1219 
1220 	ce_threshold = READ_ONCE(q->ce_threshold);
1221 	do_div(ce_threshold, NSEC_PER_USEC);
1222 
1223 	horizon = READ_ONCE(q->horizon);
1224 	do_div(horizon, NSEC_PER_USEC);
1225 
1226 	offload_horizon = READ_ONCE(q->offload_horizon);
1227 	do_div(offload_horizon, NSEC_PER_USEC);
1228 
1229 	if (nla_put_u32(skb, TCA_FQ_PLIMIT,
1230 			READ_ONCE(sch->limit)) ||
1231 	    nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT,
1232 			READ_ONCE(q->flow_plimit)) ||
1233 	    nla_put_u32(skb, TCA_FQ_QUANTUM,
1234 			READ_ONCE(q->quantum)) ||
1235 	    nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM,
1236 			READ_ONCE(q->initial_quantum)) ||
1237 	    nla_put_u32(skb, TCA_FQ_RATE_ENABLE,
1238 			READ_ONCE(q->rate_enable)) ||
1239 	    nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
1240 			min_t(unsigned long,
1241 			      READ_ONCE(q->flow_max_rate), ~0U)) ||
1242 	    nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
1243 			jiffies_to_usecs(READ_ONCE(q->flow_refill_delay))) ||
1244 	    nla_put_u32(skb, TCA_FQ_ORPHAN_MASK,
1245 			READ_ONCE(q->orphan_mask)) ||
1246 	    nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
1247 			READ_ONCE(q->low_rate_threshold)) ||
1248 	    nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
1249 	    nla_put_u32(skb, TCA_FQ_BUCKETS_LOG,
1250 			READ_ONCE(q->fq_trees_log)) ||
1251 	    nla_put_u32(skb, TCA_FQ_TIMER_SLACK,
1252 			READ_ONCE(q->timer_slack)) ||
1253 	    nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
1254 	    nla_put_u32(skb, TCA_FQ_OFFLOAD_HORIZON, (u32)offload_horizon) ||
1255 	    nla_put_u8(skb, TCA_FQ_HORIZON_DROP,
1256 		       READ_ONCE(q->horizon_drop)))
1257 		goto nla_put_failure;
1258 
1259 	fq_prio2band_decompress_crumb(q->prio2band, prio.priomap);
1260 	if (nla_put(skb, TCA_FQ_PRIOMAP, sizeof(prio), &prio))
1261 		goto nla_put_failure;
1262 
1263 	weights[0] = READ_ONCE(q->band_flows[0].quantum);
1264 	weights[1] = READ_ONCE(q->band_flows[1].quantum);
1265 	weights[2] = READ_ONCE(q->band_flows[2].quantum);
1266 	if (nla_put(skb, TCA_FQ_WEIGHTS, sizeof(weights), &weights))
1267 		goto nla_put_failure;
1268 
1269 	return nla_nest_end(skb, opts);
1270 
1271 nla_put_failure:
1272 	return -1;
1273 }
1274 
1275 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
1276 {
1277 	struct fq_sched_data *q = qdisc_priv(sch);
1278 	struct tc_fq_qd_stats st;
1279 	int i;
1280 
1281 	st.pad = 0;
1282 
1283 	sch_tree_lock(sch);
1284 
1285 	st.gc_flows		  = q->stat_gc_flows;
1286 	st.highprio_packets	  = 0;
1287 	st.fastpath_packets	  = q->internal.stat_fastpath_packets;
1288 	st.tcp_retrans		  = 0;
1289 	st.throttled		  = q->stat_throttled;
1290 	st.flows_plimit		  = q->stat_flows_plimit;
1291 	st.pkts_too_long	  = q->stat_pkts_too_long;
1292 	st.allocation_errors	  = q->stat_allocation_errors;
1293 	st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack -
1294 				    ktime_get_ns();
1295 	st.flows		  = q->flows;
1296 	st.inactive_flows	  = q->inactive_flows;
1297 	st.throttled_flows	  = q->throttled_flows;
1298 	st.unthrottle_latency_ns  = min_t(unsigned long,
1299 					  q->unthrottle_latency_ns, ~0U);
1300 	st.ce_mark		  = q->stat_ce_mark;
1301 	st.horizon_drops	  = q->stat_horizon_drops;
1302 	st.horizon_caps		  = q->stat_horizon_caps;
1303 	for (i = 0; i < FQ_BANDS; i++) {
1304 		st.band_drops[i]  = q->stat_band_drops[i];
1305 		st.band_pkt_count[i] = q->band_pkt_count[i];
1306 	}
1307 	sch_tree_unlock(sch);
1308 
1309 	return gnet_stats_copy_app(d, &st, sizeof(st));
1310 }
1311 
1312 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
1313 	.id		=	"fq",
1314 	.priv_size	=	sizeof(struct fq_sched_data),
1315 
1316 	.enqueue	=	fq_enqueue,
1317 	.dequeue	=	fq_dequeue,
1318 	.peek		=	qdisc_peek_dequeued,
1319 	.init		=	fq_init,
1320 	.reset		=	fq_reset,
1321 	.destroy	=	fq_destroy,
1322 	.change		=	fq_change,
1323 	.dump		=	fq_dump,
1324 	.dump_stats	=	fq_dump_stats,
1325 	.owner		=	THIS_MODULE,
1326 };
1327 MODULE_ALIAS_NET_SCH("fq");
1328 
1329 static int __init fq_module_init(void)
1330 {
1331 	int ret;
1332 
1333 	fq_flow_cachep = kmem_cache_create("fq_flow_cache",
1334 					   sizeof(struct fq_flow),
1335 					   0, SLAB_HWCACHE_ALIGN, NULL);
1336 	if (!fq_flow_cachep)
1337 		return -ENOMEM;
1338 
1339 	ret = register_qdisc(&fq_qdisc_ops);
1340 	if (ret)
1341 		kmem_cache_destroy(fq_flow_cachep);
1342 	return ret;
1343 }
1344 
1345 static void __exit fq_module_exit(void)
1346 {
1347 	unregister_qdisc(&fq_qdisc_ops);
1348 	kmem_cache_destroy(fq_flow_cachep);
1349 }
1350 
1351 module_init(fq_module_init)
1352 module_exit(fq_module_exit)
1353 MODULE_AUTHOR("Eric Dumazet");
1354 MODULE_LICENSE("GPL");
1355 MODULE_DESCRIPTION("Fair Queue Packet Scheduler");
1356