1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 3 /* COMMON Applications Kept Enhanced (CAKE) discipline 4 * 5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com> 6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk> 7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com> 8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de> 9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk> 10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au> 11 * 12 * The CAKE Principles: 13 * (or, how to have your cake and eat it too) 14 * 15 * This is a combination of several shaping, AQM and FQ techniques into one 16 * easy-to-use package: 17 * 18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE 19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq), 20 * eliminating the need for any sort of burst parameter (eg. token bucket 21 * depth). Burst support is limited to that necessary to overcome scheduling 22 * latency. 23 * 24 * - A Diffserv-aware priority queue, giving more priority to certain classes, 25 * up to a specified fraction of bandwidth. Above that bandwidth threshold, 26 * the priority is reduced to avoid starving other tins. 27 * 28 * - Each priority tin has a separate Flow Queue system, to isolate traffic 29 * flows from each other. This prevents a burst on one flow from increasing 30 * the delay to another. Flows are distributed to queues using a 31 * set-associative hash function. 32 * 33 * - Each queue is actively managed by Cobalt, which is a combination of the 34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals 35 * congestion early via ECN (if available) and/or packet drops, to keep 36 * latency low. The codel parameters are auto-tuned based on the bandwidth 37 * setting, as is necessary at low bandwidths. 38 * 39 * The configuration parameters are kept deliberately simple for ease of use. 40 * Everything has sane defaults. Complete generality of configuration is *not* 41 * a goal. 42 * 43 * The priority queue operates according to a weighted DRR scheme, combined with 44 * a bandwidth tracker which reuses the shaper logic to detect which side of the 45 * bandwidth sharing threshold the tin is operating. This determines whether a 46 * priority-based weight (high) or a bandwidth-based weight (low) is used for 47 * that tin in the current pass. 48 * 49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly 50 * granted us permission to leverage. 51 */ 52 53 #include <linux/module.h> 54 #include <linux/types.h> 55 #include <linux/kernel.h> 56 #include <linux/jiffies.h> 57 #include <linux/string.h> 58 #include <linux/in.h> 59 #include <linux/errno.h> 60 #include <linux/init.h> 61 #include <linux/skbuff.h> 62 #include <linux/jhash.h> 63 #include <linux/slab.h> 64 #include <linux/vmalloc.h> 65 #include <linux/reciprocal_div.h> 66 #include <net/netlink.h> 67 #include <linux/if_vlan.h> 68 #include <net/gso.h> 69 #include <net/pkt_sched.h> 70 #include <net/pkt_cls.h> 71 #include <net/tcp.h> 72 #include <net/flow_dissector.h> 73 74 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 75 #include <net/netfilter/nf_conntrack_core.h> 76 #endif 77 78 #define CAKE_SET_WAYS (8) 79 #define CAKE_MAX_TINS (8) 80 #define CAKE_QUEUES (1024) 81 #define CAKE_FLOW_MASK 63 82 #define CAKE_FLOW_NAT_FLAG 64 83 84 /* struct cobalt_params - contains codel and blue parameters 85 * @interval: codel initial drop rate 86 * @target: maximum persistent sojourn time & blue update rate 87 * @mtu_time: serialisation delay of maximum-size packet 88 * @p_inc: increment of blue drop probability (0.32 fxp) 89 * @p_dec: decrement of blue drop probability (0.32 fxp) 90 */ 91 struct cobalt_params { 92 u64 interval; 93 u64 target; 94 u64 mtu_time; 95 u32 p_inc; 96 u32 p_dec; 97 }; 98 99 /* struct cobalt_vars - contains codel and blue variables 100 * @count: codel dropping frequency 101 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1 102 * @drop_next: time to drop next packet, or when we dropped last 103 * @blue_timer: Blue time to next drop 104 * @p_drop: BLUE drop probability (0.32 fxp) 105 * @dropping: set if in dropping state 106 * @ecn_marked: set if marked 107 */ 108 struct cobalt_vars { 109 u32 count; 110 u32 rec_inv_sqrt; 111 ktime_t drop_next; 112 ktime_t blue_timer; 113 u32 p_drop; 114 bool dropping; 115 bool ecn_marked; 116 }; 117 118 enum { 119 CAKE_SET_NONE = 0, 120 CAKE_SET_SPARSE, 121 CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */ 122 CAKE_SET_BULK, 123 CAKE_SET_DECAYING 124 }; 125 126 struct cake_flow { 127 /* this stuff is all needed per-flow at dequeue time */ 128 struct sk_buff *head; 129 struct sk_buff *tail; 130 struct list_head flowchain; 131 s32 deficit; 132 u32 dropped; 133 struct cobalt_vars cvars; 134 u16 srchost; /* index into cake_host table */ 135 u16 dsthost; 136 u8 set; 137 }; /* please try to keep this structure <= 64 bytes */ 138 139 struct cake_host { 140 u32 srchost_tag; 141 u32 dsthost_tag; 142 u16 srchost_bulk_flow_count; 143 u16 dsthost_bulk_flow_count; 144 }; 145 146 struct cake_heap_entry { 147 u16 t:3, b:10; 148 }; 149 150 struct cake_tin_data { 151 struct cake_flow flows[CAKE_QUEUES]; 152 u32 backlogs[CAKE_QUEUES]; 153 u32 tags[CAKE_QUEUES]; /* for set association */ 154 u16 overflow_idx[CAKE_QUEUES]; 155 struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */ 156 u16 flow_quantum; 157 158 struct cobalt_params cparams; 159 u32 drop_overlimit; 160 u16 bulk_flow_count; 161 u16 sparse_flow_count; 162 u16 decaying_flow_count; 163 u16 unresponsive_flow_count; 164 165 u32 max_skblen; 166 167 struct list_head new_flows; 168 struct list_head old_flows; 169 struct list_head decaying_flows; 170 171 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */ 172 ktime_t time_next_packet; 173 u64 tin_rate_ns; 174 u64 tin_rate_bps; 175 u16 tin_rate_shft; 176 177 u16 tin_quantum; 178 s32 tin_deficit; 179 u32 tin_backlog; 180 u32 tin_dropped; 181 u32 tin_ecn_mark; 182 183 u32 packets; 184 u64 bytes; 185 186 u32 ack_drops; 187 188 /* moving averages */ 189 u64 avge_delay; 190 u64 peak_delay; 191 u64 base_delay; 192 193 /* hash function stats */ 194 u32 way_directs; 195 u32 way_hits; 196 u32 way_misses; 197 u32 way_collisions; 198 }; /* number of tins is small, so size of this struct doesn't matter much */ 199 200 struct cake_sched_data { 201 struct tcf_proto __rcu *filter_list; /* optional external classifier */ 202 struct tcf_block *block; 203 struct cake_tin_data *tins; 204 205 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS]; 206 u16 overflow_timeout; 207 208 u16 tin_cnt; 209 u8 tin_mode; 210 u8 flow_mode; 211 u8 ack_filter; 212 u8 atm_mode; 213 214 u32 fwmark_mask; 215 u16 fwmark_shft; 216 217 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */ 218 u16 rate_shft; 219 ktime_t time_next_packet; 220 ktime_t failsafe_next_packet; 221 u64 rate_ns; 222 u64 rate_bps; 223 u16 rate_flags; 224 s16 rate_overhead; 225 u16 rate_mpu; 226 u64 interval; 227 u64 target; 228 229 /* resource tracking */ 230 u32 buffer_used; 231 u32 buffer_max_used; 232 u32 buffer_limit; 233 u32 buffer_config_limit; 234 235 /* indices for dequeue */ 236 u16 cur_tin; 237 u16 cur_flow; 238 239 struct qdisc_watchdog watchdog; 240 const u8 *tin_index; 241 const u8 *tin_order; 242 243 /* bandwidth capacity estimate */ 244 ktime_t last_packet_time; 245 ktime_t avg_window_begin; 246 u64 avg_packet_interval; 247 u64 avg_window_bytes; 248 u64 avg_peak_bandwidth; 249 ktime_t last_reconfig_time; 250 251 /* packet length stats */ 252 u32 avg_netoff; 253 u16 max_netlen; 254 u16 max_adjlen; 255 u16 min_netlen; 256 u16 min_adjlen; 257 }; 258 259 enum { 260 CAKE_FLAG_OVERHEAD = BIT(0), 261 CAKE_FLAG_AUTORATE_INGRESS = BIT(1), 262 CAKE_FLAG_INGRESS = BIT(2), 263 CAKE_FLAG_WASH = BIT(3), 264 CAKE_FLAG_SPLIT_GSO = BIT(4) 265 }; 266 267 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to 268 * obtain the best features of each. Codel is excellent on flows which 269 * respond to congestion signals in a TCP-like way. BLUE is more effective on 270 * unresponsive flows. 271 */ 272 273 struct cobalt_skb_cb { 274 ktime_t enqueue_time; 275 u32 adjusted_len; 276 }; 277 278 static u64 us_to_ns(u64 us) 279 { 280 return us * NSEC_PER_USEC; 281 } 282 283 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb) 284 { 285 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb)); 286 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data; 287 } 288 289 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb) 290 { 291 return get_cobalt_cb(skb)->enqueue_time; 292 } 293 294 static void cobalt_set_enqueue_time(struct sk_buff *skb, 295 ktime_t now) 296 { 297 get_cobalt_cb(skb)->enqueue_time = now; 298 } 299 300 static u16 quantum_div[CAKE_QUEUES + 1] = {0}; 301 302 /* Diffserv lookup tables */ 303 304 static const u8 precedence[] = { 305 0, 0, 0, 0, 0, 0, 0, 0, 306 1, 1, 1, 1, 1, 1, 1, 1, 307 2, 2, 2, 2, 2, 2, 2, 2, 308 3, 3, 3, 3, 3, 3, 3, 3, 309 4, 4, 4, 4, 4, 4, 4, 4, 310 5, 5, 5, 5, 5, 5, 5, 5, 311 6, 6, 6, 6, 6, 6, 6, 6, 312 7, 7, 7, 7, 7, 7, 7, 7, 313 }; 314 315 static const u8 diffserv8[] = { 316 2, 0, 1, 2, 4, 2, 2, 2, 317 1, 2, 1, 2, 1, 2, 1, 2, 318 5, 2, 4, 2, 4, 2, 4, 2, 319 3, 2, 3, 2, 3, 2, 3, 2, 320 6, 2, 3, 2, 3, 2, 3, 2, 321 6, 2, 2, 2, 6, 2, 6, 2, 322 7, 2, 2, 2, 2, 2, 2, 2, 323 7, 2, 2, 2, 2, 2, 2, 2, 324 }; 325 326 static const u8 diffserv4[] = { 327 0, 1, 0, 0, 2, 0, 0, 0, 328 1, 0, 0, 0, 0, 0, 0, 0, 329 2, 0, 2, 0, 2, 0, 2, 0, 330 2, 0, 2, 0, 2, 0, 2, 0, 331 3, 0, 2, 0, 2, 0, 2, 0, 332 3, 0, 0, 0, 3, 0, 3, 0, 333 3, 0, 0, 0, 0, 0, 0, 0, 334 3, 0, 0, 0, 0, 0, 0, 0, 335 }; 336 337 static const u8 diffserv3[] = { 338 0, 1, 0, 0, 2, 0, 0, 0, 339 1, 0, 0, 0, 0, 0, 0, 0, 340 0, 0, 0, 0, 0, 0, 0, 0, 341 0, 0, 0, 0, 0, 0, 0, 0, 342 0, 0, 0, 0, 0, 0, 0, 0, 343 0, 0, 0, 0, 2, 0, 2, 0, 344 2, 0, 0, 0, 0, 0, 0, 0, 345 2, 0, 0, 0, 0, 0, 0, 0, 346 }; 347 348 static const u8 besteffort[] = { 349 0, 0, 0, 0, 0, 0, 0, 0, 350 0, 0, 0, 0, 0, 0, 0, 0, 351 0, 0, 0, 0, 0, 0, 0, 0, 352 0, 0, 0, 0, 0, 0, 0, 0, 353 0, 0, 0, 0, 0, 0, 0, 0, 354 0, 0, 0, 0, 0, 0, 0, 0, 355 0, 0, 0, 0, 0, 0, 0, 0, 356 0, 0, 0, 0, 0, 0, 0, 0, 357 }; 358 359 /* tin priority order for stats dumping */ 360 361 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7}; 362 static const u8 bulk_order[] = {1, 0, 2, 3}; 363 364 #define REC_INV_SQRT_CACHE (16) 365 static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0}; 366 367 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots 368 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2) 369 * 370 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32 371 */ 372 373 static void cobalt_newton_step(struct cobalt_vars *vars) 374 { 375 u32 invsqrt, invsqrt2; 376 u64 val; 377 378 invsqrt = vars->rec_inv_sqrt; 379 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32; 380 val = (3LL << 32) - ((u64)vars->count * invsqrt2); 381 382 val >>= 2; /* avoid overflow in following multiply */ 383 val = (val * invsqrt) >> (32 - 2 + 1); 384 385 vars->rec_inv_sqrt = val; 386 } 387 388 static void cobalt_invsqrt(struct cobalt_vars *vars) 389 { 390 if (vars->count < REC_INV_SQRT_CACHE) 391 vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count]; 392 else 393 cobalt_newton_step(vars); 394 } 395 396 /* There is a big difference in timing between the accurate values placed in 397 * the cache and the approximations given by a single Newton step for small 398 * count values, particularly when stepping from count 1 to 2 or vice versa. 399 * Above 16, a single Newton step gives sufficient accuracy in either 400 * direction, given the precision stored. 401 * 402 * The magnitude of the error when stepping up to count 2 is such as to give 403 * the value that *should* have been produced at count 4. 404 */ 405 406 static void cobalt_cache_init(void) 407 { 408 struct cobalt_vars v; 409 410 memset(&v, 0, sizeof(v)); 411 v.rec_inv_sqrt = ~0U; 412 cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt; 413 414 for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) { 415 cobalt_newton_step(&v); 416 cobalt_newton_step(&v); 417 cobalt_newton_step(&v); 418 cobalt_newton_step(&v); 419 420 cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt; 421 } 422 } 423 424 static void cobalt_vars_init(struct cobalt_vars *vars) 425 { 426 memset(vars, 0, sizeof(*vars)); 427 428 if (!cobalt_rec_inv_sqrt_cache[0]) { 429 cobalt_cache_init(); 430 cobalt_rec_inv_sqrt_cache[0] = ~0; 431 } 432 } 433 434 /* CoDel control_law is t + interval/sqrt(count) 435 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid 436 * both sqrt() and divide operation. 437 */ 438 static ktime_t cobalt_control(ktime_t t, 439 u64 interval, 440 u32 rec_inv_sqrt) 441 { 442 return ktime_add_ns(t, reciprocal_scale(interval, 443 rec_inv_sqrt)); 444 } 445 446 /* Call this when a packet had to be dropped due to queue overflow. Returns 447 * true if the BLUE state was quiescent before but active after this call. 448 */ 449 static bool cobalt_queue_full(struct cobalt_vars *vars, 450 struct cobalt_params *p, 451 ktime_t now) 452 { 453 bool up = false; 454 455 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) { 456 up = !vars->p_drop; 457 vars->p_drop += p->p_inc; 458 if (vars->p_drop < p->p_inc) 459 vars->p_drop = ~0; 460 vars->blue_timer = now; 461 } 462 vars->dropping = true; 463 vars->drop_next = now; 464 if (!vars->count) 465 vars->count = 1; 466 467 return up; 468 } 469 470 /* Call this when the queue was serviced but turned out to be empty. Returns 471 * true if the BLUE state was active before but quiescent after this call. 472 */ 473 static bool cobalt_queue_empty(struct cobalt_vars *vars, 474 struct cobalt_params *p, 475 ktime_t now) 476 { 477 bool down = false; 478 479 if (vars->p_drop && 480 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) { 481 if (vars->p_drop < p->p_dec) 482 vars->p_drop = 0; 483 else 484 vars->p_drop -= p->p_dec; 485 vars->blue_timer = now; 486 down = !vars->p_drop; 487 } 488 vars->dropping = false; 489 490 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) { 491 vars->count--; 492 cobalt_invsqrt(vars); 493 vars->drop_next = cobalt_control(vars->drop_next, 494 p->interval, 495 vars->rec_inv_sqrt); 496 } 497 498 return down; 499 } 500 501 /* Call this with a freshly dequeued packet for possible congestion marking. 502 * Returns true as an instruction to drop the packet, false for delivery. 503 */ 504 static bool cobalt_should_drop(struct cobalt_vars *vars, 505 struct cobalt_params *p, 506 ktime_t now, 507 struct sk_buff *skb, 508 u32 bulk_flows) 509 { 510 bool next_due, over_target, drop = false; 511 ktime_t schedule; 512 u64 sojourn; 513 514 /* The 'schedule' variable records, in its sign, whether 'now' is before or 515 * after 'drop_next'. This allows 'drop_next' to be updated before the next 516 * scheduling decision is actually branched, without destroying that 517 * information. Similarly, the first 'schedule' value calculated is preserved 518 * in the boolean 'next_due'. 519 * 520 * As for 'drop_next', we take advantage of the fact that 'interval' is both 521 * the delay between first exceeding 'target' and the first signalling event, 522 * *and* the scaling factor for the signalling frequency. It's therefore very 523 * natural to use a single mechanism for both purposes, and eliminates a 524 * significant amount of reference Codel's spaghetti code. To help with this, 525 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close 526 * as possible to 1.0 in fixed-point. 527 */ 528 529 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb))); 530 schedule = ktime_sub(now, vars->drop_next); 531 over_target = sojourn > p->target && 532 sojourn > p->mtu_time * bulk_flows * 2 && 533 sojourn > p->mtu_time * 4; 534 next_due = vars->count && ktime_to_ns(schedule) >= 0; 535 536 vars->ecn_marked = false; 537 538 if (over_target) { 539 if (!vars->dropping) { 540 vars->dropping = true; 541 vars->drop_next = cobalt_control(now, 542 p->interval, 543 vars->rec_inv_sqrt); 544 } 545 if (!vars->count) 546 vars->count = 1; 547 } else if (vars->dropping) { 548 vars->dropping = false; 549 } 550 551 if (next_due && vars->dropping) { 552 /* Use ECN mark if possible, otherwise drop */ 553 drop = !(vars->ecn_marked = INET_ECN_set_ce(skb)); 554 555 vars->count++; 556 if (!vars->count) 557 vars->count--; 558 cobalt_invsqrt(vars); 559 vars->drop_next = cobalt_control(vars->drop_next, 560 p->interval, 561 vars->rec_inv_sqrt); 562 schedule = ktime_sub(now, vars->drop_next); 563 } else { 564 while (next_due) { 565 vars->count--; 566 cobalt_invsqrt(vars); 567 vars->drop_next = cobalt_control(vars->drop_next, 568 p->interval, 569 vars->rec_inv_sqrt); 570 schedule = ktime_sub(now, vars->drop_next); 571 next_due = vars->count && ktime_to_ns(schedule) >= 0; 572 } 573 } 574 575 /* Simple BLUE implementation. Lack of ECN is deliberate. */ 576 if (vars->p_drop) 577 drop |= (get_random_u32() < vars->p_drop); 578 579 /* Overload the drop_next field as an activity timeout */ 580 if (!vars->count) 581 vars->drop_next = ktime_add_ns(now, p->interval); 582 else if (ktime_to_ns(schedule) > 0 && !drop) 583 vars->drop_next = now; 584 585 return drop; 586 } 587 588 static bool cake_update_flowkeys(struct flow_keys *keys, 589 const struct sk_buff *skb) 590 { 591 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 592 struct nf_conntrack_tuple tuple = {}; 593 bool rev = !skb->_nfct, upd = false; 594 __be32 ip; 595 596 if (skb_protocol(skb, true) != htons(ETH_P_IP)) 597 return false; 598 599 if (!nf_ct_get_tuple_skb(&tuple, skb)) 600 return false; 601 602 ip = rev ? tuple.dst.u3.ip : tuple.src.u3.ip; 603 if (ip != keys->addrs.v4addrs.src) { 604 keys->addrs.v4addrs.src = ip; 605 upd = true; 606 } 607 ip = rev ? tuple.src.u3.ip : tuple.dst.u3.ip; 608 if (ip != keys->addrs.v4addrs.dst) { 609 keys->addrs.v4addrs.dst = ip; 610 upd = true; 611 } 612 613 if (keys->ports.ports) { 614 __be16 port; 615 616 port = rev ? tuple.dst.u.all : tuple.src.u.all; 617 if (port != keys->ports.src) { 618 keys->ports.src = port; 619 upd = true; 620 } 621 port = rev ? tuple.src.u.all : tuple.dst.u.all; 622 if (port != keys->ports.dst) { 623 port = keys->ports.dst; 624 upd = true; 625 } 626 } 627 return upd; 628 #else 629 return false; 630 #endif 631 } 632 633 /* Cake has several subtle multiple bit settings. In these cases you 634 * would be matching triple isolate mode as well. 635 */ 636 637 static bool cake_dsrc(int flow_mode) 638 { 639 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC; 640 } 641 642 static bool cake_ddst(int flow_mode) 643 { 644 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST; 645 } 646 647 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb, 648 int flow_mode, u16 flow_override, u16 host_override) 649 { 650 bool hash_flows = (!flow_override && !!(flow_mode & CAKE_FLOW_FLOWS)); 651 bool hash_hosts = (!host_override && !!(flow_mode & CAKE_FLOW_HOSTS)); 652 bool nat_enabled = !!(flow_mode & CAKE_FLOW_NAT_FLAG); 653 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0; 654 u16 reduced_hash, srchost_idx, dsthost_idx; 655 struct flow_keys keys, host_keys; 656 bool use_skbhash = skb->l4_hash; 657 658 if (unlikely(flow_mode == CAKE_FLOW_NONE)) 659 return 0; 660 661 /* If both overrides are set, or we can use the SKB hash and nat mode is 662 * disabled, we can skip packet dissection entirely. If nat mode is 663 * enabled there's another check below after doing the conntrack lookup. 664 */ 665 if ((!hash_flows || (use_skbhash && !nat_enabled)) && !hash_hosts) 666 goto skip_hash; 667 668 skb_flow_dissect_flow_keys(skb, &keys, 669 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); 670 671 /* Don't use the SKB hash if we change the lookup keys from conntrack */ 672 if (nat_enabled && cake_update_flowkeys(&keys, skb)) 673 use_skbhash = false; 674 675 /* If we can still use the SKB hash and don't need the host hash, we can 676 * skip the rest of the hashing procedure 677 */ 678 if (use_skbhash && !hash_hosts) 679 goto skip_hash; 680 681 /* flow_hash_from_keys() sorts the addresses by value, so we have 682 * to preserve their order in a separate data structure to treat 683 * src and dst host addresses as independently selectable. 684 */ 685 host_keys = keys; 686 host_keys.ports.ports = 0; 687 host_keys.basic.ip_proto = 0; 688 host_keys.keyid.keyid = 0; 689 host_keys.tags.flow_label = 0; 690 691 switch (host_keys.control.addr_type) { 692 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 693 host_keys.addrs.v4addrs.src = 0; 694 dsthost_hash = flow_hash_from_keys(&host_keys); 695 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src; 696 host_keys.addrs.v4addrs.dst = 0; 697 srchost_hash = flow_hash_from_keys(&host_keys); 698 break; 699 700 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 701 memset(&host_keys.addrs.v6addrs.src, 0, 702 sizeof(host_keys.addrs.v6addrs.src)); 703 dsthost_hash = flow_hash_from_keys(&host_keys); 704 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; 705 memset(&host_keys.addrs.v6addrs.dst, 0, 706 sizeof(host_keys.addrs.v6addrs.dst)); 707 srchost_hash = flow_hash_from_keys(&host_keys); 708 break; 709 710 default: 711 dsthost_hash = 0; 712 srchost_hash = 0; 713 } 714 715 /* This *must* be after the above switch, since as a 716 * side-effect it sorts the src and dst addresses. 717 */ 718 if (hash_flows && !use_skbhash) 719 flow_hash = flow_hash_from_keys(&keys); 720 721 skip_hash: 722 if (flow_override) 723 flow_hash = flow_override - 1; 724 else if (use_skbhash && (flow_mode & CAKE_FLOW_FLOWS)) 725 flow_hash = skb->hash; 726 if (host_override) { 727 dsthost_hash = host_override - 1; 728 srchost_hash = host_override - 1; 729 } 730 731 if (!(flow_mode & CAKE_FLOW_FLOWS)) { 732 if (flow_mode & CAKE_FLOW_SRC_IP) 733 flow_hash ^= srchost_hash; 734 735 if (flow_mode & CAKE_FLOW_DST_IP) 736 flow_hash ^= dsthost_hash; 737 } 738 739 reduced_hash = flow_hash % CAKE_QUEUES; 740 741 /* set-associative hashing */ 742 /* fast path if no hash collision (direct lookup succeeds) */ 743 if (likely(q->tags[reduced_hash] == flow_hash && 744 q->flows[reduced_hash].set)) { 745 q->way_directs++; 746 } else { 747 u32 inner_hash = reduced_hash % CAKE_SET_WAYS; 748 u32 outer_hash = reduced_hash - inner_hash; 749 bool allocate_src = false; 750 bool allocate_dst = false; 751 u32 i, k; 752 753 /* check if any active queue in the set is reserved for 754 * this flow. 755 */ 756 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS; 757 i++, k = (k + 1) % CAKE_SET_WAYS) { 758 if (q->tags[outer_hash + k] == flow_hash) { 759 if (i) 760 q->way_hits++; 761 762 if (!q->flows[outer_hash + k].set) { 763 /* need to increment host refcnts */ 764 allocate_src = cake_dsrc(flow_mode); 765 allocate_dst = cake_ddst(flow_mode); 766 } 767 768 goto found; 769 } 770 } 771 772 /* no queue is reserved for this flow, look for an 773 * empty one. 774 */ 775 for (i = 0; i < CAKE_SET_WAYS; 776 i++, k = (k + 1) % CAKE_SET_WAYS) { 777 if (!q->flows[outer_hash + k].set) { 778 q->way_misses++; 779 allocate_src = cake_dsrc(flow_mode); 780 allocate_dst = cake_ddst(flow_mode); 781 goto found; 782 } 783 } 784 785 /* With no empty queues, default to the original 786 * queue, accept the collision, update the host tags. 787 */ 788 q->way_collisions++; 789 allocate_src = cake_dsrc(flow_mode); 790 allocate_dst = cake_ddst(flow_mode); 791 792 if (q->flows[outer_hash + k].set == CAKE_SET_BULK) { 793 if (allocate_src) 794 q->hosts[q->flows[reduced_hash].srchost].srchost_bulk_flow_count--; 795 if (allocate_dst) 796 q->hosts[q->flows[reduced_hash].dsthost].dsthost_bulk_flow_count--; 797 } 798 found: 799 /* reserve queue for future packets in same flow */ 800 reduced_hash = outer_hash + k; 801 q->tags[reduced_hash] = flow_hash; 802 803 if (allocate_src) { 804 srchost_idx = srchost_hash % CAKE_QUEUES; 805 inner_hash = srchost_idx % CAKE_SET_WAYS; 806 outer_hash = srchost_idx - inner_hash; 807 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS; 808 i++, k = (k + 1) % CAKE_SET_WAYS) { 809 if (q->hosts[outer_hash + k].srchost_tag == 810 srchost_hash) 811 goto found_src; 812 } 813 for (i = 0; i < CAKE_SET_WAYS; 814 i++, k = (k + 1) % CAKE_SET_WAYS) { 815 if (!q->hosts[outer_hash + k].srchost_bulk_flow_count) 816 break; 817 } 818 q->hosts[outer_hash + k].srchost_tag = srchost_hash; 819 found_src: 820 srchost_idx = outer_hash + k; 821 if (q->flows[reduced_hash].set == CAKE_SET_BULK) 822 q->hosts[srchost_idx].srchost_bulk_flow_count++; 823 q->flows[reduced_hash].srchost = srchost_idx; 824 } 825 826 if (allocate_dst) { 827 dsthost_idx = dsthost_hash % CAKE_QUEUES; 828 inner_hash = dsthost_idx % CAKE_SET_WAYS; 829 outer_hash = dsthost_idx - inner_hash; 830 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS; 831 i++, k = (k + 1) % CAKE_SET_WAYS) { 832 if (q->hosts[outer_hash + k].dsthost_tag == 833 dsthost_hash) 834 goto found_dst; 835 } 836 for (i = 0; i < CAKE_SET_WAYS; 837 i++, k = (k + 1) % CAKE_SET_WAYS) { 838 if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count) 839 break; 840 } 841 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash; 842 found_dst: 843 dsthost_idx = outer_hash + k; 844 if (q->flows[reduced_hash].set == CAKE_SET_BULK) 845 q->hosts[dsthost_idx].dsthost_bulk_flow_count++; 846 q->flows[reduced_hash].dsthost = dsthost_idx; 847 } 848 } 849 850 return reduced_hash; 851 } 852 853 /* helper functions : might be changed when/if skb use a standard list_head */ 854 /* remove one skb from head of slot queue */ 855 856 static struct sk_buff *dequeue_head(struct cake_flow *flow) 857 { 858 struct sk_buff *skb = flow->head; 859 860 if (skb) { 861 flow->head = skb->next; 862 skb_mark_not_on_list(skb); 863 } 864 865 return skb; 866 } 867 868 /* add skb to flow queue (tail add) */ 869 870 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb) 871 { 872 if (!flow->head) 873 flow->head = skb; 874 else 875 flow->tail->next = skb; 876 flow->tail = skb; 877 skb->next = NULL; 878 } 879 880 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb, 881 struct ipv6hdr *buf) 882 { 883 unsigned int offset = skb_network_offset(skb); 884 struct iphdr *iph; 885 886 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf); 887 888 if (!iph) 889 return NULL; 890 891 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6) 892 return skb_header_pointer(skb, offset + iph->ihl * 4, 893 sizeof(struct ipv6hdr), buf); 894 895 else if (iph->version == 4) 896 return iph; 897 898 else if (iph->version == 6) 899 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr), 900 buf); 901 902 return NULL; 903 } 904 905 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb, 906 void *buf, unsigned int bufsize) 907 { 908 unsigned int offset = skb_network_offset(skb); 909 const struct ipv6hdr *ipv6h; 910 const struct tcphdr *tcph; 911 const struct iphdr *iph; 912 struct ipv6hdr _ipv6h; 913 struct tcphdr _tcph; 914 915 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 916 917 if (!ipv6h) 918 return NULL; 919 920 if (ipv6h->version == 4) { 921 iph = (struct iphdr *)ipv6h; 922 offset += iph->ihl * 4; 923 924 /* special-case 6in4 tunnelling, as that is a common way to get 925 * v6 connectivity in the home 926 */ 927 if (iph->protocol == IPPROTO_IPV6) { 928 ipv6h = skb_header_pointer(skb, offset, 929 sizeof(_ipv6h), &_ipv6h); 930 931 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 932 return NULL; 933 934 offset += sizeof(struct ipv6hdr); 935 936 } else if (iph->protocol != IPPROTO_TCP) { 937 return NULL; 938 } 939 940 } else if (ipv6h->version == 6) { 941 if (ipv6h->nexthdr != IPPROTO_TCP) 942 return NULL; 943 944 offset += sizeof(struct ipv6hdr); 945 } else { 946 return NULL; 947 } 948 949 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 950 if (!tcph || tcph->doff < 5) 951 return NULL; 952 953 return skb_header_pointer(skb, offset, 954 min(__tcp_hdrlen(tcph), bufsize), buf); 955 } 956 957 static const void *cake_get_tcpopt(const struct tcphdr *tcph, 958 int code, int *oplen) 959 { 960 /* inspired by tcp_parse_options in tcp_input.c */ 961 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr); 962 const u8 *ptr = (const u8 *)(tcph + 1); 963 964 while (length > 0) { 965 int opcode = *ptr++; 966 int opsize; 967 968 if (opcode == TCPOPT_EOL) 969 break; 970 if (opcode == TCPOPT_NOP) { 971 length--; 972 continue; 973 } 974 if (length < 2) 975 break; 976 opsize = *ptr++; 977 if (opsize < 2 || opsize > length) 978 break; 979 980 if (opcode == code) { 981 *oplen = opsize; 982 return ptr; 983 } 984 985 ptr += opsize - 2; 986 length -= opsize; 987 } 988 989 return NULL; 990 } 991 992 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more 993 * bytes than the other. In the case where both sequences ACKs bytes that the 994 * other doesn't, A is considered greater. DSACKs in A also makes A be 995 * considered greater. 996 * 997 * @return -1, 0 or 1 as normal compare functions 998 */ 999 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a, 1000 const struct tcphdr *tcph_b) 1001 { 1002 const struct tcp_sack_block_wire *sack_a, *sack_b; 1003 u32 ack_seq_a = ntohl(tcph_a->ack_seq); 1004 u32 bytes_a = 0, bytes_b = 0; 1005 int oplen_a, oplen_b; 1006 bool first = true; 1007 1008 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a); 1009 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b); 1010 1011 /* pointers point to option contents */ 1012 oplen_a -= TCPOLEN_SACK_BASE; 1013 oplen_b -= TCPOLEN_SACK_BASE; 1014 1015 if (sack_a && oplen_a >= sizeof(*sack_a) && 1016 (!sack_b || oplen_b < sizeof(*sack_b))) 1017 return -1; 1018 else if (sack_b && oplen_b >= sizeof(*sack_b) && 1019 (!sack_a || oplen_a < sizeof(*sack_a))) 1020 return 1; 1021 else if ((!sack_a || oplen_a < sizeof(*sack_a)) && 1022 (!sack_b || oplen_b < sizeof(*sack_b))) 1023 return 0; 1024 1025 while (oplen_a >= sizeof(*sack_a)) { 1026 const struct tcp_sack_block_wire *sack_tmp = sack_b; 1027 u32 start_a = get_unaligned_be32(&sack_a->start_seq); 1028 u32 end_a = get_unaligned_be32(&sack_a->end_seq); 1029 int oplen_tmp = oplen_b; 1030 bool found = false; 1031 1032 /* DSACK; always considered greater to prevent dropping */ 1033 if (before(start_a, ack_seq_a)) 1034 return -1; 1035 1036 bytes_a += end_a - start_a; 1037 1038 while (oplen_tmp >= sizeof(*sack_tmp)) { 1039 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq); 1040 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq); 1041 1042 /* first time through we count the total size */ 1043 if (first) 1044 bytes_b += end_b - start_b; 1045 1046 if (!after(start_b, start_a) && !before(end_b, end_a)) { 1047 found = true; 1048 if (!first) 1049 break; 1050 } 1051 oplen_tmp -= sizeof(*sack_tmp); 1052 sack_tmp++; 1053 } 1054 1055 if (!found) 1056 return -1; 1057 1058 oplen_a -= sizeof(*sack_a); 1059 sack_a++; 1060 first = false; 1061 } 1062 1063 /* If we made it this far, all ranges SACKed by A are covered by B, so 1064 * either the SACKs are equal, or B SACKs more bytes. 1065 */ 1066 return bytes_b > bytes_a ? 1 : 0; 1067 } 1068 1069 static void cake_tcph_get_tstamp(const struct tcphdr *tcph, 1070 u32 *tsval, u32 *tsecr) 1071 { 1072 const u8 *ptr; 1073 int opsize; 1074 1075 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize); 1076 1077 if (ptr && opsize == TCPOLEN_TIMESTAMP) { 1078 *tsval = get_unaligned_be32(ptr); 1079 *tsecr = get_unaligned_be32(ptr + 4); 1080 } 1081 } 1082 1083 static bool cake_tcph_may_drop(const struct tcphdr *tcph, 1084 u32 tstamp_new, u32 tsecr_new) 1085 { 1086 /* inspired by tcp_parse_options in tcp_input.c */ 1087 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr); 1088 const u8 *ptr = (const u8 *)(tcph + 1); 1089 u32 tstamp, tsecr; 1090 1091 /* 3 reserved flags must be unset to avoid future breakage 1092 * ACK must be set 1093 * ECE/CWR are handled separately 1094 * All other flags URG/PSH/RST/SYN/FIN must be unset 1095 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero) 1096 * 0x00C00000 = CWR/ECE (handled separately) 1097 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000 1098 */ 1099 if (((tcp_flag_word(tcph) & 1100 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK)) 1101 return false; 1102 1103 while (length > 0) { 1104 int opcode = *ptr++; 1105 int opsize; 1106 1107 if (opcode == TCPOPT_EOL) 1108 break; 1109 if (opcode == TCPOPT_NOP) { 1110 length--; 1111 continue; 1112 } 1113 if (length < 2) 1114 break; 1115 opsize = *ptr++; 1116 if (opsize < 2 || opsize > length) 1117 break; 1118 1119 switch (opcode) { 1120 case TCPOPT_MD5SIG: /* doesn't influence state */ 1121 break; 1122 1123 case TCPOPT_SACK: /* stricter checking performed later */ 1124 if (opsize % 8 != 2) 1125 return false; 1126 break; 1127 1128 case TCPOPT_TIMESTAMP: 1129 /* only drop timestamps lower than new */ 1130 if (opsize != TCPOLEN_TIMESTAMP) 1131 return false; 1132 tstamp = get_unaligned_be32(ptr); 1133 tsecr = get_unaligned_be32(ptr + 4); 1134 if (after(tstamp, tstamp_new) || 1135 after(tsecr, tsecr_new)) 1136 return false; 1137 break; 1138 1139 case TCPOPT_MSS: /* these should only be set on SYN */ 1140 case TCPOPT_WINDOW: 1141 case TCPOPT_SACK_PERM: 1142 case TCPOPT_FASTOPEN: 1143 case TCPOPT_EXP: 1144 default: /* don't drop if any unknown options are present */ 1145 return false; 1146 } 1147 1148 ptr += opsize - 2; 1149 length -= opsize; 1150 } 1151 1152 return true; 1153 } 1154 1155 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q, 1156 struct cake_flow *flow) 1157 { 1158 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE; 1159 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL; 1160 struct sk_buff *skb_check, *skb_prev = NULL; 1161 const struct ipv6hdr *ipv6h, *ipv6h_check; 1162 unsigned char _tcph[64], _tcph_check[64]; 1163 const struct tcphdr *tcph, *tcph_check; 1164 const struct iphdr *iph, *iph_check; 1165 struct ipv6hdr _iph, _iph_check; 1166 const struct sk_buff *skb; 1167 int seglen, num_found = 0; 1168 u32 tstamp = 0, tsecr = 0; 1169 __be32 elig_flags = 0; 1170 int sack_comp; 1171 1172 /* no other possible ACKs to filter */ 1173 if (flow->head == flow->tail) 1174 return NULL; 1175 1176 skb = flow->tail; 1177 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph)); 1178 iph = cake_get_iphdr(skb, &_iph); 1179 if (!tcph) 1180 return NULL; 1181 1182 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr); 1183 1184 /* the 'triggering' packet need only have the ACK flag set. 1185 * also check that SYN is not set, as there won't be any previous ACKs. 1186 */ 1187 if ((tcp_flag_word(tcph) & 1188 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK) 1189 return NULL; 1190 1191 /* the 'triggering' ACK is at the tail of the queue, we have already 1192 * returned if it is the only packet in the flow. loop through the rest 1193 * of the queue looking for pure ACKs with the same 5-tuple as the 1194 * triggering one. 1195 */ 1196 for (skb_check = flow->head; 1197 skb_check && skb_check != skb; 1198 skb_prev = skb_check, skb_check = skb_check->next) { 1199 iph_check = cake_get_iphdr(skb_check, &_iph_check); 1200 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check, 1201 sizeof(_tcph_check)); 1202 1203 /* only TCP packets with matching 5-tuple are eligible, and only 1204 * drop safe headers 1205 */ 1206 if (!tcph_check || iph->version != iph_check->version || 1207 tcph_check->source != tcph->source || 1208 tcph_check->dest != tcph->dest) 1209 continue; 1210 1211 if (iph_check->version == 4) { 1212 if (iph_check->saddr != iph->saddr || 1213 iph_check->daddr != iph->daddr) 1214 continue; 1215 1216 seglen = iph_totlen(skb, iph_check) - 1217 (4 * iph_check->ihl); 1218 } else if (iph_check->version == 6) { 1219 ipv6h = (struct ipv6hdr *)iph; 1220 ipv6h_check = (struct ipv6hdr *)iph_check; 1221 1222 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) || 1223 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr)) 1224 continue; 1225 1226 seglen = ntohs(ipv6h_check->payload_len); 1227 } else { 1228 WARN_ON(1); /* shouldn't happen */ 1229 continue; 1230 } 1231 1232 /* If the ECE/CWR flags changed from the previous eligible 1233 * packet in the same flow, we should no longer be dropping that 1234 * previous packet as this would lose information. 1235 */ 1236 if (elig_ack && (tcp_flag_word(tcph_check) & 1237 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) { 1238 elig_ack = NULL; 1239 elig_ack_prev = NULL; 1240 num_found--; 1241 } 1242 1243 /* Check TCP options and flags, don't drop ACKs with segment 1244 * data, and don't drop ACKs with a higher cumulative ACK 1245 * counter than the triggering packet. Check ACK seqno here to 1246 * avoid parsing SACK options of packets we are going to exclude 1247 * anyway. 1248 */ 1249 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) || 1250 (seglen - __tcp_hdrlen(tcph_check)) != 0 || 1251 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq))) 1252 continue; 1253 1254 /* Check SACK options. The triggering packet must SACK more data 1255 * than the ACK under consideration, or SACK the same range but 1256 * have a larger cumulative ACK counter. The latter is a 1257 * pathological case, but is contained in the following check 1258 * anyway, just to be safe. 1259 */ 1260 sack_comp = cake_tcph_sack_compare(tcph_check, tcph); 1261 1262 if (sack_comp < 0 || 1263 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) && 1264 sack_comp == 0)) 1265 continue; 1266 1267 /* At this point we have found an eligible pure ACK to drop; if 1268 * we are in aggressive mode, we are done. Otherwise, keep 1269 * searching unless this is the second eligible ACK we 1270 * found. 1271 * 1272 * Since we want to drop ACK closest to the head of the queue, 1273 * save the first eligible ACK we find, even if we need to loop 1274 * again. 1275 */ 1276 if (!elig_ack) { 1277 elig_ack = skb_check; 1278 elig_ack_prev = skb_prev; 1279 elig_flags = (tcp_flag_word(tcph_check) 1280 & (TCP_FLAG_ECE | TCP_FLAG_CWR)); 1281 } 1282 1283 if (num_found++ > 0) 1284 goto found; 1285 } 1286 1287 /* We made it through the queue without finding two eligible ACKs . If 1288 * we found a single eligible ACK we can drop it in aggressive mode if 1289 * we can guarantee that this does not interfere with ECN flag 1290 * information. We ensure this by dropping it only if the enqueued 1291 * packet is consecutive with the eligible ACK, and their flags match. 1292 */ 1293 if (elig_ack && aggressive && elig_ack->next == skb && 1294 (elig_flags == (tcp_flag_word(tcph) & 1295 (TCP_FLAG_ECE | TCP_FLAG_CWR)))) 1296 goto found; 1297 1298 return NULL; 1299 1300 found: 1301 if (elig_ack_prev) 1302 elig_ack_prev->next = elig_ack->next; 1303 else 1304 flow->head = elig_ack->next; 1305 1306 skb_mark_not_on_list(elig_ack); 1307 1308 return elig_ack; 1309 } 1310 1311 static u64 cake_ewma(u64 avg, u64 sample, u32 shift) 1312 { 1313 avg -= avg >> shift; 1314 avg += sample >> shift; 1315 return avg; 1316 } 1317 1318 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off) 1319 { 1320 if (q->rate_flags & CAKE_FLAG_OVERHEAD) 1321 len -= off; 1322 1323 if (q->max_netlen < len) 1324 q->max_netlen = len; 1325 if (q->min_netlen > len) 1326 q->min_netlen = len; 1327 1328 len += q->rate_overhead; 1329 1330 if (len < q->rate_mpu) 1331 len = q->rate_mpu; 1332 1333 if (q->atm_mode == CAKE_ATM_ATM) { 1334 len += 47; 1335 len /= 48; 1336 len *= 53; 1337 } else if (q->atm_mode == CAKE_ATM_PTM) { 1338 /* Add one byte per 64 bytes or part thereof. 1339 * This is conservative and easier to calculate than the 1340 * precise value. 1341 */ 1342 len += (len + 63) / 64; 1343 } 1344 1345 if (q->max_adjlen < len) 1346 q->max_adjlen = len; 1347 if (q->min_adjlen > len) 1348 q->min_adjlen = len; 1349 1350 return len; 1351 } 1352 1353 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb) 1354 { 1355 const struct skb_shared_info *shinfo = skb_shinfo(skb); 1356 unsigned int hdr_len, last_len = 0; 1357 u32 off = skb_network_offset(skb); 1358 u32 len = qdisc_pkt_len(skb); 1359 u16 segs = 1; 1360 1361 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8); 1362 1363 if (!shinfo->gso_size) 1364 return cake_calc_overhead(q, len, off); 1365 1366 /* borrowed from qdisc_pkt_len_init() */ 1367 hdr_len = skb_transport_offset(skb); 1368 1369 /* + transport layer */ 1370 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | 1371 SKB_GSO_TCPV6))) { 1372 const struct tcphdr *th; 1373 struct tcphdr _tcphdr; 1374 1375 th = skb_header_pointer(skb, hdr_len, 1376 sizeof(_tcphdr), &_tcphdr); 1377 if (likely(th)) 1378 hdr_len += __tcp_hdrlen(th); 1379 } else { 1380 struct udphdr _udphdr; 1381 1382 if (skb_header_pointer(skb, hdr_len, 1383 sizeof(_udphdr), &_udphdr)) 1384 hdr_len += sizeof(struct udphdr); 1385 } 1386 1387 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) 1388 segs = DIV_ROUND_UP(skb->len - hdr_len, 1389 shinfo->gso_size); 1390 else 1391 segs = shinfo->gso_segs; 1392 1393 len = shinfo->gso_size + hdr_len; 1394 last_len = skb->len - shinfo->gso_size * (segs - 1); 1395 1396 return (cake_calc_overhead(q, len, off) * (segs - 1) + 1397 cake_calc_overhead(q, last_len, off)); 1398 } 1399 1400 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j) 1401 { 1402 struct cake_heap_entry ii = q->overflow_heap[i]; 1403 struct cake_heap_entry jj = q->overflow_heap[j]; 1404 1405 q->overflow_heap[i] = jj; 1406 q->overflow_heap[j] = ii; 1407 1408 q->tins[ii.t].overflow_idx[ii.b] = j; 1409 q->tins[jj.t].overflow_idx[jj.b] = i; 1410 } 1411 1412 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i) 1413 { 1414 struct cake_heap_entry ii = q->overflow_heap[i]; 1415 1416 return q->tins[ii.t].backlogs[ii.b]; 1417 } 1418 1419 static void cake_heapify(struct cake_sched_data *q, u16 i) 1420 { 1421 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES; 1422 u32 mb = cake_heap_get_backlog(q, i); 1423 u32 m = i; 1424 1425 while (m < a) { 1426 u32 l = m + m + 1; 1427 u32 r = l + 1; 1428 1429 if (l < a) { 1430 u32 lb = cake_heap_get_backlog(q, l); 1431 1432 if (lb > mb) { 1433 m = l; 1434 mb = lb; 1435 } 1436 } 1437 1438 if (r < a) { 1439 u32 rb = cake_heap_get_backlog(q, r); 1440 1441 if (rb > mb) { 1442 m = r; 1443 mb = rb; 1444 } 1445 } 1446 1447 if (m != i) { 1448 cake_heap_swap(q, i, m); 1449 i = m; 1450 } else { 1451 break; 1452 } 1453 } 1454 } 1455 1456 static void cake_heapify_up(struct cake_sched_data *q, u16 i) 1457 { 1458 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) { 1459 u16 p = (i - 1) >> 1; 1460 u32 ib = cake_heap_get_backlog(q, i); 1461 u32 pb = cake_heap_get_backlog(q, p); 1462 1463 if (ib > pb) { 1464 cake_heap_swap(q, i, p); 1465 i = p; 1466 } else { 1467 break; 1468 } 1469 } 1470 } 1471 1472 static int cake_advance_shaper(struct cake_sched_data *q, 1473 struct cake_tin_data *b, 1474 struct sk_buff *skb, 1475 ktime_t now, bool drop) 1476 { 1477 u32 len = get_cobalt_cb(skb)->adjusted_len; 1478 1479 /* charge packet bandwidth to this tin 1480 * and to the global shaper. 1481 */ 1482 if (q->rate_ns) { 1483 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft; 1484 u64 global_dur = (len * q->rate_ns) >> q->rate_shft; 1485 u64 failsafe_dur = global_dur + (global_dur >> 1); 1486 1487 if (ktime_before(b->time_next_packet, now)) 1488 b->time_next_packet = ktime_add_ns(b->time_next_packet, 1489 tin_dur); 1490 1491 else if (ktime_before(b->time_next_packet, 1492 ktime_add_ns(now, tin_dur))) 1493 b->time_next_packet = ktime_add_ns(now, tin_dur); 1494 1495 q->time_next_packet = ktime_add_ns(q->time_next_packet, 1496 global_dur); 1497 if (!drop) 1498 q->failsafe_next_packet = \ 1499 ktime_add_ns(q->failsafe_next_packet, 1500 failsafe_dur); 1501 } 1502 return len; 1503 } 1504 1505 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free) 1506 { 1507 struct cake_sched_data *q = qdisc_priv(sch); 1508 ktime_t now = ktime_get(); 1509 u32 idx = 0, tin = 0, len; 1510 struct cake_heap_entry qq; 1511 struct cake_tin_data *b; 1512 struct cake_flow *flow; 1513 struct sk_buff *skb; 1514 1515 if (!q->overflow_timeout) { 1516 int i; 1517 /* Build fresh max-heap */ 1518 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2 - 1; i >= 0; i--) 1519 cake_heapify(q, i); 1520 } 1521 q->overflow_timeout = 65535; 1522 1523 /* select longest queue for pruning */ 1524 qq = q->overflow_heap[0]; 1525 tin = qq.t; 1526 idx = qq.b; 1527 1528 b = &q->tins[tin]; 1529 flow = &b->flows[idx]; 1530 skb = dequeue_head(flow); 1531 if (unlikely(!skb)) { 1532 /* heap has gone wrong, rebuild it next time */ 1533 q->overflow_timeout = 0; 1534 return idx + (tin << 16); 1535 } 1536 1537 if (cobalt_queue_full(&flow->cvars, &b->cparams, now)) 1538 b->unresponsive_flow_count++; 1539 1540 len = qdisc_pkt_len(skb); 1541 q->buffer_used -= skb->truesize; 1542 b->backlogs[idx] -= len; 1543 b->tin_backlog -= len; 1544 sch->qstats.backlog -= len; 1545 qdisc_tree_reduce_backlog(sch, 1, len); 1546 1547 flow->dropped++; 1548 b->tin_dropped++; 1549 sch->qstats.drops++; 1550 1551 if (q->rate_flags & CAKE_FLAG_INGRESS) 1552 cake_advance_shaper(q, b, skb, now, true); 1553 1554 __qdisc_drop(skb, to_free); 1555 sch->q.qlen--; 1556 1557 cake_heapify(q, 0); 1558 1559 return idx + (tin << 16); 1560 } 1561 1562 static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash) 1563 { 1564 const int offset = skb_network_offset(skb); 1565 u16 *buf, buf_; 1566 u8 dscp; 1567 1568 switch (skb_protocol(skb, true)) { 1569 case htons(ETH_P_IP): 1570 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_); 1571 if (unlikely(!buf)) 1572 return 0; 1573 1574 /* ToS is in the second byte of iphdr */ 1575 dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2; 1576 1577 if (wash && dscp) { 1578 const int wlen = offset + sizeof(struct iphdr); 1579 1580 if (!pskb_may_pull(skb, wlen) || 1581 skb_try_make_writable(skb, wlen)) 1582 return 0; 1583 1584 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0); 1585 } 1586 1587 return dscp; 1588 1589 case htons(ETH_P_IPV6): 1590 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_); 1591 if (unlikely(!buf)) 1592 return 0; 1593 1594 /* Traffic class is in the first and second bytes of ipv6hdr */ 1595 dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2; 1596 1597 if (wash && dscp) { 1598 const int wlen = offset + sizeof(struct ipv6hdr); 1599 1600 if (!pskb_may_pull(skb, wlen) || 1601 skb_try_make_writable(skb, wlen)) 1602 return 0; 1603 1604 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0); 1605 } 1606 1607 return dscp; 1608 1609 case htons(ETH_P_ARP): 1610 return 0x38; /* CS7 - Net Control */ 1611 1612 default: 1613 /* If there is no Diffserv field, treat as best-effort */ 1614 return 0; 1615 } 1616 } 1617 1618 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch, 1619 struct sk_buff *skb) 1620 { 1621 struct cake_sched_data *q = qdisc_priv(sch); 1622 u32 tin, mark; 1623 bool wash; 1624 u8 dscp; 1625 1626 /* Tin selection: Default to diffserv-based selection, allow overriding 1627 * using firewall marks or skb->priority. Call DSCP parsing early if 1628 * wash is enabled, otherwise defer to below to skip unneeded parsing. 1629 */ 1630 mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft; 1631 wash = !!(q->rate_flags & CAKE_FLAG_WASH); 1632 if (wash) 1633 dscp = cake_handle_diffserv(skb, wash); 1634 1635 if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT) 1636 tin = 0; 1637 1638 else if (mark && mark <= q->tin_cnt) 1639 tin = q->tin_order[mark - 1]; 1640 1641 else if (TC_H_MAJ(skb->priority) == sch->handle && 1642 TC_H_MIN(skb->priority) > 0 && 1643 TC_H_MIN(skb->priority) <= q->tin_cnt) 1644 tin = q->tin_order[TC_H_MIN(skb->priority) - 1]; 1645 1646 else { 1647 if (!wash) 1648 dscp = cake_handle_diffserv(skb, wash); 1649 tin = q->tin_index[dscp]; 1650 1651 if (unlikely(tin >= q->tin_cnt)) 1652 tin = 0; 1653 } 1654 1655 return &q->tins[tin]; 1656 } 1657 1658 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t, 1659 struct sk_buff *skb, int flow_mode, int *qerr) 1660 { 1661 struct cake_sched_data *q = qdisc_priv(sch); 1662 struct tcf_proto *filter; 1663 struct tcf_result res; 1664 u16 flow = 0, host = 0; 1665 int result; 1666 1667 filter = rcu_dereference_bh(q->filter_list); 1668 if (!filter) 1669 goto hash; 1670 1671 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 1672 result = tcf_classify(skb, NULL, filter, &res, false); 1673 1674 if (result >= 0) { 1675 #ifdef CONFIG_NET_CLS_ACT 1676 switch (result) { 1677 case TC_ACT_STOLEN: 1678 case TC_ACT_QUEUED: 1679 case TC_ACT_TRAP: 1680 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 1681 fallthrough; 1682 case TC_ACT_SHOT: 1683 return 0; 1684 } 1685 #endif 1686 if (TC_H_MIN(res.classid) <= CAKE_QUEUES) 1687 flow = TC_H_MIN(res.classid); 1688 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16)) 1689 host = TC_H_MAJ(res.classid) >> 16; 1690 } 1691 hash: 1692 *t = cake_select_tin(sch, skb); 1693 return cake_hash(*t, skb, flow_mode, flow, host) + 1; 1694 } 1695 1696 static void cake_reconfigure(struct Qdisc *sch); 1697 1698 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch, 1699 struct sk_buff **to_free) 1700 { 1701 struct cake_sched_data *q = qdisc_priv(sch); 1702 int len = qdisc_pkt_len(skb); 1703 int ret; 1704 struct sk_buff *ack = NULL; 1705 ktime_t now = ktime_get(); 1706 struct cake_tin_data *b; 1707 struct cake_flow *flow; 1708 u32 idx; 1709 1710 /* choose flow to insert into */ 1711 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret); 1712 if (idx == 0) { 1713 if (ret & __NET_XMIT_BYPASS) 1714 qdisc_qstats_drop(sch); 1715 __qdisc_drop(skb, to_free); 1716 return ret; 1717 } 1718 idx--; 1719 flow = &b->flows[idx]; 1720 1721 /* ensure shaper state isn't stale */ 1722 if (!b->tin_backlog) { 1723 if (ktime_before(b->time_next_packet, now)) 1724 b->time_next_packet = now; 1725 1726 if (!sch->q.qlen) { 1727 if (ktime_before(q->time_next_packet, now)) { 1728 q->failsafe_next_packet = now; 1729 q->time_next_packet = now; 1730 } else if (ktime_after(q->time_next_packet, now) && 1731 ktime_after(q->failsafe_next_packet, now)) { 1732 u64 next = \ 1733 min(ktime_to_ns(q->time_next_packet), 1734 ktime_to_ns( 1735 q->failsafe_next_packet)); 1736 sch->qstats.overlimits++; 1737 qdisc_watchdog_schedule_ns(&q->watchdog, next); 1738 } 1739 } 1740 } 1741 1742 if (unlikely(len > b->max_skblen)) 1743 b->max_skblen = len; 1744 1745 if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) { 1746 struct sk_buff *segs, *nskb; 1747 netdev_features_t features = netif_skb_features(skb); 1748 unsigned int slen = 0, numsegs = 0; 1749 1750 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 1751 if (IS_ERR_OR_NULL(segs)) 1752 return qdisc_drop(skb, sch, to_free); 1753 1754 skb_list_walk_safe(segs, segs, nskb) { 1755 skb_mark_not_on_list(segs); 1756 qdisc_skb_cb(segs)->pkt_len = segs->len; 1757 cobalt_set_enqueue_time(segs, now); 1758 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q, 1759 segs); 1760 flow_queue_add(flow, segs); 1761 1762 sch->q.qlen++; 1763 numsegs++; 1764 slen += segs->len; 1765 q->buffer_used += segs->truesize; 1766 b->packets++; 1767 } 1768 1769 /* stats */ 1770 b->bytes += slen; 1771 b->backlogs[idx] += slen; 1772 b->tin_backlog += slen; 1773 sch->qstats.backlog += slen; 1774 q->avg_window_bytes += slen; 1775 1776 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen); 1777 consume_skb(skb); 1778 } else { 1779 /* not splitting */ 1780 cobalt_set_enqueue_time(skb, now); 1781 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb); 1782 flow_queue_add(flow, skb); 1783 1784 if (q->ack_filter) 1785 ack = cake_ack_filter(q, flow); 1786 1787 if (ack) { 1788 b->ack_drops++; 1789 sch->qstats.drops++; 1790 b->bytes += qdisc_pkt_len(ack); 1791 len -= qdisc_pkt_len(ack); 1792 q->buffer_used += skb->truesize - ack->truesize; 1793 if (q->rate_flags & CAKE_FLAG_INGRESS) 1794 cake_advance_shaper(q, b, ack, now, true); 1795 1796 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack)); 1797 consume_skb(ack); 1798 } else { 1799 sch->q.qlen++; 1800 q->buffer_used += skb->truesize; 1801 } 1802 1803 /* stats */ 1804 b->packets++; 1805 b->bytes += len; 1806 b->backlogs[idx] += len; 1807 b->tin_backlog += len; 1808 sch->qstats.backlog += len; 1809 q->avg_window_bytes += len; 1810 } 1811 1812 if (q->overflow_timeout) 1813 cake_heapify_up(q, b->overflow_idx[idx]); 1814 1815 /* incoming bandwidth capacity estimate */ 1816 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) { 1817 u64 packet_interval = \ 1818 ktime_to_ns(ktime_sub(now, q->last_packet_time)); 1819 1820 if (packet_interval > NSEC_PER_SEC) 1821 packet_interval = NSEC_PER_SEC; 1822 1823 /* filter out short-term bursts, eg. wifi aggregation */ 1824 q->avg_packet_interval = \ 1825 cake_ewma(q->avg_packet_interval, 1826 packet_interval, 1827 (packet_interval > q->avg_packet_interval ? 1828 2 : 8)); 1829 1830 q->last_packet_time = now; 1831 1832 if (packet_interval > q->avg_packet_interval) { 1833 u64 window_interval = \ 1834 ktime_to_ns(ktime_sub(now, 1835 q->avg_window_begin)); 1836 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC; 1837 1838 b = div64_u64(b, window_interval); 1839 q->avg_peak_bandwidth = 1840 cake_ewma(q->avg_peak_bandwidth, b, 1841 b > q->avg_peak_bandwidth ? 2 : 8); 1842 q->avg_window_bytes = 0; 1843 q->avg_window_begin = now; 1844 1845 if (ktime_after(now, 1846 ktime_add_ms(q->last_reconfig_time, 1847 250))) { 1848 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4; 1849 cake_reconfigure(sch); 1850 } 1851 } 1852 } else { 1853 q->avg_window_bytes = 0; 1854 q->last_packet_time = now; 1855 } 1856 1857 /* flowchain */ 1858 if (!flow->set || flow->set == CAKE_SET_DECAYING) { 1859 struct cake_host *srchost = &b->hosts[flow->srchost]; 1860 struct cake_host *dsthost = &b->hosts[flow->dsthost]; 1861 u16 host_load = 1; 1862 1863 if (!flow->set) { 1864 list_add_tail(&flow->flowchain, &b->new_flows); 1865 } else { 1866 b->decaying_flow_count--; 1867 list_move_tail(&flow->flowchain, &b->new_flows); 1868 } 1869 flow->set = CAKE_SET_SPARSE; 1870 b->sparse_flow_count++; 1871 1872 if (cake_dsrc(q->flow_mode)) 1873 host_load = max(host_load, srchost->srchost_bulk_flow_count); 1874 1875 if (cake_ddst(q->flow_mode)) 1876 host_load = max(host_load, dsthost->dsthost_bulk_flow_count); 1877 1878 flow->deficit = (b->flow_quantum * 1879 quantum_div[host_load]) >> 16; 1880 } else if (flow->set == CAKE_SET_SPARSE_WAIT) { 1881 struct cake_host *srchost = &b->hosts[flow->srchost]; 1882 struct cake_host *dsthost = &b->hosts[flow->dsthost]; 1883 1884 /* this flow was empty, accounted as a sparse flow, but actually 1885 * in the bulk rotation. 1886 */ 1887 flow->set = CAKE_SET_BULK; 1888 b->sparse_flow_count--; 1889 b->bulk_flow_count++; 1890 1891 if (cake_dsrc(q->flow_mode)) 1892 srchost->srchost_bulk_flow_count++; 1893 1894 if (cake_ddst(q->flow_mode)) 1895 dsthost->dsthost_bulk_flow_count++; 1896 1897 } 1898 1899 if (q->buffer_used > q->buffer_max_used) 1900 q->buffer_max_used = q->buffer_used; 1901 1902 if (q->buffer_used > q->buffer_limit) { 1903 u32 dropped = 0; 1904 1905 while (q->buffer_used > q->buffer_limit) { 1906 dropped++; 1907 cake_drop(sch, to_free); 1908 } 1909 b->drop_overlimit += dropped; 1910 } 1911 return NET_XMIT_SUCCESS; 1912 } 1913 1914 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch) 1915 { 1916 struct cake_sched_data *q = qdisc_priv(sch); 1917 struct cake_tin_data *b = &q->tins[q->cur_tin]; 1918 struct cake_flow *flow = &b->flows[q->cur_flow]; 1919 struct sk_buff *skb = NULL; 1920 u32 len; 1921 1922 if (flow->head) { 1923 skb = dequeue_head(flow); 1924 len = qdisc_pkt_len(skb); 1925 b->backlogs[q->cur_flow] -= len; 1926 b->tin_backlog -= len; 1927 sch->qstats.backlog -= len; 1928 q->buffer_used -= skb->truesize; 1929 sch->q.qlen--; 1930 1931 if (q->overflow_timeout) 1932 cake_heapify(q, b->overflow_idx[q->cur_flow]); 1933 } 1934 return skb; 1935 } 1936 1937 /* Discard leftover packets from a tin no longer in use. */ 1938 static void cake_clear_tin(struct Qdisc *sch, u16 tin) 1939 { 1940 struct cake_sched_data *q = qdisc_priv(sch); 1941 struct sk_buff *skb; 1942 1943 q->cur_tin = tin; 1944 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++) 1945 while (!!(skb = cake_dequeue_one(sch))) 1946 kfree_skb(skb); 1947 } 1948 1949 static struct sk_buff *cake_dequeue(struct Qdisc *sch) 1950 { 1951 struct cake_sched_data *q = qdisc_priv(sch); 1952 struct cake_tin_data *b = &q->tins[q->cur_tin]; 1953 struct cake_host *srchost, *dsthost; 1954 ktime_t now = ktime_get(); 1955 struct cake_flow *flow; 1956 struct list_head *head; 1957 bool first_flow = true; 1958 struct sk_buff *skb; 1959 u16 host_load; 1960 u64 delay; 1961 u32 len; 1962 1963 begin: 1964 if (!sch->q.qlen) 1965 return NULL; 1966 1967 /* global hard shaper */ 1968 if (ktime_after(q->time_next_packet, now) && 1969 ktime_after(q->failsafe_next_packet, now)) { 1970 u64 next = min(ktime_to_ns(q->time_next_packet), 1971 ktime_to_ns(q->failsafe_next_packet)); 1972 1973 sch->qstats.overlimits++; 1974 qdisc_watchdog_schedule_ns(&q->watchdog, next); 1975 return NULL; 1976 } 1977 1978 /* Choose a class to work on. */ 1979 if (!q->rate_ns) { 1980 /* In unlimited mode, can't rely on shaper timings, just balance 1981 * with DRR 1982 */ 1983 bool wrapped = false, empty = true; 1984 1985 while (b->tin_deficit < 0 || 1986 !(b->sparse_flow_count + b->bulk_flow_count)) { 1987 if (b->tin_deficit <= 0) 1988 b->tin_deficit += b->tin_quantum; 1989 if (b->sparse_flow_count + b->bulk_flow_count) 1990 empty = false; 1991 1992 q->cur_tin++; 1993 b++; 1994 if (q->cur_tin >= q->tin_cnt) { 1995 q->cur_tin = 0; 1996 b = q->tins; 1997 1998 if (wrapped) { 1999 /* It's possible for q->qlen to be 2000 * nonzero when we actually have no 2001 * packets anywhere. 2002 */ 2003 if (empty) 2004 return NULL; 2005 } else { 2006 wrapped = true; 2007 } 2008 } 2009 } 2010 } else { 2011 /* In shaped mode, choose: 2012 * - Highest-priority tin with queue and meeting schedule, or 2013 * - The earliest-scheduled tin with queue. 2014 */ 2015 ktime_t best_time = KTIME_MAX; 2016 int tin, best_tin = 0; 2017 2018 for (tin = 0; tin < q->tin_cnt; tin++) { 2019 b = q->tins + tin; 2020 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) { 2021 ktime_t time_to_pkt = \ 2022 ktime_sub(b->time_next_packet, now); 2023 2024 if (ktime_to_ns(time_to_pkt) <= 0 || 2025 ktime_compare(time_to_pkt, 2026 best_time) <= 0) { 2027 best_time = time_to_pkt; 2028 best_tin = tin; 2029 } 2030 } 2031 } 2032 2033 q->cur_tin = best_tin; 2034 b = q->tins + best_tin; 2035 2036 /* No point in going further if no packets to deliver. */ 2037 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count))) 2038 return NULL; 2039 } 2040 2041 retry: 2042 /* service this class */ 2043 head = &b->decaying_flows; 2044 if (!first_flow || list_empty(head)) { 2045 head = &b->new_flows; 2046 if (list_empty(head)) { 2047 head = &b->old_flows; 2048 if (unlikely(list_empty(head))) { 2049 head = &b->decaying_flows; 2050 if (unlikely(list_empty(head))) 2051 goto begin; 2052 } 2053 } 2054 } 2055 flow = list_first_entry(head, struct cake_flow, flowchain); 2056 q->cur_flow = flow - b->flows; 2057 first_flow = false; 2058 2059 /* triple isolation (modified DRR++) */ 2060 srchost = &b->hosts[flow->srchost]; 2061 dsthost = &b->hosts[flow->dsthost]; 2062 host_load = 1; 2063 2064 /* flow isolation (DRR++) */ 2065 if (flow->deficit <= 0) { 2066 /* Keep all flows with deficits out of the sparse and decaying 2067 * rotations. No non-empty flow can go into the decaying 2068 * rotation, so they can't get deficits 2069 */ 2070 if (flow->set == CAKE_SET_SPARSE) { 2071 if (flow->head) { 2072 b->sparse_flow_count--; 2073 b->bulk_flow_count++; 2074 2075 if (cake_dsrc(q->flow_mode)) 2076 srchost->srchost_bulk_flow_count++; 2077 2078 if (cake_ddst(q->flow_mode)) 2079 dsthost->dsthost_bulk_flow_count++; 2080 2081 flow->set = CAKE_SET_BULK; 2082 } else { 2083 /* we've moved it to the bulk rotation for 2084 * correct deficit accounting but we still want 2085 * to count it as a sparse flow, not a bulk one. 2086 */ 2087 flow->set = CAKE_SET_SPARSE_WAIT; 2088 } 2089 } 2090 2091 if (cake_dsrc(q->flow_mode)) 2092 host_load = max(host_load, srchost->srchost_bulk_flow_count); 2093 2094 if (cake_ddst(q->flow_mode)) 2095 host_load = max(host_load, dsthost->dsthost_bulk_flow_count); 2096 2097 WARN_ON(host_load > CAKE_QUEUES); 2098 2099 /* The get_random_u16() is a way to apply dithering to avoid 2100 * accumulating roundoff errors 2101 */ 2102 flow->deficit += (b->flow_quantum * quantum_div[host_load] + 2103 get_random_u16()) >> 16; 2104 list_move_tail(&flow->flowchain, &b->old_flows); 2105 2106 goto retry; 2107 } 2108 2109 /* Retrieve a packet via the AQM */ 2110 while (1) { 2111 skb = cake_dequeue_one(sch); 2112 if (!skb) { 2113 /* this queue was actually empty */ 2114 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now)) 2115 b->unresponsive_flow_count--; 2116 2117 if (flow->cvars.p_drop || flow->cvars.count || 2118 ktime_before(now, flow->cvars.drop_next)) { 2119 /* keep in the flowchain until the state has 2120 * decayed to rest 2121 */ 2122 list_move_tail(&flow->flowchain, 2123 &b->decaying_flows); 2124 if (flow->set == CAKE_SET_BULK) { 2125 b->bulk_flow_count--; 2126 2127 if (cake_dsrc(q->flow_mode)) 2128 srchost->srchost_bulk_flow_count--; 2129 2130 if (cake_ddst(q->flow_mode)) 2131 dsthost->dsthost_bulk_flow_count--; 2132 2133 b->decaying_flow_count++; 2134 } else if (flow->set == CAKE_SET_SPARSE || 2135 flow->set == CAKE_SET_SPARSE_WAIT) { 2136 b->sparse_flow_count--; 2137 b->decaying_flow_count++; 2138 } 2139 flow->set = CAKE_SET_DECAYING; 2140 } else { 2141 /* remove empty queue from the flowchain */ 2142 list_del_init(&flow->flowchain); 2143 if (flow->set == CAKE_SET_SPARSE || 2144 flow->set == CAKE_SET_SPARSE_WAIT) 2145 b->sparse_flow_count--; 2146 else if (flow->set == CAKE_SET_BULK) { 2147 b->bulk_flow_count--; 2148 2149 if (cake_dsrc(q->flow_mode)) 2150 srchost->srchost_bulk_flow_count--; 2151 2152 if (cake_ddst(q->flow_mode)) 2153 dsthost->dsthost_bulk_flow_count--; 2154 2155 } else 2156 b->decaying_flow_count--; 2157 2158 flow->set = CAKE_SET_NONE; 2159 } 2160 goto begin; 2161 } 2162 2163 /* Last packet in queue may be marked, shouldn't be dropped */ 2164 if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb, 2165 (b->bulk_flow_count * 2166 !!(q->rate_flags & 2167 CAKE_FLAG_INGRESS))) || 2168 !flow->head) 2169 break; 2170 2171 /* drop this packet, get another one */ 2172 if (q->rate_flags & CAKE_FLAG_INGRESS) { 2173 len = cake_advance_shaper(q, b, skb, 2174 now, true); 2175 flow->deficit -= len; 2176 b->tin_deficit -= len; 2177 } 2178 flow->dropped++; 2179 b->tin_dropped++; 2180 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb)); 2181 qdisc_qstats_drop(sch); 2182 kfree_skb(skb); 2183 if (q->rate_flags & CAKE_FLAG_INGRESS) 2184 goto retry; 2185 } 2186 2187 b->tin_ecn_mark += !!flow->cvars.ecn_marked; 2188 qdisc_bstats_update(sch, skb); 2189 2190 /* collect delay stats */ 2191 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb))); 2192 b->avge_delay = cake_ewma(b->avge_delay, delay, 8); 2193 b->peak_delay = cake_ewma(b->peak_delay, delay, 2194 delay > b->peak_delay ? 2 : 8); 2195 b->base_delay = cake_ewma(b->base_delay, delay, 2196 delay < b->base_delay ? 2 : 8); 2197 2198 len = cake_advance_shaper(q, b, skb, now, false); 2199 flow->deficit -= len; 2200 b->tin_deficit -= len; 2201 2202 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) { 2203 u64 next = min(ktime_to_ns(q->time_next_packet), 2204 ktime_to_ns(q->failsafe_next_packet)); 2205 2206 qdisc_watchdog_schedule_ns(&q->watchdog, next); 2207 } else if (!sch->q.qlen) { 2208 int i; 2209 2210 for (i = 0; i < q->tin_cnt; i++) { 2211 if (q->tins[i].decaying_flow_count) { 2212 ktime_t next = \ 2213 ktime_add_ns(now, 2214 q->tins[i].cparams.target); 2215 2216 qdisc_watchdog_schedule_ns(&q->watchdog, 2217 ktime_to_ns(next)); 2218 break; 2219 } 2220 } 2221 } 2222 2223 if (q->overflow_timeout) 2224 q->overflow_timeout--; 2225 2226 return skb; 2227 } 2228 2229 static void cake_reset(struct Qdisc *sch) 2230 { 2231 struct cake_sched_data *q = qdisc_priv(sch); 2232 u32 c; 2233 2234 if (!q->tins) 2235 return; 2236 2237 for (c = 0; c < CAKE_MAX_TINS; c++) 2238 cake_clear_tin(sch, c); 2239 } 2240 2241 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = { 2242 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 }, 2243 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 }, 2244 [TCA_CAKE_ATM] = { .type = NLA_U32 }, 2245 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 }, 2246 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 }, 2247 [TCA_CAKE_RTT] = { .type = NLA_U32 }, 2248 [TCA_CAKE_TARGET] = { .type = NLA_U32 }, 2249 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 }, 2250 [TCA_CAKE_MEMORY] = { .type = NLA_U32 }, 2251 [TCA_CAKE_NAT] = { .type = NLA_U32 }, 2252 [TCA_CAKE_RAW] = { .type = NLA_U32 }, 2253 [TCA_CAKE_WASH] = { .type = NLA_U32 }, 2254 [TCA_CAKE_MPU] = { .type = NLA_U32 }, 2255 [TCA_CAKE_INGRESS] = { .type = NLA_U32 }, 2256 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 }, 2257 [TCA_CAKE_SPLIT_GSO] = { .type = NLA_U32 }, 2258 [TCA_CAKE_FWMARK] = { .type = NLA_U32 }, 2259 }; 2260 2261 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu, 2262 u64 target_ns, u64 rtt_est_ns) 2263 { 2264 /* convert byte-rate into time-per-byte 2265 * so it will always unwedge in reasonable time. 2266 */ 2267 static const u64 MIN_RATE = 64; 2268 u32 byte_target = mtu; 2269 u64 byte_target_ns; 2270 u8 rate_shft = 0; 2271 u64 rate_ns = 0; 2272 2273 b->flow_quantum = 1514; 2274 if (rate) { 2275 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL); 2276 rate_shft = 34; 2277 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft; 2278 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate)); 2279 while (!!(rate_ns >> 34)) { 2280 rate_ns >>= 1; 2281 rate_shft--; 2282 } 2283 } /* else unlimited, ie. zero delay */ 2284 2285 b->tin_rate_bps = rate; 2286 b->tin_rate_ns = rate_ns; 2287 b->tin_rate_shft = rate_shft; 2288 2289 byte_target_ns = (byte_target * rate_ns) >> rate_shft; 2290 2291 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns); 2292 b->cparams.interval = max(rtt_est_ns + 2293 b->cparams.target - target_ns, 2294 b->cparams.target * 2); 2295 b->cparams.mtu_time = byte_target_ns; 2296 b->cparams.p_inc = 1 << 24; /* 1/256 */ 2297 b->cparams.p_dec = 1 << 20; /* 1/4096 */ 2298 } 2299 2300 static int cake_config_besteffort(struct Qdisc *sch) 2301 { 2302 struct cake_sched_data *q = qdisc_priv(sch); 2303 struct cake_tin_data *b = &q->tins[0]; 2304 u32 mtu = psched_mtu(qdisc_dev(sch)); 2305 u64 rate = q->rate_bps; 2306 2307 q->tin_cnt = 1; 2308 2309 q->tin_index = besteffort; 2310 q->tin_order = normal_order; 2311 2312 cake_set_rate(b, rate, mtu, 2313 us_to_ns(q->target), us_to_ns(q->interval)); 2314 b->tin_quantum = 65535; 2315 2316 return 0; 2317 } 2318 2319 static int cake_config_precedence(struct Qdisc *sch) 2320 { 2321 /* convert high-level (user visible) parameters into internal format */ 2322 struct cake_sched_data *q = qdisc_priv(sch); 2323 u32 mtu = psched_mtu(qdisc_dev(sch)); 2324 u64 rate = q->rate_bps; 2325 u32 quantum = 256; 2326 u32 i; 2327 2328 q->tin_cnt = 8; 2329 q->tin_index = precedence; 2330 q->tin_order = normal_order; 2331 2332 for (i = 0; i < q->tin_cnt; i++) { 2333 struct cake_tin_data *b = &q->tins[i]; 2334 2335 cake_set_rate(b, rate, mtu, us_to_ns(q->target), 2336 us_to_ns(q->interval)); 2337 2338 b->tin_quantum = max_t(u16, 1U, quantum); 2339 2340 /* calculate next class's parameters */ 2341 rate *= 7; 2342 rate >>= 3; 2343 2344 quantum *= 7; 2345 quantum >>= 3; 2346 } 2347 2348 return 0; 2349 } 2350 2351 /* List of known Diffserv codepoints: 2352 * 2353 * Default Forwarding (DF/CS0) - Best Effort 2354 * Max Throughput (TOS2) 2355 * Min Delay (TOS4) 2356 * LLT "La" (TOS5) 2357 * Assured Forwarding 1 (AF1x) - x3 2358 * Assured Forwarding 2 (AF2x) - x3 2359 * Assured Forwarding 3 (AF3x) - x3 2360 * Assured Forwarding 4 (AF4x) - x3 2361 * Precedence Class 1 (CS1) 2362 * Precedence Class 2 (CS2) 2363 * Precedence Class 3 (CS3) 2364 * Precedence Class 4 (CS4) 2365 * Precedence Class 5 (CS5) 2366 * Precedence Class 6 (CS6) 2367 * Precedence Class 7 (CS7) 2368 * Voice Admit (VA) 2369 * Expedited Forwarding (EF) 2370 * Lower Effort (LE) 2371 * 2372 * Total 26 codepoints. 2373 */ 2374 2375 /* List of traffic classes in RFC 4594, updated by RFC 8622: 2376 * (roughly descending order of contended priority) 2377 * (roughly ascending order of uncontended throughput) 2378 * 2379 * Network Control (CS6,CS7) - routing traffic 2380 * Telephony (EF,VA) - aka. VoIP streams 2381 * Signalling (CS5) - VoIP setup 2382 * Multimedia Conferencing (AF4x) - aka. video calls 2383 * Realtime Interactive (CS4) - eg. games 2384 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch 2385 * Broadcast Video (CS3) 2386 * Low-Latency Data (AF2x,TOS4) - eg. database 2387 * Ops, Admin, Management (CS2) - eg. ssh 2388 * Standard Service (DF & unrecognised codepoints) 2389 * High-Throughput Data (AF1x,TOS2) - eg. web traffic 2390 * Low-Priority Data (LE,CS1) - eg. BitTorrent 2391 * 2392 * Total 12 traffic classes. 2393 */ 2394 2395 static int cake_config_diffserv8(struct Qdisc *sch) 2396 { 2397 /* Pruned list of traffic classes for typical applications: 2398 * 2399 * Network Control (CS6, CS7) 2400 * Minimum Latency (EF, VA, CS5, CS4) 2401 * Interactive Shell (CS2) 2402 * Low Latency Transactions (AF2x, TOS4) 2403 * Video Streaming (AF4x, AF3x, CS3) 2404 * Bog Standard (DF etc.) 2405 * High Throughput (AF1x, TOS2, CS1) 2406 * Background Traffic (LE) 2407 * 2408 * Total 8 traffic classes. 2409 */ 2410 2411 struct cake_sched_data *q = qdisc_priv(sch); 2412 u32 mtu = psched_mtu(qdisc_dev(sch)); 2413 u64 rate = q->rate_bps; 2414 u32 quantum = 256; 2415 u32 i; 2416 2417 q->tin_cnt = 8; 2418 2419 /* codepoint to class mapping */ 2420 q->tin_index = diffserv8; 2421 q->tin_order = normal_order; 2422 2423 /* class characteristics */ 2424 for (i = 0; i < q->tin_cnt; i++) { 2425 struct cake_tin_data *b = &q->tins[i]; 2426 2427 cake_set_rate(b, rate, mtu, us_to_ns(q->target), 2428 us_to_ns(q->interval)); 2429 2430 b->tin_quantum = max_t(u16, 1U, quantum); 2431 2432 /* calculate next class's parameters */ 2433 rate *= 7; 2434 rate >>= 3; 2435 2436 quantum *= 7; 2437 quantum >>= 3; 2438 } 2439 2440 return 0; 2441 } 2442 2443 static int cake_config_diffserv4(struct Qdisc *sch) 2444 { 2445 /* Further pruned list of traffic classes for four-class system: 2446 * 2447 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4) 2448 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2) 2449 * Best Effort (DF, AF1x, TOS2, and those not specified) 2450 * Background Traffic (LE, CS1) 2451 * 2452 * Total 4 traffic classes. 2453 */ 2454 2455 struct cake_sched_data *q = qdisc_priv(sch); 2456 u32 mtu = psched_mtu(qdisc_dev(sch)); 2457 u64 rate = q->rate_bps; 2458 u32 quantum = 1024; 2459 2460 q->tin_cnt = 4; 2461 2462 /* codepoint to class mapping */ 2463 q->tin_index = diffserv4; 2464 q->tin_order = bulk_order; 2465 2466 /* class characteristics */ 2467 cake_set_rate(&q->tins[0], rate, mtu, 2468 us_to_ns(q->target), us_to_ns(q->interval)); 2469 cake_set_rate(&q->tins[1], rate >> 4, mtu, 2470 us_to_ns(q->target), us_to_ns(q->interval)); 2471 cake_set_rate(&q->tins[2], rate >> 1, mtu, 2472 us_to_ns(q->target), us_to_ns(q->interval)); 2473 cake_set_rate(&q->tins[3], rate >> 2, mtu, 2474 us_to_ns(q->target), us_to_ns(q->interval)); 2475 2476 /* bandwidth-sharing weights */ 2477 q->tins[0].tin_quantum = quantum; 2478 q->tins[1].tin_quantum = quantum >> 4; 2479 q->tins[2].tin_quantum = quantum >> 1; 2480 q->tins[3].tin_quantum = quantum >> 2; 2481 2482 return 0; 2483 } 2484 2485 static int cake_config_diffserv3(struct Qdisc *sch) 2486 { 2487 /* Simplified Diffserv structure with 3 tins. 2488 * Latency Sensitive (CS7, CS6, EF, VA, TOS4) 2489 * Best Effort 2490 * Low Priority (LE, CS1) 2491 */ 2492 struct cake_sched_data *q = qdisc_priv(sch); 2493 u32 mtu = psched_mtu(qdisc_dev(sch)); 2494 u64 rate = q->rate_bps; 2495 u32 quantum = 1024; 2496 2497 q->tin_cnt = 3; 2498 2499 /* codepoint to class mapping */ 2500 q->tin_index = diffserv3; 2501 q->tin_order = bulk_order; 2502 2503 /* class characteristics */ 2504 cake_set_rate(&q->tins[0], rate, mtu, 2505 us_to_ns(q->target), us_to_ns(q->interval)); 2506 cake_set_rate(&q->tins[1], rate >> 4, mtu, 2507 us_to_ns(q->target), us_to_ns(q->interval)); 2508 cake_set_rate(&q->tins[2], rate >> 2, mtu, 2509 us_to_ns(q->target), us_to_ns(q->interval)); 2510 2511 /* bandwidth-sharing weights */ 2512 q->tins[0].tin_quantum = quantum; 2513 q->tins[1].tin_quantum = quantum >> 4; 2514 q->tins[2].tin_quantum = quantum >> 2; 2515 2516 return 0; 2517 } 2518 2519 static void cake_reconfigure(struct Qdisc *sch) 2520 { 2521 struct cake_sched_data *q = qdisc_priv(sch); 2522 int c, ft; 2523 2524 switch (q->tin_mode) { 2525 case CAKE_DIFFSERV_BESTEFFORT: 2526 ft = cake_config_besteffort(sch); 2527 break; 2528 2529 case CAKE_DIFFSERV_PRECEDENCE: 2530 ft = cake_config_precedence(sch); 2531 break; 2532 2533 case CAKE_DIFFSERV_DIFFSERV8: 2534 ft = cake_config_diffserv8(sch); 2535 break; 2536 2537 case CAKE_DIFFSERV_DIFFSERV4: 2538 ft = cake_config_diffserv4(sch); 2539 break; 2540 2541 case CAKE_DIFFSERV_DIFFSERV3: 2542 default: 2543 ft = cake_config_diffserv3(sch); 2544 break; 2545 } 2546 2547 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) { 2548 cake_clear_tin(sch, c); 2549 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time; 2550 } 2551 2552 q->rate_ns = q->tins[ft].tin_rate_ns; 2553 q->rate_shft = q->tins[ft].tin_rate_shft; 2554 2555 if (q->buffer_config_limit) { 2556 q->buffer_limit = q->buffer_config_limit; 2557 } else if (q->rate_bps) { 2558 u64 t = q->rate_bps * q->interval; 2559 2560 do_div(t, USEC_PER_SEC / 4); 2561 q->buffer_limit = max_t(u32, t, 4U << 20); 2562 } else { 2563 q->buffer_limit = ~0; 2564 } 2565 2566 sch->flags &= ~TCQ_F_CAN_BYPASS; 2567 2568 q->buffer_limit = min(q->buffer_limit, 2569 max(sch->limit * psched_mtu(qdisc_dev(sch)), 2570 q->buffer_config_limit)); 2571 } 2572 2573 static int cake_change(struct Qdisc *sch, struct nlattr *opt, 2574 struct netlink_ext_ack *extack) 2575 { 2576 struct cake_sched_data *q = qdisc_priv(sch); 2577 struct nlattr *tb[TCA_CAKE_MAX + 1]; 2578 u16 rate_flags; 2579 u8 flow_mode; 2580 int err; 2581 2582 err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy, 2583 extack); 2584 if (err < 0) 2585 return err; 2586 2587 flow_mode = q->flow_mode; 2588 if (tb[TCA_CAKE_NAT]) { 2589 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 2590 flow_mode &= ~CAKE_FLOW_NAT_FLAG; 2591 flow_mode |= CAKE_FLOW_NAT_FLAG * 2592 !!nla_get_u32(tb[TCA_CAKE_NAT]); 2593 #else 2594 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT], 2595 "No conntrack support in kernel"); 2596 return -EOPNOTSUPP; 2597 #endif 2598 } 2599 2600 if (tb[TCA_CAKE_BASE_RATE64]) 2601 WRITE_ONCE(q->rate_bps, 2602 nla_get_u64(tb[TCA_CAKE_BASE_RATE64])); 2603 2604 if (tb[TCA_CAKE_DIFFSERV_MODE]) 2605 WRITE_ONCE(q->tin_mode, 2606 nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE])); 2607 2608 rate_flags = q->rate_flags; 2609 if (tb[TCA_CAKE_WASH]) { 2610 if (!!nla_get_u32(tb[TCA_CAKE_WASH])) 2611 rate_flags |= CAKE_FLAG_WASH; 2612 else 2613 rate_flags &= ~CAKE_FLAG_WASH; 2614 } 2615 2616 if (tb[TCA_CAKE_FLOW_MODE]) 2617 flow_mode = ((flow_mode & CAKE_FLOW_NAT_FLAG) | 2618 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) & 2619 CAKE_FLOW_MASK)); 2620 2621 if (tb[TCA_CAKE_ATM]) 2622 WRITE_ONCE(q->atm_mode, 2623 nla_get_u32(tb[TCA_CAKE_ATM])); 2624 2625 if (tb[TCA_CAKE_OVERHEAD]) { 2626 WRITE_ONCE(q->rate_overhead, 2627 nla_get_s32(tb[TCA_CAKE_OVERHEAD])); 2628 rate_flags |= CAKE_FLAG_OVERHEAD; 2629 2630 q->max_netlen = 0; 2631 q->max_adjlen = 0; 2632 q->min_netlen = ~0; 2633 q->min_adjlen = ~0; 2634 } 2635 2636 if (tb[TCA_CAKE_RAW]) { 2637 rate_flags &= ~CAKE_FLAG_OVERHEAD; 2638 2639 q->max_netlen = 0; 2640 q->max_adjlen = 0; 2641 q->min_netlen = ~0; 2642 q->min_adjlen = ~0; 2643 } 2644 2645 if (tb[TCA_CAKE_MPU]) 2646 WRITE_ONCE(q->rate_mpu, 2647 nla_get_u32(tb[TCA_CAKE_MPU])); 2648 2649 if (tb[TCA_CAKE_RTT]) { 2650 u32 interval = nla_get_u32(tb[TCA_CAKE_RTT]); 2651 2652 WRITE_ONCE(q->interval, max(interval, 1U)); 2653 } 2654 2655 if (tb[TCA_CAKE_TARGET]) { 2656 u32 target = nla_get_u32(tb[TCA_CAKE_TARGET]); 2657 2658 WRITE_ONCE(q->target, max(target, 1U)); 2659 } 2660 2661 if (tb[TCA_CAKE_AUTORATE]) { 2662 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE])) 2663 rate_flags |= CAKE_FLAG_AUTORATE_INGRESS; 2664 else 2665 rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS; 2666 } 2667 2668 if (tb[TCA_CAKE_INGRESS]) { 2669 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS])) 2670 rate_flags |= CAKE_FLAG_INGRESS; 2671 else 2672 rate_flags &= ~CAKE_FLAG_INGRESS; 2673 } 2674 2675 if (tb[TCA_CAKE_ACK_FILTER]) 2676 WRITE_ONCE(q->ack_filter, 2677 nla_get_u32(tb[TCA_CAKE_ACK_FILTER])); 2678 2679 if (tb[TCA_CAKE_MEMORY]) 2680 WRITE_ONCE(q->buffer_config_limit, 2681 nla_get_u32(tb[TCA_CAKE_MEMORY])); 2682 2683 if (tb[TCA_CAKE_SPLIT_GSO]) { 2684 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO])) 2685 rate_flags |= CAKE_FLAG_SPLIT_GSO; 2686 else 2687 rate_flags &= ~CAKE_FLAG_SPLIT_GSO; 2688 } 2689 2690 if (tb[TCA_CAKE_FWMARK]) { 2691 WRITE_ONCE(q->fwmark_mask, nla_get_u32(tb[TCA_CAKE_FWMARK])); 2692 WRITE_ONCE(q->fwmark_shft, 2693 q->fwmark_mask ? __ffs(q->fwmark_mask) : 0); 2694 } 2695 2696 WRITE_ONCE(q->rate_flags, rate_flags); 2697 WRITE_ONCE(q->flow_mode, flow_mode); 2698 if (q->tins) { 2699 sch_tree_lock(sch); 2700 cake_reconfigure(sch); 2701 sch_tree_unlock(sch); 2702 } 2703 2704 return 0; 2705 } 2706 2707 static void cake_destroy(struct Qdisc *sch) 2708 { 2709 struct cake_sched_data *q = qdisc_priv(sch); 2710 2711 qdisc_watchdog_cancel(&q->watchdog); 2712 tcf_block_put(q->block); 2713 kvfree(q->tins); 2714 } 2715 2716 static int cake_init(struct Qdisc *sch, struct nlattr *opt, 2717 struct netlink_ext_ack *extack) 2718 { 2719 struct cake_sched_data *q = qdisc_priv(sch); 2720 int i, j, err; 2721 2722 sch->limit = 10240; 2723 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3; 2724 q->flow_mode = CAKE_FLOW_TRIPLE; 2725 2726 q->rate_bps = 0; /* unlimited by default */ 2727 2728 q->interval = 100000; /* 100ms default */ 2729 q->target = 5000; /* 5ms: codel RFC argues 2730 * for 5 to 10% of interval 2731 */ 2732 q->rate_flags |= CAKE_FLAG_SPLIT_GSO; 2733 q->cur_tin = 0; 2734 q->cur_flow = 0; 2735 2736 qdisc_watchdog_init(&q->watchdog, sch); 2737 2738 if (opt) { 2739 err = cake_change(sch, opt, extack); 2740 2741 if (err) 2742 return err; 2743 } 2744 2745 err = tcf_block_get(&q->block, &q->filter_list, sch, extack); 2746 if (err) 2747 return err; 2748 2749 quantum_div[0] = ~0; 2750 for (i = 1; i <= CAKE_QUEUES; i++) 2751 quantum_div[i] = 65535 / i; 2752 2753 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data), 2754 GFP_KERNEL); 2755 if (!q->tins) 2756 return -ENOMEM; 2757 2758 for (i = 0; i < CAKE_MAX_TINS; i++) { 2759 struct cake_tin_data *b = q->tins + i; 2760 2761 INIT_LIST_HEAD(&b->new_flows); 2762 INIT_LIST_HEAD(&b->old_flows); 2763 INIT_LIST_HEAD(&b->decaying_flows); 2764 b->sparse_flow_count = 0; 2765 b->bulk_flow_count = 0; 2766 b->decaying_flow_count = 0; 2767 2768 for (j = 0; j < CAKE_QUEUES; j++) { 2769 struct cake_flow *flow = b->flows + j; 2770 u32 k = j * CAKE_MAX_TINS + i; 2771 2772 INIT_LIST_HEAD(&flow->flowchain); 2773 cobalt_vars_init(&flow->cvars); 2774 2775 q->overflow_heap[k].t = i; 2776 q->overflow_heap[k].b = j; 2777 b->overflow_idx[j] = k; 2778 } 2779 } 2780 2781 cake_reconfigure(sch); 2782 q->avg_peak_bandwidth = q->rate_bps; 2783 q->min_netlen = ~0; 2784 q->min_adjlen = ~0; 2785 return 0; 2786 } 2787 2788 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb) 2789 { 2790 struct cake_sched_data *q = qdisc_priv(sch); 2791 struct nlattr *opts; 2792 u16 rate_flags; 2793 u8 flow_mode; 2794 2795 opts = nla_nest_start_noflag(skb, TCA_OPTIONS); 2796 if (!opts) 2797 goto nla_put_failure; 2798 2799 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, 2800 READ_ONCE(q->rate_bps), TCA_CAKE_PAD)) 2801 goto nla_put_failure; 2802 2803 flow_mode = READ_ONCE(q->flow_mode); 2804 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE, flow_mode & CAKE_FLOW_MASK)) 2805 goto nla_put_failure; 2806 2807 if (nla_put_u32(skb, TCA_CAKE_RTT, READ_ONCE(q->interval))) 2808 goto nla_put_failure; 2809 2810 if (nla_put_u32(skb, TCA_CAKE_TARGET, READ_ONCE(q->target))) 2811 goto nla_put_failure; 2812 2813 if (nla_put_u32(skb, TCA_CAKE_MEMORY, 2814 READ_ONCE(q->buffer_config_limit))) 2815 goto nla_put_failure; 2816 2817 rate_flags = READ_ONCE(q->rate_flags); 2818 if (nla_put_u32(skb, TCA_CAKE_AUTORATE, 2819 !!(rate_flags & CAKE_FLAG_AUTORATE_INGRESS))) 2820 goto nla_put_failure; 2821 2822 if (nla_put_u32(skb, TCA_CAKE_INGRESS, 2823 !!(rate_flags & CAKE_FLAG_INGRESS))) 2824 goto nla_put_failure; 2825 2826 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, READ_ONCE(q->ack_filter))) 2827 goto nla_put_failure; 2828 2829 if (nla_put_u32(skb, TCA_CAKE_NAT, 2830 !!(flow_mode & CAKE_FLOW_NAT_FLAG))) 2831 goto nla_put_failure; 2832 2833 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, READ_ONCE(q->tin_mode))) 2834 goto nla_put_failure; 2835 2836 if (nla_put_u32(skb, TCA_CAKE_WASH, 2837 !!(rate_flags & CAKE_FLAG_WASH))) 2838 goto nla_put_failure; 2839 2840 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, READ_ONCE(q->rate_overhead))) 2841 goto nla_put_failure; 2842 2843 if (!(rate_flags & CAKE_FLAG_OVERHEAD)) 2844 if (nla_put_u32(skb, TCA_CAKE_RAW, 0)) 2845 goto nla_put_failure; 2846 2847 if (nla_put_u32(skb, TCA_CAKE_ATM, READ_ONCE(q->atm_mode))) 2848 goto nla_put_failure; 2849 2850 if (nla_put_u32(skb, TCA_CAKE_MPU, READ_ONCE(q->rate_mpu))) 2851 goto nla_put_failure; 2852 2853 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO, 2854 !!(rate_flags & CAKE_FLAG_SPLIT_GSO))) 2855 goto nla_put_failure; 2856 2857 if (nla_put_u32(skb, TCA_CAKE_FWMARK, READ_ONCE(q->fwmark_mask))) 2858 goto nla_put_failure; 2859 2860 return nla_nest_end(skb, opts); 2861 2862 nla_put_failure: 2863 return -1; 2864 } 2865 2866 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 2867 { 2868 struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP); 2869 struct cake_sched_data *q = qdisc_priv(sch); 2870 struct nlattr *tstats, *ts; 2871 int i; 2872 2873 if (!stats) 2874 return -1; 2875 2876 #define PUT_STAT_U32(attr, data) do { \ 2877 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \ 2878 goto nla_put_failure; \ 2879 } while (0) 2880 #define PUT_STAT_U64(attr, data) do { \ 2881 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \ 2882 data, TCA_CAKE_STATS_PAD)) \ 2883 goto nla_put_failure; \ 2884 } while (0) 2885 2886 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth); 2887 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit); 2888 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used); 2889 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16)); 2890 PUT_STAT_U32(MAX_NETLEN, q->max_netlen); 2891 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen); 2892 PUT_STAT_U32(MIN_NETLEN, q->min_netlen); 2893 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen); 2894 2895 #undef PUT_STAT_U32 2896 #undef PUT_STAT_U64 2897 2898 tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS); 2899 if (!tstats) 2900 goto nla_put_failure; 2901 2902 #define PUT_TSTAT_U32(attr, data) do { \ 2903 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \ 2904 goto nla_put_failure; \ 2905 } while (0) 2906 #define PUT_TSTAT_U64(attr, data) do { \ 2907 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \ 2908 data, TCA_CAKE_TIN_STATS_PAD)) \ 2909 goto nla_put_failure; \ 2910 } while (0) 2911 2912 for (i = 0; i < q->tin_cnt; i++) { 2913 struct cake_tin_data *b = &q->tins[q->tin_order[i]]; 2914 2915 ts = nla_nest_start_noflag(d->skb, i + 1); 2916 if (!ts) 2917 goto nla_put_failure; 2918 2919 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps); 2920 PUT_TSTAT_U64(SENT_BYTES64, b->bytes); 2921 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog); 2922 2923 PUT_TSTAT_U32(TARGET_US, 2924 ktime_to_us(ns_to_ktime(b->cparams.target))); 2925 PUT_TSTAT_U32(INTERVAL_US, 2926 ktime_to_us(ns_to_ktime(b->cparams.interval))); 2927 2928 PUT_TSTAT_U32(SENT_PACKETS, b->packets); 2929 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped); 2930 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark); 2931 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops); 2932 2933 PUT_TSTAT_U32(PEAK_DELAY_US, 2934 ktime_to_us(ns_to_ktime(b->peak_delay))); 2935 PUT_TSTAT_U32(AVG_DELAY_US, 2936 ktime_to_us(ns_to_ktime(b->avge_delay))); 2937 PUT_TSTAT_U32(BASE_DELAY_US, 2938 ktime_to_us(ns_to_ktime(b->base_delay))); 2939 2940 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits); 2941 PUT_TSTAT_U32(WAY_MISSES, b->way_misses); 2942 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions); 2943 2944 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count + 2945 b->decaying_flow_count); 2946 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count); 2947 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count); 2948 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen); 2949 2950 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum); 2951 nla_nest_end(d->skb, ts); 2952 } 2953 2954 #undef PUT_TSTAT_U32 2955 #undef PUT_TSTAT_U64 2956 2957 nla_nest_end(d->skb, tstats); 2958 return nla_nest_end(d->skb, stats); 2959 2960 nla_put_failure: 2961 nla_nest_cancel(d->skb, stats); 2962 return -1; 2963 } 2964 2965 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg) 2966 { 2967 return NULL; 2968 } 2969 2970 static unsigned long cake_find(struct Qdisc *sch, u32 classid) 2971 { 2972 return 0; 2973 } 2974 2975 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent, 2976 u32 classid) 2977 { 2978 return 0; 2979 } 2980 2981 static void cake_unbind(struct Qdisc *q, unsigned long cl) 2982 { 2983 } 2984 2985 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl, 2986 struct netlink_ext_ack *extack) 2987 { 2988 struct cake_sched_data *q = qdisc_priv(sch); 2989 2990 if (cl) 2991 return NULL; 2992 return q->block; 2993 } 2994 2995 static int cake_dump_class(struct Qdisc *sch, unsigned long cl, 2996 struct sk_buff *skb, struct tcmsg *tcm) 2997 { 2998 tcm->tcm_handle |= TC_H_MIN(cl); 2999 return 0; 3000 } 3001 3002 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl, 3003 struct gnet_dump *d) 3004 { 3005 struct cake_sched_data *q = qdisc_priv(sch); 3006 const struct cake_flow *flow = NULL; 3007 struct gnet_stats_queue qs = { 0 }; 3008 struct nlattr *stats; 3009 u32 idx = cl - 1; 3010 3011 if (idx < CAKE_QUEUES * q->tin_cnt) { 3012 const struct cake_tin_data *b = \ 3013 &q->tins[q->tin_order[idx / CAKE_QUEUES]]; 3014 const struct sk_buff *skb; 3015 3016 flow = &b->flows[idx % CAKE_QUEUES]; 3017 3018 if (flow->head) { 3019 sch_tree_lock(sch); 3020 skb = flow->head; 3021 while (skb) { 3022 qs.qlen++; 3023 skb = skb->next; 3024 } 3025 sch_tree_unlock(sch); 3026 } 3027 qs.backlog = b->backlogs[idx % CAKE_QUEUES]; 3028 qs.drops = flow->dropped; 3029 } 3030 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0) 3031 return -1; 3032 if (flow) { 3033 ktime_t now = ktime_get(); 3034 3035 stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP); 3036 if (!stats) 3037 return -1; 3038 3039 #define PUT_STAT_U32(attr, data) do { \ 3040 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \ 3041 goto nla_put_failure; \ 3042 } while (0) 3043 #define PUT_STAT_S32(attr, data) do { \ 3044 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \ 3045 goto nla_put_failure; \ 3046 } while (0) 3047 3048 PUT_STAT_S32(DEFICIT, flow->deficit); 3049 PUT_STAT_U32(DROPPING, flow->cvars.dropping); 3050 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count); 3051 PUT_STAT_U32(P_DROP, flow->cvars.p_drop); 3052 if (flow->cvars.p_drop) { 3053 PUT_STAT_S32(BLUE_TIMER_US, 3054 ktime_to_us( 3055 ktime_sub(now, 3056 flow->cvars.blue_timer))); 3057 } 3058 if (flow->cvars.dropping) { 3059 PUT_STAT_S32(DROP_NEXT_US, 3060 ktime_to_us( 3061 ktime_sub(now, 3062 flow->cvars.drop_next))); 3063 } 3064 3065 if (nla_nest_end(d->skb, stats) < 0) 3066 return -1; 3067 } 3068 3069 return 0; 3070 3071 nla_put_failure: 3072 nla_nest_cancel(d->skb, stats); 3073 return -1; 3074 } 3075 3076 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg) 3077 { 3078 struct cake_sched_data *q = qdisc_priv(sch); 3079 unsigned int i, j; 3080 3081 if (arg->stop) 3082 return; 3083 3084 for (i = 0; i < q->tin_cnt; i++) { 3085 struct cake_tin_data *b = &q->tins[q->tin_order[i]]; 3086 3087 for (j = 0; j < CAKE_QUEUES; j++) { 3088 if (list_empty(&b->flows[j].flowchain)) { 3089 arg->count++; 3090 continue; 3091 } 3092 if (!tc_qdisc_stats_dump(sch, i * CAKE_QUEUES + j + 1, 3093 arg)) 3094 break; 3095 } 3096 } 3097 } 3098 3099 static const struct Qdisc_class_ops cake_class_ops = { 3100 .leaf = cake_leaf, 3101 .find = cake_find, 3102 .tcf_block = cake_tcf_block, 3103 .bind_tcf = cake_bind, 3104 .unbind_tcf = cake_unbind, 3105 .dump = cake_dump_class, 3106 .dump_stats = cake_dump_class_stats, 3107 .walk = cake_walk, 3108 }; 3109 3110 static struct Qdisc_ops cake_qdisc_ops __read_mostly = { 3111 .cl_ops = &cake_class_ops, 3112 .id = "cake", 3113 .priv_size = sizeof(struct cake_sched_data), 3114 .enqueue = cake_enqueue, 3115 .dequeue = cake_dequeue, 3116 .peek = qdisc_peek_dequeued, 3117 .init = cake_init, 3118 .reset = cake_reset, 3119 .destroy = cake_destroy, 3120 .change = cake_change, 3121 .dump = cake_dump, 3122 .dump_stats = cake_dump_stats, 3123 .owner = THIS_MODULE, 3124 }; 3125 MODULE_ALIAS_NET_SCH("cake"); 3126 3127 static int __init cake_module_init(void) 3128 { 3129 return register_qdisc(&cake_qdisc_ops); 3130 } 3131 3132 static void __exit cake_module_exit(void) 3133 { 3134 unregister_qdisc(&cake_qdisc_ops); 3135 } 3136 3137 module_init(cake_module_init) 3138 module_exit(cake_module_exit) 3139 MODULE_AUTHOR("Jonathan Morton"); 3140 MODULE_LICENSE("Dual BSD/GPL"); 3141 MODULE_DESCRIPTION("The CAKE shaper."); 3142