1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 3 /* COMMON Applications Kept Enhanced (CAKE) discipline 4 * 5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com> 6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk> 7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com> 8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de> 9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk> 10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au> 11 * 12 * The CAKE Principles: 13 * (or, how to have your cake and eat it too) 14 * 15 * This is a combination of several shaping, AQM and FQ techniques into one 16 * easy-to-use package: 17 * 18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE 19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq), 20 * eliminating the need for any sort of burst parameter (eg. token bucket 21 * depth). Burst support is limited to that necessary to overcome scheduling 22 * latency. 23 * 24 * - A Diffserv-aware priority queue, giving more priority to certain classes, 25 * up to a specified fraction of bandwidth. Above that bandwidth threshold, 26 * the priority is reduced to avoid starving other tins. 27 * 28 * - Each priority tin has a separate Flow Queue system, to isolate traffic 29 * flows from each other. This prevents a burst on one flow from increasing 30 * the delay to another. Flows are distributed to queues using a 31 * set-associative hash function. 32 * 33 * - Each queue is actively managed by Cobalt, which is a combination of the 34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals 35 * congestion early via ECN (if available) and/or packet drops, to keep 36 * latency low. The codel parameters are auto-tuned based on the bandwidth 37 * setting, as is necessary at low bandwidths. 38 * 39 * The configuration parameters are kept deliberately simple for ease of use. 40 * Everything has sane defaults. Complete generality of configuration is *not* 41 * a goal. 42 * 43 * The priority queue operates according to a weighted DRR scheme, combined with 44 * a bandwidth tracker which reuses the shaper logic to detect which side of the 45 * bandwidth sharing threshold the tin is operating. This determines whether a 46 * priority-based weight (high) or a bandwidth-based weight (low) is used for 47 * that tin in the current pass. 48 * 49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly 50 * granted us permission to leverage. 51 */ 52 53 #include <linux/module.h> 54 #include <linux/types.h> 55 #include <linux/kernel.h> 56 #include <linux/jiffies.h> 57 #include <linux/string.h> 58 #include <linux/in.h> 59 #include <linux/errno.h> 60 #include <linux/init.h> 61 #include <linux/skbuff.h> 62 #include <linux/jhash.h> 63 #include <linux/slab.h> 64 #include <linux/vmalloc.h> 65 #include <linux/reciprocal_div.h> 66 #include <net/netlink.h> 67 #include <linux/if_vlan.h> 68 #include <net/gso.h> 69 #include <net/pkt_sched.h> 70 #include <net/pkt_cls.h> 71 #include <net/tcp.h> 72 #include <net/flow_dissector.h> 73 74 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 75 #include <net/netfilter/nf_conntrack_core.h> 76 #endif 77 78 #define CAKE_SET_WAYS (8) 79 #define CAKE_MAX_TINS (8) 80 #define CAKE_QUEUES (1024) 81 #define CAKE_FLOW_MASK 63 82 #define CAKE_FLOW_NAT_FLAG 64 83 84 /* struct cobalt_params - contains codel and blue parameters 85 * @interval: codel initial drop rate 86 * @target: maximum persistent sojourn time & blue update rate 87 * @mtu_time: serialisation delay of maximum-size packet 88 * @p_inc: increment of blue drop probability (0.32 fxp) 89 * @p_dec: decrement of blue drop probability (0.32 fxp) 90 */ 91 struct cobalt_params { 92 u64 interval; 93 u64 target; 94 u64 mtu_time; 95 u32 p_inc; 96 u32 p_dec; 97 }; 98 99 /* struct cobalt_vars - contains codel and blue variables 100 * @count: codel dropping frequency 101 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1 102 * @drop_next: time to drop next packet, or when we dropped last 103 * @blue_timer: Blue time to next drop 104 * @p_drop: BLUE drop probability (0.32 fxp) 105 * @dropping: set if in dropping state 106 * @ecn_marked: set if marked 107 */ 108 struct cobalt_vars { 109 u32 count; 110 u32 rec_inv_sqrt; 111 ktime_t drop_next; 112 ktime_t blue_timer; 113 u32 p_drop; 114 bool dropping; 115 bool ecn_marked; 116 }; 117 118 enum { 119 CAKE_SET_NONE = 0, 120 CAKE_SET_SPARSE, 121 CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */ 122 CAKE_SET_BULK, 123 CAKE_SET_DECAYING 124 }; 125 126 struct cake_flow { 127 /* this stuff is all needed per-flow at dequeue time */ 128 struct sk_buff *head; 129 struct sk_buff *tail; 130 struct list_head flowchain; 131 s32 deficit; 132 u32 dropped; 133 struct cobalt_vars cvars; 134 u16 srchost; /* index into cake_host table */ 135 u16 dsthost; 136 u8 set; 137 }; /* please try to keep this structure <= 64 bytes */ 138 139 struct cake_host { 140 u32 srchost_tag; 141 u32 dsthost_tag; 142 u16 srchost_bulk_flow_count; 143 u16 dsthost_bulk_flow_count; 144 }; 145 146 struct cake_heap_entry { 147 u16 t:3, b:10; 148 }; 149 150 struct cake_tin_data { 151 struct cake_flow flows[CAKE_QUEUES]; 152 u32 backlogs[CAKE_QUEUES]; 153 u32 tags[CAKE_QUEUES]; /* for set association */ 154 u16 overflow_idx[CAKE_QUEUES]; 155 struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */ 156 u16 flow_quantum; 157 158 struct cobalt_params cparams; 159 u32 drop_overlimit; 160 u16 bulk_flow_count; 161 u16 sparse_flow_count; 162 u16 decaying_flow_count; 163 u16 unresponsive_flow_count; 164 165 u32 max_skblen; 166 167 struct list_head new_flows; 168 struct list_head old_flows; 169 struct list_head decaying_flows; 170 171 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */ 172 ktime_t time_next_packet; 173 u64 tin_rate_ns; 174 u64 tin_rate_bps; 175 u16 tin_rate_shft; 176 177 u16 tin_quantum; 178 s32 tin_deficit; 179 u32 tin_backlog; 180 u32 tin_dropped; 181 u32 tin_ecn_mark; 182 183 u32 packets; 184 u64 bytes; 185 186 u32 ack_drops; 187 188 /* moving averages */ 189 u64 avge_delay; 190 u64 peak_delay; 191 u64 base_delay; 192 193 /* hash function stats */ 194 u32 way_directs; 195 u32 way_hits; 196 u32 way_misses; 197 u32 way_collisions; 198 }; /* number of tins is small, so size of this struct doesn't matter much */ 199 200 struct cake_sched_data { 201 struct tcf_proto __rcu *filter_list; /* optional external classifier */ 202 struct tcf_block *block; 203 struct cake_tin_data *tins; 204 205 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS]; 206 u16 overflow_timeout; 207 208 u16 tin_cnt; 209 u8 tin_mode; 210 u8 flow_mode; 211 u8 ack_filter; 212 u8 atm_mode; 213 214 u32 fwmark_mask; 215 u16 fwmark_shft; 216 217 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */ 218 u16 rate_shft; 219 ktime_t time_next_packet; 220 ktime_t failsafe_next_packet; 221 u64 rate_ns; 222 u64 rate_bps; 223 u16 rate_flags; 224 s16 rate_overhead; 225 u16 rate_mpu; 226 u64 interval; 227 u64 target; 228 229 /* resource tracking */ 230 u32 buffer_used; 231 u32 buffer_max_used; 232 u32 buffer_limit; 233 u32 buffer_config_limit; 234 235 /* indices for dequeue */ 236 u16 cur_tin; 237 u16 cur_flow; 238 239 struct qdisc_watchdog watchdog; 240 const u8 *tin_index; 241 const u8 *tin_order; 242 243 /* bandwidth capacity estimate */ 244 ktime_t last_packet_time; 245 ktime_t avg_window_begin; 246 u64 avg_packet_interval; 247 u64 avg_window_bytes; 248 u64 avg_peak_bandwidth; 249 ktime_t last_reconfig_time; 250 251 /* packet length stats */ 252 u32 avg_netoff; 253 u16 max_netlen; 254 u16 max_adjlen; 255 u16 min_netlen; 256 u16 min_adjlen; 257 }; 258 259 enum { 260 CAKE_FLAG_OVERHEAD = BIT(0), 261 CAKE_FLAG_AUTORATE_INGRESS = BIT(1), 262 CAKE_FLAG_INGRESS = BIT(2), 263 CAKE_FLAG_WASH = BIT(3), 264 CAKE_FLAG_SPLIT_GSO = BIT(4) 265 }; 266 267 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to 268 * obtain the best features of each. Codel is excellent on flows which 269 * respond to congestion signals in a TCP-like way. BLUE is more effective on 270 * unresponsive flows. 271 */ 272 273 struct cobalt_skb_cb { 274 ktime_t enqueue_time; 275 u32 adjusted_len; 276 }; 277 278 static u64 us_to_ns(u64 us) 279 { 280 return us * NSEC_PER_USEC; 281 } 282 283 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb) 284 { 285 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb)); 286 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data; 287 } 288 289 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb) 290 { 291 return get_cobalt_cb(skb)->enqueue_time; 292 } 293 294 static void cobalt_set_enqueue_time(struct sk_buff *skb, 295 ktime_t now) 296 { 297 get_cobalt_cb(skb)->enqueue_time = now; 298 } 299 300 static u16 quantum_div[CAKE_QUEUES + 1] = {0}; 301 302 /* Diffserv lookup tables */ 303 304 static const u8 precedence[] = { 305 0, 0, 0, 0, 0, 0, 0, 0, 306 1, 1, 1, 1, 1, 1, 1, 1, 307 2, 2, 2, 2, 2, 2, 2, 2, 308 3, 3, 3, 3, 3, 3, 3, 3, 309 4, 4, 4, 4, 4, 4, 4, 4, 310 5, 5, 5, 5, 5, 5, 5, 5, 311 6, 6, 6, 6, 6, 6, 6, 6, 312 7, 7, 7, 7, 7, 7, 7, 7, 313 }; 314 315 static const u8 diffserv8[] = { 316 2, 0, 1, 2, 4, 2, 2, 2, 317 1, 2, 1, 2, 1, 2, 1, 2, 318 5, 2, 4, 2, 4, 2, 4, 2, 319 3, 2, 3, 2, 3, 2, 3, 2, 320 6, 2, 3, 2, 3, 2, 3, 2, 321 6, 2, 2, 2, 6, 2, 6, 2, 322 7, 2, 2, 2, 2, 2, 2, 2, 323 7, 2, 2, 2, 2, 2, 2, 2, 324 }; 325 326 static const u8 diffserv4[] = { 327 0, 1, 0, 0, 2, 0, 0, 0, 328 1, 0, 0, 0, 0, 0, 0, 0, 329 2, 0, 2, 0, 2, 0, 2, 0, 330 2, 0, 2, 0, 2, 0, 2, 0, 331 3, 0, 2, 0, 2, 0, 2, 0, 332 3, 0, 0, 0, 3, 0, 3, 0, 333 3, 0, 0, 0, 0, 0, 0, 0, 334 3, 0, 0, 0, 0, 0, 0, 0, 335 }; 336 337 static const u8 diffserv3[] = { 338 0, 1, 0, 0, 2, 0, 0, 0, 339 1, 0, 0, 0, 0, 0, 0, 0, 340 0, 0, 0, 0, 0, 0, 0, 0, 341 0, 0, 0, 0, 0, 0, 0, 0, 342 0, 0, 0, 0, 0, 0, 0, 0, 343 0, 0, 0, 0, 2, 0, 2, 0, 344 2, 0, 0, 0, 0, 0, 0, 0, 345 2, 0, 0, 0, 0, 0, 0, 0, 346 }; 347 348 static const u8 besteffort[] = { 349 0, 0, 0, 0, 0, 0, 0, 0, 350 0, 0, 0, 0, 0, 0, 0, 0, 351 0, 0, 0, 0, 0, 0, 0, 0, 352 0, 0, 0, 0, 0, 0, 0, 0, 353 0, 0, 0, 0, 0, 0, 0, 0, 354 0, 0, 0, 0, 0, 0, 0, 0, 355 0, 0, 0, 0, 0, 0, 0, 0, 356 0, 0, 0, 0, 0, 0, 0, 0, 357 }; 358 359 /* tin priority order for stats dumping */ 360 361 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7}; 362 static const u8 bulk_order[] = {1, 0, 2, 3}; 363 364 /* There is a big difference in timing between the accurate values placed in the 365 * cache and the approximations given by a single Newton step for small count 366 * values, particularly when stepping from count 1 to 2 or vice versa. Hence, 367 * these values are calculated using eight Newton steps, using the 368 * implementation below. Above 16, a single Newton step gives sufficient 369 * accuracy in either direction, given the precision stored. 370 * 371 * The magnitude of the error when stepping up to count 2 is such as to give the 372 * value that *should* have been produced at count 4. 373 */ 374 375 #define REC_INV_SQRT_CACHE (16) 376 static const u32 inv_sqrt_cache[REC_INV_SQRT_CACHE] = { 377 ~0, ~0, 3037000500, 2479700525, 378 2147483647, 1920767767, 1753413056, 1623345051, 379 1518500250, 1431655765, 1358187914, 1294981364, 380 1239850263, 1191209601, 1147878294, 1108955788 381 }; 382 383 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots 384 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2) 385 * 386 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32 387 */ 388 389 static void cobalt_newton_step(struct cobalt_vars *vars) 390 { 391 u32 invsqrt, invsqrt2; 392 u64 val; 393 394 invsqrt = vars->rec_inv_sqrt; 395 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32; 396 val = (3LL << 32) - ((u64)vars->count * invsqrt2); 397 398 val >>= 2; /* avoid overflow in following multiply */ 399 val = (val * invsqrt) >> (32 - 2 + 1); 400 401 vars->rec_inv_sqrt = val; 402 } 403 404 static void cobalt_invsqrt(struct cobalt_vars *vars) 405 { 406 if (vars->count < REC_INV_SQRT_CACHE) 407 vars->rec_inv_sqrt = inv_sqrt_cache[vars->count]; 408 else 409 cobalt_newton_step(vars); 410 } 411 412 static void cobalt_vars_init(struct cobalt_vars *vars) 413 { 414 memset(vars, 0, sizeof(*vars)); 415 } 416 417 /* CoDel control_law is t + interval/sqrt(count) 418 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid 419 * both sqrt() and divide operation. 420 */ 421 static ktime_t cobalt_control(ktime_t t, 422 u64 interval, 423 u32 rec_inv_sqrt) 424 { 425 return ktime_add_ns(t, reciprocal_scale(interval, 426 rec_inv_sqrt)); 427 } 428 429 /* Call this when a packet had to be dropped due to queue overflow. Returns 430 * true if the BLUE state was quiescent before but active after this call. 431 */ 432 static bool cobalt_queue_full(struct cobalt_vars *vars, 433 struct cobalt_params *p, 434 ktime_t now) 435 { 436 bool up = false; 437 438 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) { 439 up = !vars->p_drop; 440 vars->p_drop += p->p_inc; 441 if (vars->p_drop < p->p_inc) 442 vars->p_drop = ~0; 443 vars->blue_timer = now; 444 } 445 vars->dropping = true; 446 vars->drop_next = now; 447 if (!vars->count) 448 vars->count = 1; 449 450 return up; 451 } 452 453 /* Call this when the queue was serviced but turned out to be empty. Returns 454 * true if the BLUE state was active before but quiescent after this call. 455 */ 456 static bool cobalt_queue_empty(struct cobalt_vars *vars, 457 struct cobalt_params *p, 458 ktime_t now) 459 { 460 bool down = false; 461 462 if (vars->p_drop && 463 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) { 464 if (vars->p_drop < p->p_dec) 465 vars->p_drop = 0; 466 else 467 vars->p_drop -= p->p_dec; 468 vars->blue_timer = now; 469 down = !vars->p_drop; 470 } 471 vars->dropping = false; 472 473 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) { 474 vars->count--; 475 cobalt_invsqrt(vars); 476 vars->drop_next = cobalt_control(vars->drop_next, 477 p->interval, 478 vars->rec_inv_sqrt); 479 } 480 481 return down; 482 } 483 484 /* Call this with a freshly dequeued packet for possible congestion marking. 485 * Returns true as an instruction to drop the packet, false for delivery. 486 */ 487 static bool cobalt_should_drop(struct cobalt_vars *vars, 488 struct cobalt_params *p, 489 ktime_t now, 490 struct sk_buff *skb, 491 u32 bulk_flows) 492 { 493 bool next_due, over_target, drop = false; 494 ktime_t schedule; 495 u64 sojourn; 496 497 /* The 'schedule' variable records, in its sign, whether 'now' is before or 498 * after 'drop_next'. This allows 'drop_next' to be updated before the next 499 * scheduling decision is actually branched, without destroying that 500 * information. Similarly, the first 'schedule' value calculated is preserved 501 * in the boolean 'next_due'. 502 * 503 * As for 'drop_next', we take advantage of the fact that 'interval' is both 504 * the delay between first exceeding 'target' and the first signalling event, 505 * *and* the scaling factor for the signalling frequency. It's therefore very 506 * natural to use a single mechanism for both purposes, and eliminates a 507 * significant amount of reference Codel's spaghetti code. To help with this, 508 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close 509 * as possible to 1.0 in fixed-point. 510 */ 511 512 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb))); 513 schedule = ktime_sub(now, vars->drop_next); 514 over_target = sojourn > p->target && 515 sojourn > p->mtu_time * bulk_flows * 2 && 516 sojourn > p->mtu_time * 4; 517 next_due = vars->count && ktime_to_ns(schedule) >= 0; 518 519 vars->ecn_marked = false; 520 521 if (over_target) { 522 if (!vars->dropping) { 523 vars->dropping = true; 524 vars->drop_next = cobalt_control(now, 525 p->interval, 526 vars->rec_inv_sqrt); 527 } 528 if (!vars->count) 529 vars->count = 1; 530 } else if (vars->dropping) { 531 vars->dropping = false; 532 } 533 534 if (next_due && vars->dropping) { 535 /* Use ECN mark if possible, otherwise drop */ 536 drop = !(vars->ecn_marked = INET_ECN_set_ce(skb)); 537 538 vars->count++; 539 if (!vars->count) 540 vars->count--; 541 cobalt_invsqrt(vars); 542 vars->drop_next = cobalt_control(vars->drop_next, 543 p->interval, 544 vars->rec_inv_sqrt); 545 schedule = ktime_sub(now, vars->drop_next); 546 } else { 547 while (next_due) { 548 vars->count--; 549 cobalt_invsqrt(vars); 550 vars->drop_next = cobalt_control(vars->drop_next, 551 p->interval, 552 vars->rec_inv_sqrt); 553 schedule = ktime_sub(now, vars->drop_next); 554 next_due = vars->count && ktime_to_ns(schedule) >= 0; 555 } 556 } 557 558 /* Simple BLUE implementation. Lack of ECN is deliberate. */ 559 if (vars->p_drop) 560 drop |= (get_random_u32() < vars->p_drop); 561 562 /* Overload the drop_next field as an activity timeout */ 563 if (!vars->count) 564 vars->drop_next = ktime_add_ns(now, p->interval); 565 else if (ktime_to_ns(schedule) > 0 && !drop) 566 vars->drop_next = now; 567 568 return drop; 569 } 570 571 static bool cake_update_flowkeys(struct flow_keys *keys, 572 const struct sk_buff *skb) 573 { 574 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 575 struct nf_conntrack_tuple tuple = {}; 576 bool rev = !skb->_nfct, upd = false; 577 __be32 ip; 578 579 if (skb_protocol(skb, true) != htons(ETH_P_IP)) 580 return false; 581 582 if (!nf_ct_get_tuple_skb(&tuple, skb)) 583 return false; 584 585 ip = rev ? tuple.dst.u3.ip : tuple.src.u3.ip; 586 if (ip != keys->addrs.v4addrs.src) { 587 keys->addrs.v4addrs.src = ip; 588 upd = true; 589 } 590 ip = rev ? tuple.src.u3.ip : tuple.dst.u3.ip; 591 if (ip != keys->addrs.v4addrs.dst) { 592 keys->addrs.v4addrs.dst = ip; 593 upd = true; 594 } 595 596 if (keys->ports.ports) { 597 __be16 port; 598 599 port = rev ? tuple.dst.u.all : tuple.src.u.all; 600 if (port != keys->ports.src) { 601 keys->ports.src = port; 602 upd = true; 603 } 604 port = rev ? tuple.src.u.all : tuple.dst.u.all; 605 if (port != keys->ports.dst) { 606 port = keys->ports.dst; 607 upd = true; 608 } 609 } 610 return upd; 611 #else 612 return false; 613 #endif 614 } 615 616 /* Cake has several subtle multiple bit settings. In these cases you 617 * would be matching triple isolate mode as well. 618 */ 619 620 static bool cake_dsrc(int flow_mode) 621 { 622 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC; 623 } 624 625 static bool cake_ddst(int flow_mode) 626 { 627 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST; 628 } 629 630 static void cake_dec_srchost_bulk_flow_count(struct cake_tin_data *q, 631 struct cake_flow *flow, 632 int flow_mode) 633 { 634 if (likely(cake_dsrc(flow_mode) && 635 q->hosts[flow->srchost].srchost_bulk_flow_count)) 636 q->hosts[flow->srchost].srchost_bulk_flow_count--; 637 } 638 639 static void cake_inc_srchost_bulk_flow_count(struct cake_tin_data *q, 640 struct cake_flow *flow, 641 int flow_mode) 642 { 643 if (likely(cake_dsrc(flow_mode) && 644 q->hosts[flow->srchost].srchost_bulk_flow_count < CAKE_QUEUES)) 645 q->hosts[flow->srchost].srchost_bulk_flow_count++; 646 } 647 648 static void cake_dec_dsthost_bulk_flow_count(struct cake_tin_data *q, 649 struct cake_flow *flow, 650 int flow_mode) 651 { 652 if (likely(cake_ddst(flow_mode) && 653 q->hosts[flow->dsthost].dsthost_bulk_flow_count)) 654 q->hosts[flow->dsthost].dsthost_bulk_flow_count--; 655 } 656 657 static void cake_inc_dsthost_bulk_flow_count(struct cake_tin_data *q, 658 struct cake_flow *flow, 659 int flow_mode) 660 { 661 if (likely(cake_ddst(flow_mode) && 662 q->hosts[flow->dsthost].dsthost_bulk_flow_count < CAKE_QUEUES)) 663 q->hosts[flow->dsthost].dsthost_bulk_flow_count++; 664 } 665 666 static u16 cake_get_flow_quantum(struct cake_tin_data *q, 667 struct cake_flow *flow, 668 int flow_mode) 669 { 670 u16 host_load = 1; 671 672 if (cake_dsrc(flow_mode)) 673 host_load = max(host_load, 674 q->hosts[flow->srchost].srchost_bulk_flow_count); 675 676 if (cake_ddst(flow_mode)) 677 host_load = max(host_load, 678 q->hosts[flow->dsthost].dsthost_bulk_flow_count); 679 680 /* The get_random_u16() is a way to apply dithering to avoid 681 * accumulating roundoff errors 682 */ 683 return (q->flow_quantum * quantum_div[host_load] + 684 get_random_u16()) >> 16; 685 } 686 687 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb, 688 int flow_mode, u16 flow_override, u16 host_override) 689 { 690 bool hash_flows = (!flow_override && !!(flow_mode & CAKE_FLOW_FLOWS)); 691 bool hash_hosts = (!host_override && !!(flow_mode & CAKE_FLOW_HOSTS)); 692 bool nat_enabled = !!(flow_mode & CAKE_FLOW_NAT_FLAG); 693 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0; 694 u16 reduced_hash, srchost_idx, dsthost_idx; 695 struct flow_keys keys, host_keys; 696 bool use_skbhash = skb->l4_hash; 697 698 if (unlikely(flow_mode == CAKE_FLOW_NONE)) 699 return 0; 700 701 /* If both overrides are set, or we can use the SKB hash and nat mode is 702 * disabled, we can skip packet dissection entirely. If nat mode is 703 * enabled there's another check below after doing the conntrack lookup. 704 */ 705 if ((!hash_flows || (use_skbhash && !nat_enabled)) && !hash_hosts) 706 goto skip_hash; 707 708 skb_flow_dissect_flow_keys(skb, &keys, 709 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); 710 711 /* Don't use the SKB hash if we change the lookup keys from conntrack */ 712 if (nat_enabled && cake_update_flowkeys(&keys, skb)) 713 use_skbhash = false; 714 715 /* If we can still use the SKB hash and don't need the host hash, we can 716 * skip the rest of the hashing procedure 717 */ 718 if (use_skbhash && !hash_hosts) 719 goto skip_hash; 720 721 /* flow_hash_from_keys() sorts the addresses by value, so we have 722 * to preserve their order in a separate data structure to treat 723 * src and dst host addresses as independently selectable. 724 */ 725 host_keys = keys; 726 host_keys.ports.ports = 0; 727 host_keys.basic.ip_proto = 0; 728 host_keys.keyid.keyid = 0; 729 host_keys.tags.flow_label = 0; 730 731 switch (host_keys.control.addr_type) { 732 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 733 host_keys.addrs.v4addrs.src = 0; 734 dsthost_hash = flow_hash_from_keys(&host_keys); 735 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src; 736 host_keys.addrs.v4addrs.dst = 0; 737 srchost_hash = flow_hash_from_keys(&host_keys); 738 break; 739 740 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 741 memset(&host_keys.addrs.v6addrs.src, 0, 742 sizeof(host_keys.addrs.v6addrs.src)); 743 dsthost_hash = flow_hash_from_keys(&host_keys); 744 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; 745 memset(&host_keys.addrs.v6addrs.dst, 0, 746 sizeof(host_keys.addrs.v6addrs.dst)); 747 srchost_hash = flow_hash_from_keys(&host_keys); 748 break; 749 750 default: 751 dsthost_hash = 0; 752 srchost_hash = 0; 753 } 754 755 /* This *must* be after the above switch, since as a 756 * side-effect it sorts the src and dst addresses. 757 */ 758 if (hash_flows && !use_skbhash) 759 flow_hash = flow_hash_from_keys(&keys); 760 761 skip_hash: 762 if (flow_override) 763 flow_hash = flow_override - 1; 764 else if (use_skbhash && (flow_mode & CAKE_FLOW_FLOWS)) 765 flow_hash = skb->hash; 766 if (host_override) { 767 dsthost_hash = host_override - 1; 768 srchost_hash = host_override - 1; 769 } 770 771 if (!(flow_mode & CAKE_FLOW_FLOWS)) { 772 if (flow_mode & CAKE_FLOW_SRC_IP) 773 flow_hash ^= srchost_hash; 774 775 if (flow_mode & CAKE_FLOW_DST_IP) 776 flow_hash ^= dsthost_hash; 777 } 778 779 reduced_hash = flow_hash % CAKE_QUEUES; 780 781 /* set-associative hashing */ 782 /* fast path if no hash collision (direct lookup succeeds) */ 783 if (likely(q->tags[reduced_hash] == flow_hash && 784 q->flows[reduced_hash].set)) { 785 q->way_directs++; 786 } else { 787 u32 inner_hash = reduced_hash % CAKE_SET_WAYS; 788 u32 outer_hash = reduced_hash - inner_hash; 789 bool allocate_src = false; 790 bool allocate_dst = false; 791 u32 i, k; 792 793 /* check if any active queue in the set is reserved for 794 * this flow. 795 */ 796 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS; 797 i++, k = (k + 1) % CAKE_SET_WAYS) { 798 if (q->tags[outer_hash + k] == flow_hash) { 799 if (i) 800 q->way_hits++; 801 802 if (!q->flows[outer_hash + k].set) { 803 /* need to increment host refcnts */ 804 allocate_src = cake_dsrc(flow_mode); 805 allocate_dst = cake_ddst(flow_mode); 806 } 807 808 goto found; 809 } 810 } 811 812 /* no queue is reserved for this flow, look for an 813 * empty one. 814 */ 815 for (i = 0; i < CAKE_SET_WAYS; 816 i++, k = (k + 1) % CAKE_SET_WAYS) { 817 if (!q->flows[outer_hash + k].set) { 818 q->way_misses++; 819 allocate_src = cake_dsrc(flow_mode); 820 allocate_dst = cake_ddst(flow_mode); 821 goto found; 822 } 823 } 824 825 /* With no empty queues, default to the original 826 * queue, accept the collision, update the host tags. 827 */ 828 q->way_collisions++; 829 allocate_src = cake_dsrc(flow_mode); 830 allocate_dst = cake_ddst(flow_mode); 831 832 if (q->flows[outer_hash + k].set == CAKE_SET_BULK) { 833 cake_dec_srchost_bulk_flow_count(q, &q->flows[outer_hash + k], flow_mode); 834 cake_dec_dsthost_bulk_flow_count(q, &q->flows[outer_hash + k], flow_mode); 835 } 836 found: 837 /* reserve queue for future packets in same flow */ 838 reduced_hash = outer_hash + k; 839 q->tags[reduced_hash] = flow_hash; 840 841 if (allocate_src) { 842 srchost_idx = srchost_hash % CAKE_QUEUES; 843 inner_hash = srchost_idx % CAKE_SET_WAYS; 844 outer_hash = srchost_idx - inner_hash; 845 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS; 846 i++, k = (k + 1) % CAKE_SET_WAYS) { 847 if (q->hosts[outer_hash + k].srchost_tag == 848 srchost_hash) 849 goto found_src; 850 } 851 for (i = 0; i < CAKE_SET_WAYS; 852 i++, k = (k + 1) % CAKE_SET_WAYS) { 853 if (!q->hosts[outer_hash + k].srchost_bulk_flow_count) 854 break; 855 } 856 q->hosts[outer_hash + k].srchost_tag = srchost_hash; 857 found_src: 858 srchost_idx = outer_hash + k; 859 q->flows[reduced_hash].srchost = srchost_idx; 860 861 if (q->flows[reduced_hash].set == CAKE_SET_BULK) 862 cake_inc_srchost_bulk_flow_count(q, &q->flows[reduced_hash], flow_mode); 863 } 864 865 if (allocate_dst) { 866 dsthost_idx = dsthost_hash % CAKE_QUEUES; 867 inner_hash = dsthost_idx % CAKE_SET_WAYS; 868 outer_hash = dsthost_idx - inner_hash; 869 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS; 870 i++, k = (k + 1) % CAKE_SET_WAYS) { 871 if (q->hosts[outer_hash + k].dsthost_tag == 872 dsthost_hash) 873 goto found_dst; 874 } 875 for (i = 0; i < CAKE_SET_WAYS; 876 i++, k = (k + 1) % CAKE_SET_WAYS) { 877 if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count) 878 break; 879 } 880 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash; 881 found_dst: 882 dsthost_idx = outer_hash + k; 883 q->flows[reduced_hash].dsthost = dsthost_idx; 884 885 if (q->flows[reduced_hash].set == CAKE_SET_BULK) 886 cake_inc_dsthost_bulk_flow_count(q, &q->flows[reduced_hash], flow_mode); 887 } 888 } 889 890 return reduced_hash; 891 } 892 893 /* helper functions : might be changed when/if skb use a standard list_head */ 894 /* remove one skb from head of slot queue */ 895 896 static struct sk_buff *dequeue_head(struct cake_flow *flow) 897 { 898 struct sk_buff *skb = flow->head; 899 900 if (skb) { 901 flow->head = skb->next; 902 skb_mark_not_on_list(skb); 903 } 904 905 return skb; 906 } 907 908 /* add skb to flow queue (tail add) */ 909 910 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb) 911 { 912 if (!flow->head) 913 flow->head = skb; 914 else 915 flow->tail->next = skb; 916 flow->tail = skb; 917 skb->next = NULL; 918 } 919 920 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb, 921 struct ipv6hdr *buf) 922 { 923 unsigned int offset = skb_network_offset(skb); 924 struct iphdr *iph; 925 926 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf); 927 928 if (!iph) 929 return NULL; 930 931 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6) 932 return skb_header_pointer(skb, offset + iph->ihl * 4, 933 sizeof(struct ipv6hdr), buf); 934 935 else if (iph->version == 4) 936 return iph; 937 938 else if (iph->version == 6) 939 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr), 940 buf); 941 942 return NULL; 943 } 944 945 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb, 946 void *buf, unsigned int bufsize) 947 { 948 unsigned int offset = skb_network_offset(skb); 949 const struct ipv6hdr *ipv6h; 950 const struct tcphdr *tcph; 951 const struct iphdr *iph; 952 struct ipv6hdr _ipv6h; 953 struct tcphdr _tcph; 954 955 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 956 957 if (!ipv6h) 958 return NULL; 959 960 if (ipv6h->version == 4) { 961 iph = (struct iphdr *)ipv6h; 962 offset += iph->ihl * 4; 963 964 /* special-case 6in4 tunnelling, as that is a common way to get 965 * v6 connectivity in the home 966 */ 967 if (iph->protocol == IPPROTO_IPV6) { 968 ipv6h = skb_header_pointer(skb, offset, 969 sizeof(_ipv6h), &_ipv6h); 970 971 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 972 return NULL; 973 974 offset += sizeof(struct ipv6hdr); 975 976 } else if (iph->protocol != IPPROTO_TCP) { 977 return NULL; 978 } 979 980 } else if (ipv6h->version == 6) { 981 if (ipv6h->nexthdr != IPPROTO_TCP) 982 return NULL; 983 984 offset += sizeof(struct ipv6hdr); 985 } else { 986 return NULL; 987 } 988 989 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 990 if (!tcph || tcph->doff < 5) 991 return NULL; 992 993 return skb_header_pointer(skb, offset, 994 min(__tcp_hdrlen(tcph), bufsize), buf); 995 } 996 997 static const void *cake_get_tcpopt(const struct tcphdr *tcph, 998 int code, int *oplen) 999 { 1000 /* inspired by tcp_parse_options in tcp_input.c */ 1001 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr); 1002 const u8 *ptr = (const u8 *)(tcph + 1); 1003 1004 while (length > 0) { 1005 int opcode = *ptr++; 1006 int opsize; 1007 1008 if (opcode == TCPOPT_EOL) 1009 break; 1010 if (opcode == TCPOPT_NOP) { 1011 length--; 1012 continue; 1013 } 1014 if (length < 2) 1015 break; 1016 opsize = *ptr++; 1017 if (opsize < 2 || opsize > length) 1018 break; 1019 1020 if (opcode == code) { 1021 *oplen = opsize; 1022 return ptr; 1023 } 1024 1025 ptr += opsize - 2; 1026 length -= opsize; 1027 } 1028 1029 return NULL; 1030 } 1031 1032 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more 1033 * bytes than the other. In the case where both sequences ACKs bytes that the 1034 * other doesn't, A is considered greater. DSACKs in A also makes A be 1035 * considered greater. 1036 * 1037 * @return -1, 0 or 1 as normal compare functions 1038 */ 1039 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a, 1040 const struct tcphdr *tcph_b) 1041 { 1042 const struct tcp_sack_block_wire *sack_a, *sack_b; 1043 u32 ack_seq_a = ntohl(tcph_a->ack_seq); 1044 u32 bytes_a = 0, bytes_b = 0; 1045 int oplen_a, oplen_b; 1046 bool first = true; 1047 1048 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a); 1049 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b); 1050 1051 /* pointers point to option contents */ 1052 oplen_a -= TCPOLEN_SACK_BASE; 1053 oplen_b -= TCPOLEN_SACK_BASE; 1054 1055 if (sack_a && oplen_a >= sizeof(*sack_a) && 1056 (!sack_b || oplen_b < sizeof(*sack_b))) 1057 return -1; 1058 else if (sack_b && oplen_b >= sizeof(*sack_b) && 1059 (!sack_a || oplen_a < sizeof(*sack_a))) 1060 return 1; 1061 else if ((!sack_a || oplen_a < sizeof(*sack_a)) && 1062 (!sack_b || oplen_b < sizeof(*sack_b))) 1063 return 0; 1064 1065 while (oplen_a >= sizeof(*sack_a)) { 1066 const struct tcp_sack_block_wire *sack_tmp = sack_b; 1067 u32 start_a = get_unaligned_be32(&sack_a->start_seq); 1068 u32 end_a = get_unaligned_be32(&sack_a->end_seq); 1069 int oplen_tmp = oplen_b; 1070 bool found = false; 1071 1072 /* DSACK; always considered greater to prevent dropping */ 1073 if (before(start_a, ack_seq_a)) 1074 return -1; 1075 1076 bytes_a += end_a - start_a; 1077 1078 while (oplen_tmp >= sizeof(*sack_tmp)) { 1079 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq); 1080 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq); 1081 1082 /* first time through we count the total size */ 1083 if (first) 1084 bytes_b += end_b - start_b; 1085 1086 if (!after(start_b, start_a) && !before(end_b, end_a)) { 1087 found = true; 1088 if (!first) 1089 break; 1090 } 1091 oplen_tmp -= sizeof(*sack_tmp); 1092 sack_tmp++; 1093 } 1094 1095 if (!found) 1096 return -1; 1097 1098 oplen_a -= sizeof(*sack_a); 1099 sack_a++; 1100 first = false; 1101 } 1102 1103 /* If we made it this far, all ranges SACKed by A are covered by B, so 1104 * either the SACKs are equal, or B SACKs more bytes. 1105 */ 1106 return bytes_b > bytes_a ? 1 : 0; 1107 } 1108 1109 static void cake_tcph_get_tstamp(const struct tcphdr *tcph, 1110 u32 *tsval, u32 *tsecr) 1111 { 1112 const u8 *ptr; 1113 int opsize; 1114 1115 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize); 1116 1117 if (ptr && opsize == TCPOLEN_TIMESTAMP) { 1118 *tsval = get_unaligned_be32(ptr); 1119 *tsecr = get_unaligned_be32(ptr + 4); 1120 } 1121 } 1122 1123 static bool cake_tcph_may_drop(const struct tcphdr *tcph, 1124 u32 tstamp_new, u32 tsecr_new) 1125 { 1126 /* inspired by tcp_parse_options in tcp_input.c */ 1127 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr); 1128 const u8 *ptr = (const u8 *)(tcph + 1); 1129 u32 tstamp, tsecr; 1130 1131 /* 3 reserved flags must be unset to avoid future breakage 1132 * ACK must be set 1133 * ECE/CWR are handled separately 1134 * All other flags URG/PSH/RST/SYN/FIN must be unset 1135 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero) 1136 * 0x00C00000 = CWR/ECE (handled separately) 1137 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000 1138 */ 1139 if (((tcp_flag_word(tcph) & 1140 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK)) 1141 return false; 1142 1143 while (length > 0) { 1144 int opcode = *ptr++; 1145 int opsize; 1146 1147 if (opcode == TCPOPT_EOL) 1148 break; 1149 if (opcode == TCPOPT_NOP) { 1150 length--; 1151 continue; 1152 } 1153 if (length < 2) 1154 break; 1155 opsize = *ptr++; 1156 if (opsize < 2 || opsize > length) 1157 break; 1158 1159 switch (opcode) { 1160 case TCPOPT_MD5SIG: /* doesn't influence state */ 1161 break; 1162 1163 case TCPOPT_SACK: /* stricter checking performed later */ 1164 if (opsize % 8 != 2) 1165 return false; 1166 break; 1167 1168 case TCPOPT_TIMESTAMP: 1169 /* only drop timestamps lower than new */ 1170 if (opsize != TCPOLEN_TIMESTAMP) 1171 return false; 1172 tstamp = get_unaligned_be32(ptr); 1173 tsecr = get_unaligned_be32(ptr + 4); 1174 if (after(tstamp, tstamp_new) || 1175 after(tsecr, tsecr_new)) 1176 return false; 1177 break; 1178 1179 case TCPOPT_MSS: /* these should only be set on SYN */ 1180 case TCPOPT_WINDOW: 1181 case TCPOPT_SACK_PERM: 1182 case TCPOPT_FASTOPEN: 1183 case TCPOPT_EXP: 1184 default: /* don't drop if any unknown options are present */ 1185 return false; 1186 } 1187 1188 ptr += opsize - 2; 1189 length -= opsize; 1190 } 1191 1192 return true; 1193 } 1194 1195 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q, 1196 struct cake_flow *flow) 1197 { 1198 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE; 1199 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL; 1200 struct sk_buff *skb_check, *skb_prev = NULL; 1201 const struct ipv6hdr *ipv6h, *ipv6h_check; 1202 unsigned char _tcph[64], _tcph_check[64]; 1203 const struct tcphdr *tcph, *tcph_check; 1204 const struct iphdr *iph, *iph_check; 1205 struct ipv6hdr _iph, _iph_check; 1206 const struct sk_buff *skb; 1207 int seglen, num_found = 0; 1208 u32 tstamp = 0, tsecr = 0; 1209 __be32 elig_flags = 0; 1210 int sack_comp; 1211 1212 /* no other possible ACKs to filter */ 1213 if (flow->head == flow->tail) 1214 return NULL; 1215 1216 skb = flow->tail; 1217 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph)); 1218 iph = cake_get_iphdr(skb, &_iph); 1219 if (!tcph) 1220 return NULL; 1221 1222 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr); 1223 1224 /* the 'triggering' packet need only have the ACK flag set. 1225 * also check that SYN is not set, as there won't be any previous ACKs. 1226 */ 1227 if ((tcp_flag_word(tcph) & 1228 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK) 1229 return NULL; 1230 1231 /* the 'triggering' ACK is at the tail of the queue, we have already 1232 * returned if it is the only packet in the flow. loop through the rest 1233 * of the queue looking for pure ACKs with the same 5-tuple as the 1234 * triggering one. 1235 */ 1236 for (skb_check = flow->head; 1237 skb_check && skb_check != skb; 1238 skb_prev = skb_check, skb_check = skb_check->next) { 1239 iph_check = cake_get_iphdr(skb_check, &_iph_check); 1240 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check, 1241 sizeof(_tcph_check)); 1242 1243 /* only TCP packets with matching 5-tuple are eligible, and only 1244 * drop safe headers 1245 */ 1246 if (!tcph_check || iph->version != iph_check->version || 1247 tcph_check->source != tcph->source || 1248 tcph_check->dest != tcph->dest) 1249 continue; 1250 1251 if (iph_check->version == 4) { 1252 if (iph_check->saddr != iph->saddr || 1253 iph_check->daddr != iph->daddr) 1254 continue; 1255 1256 seglen = iph_totlen(skb, iph_check) - 1257 (4 * iph_check->ihl); 1258 } else if (iph_check->version == 6) { 1259 ipv6h = (struct ipv6hdr *)iph; 1260 ipv6h_check = (struct ipv6hdr *)iph_check; 1261 1262 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) || 1263 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr)) 1264 continue; 1265 1266 seglen = ntohs(ipv6h_check->payload_len); 1267 } else { 1268 WARN_ON(1); /* shouldn't happen */ 1269 continue; 1270 } 1271 1272 /* If the ECE/CWR flags changed from the previous eligible 1273 * packet in the same flow, we should no longer be dropping that 1274 * previous packet as this would lose information. 1275 */ 1276 if (elig_ack && (tcp_flag_word(tcph_check) & 1277 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) { 1278 elig_ack = NULL; 1279 elig_ack_prev = NULL; 1280 num_found--; 1281 } 1282 1283 /* Check TCP options and flags, don't drop ACKs with segment 1284 * data, and don't drop ACKs with a higher cumulative ACK 1285 * counter than the triggering packet. Check ACK seqno here to 1286 * avoid parsing SACK options of packets we are going to exclude 1287 * anyway. 1288 */ 1289 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) || 1290 (seglen - __tcp_hdrlen(tcph_check)) != 0 || 1291 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq))) 1292 continue; 1293 1294 /* Check SACK options. The triggering packet must SACK more data 1295 * than the ACK under consideration, or SACK the same range but 1296 * have a larger cumulative ACK counter. The latter is a 1297 * pathological case, but is contained in the following check 1298 * anyway, just to be safe. 1299 */ 1300 sack_comp = cake_tcph_sack_compare(tcph_check, tcph); 1301 1302 if (sack_comp < 0 || 1303 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) && 1304 sack_comp == 0)) 1305 continue; 1306 1307 /* At this point we have found an eligible pure ACK to drop; if 1308 * we are in aggressive mode, we are done. Otherwise, keep 1309 * searching unless this is the second eligible ACK we 1310 * found. 1311 * 1312 * Since we want to drop ACK closest to the head of the queue, 1313 * save the first eligible ACK we find, even if we need to loop 1314 * again. 1315 */ 1316 if (!elig_ack) { 1317 elig_ack = skb_check; 1318 elig_ack_prev = skb_prev; 1319 elig_flags = (tcp_flag_word(tcph_check) 1320 & (TCP_FLAG_ECE | TCP_FLAG_CWR)); 1321 } 1322 1323 if (num_found++ > 0) 1324 goto found; 1325 } 1326 1327 /* We made it through the queue without finding two eligible ACKs . If 1328 * we found a single eligible ACK we can drop it in aggressive mode if 1329 * we can guarantee that this does not interfere with ECN flag 1330 * information. We ensure this by dropping it only if the enqueued 1331 * packet is consecutive with the eligible ACK, and their flags match. 1332 */ 1333 if (elig_ack && aggressive && elig_ack->next == skb && 1334 (elig_flags == (tcp_flag_word(tcph) & 1335 (TCP_FLAG_ECE | TCP_FLAG_CWR)))) 1336 goto found; 1337 1338 return NULL; 1339 1340 found: 1341 if (elig_ack_prev) 1342 elig_ack_prev->next = elig_ack->next; 1343 else 1344 flow->head = elig_ack->next; 1345 1346 skb_mark_not_on_list(elig_ack); 1347 1348 return elig_ack; 1349 } 1350 1351 static u64 cake_ewma(u64 avg, u64 sample, u32 shift) 1352 { 1353 avg -= avg >> shift; 1354 avg += sample >> shift; 1355 return avg; 1356 } 1357 1358 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off) 1359 { 1360 if (q->rate_flags & CAKE_FLAG_OVERHEAD) 1361 len -= off; 1362 1363 if (q->max_netlen < len) 1364 q->max_netlen = len; 1365 if (q->min_netlen > len) 1366 q->min_netlen = len; 1367 1368 len += q->rate_overhead; 1369 1370 if (len < q->rate_mpu) 1371 len = q->rate_mpu; 1372 1373 if (q->atm_mode == CAKE_ATM_ATM) { 1374 len += 47; 1375 len /= 48; 1376 len *= 53; 1377 } else if (q->atm_mode == CAKE_ATM_PTM) { 1378 /* Add one byte per 64 bytes or part thereof. 1379 * This is conservative and easier to calculate than the 1380 * precise value. 1381 */ 1382 len += (len + 63) / 64; 1383 } 1384 1385 if (q->max_adjlen < len) 1386 q->max_adjlen = len; 1387 if (q->min_adjlen > len) 1388 q->min_adjlen = len; 1389 1390 return len; 1391 } 1392 1393 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb) 1394 { 1395 const struct skb_shared_info *shinfo = skb_shinfo(skb); 1396 unsigned int hdr_len, last_len = 0; 1397 u32 off = skb_network_offset(skb); 1398 u32 len = qdisc_pkt_len(skb); 1399 u16 segs = 1; 1400 1401 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8); 1402 1403 if (!shinfo->gso_size) 1404 return cake_calc_overhead(q, len, off); 1405 1406 /* borrowed from qdisc_pkt_len_init() */ 1407 hdr_len = skb_transport_offset(skb); 1408 1409 /* + transport layer */ 1410 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | 1411 SKB_GSO_TCPV6))) { 1412 const struct tcphdr *th; 1413 struct tcphdr _tcphdr; 1414 1415 th = skb_header_pointer(skb, hdr_len, 1416 sizeof(_tcphdr), &_tcphdr); 1417 if (likely(th)) 1418 hdr_len += __tcp_hdrlen(th); 1419 } else { 1420 struct udphdr _udphdr; 1421 1422 if (skb_header_pointer(skb, hdr_len, 1423 sizeof(_udphdr), &_udphdr)) 1424 hdr_len += sizeof(struct udphdr); 1425 } 1426 1427 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) 1428 segs = DIV_ROUND_UP(skb->len - hdr_len, 1429 shinfo->gso_size); 1430 else 1431 segs = shinfo->gso_segs; 1432 1433 len = shinfo->gso_size + hdr_len; 1434 last_len = skb->len - shinfo->gso_size * (segs - 1); 1435 1436 return (cake_calc_overhead(q, len, off) * (segs - 1) + 1437 cake_calc_overhead(q, last_len, off)); 1438 } 1439 1440 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j) 1441 { 1442 struct cake_heap_entry ii = q->overflow_heap[i]; 1443 struct cake_heap_entry jj = q->overflow_heap[j]; 1444 1445 q->overflow_heap[i] = jj; 1446 q->overflow_heap[j] = ii; 1447 1448 q->tins[ii.t].overflow_idx[ii.b] = j; 1449 q->tins[jj.t].overflow_idx[jj.b] = i; 1450 } 1451 1452 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i) 1453 { 1454 struct cake_heap_entry ii = q->overflow_heap[i]; 1455 1456 return q->tins[ii.t].backlogs[ii.b]; 1457 } 1458 1459 static void cake_heapify(struct cake_sched_data *q, u16 i) 1460 { 1461 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES; 1462 u32 mb = cake_heap_get_backlog(q, i); 1463 u32 m = i; 1464 1465 while (m < a) { 1466 u32 l = m + m + 1; 1467 u32 r = l + 1; 1468 1469 if (l < a) { 1470 u32 lb = cake_heap_get_backlog(q, l); 1471 1472 if (lb > mb) { 1473 m = l; 1474 mb = lb; 1475 } 1476 } 1477 1478 if (r < a) { 1479 u32 rb = cake_heap_get_backlog(q, r); 1480 1481 if (rb > mb) { 1482 m = r; 1483 mb = rb; 1484 } 1485 } 1486 1487 if (m != i) { 1488 cake_heap_swap(q, i, m); 1489 i = m; 1490 } else { 1491 break; 1492 } 1493 } 1494 } 1495 1496 static void cake_heapify_up(struct cake_sched_data *q, u16 i) 1497 { 1498 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) { 1499 u16 p = (i - 1) >> 1; 1500 u32 ib = cake_heap_get_backlog(q, i); 1501 u32 pb = cake_heap_get_backlog(q, p); 1502 1503 if (ib > pb) { 1504 cake_heap_swap(q, i, p); 1505 i = p; 1506 } else { 1507 break; 1508 } 1509 } 1510 } 1511 1512 static int cake_advance_shaper(struct cake_sched_data *q, 1513 struct cake_tin_data *b, 1514 struct sk_buff *skb, 1515 ktime_t now, bool drop) 1516 { 1517 u32 len = get_cobalt_cb(skb)->adjusted_len; 1518 1519 /* charge packet bandwidth to this tin 1520 * and to the global shaper. 1521 */ 1522 if (q->rate_ns) { 1523 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft; 1524 u64 global_dur = (len * q->rate_ns) >> q->rate_shft; 1525 u64 failsafe_dur = global_dur + (global_dur >> 1); 1526 1527 if (ktime_before(b->time_next_packet, now)) 1528 b->time_next_packet = ktime_add_ns(b->time_next_packet, 1529 tin_dur); 1530 1531 else if (ktime_before(b->time_next_packet, 1532 ktime_add_ns(now, tin_dur))) 1533 b->time_next_packet = ktime_add_ns(now, tin_dur); 1534 1535 q->time_next_packet = ktime_add_ns(q->time_next_packet, 1536 global_dur); 1537 if (!drop) 1538 q->failsafe_next_packet = \ 1539 ktime_add_ns(q->failsafe_next_packet, 1540 failsafe_dur); 1541 } 1542 return len; 1543 } 1544 1545 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free) 1546 { 1547 struct cake_sched_data *q = qdisc_priv(sch); 1548 ktime_t now = ktime_get(); 1549 u32 idx = 0, tin = 0, len; 1550 struct cake_heap_entry qq; 1551 struct cake_tin_data *b; 1552 struct cake_flow *flow; 1553 struct sk_buff *skb; 1554 1555 if (!q->overflow_timeout) { 1556 int i; 1557 /* Build fresh max-heap */ 1558 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2 - 1; i >= 0; i--) 1559 cake_heapify(q, i); 1560 } 1561 q->overflow_timeout = 65535; 1562 1563 /* select longest queue for pruning */ 1564 qq = q->overflow_heap[0]; 1565 tin = qq.t; 1566 idx = qq.b; 1567 1568 b = &q->tins[tin]; 1569 flow = &b->flows[idx]; 1570 skb = dequeue_head(flow); 1571 if (unlikely(!skb)) { 1572 /* heap has gone wrong, rebuild it next time */ 1573 q->overflow_timeout = 0; 1574 return idx + (tin << 16); 1575 } 1576 1577 if (cobalt_queue_full(&flow->cvars, &b->cparams, now)) 1578 b->unresponsive_flow_count++; 1579 1580 len = qdisc_pkt_len(skb); 1581 q->buffer_used -= skb->truesize; 1582 b->backlogs[idx] -= len; 1583 b->tin_backlog -= len; 1584 sch->qstats.backlog -= len; 1585 1586 flow->dropped++; 1587 b->tin_dropped++; 1588 sch->qstats.drops++; 1589 1590 if (q->rate_flags & CAKE_FLAG_INGRESS) 1591 cake_advance_shaper(q, b, skb, now, true); 1592 1593 __qdisc_drop(skb, to_free); 1594 sch->q.qlen--; 1595 qdisc_tree_reduce_backlog(sch, 1, len); 1596 1597 cake_heapify(q, 0); 1598 1599 return idx + (tin << 16); 1600 } 1601 1602 static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash) 1603 { 1604 const int offset = skb_network_offset(skb); 1605 u16 *buf, buf_; 1606 u8 dscp; 1607 1608 switch (skb_protocol(skb, true)) { 1609 case htons(ETH_P_IP): 1610 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_); 1611 if (unlikely(!buf)) 1612 return 0; 1613 1614 /* ToS is in the second byte of iphdr */ 1615 dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2; 1616 1617 if (wash && dscp) { 1618 const int wlen = offset + sizeof(struct iphdr); 1619 1620 if (!pskb_may_pull(skb, wlen) || 1621 skb_try_make_writable(skb, wlen)) 1622 return 0; 1623 1624 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0); 1625 } 1626 1627 return dscp; 1628 1629 case htons(ETH_P_IPV6): 1630 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_); 1631 if (unlikely(!buf)) 1632 return 0; 1633 1634 /* Traffic class is in the first and second bytes of ipv6hdr */ 1635 dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2; 1636 1637 if (wash && dscp) { 1638 const int wlen = offset + sizeof(struct ipv6hdr); 1639 1640 if (!pskb_may_pull(skb, wlen) || 1641 skb_try_make_writable(skb, wlen)) 1642 return 0; 1643 1644 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0); 1645 } 1646 1647 return dscp; 1648 1649 case htons(ETH_P_ARP): 1650 return 0x38; /* CS7 - Net Control */ 1651 1652 default: 1653 /* If there is no Diffserv field, treat as best-effort */ 1654 return 0; 1655 } 1656 } 1657 1658 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch, 1659 struct sk_buff *skb) 1660 { 1661 struct cake_sched_data *q = qdisc_priv(sch); 1662 u32 tin, mark; 1663 bool wash; 1664 u8 dscp; 1665 1666 /* Tin selection: Default to diffserv-based selection, allow overriding 1667 * using firewall marks or skb->priority. Call DSCP parsing early if 1668 * wash is enabled, otherwise defer to below to skip unneeded parsing. 1669 */ 1670 mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft; 1671 wash = !!(q->rate_flags & CAKE_FLAG_WASH); 1672 if (wash) 1673 dscp = cake_handle_diffserv(skb, wash); 1674 1675 if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT) 1676 tin = 0; 1677 1678 else if (mark && mark <= q->tin_cnt) 1679 tin = q->tin_order[mark - 1]; 1680 1681 else if (TC_H_MAJ(skb->priority) == sch->handle && 1682 TC_H_MIN(skb->priority) > 0 && 1683 TC_H_MIN(skb->priority) <= q->tin_cnt) 1684 tin = q->tin_order[TC_H_MIN(skb->priority) - 1]; 1685 1686 else { 1687 if (!wash) 1688 dscp = cake_handle_diffserv(skb, wash); 1689 tin = q->tin_index[dscp]; 1690 1691 if (unlikely(tin >= q->tin_cnt)) 1692 tin = 0; 1693 } 1694 1695 return &q->tins[tin]; 1696 } 1697 1698 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t, 1699 struct sk_buff *skb, int flow_mode, int *qerr) 1700 { 1701 struct cake_sched_data *q = qdisc_priv(sch); 1702 struct tcf_proto *filter; 1703 struct tcf_result res; 1704 u16 flow = 0, host = 0; 1705 int result; 1706 1707 filter = rcu_dereference_bh(q->filter_list); 1708 if (!filter) 1709 goto hash; 1710 1711 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 1712 result = tcf_classify(skb, NULL, filter, &res, false); 1713 1714 if (result >= 0) { 1715 #ifdef CONFIG_NET_CLS_ACT 1716 switch (result) { 1717 case TC_ACT_STOLEN: 1718 case TC_ACT_QUEUED: 1719 case TC_ACT_TRAP: 1720 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 1721 fallthrough; 1722 case TC_ACT_SHOT: 1723 return 0; 1724 } 1725 #endif 1726 if (TC_H_MIN(res.classid) <= CAKE_QUEUES) 1727 flow = TC_H_MIN(res.classid); 1728 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16)) 1729 host = TC_H_MAJ(res.classid) >> 16; 1730 } 1731 hash: 1732 *t = cake_select_tin(sch, skb); 1733 return cake_hash(*t, skb, flow_mode, flow, host) + 1; 1734 } 1735 1736 static void cake_reconfigure(struct Qdisc *sch); 1737 1738 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch, 1739 struct sk_buff **to_free) 1740 { 1741 struct cake_sched_data *q = qdisc_priv(sch); 1742 int len = qdisc_pkt_len(skb); 1743 int ret; 1744 struct sk_buff *ack = NULL; 1745 ktime_t now = ktime_get(); 1746 struct cake_tin_data *b; 1747 struct cake_flow *flow; 1748 u32 idx; 1749 1750 /* choose flow to insert into */ 1751 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret); 1752 if (idx == 0) { 1753 if (ret & __NET_XMIT_BYPASS) 1754 qdisc_qstats_drop(sch); 1755 __qdisc_drop(skb, to_free); 1756 return ret; 1757 } 1758 idx--; 1759 flow = &b->flows[idx]; 1760 1761 /* ensure shaper state isn't stale */ 1762 if (!b->tin_backlog) { 1763 if (ktime_before(b->time_next_packet, now)) 1764 b->time_next_packet = now; 1765 1766 if (!sch->q.qlen) { 1767 if (ktime_before(q->time_next_packet, now)) { 1768 q->failsafe_next_packet = now; 1769 q->time_next_packet = now; 1770 } else if (ktime_after(q->time_next_packet, now) && 1771 ktime_after(q->failsafe_next_packet, now)) { 1772 u64 next = \ 1773 min(ktime_to_ns(q->time_next_packet), 1774 ktime_to_ns( 1775 q->failsafe_next_packet)); 1776 sch->qstats.overlimits++; 1777 qdisc_watchdog_schedule_ns(&q->watchdog, next); 1778 } 1779 } 1780 } 1781 1782 if (unlikely(len > b->max_skblen)) 1783 b->max_skblen = len; 1784 1785 if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) { 1786 struct sk_buff *segs, *nskb; 1787 netdev_features_t features = netif_skb_features(skb); 1788 unsigned int slen = 0, numsegs = 0; 1789 1790 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 1791 if (IS_ERR_OR_NULL(segs)) 1792 return qdisc_drop(skb, sch, to_free); 1793 1794 skb_list_walk_safe(segs, segs, nskb) { 1795 skb_mark_not_on_list(segs); 1796 qdisc_skb_cb(segs)->pkt_len = segs->len; 1797 cobalt_set_enqueue_time(segs, now); 1798 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q, 1799 segs); 1800 flow_queue_add(flow, segs); 1801 1802 sch->q.qlen++; 1803 numsegs++; 1804 slen += segs->len; 1805 q->buffer_used += segs->truesize; 1806 b->packets++; 1807 } 1808 1809 /* stats */ 1810 b->bytes += slen; 1811 b->backlogs[idx] += slen; 1812 b->tin_backlog += slen; 1813 sch->qstats.backlog += slen; 1814 q->avg_window_bytes += slen; 1815 1816 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen); 1817 consume_skb(skb); 1818 } else { 1819 /* not splitting */ 1820 cobalt_set_enqueue_time(skb, now); 1821 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb); 1822 flow_queue_add(flow, skb); 1823 1824 if (q->ack_filter) 1825 ack = cake_ack_filter(q, flow); 1826 1827 if (ack) { 1828 b->ack_drops++; 1829 sch->qstats.drops++; 1830 b->bytes += qdisc_pkt_len(ack); 1831 len -= qdisc_pkt_len(ack); 1832 q->buffer_used += skb->truesize - ack->truesize; 1833 if (q->rate_flags & CAKE_FLAG_INGRESS) 1834 cake_advance_shaper(q, b, ack, now, true); 1835 1836 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack)); 1837 consume_skb(ack); 1838 } else { 1839 sch->q.qlen++; 1840 q->buffer_used += skb->truesize; 1841 } 1842 1843 /* stats */ 1844 b->packets++; 1845 b->bytes += len; 1846 b->backlogs[idx] += len; 1847 b->tin_backlog += len; 1848 sch->qstats.backlog += len; 1849 q->avg_window_bytes += len; 1850 } 1851 1852 if (q->overflow_timeout) 1853 cake_heapify_up(q, b->overflow_idx[idx]); 1854 1855 /* incoming bandwidth capacity estimate */ 1856 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) { 1857 u64 packet_interval = \ 1858 ktime_to_ns(ktime_sub(now, q->last_packet_time)); 1859 1860 if (packet_interval > NSEC_PER_SEC) 1861 packet_interval = NSEC_PER_SEC; 1862 1863 /* filter out short-term bursts, eg. wifi aggregation */ 1864 q->avg_packet_interval = \ 1865 cake_ewma(q->avg_packet_interval, 1866 packet_interval, 1867 (packet_interval > q->avg_packet_interval ? 1868 2 : 8)); 1869 1870 q->last_packet_time = now; 1871 1872 if (packet_interval > q->avg_packet_interval) { 1873 u64 window_interval = \ 1874 ktime_to_ns(ktime_sub(now, 1875 q->avg_window_begin)); 1876 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC; 1877 1878 b = div64_u64(b, window_interval); 1879 q->avg_peak_bandwidth = 1880 cake_ewma(q->avg_peak_bandwidth, b, 1881 b > q->avg_peak_bandwidth ? 2 : 8); 1882 q->avg_window_bytes = 0; 1883 q->avg_window_begin = now; 1884 1885 if (ktime_after(now, 1886 ktime_add_ms(q->last_reconfig_time, 1887 250))) { 1888 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4; 1889 cake_reconfigure(sch); 1890 } 1891 } 1892 } else { 1893 q->avg_window_bytes = 0; 1894 q->last_packet_time = now; 1895 } 1896 1897 /* flowchain */ 1898 if (!flow->set || flow->set == CAKE_SET_DECAYING) { 1899 if (!flow->set) { 1900 list_add_tail(&flow->flowchain, &b->new_flows); 1901 } else { 1902 b->decaying_flow_count--; 1903 list_move_tail(&flow->flowchain, &b->new_flows); 1904 } 1905 flow->set = CAKE_SET_SPARSE; 1906 b->sparse_flow_count++; 1907 1908 flow->deficit = cake_get_flow_quantum(b, flow, q->flow_mode); 1909 } else if (flow->set == CAKE_SET_SPARSE_WAIT) { 1910 /* this flow was empty, accounted as a sparse flow, but actually 1911 * in the bulk rotation. 1912 */ 1913 flow->set = CAKE_SET_BULK; 1914 b->sparse_flow_count--; 1915 b->bulk_flow_count++; 1916 1917 cake_inc_srchost_bulk_flow_count(b, flow, q->flow_mode); 1918 cake_inc_dsthost_bulk_flow_count(b, flow, q->flow_mode); 1919 } 1920 1921 if (q->buffer_used > q->buffer_max_used) 1922 q->buffer_max_used = q->buffer_used; 1923 1924 if (q->buffer_used > q->buffer_limit) { 1925 u32 dropped = 0; 1926 1927 while (q->buffer_used > q->buffer_limit) { 1928 dropped++; 1929 cake_drop(sch, to_free); 1930 } 1931 b->drop_overlimit += dropped; 1932 } 1933 return NET_XMIT_SUCCESS; 1934 } 1935 1936 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch) 1937 { 1938 struct cake_sched_data *q = qdisc_priv(sch); 1939 struct cake_tin_data *b = &q->tins[q->cur_tin]; 1940 struct cake_flow *flow = &b->flows[q->cur_flow]; 1941 struct sk_buff *skb = NULL; 1942 u32 len; 1943 1944 if (flow->head) { 1945 skb = dequeue_head(flow); 1946 len = qdisc_pkt_len(skb); 1947 b->backlogs[q->cur_flow] -= len; 1948 b->tin_backlog -= len; 1949 sch->qstats.backlog -= len; 1950 q->buffer_used -= skb->truesize; 1951 sch->q.qlen--; 1952 1953 if (q->overflow_timeout) 1954 cake_heapify(q, b->overflow_idx[q->cur_flow]); 1955 } 1956 return skb; 1957 } 1958 1959 /* Discard leftover packets from a tin no longer in use. */ 1960 static void cake_clear_tin(struct Qdisc *sch, u16 tin) 1961 { 1962 struct cake_sched_data *q = qdisc_priv(sch); 1963 struct sk_buff *skb; 1964 1965 q->cur_tin = tin; 1966 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++) 1967 while (!!(skb = cake_dequeue_one(sch))) 1968 kfree_skb(skb); 1969 } 1970 1971 static struct sk_buff *cake_dequeue(struct Qdisc *sch) 1972 { 1973 struct cake_sched_data *q = qdisc_priv(sch); 1974 struct cake_tin_data *b = &q->tins[q->cur_tin]; 1975 ktime_t now = ktime_get(); 1976 struct cake_flow *flow; 1977 struct list_head *head; 1978 bool first_flow = true; 1979 struct sk_buff *skb; 1980 u64 delay; 1981 u32 len; 1982 1983 begin: 1984 if (!sch->q.qlen) 1985 return NULL; 1986 1987 /* global hard shaper */ 1988 if (ktime_after(q->time_next_packet, now) && 1989 ktime_after(q->failsafe_next_packet, now)) { 1990 u64 next = min(ktime_to_ns(q->time_next_packet), 1991 ktime_to_ns(q->failsafe_next_packet)); 1992 1993 sch->qstats.overlimits++; 1994 qdisc_watchdog_schedule_ns(&q->watchdog, next); 1995 return NULL; 1996 } 1997 1998 /* Choose a class to work on. */ 1999 if (!q->rate_ns) { 2000 /* In unlimited mode, can't rely on shaper timings, just balance 2001 * with DRR 2002 */ 2003 bool wrapped = false, empty = true; 2004 2005 while (b->tin_deficit < 0 || 2006 !(b->sparse_flow_count + b->bulk_flow_count)) { 2007 if (b->tin_deficit <= 0) 2008 b->tin_deficit += b->tin_quantum; 2009 if (b->sparse_flow_count + b->bulk_flow_count) 2010 empty = false; 2011 2012 q->cur_tin++; 2013 b++; 2014 if (q->cur_tin >= q->tin_cnt) { 2015 q->cur_tin = 0; 2016 b = q->tins; 2017 2018 if (wrapped) { 2019 /* It's possible for q->qlen to be 2020 * nonzero when we actually have no 2021 * packets anywhere. 2022 */ 2023 if (empty) 2024 return NULL; 2025 } else { 2026 wrapped = true; 2027 } 2028 } 2029 } 2030 } else { 2031 /* In shaped mode, choose: 2032 * - Highest-priority tin with queue and meeting schedule, or 2033 * - The earliest-scheduled tin with queue. 2034 */ 2035 ktime_t best_time = KTIME_MAX; 2036 int tin, best_tin = 0; 2037 2038 for (tin = 0; tin < q->tin_cnt; tin++) { 2039 b = q->tins + tin; 2040 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) { 2041 ktime_t time_to_pkt = \ 2042 ktime_sub(b->time_next_packet, now); 2043 2044 if (ktime_to_ns(time_to_pkt) <= 0 || 2045 ktime_compare(time_to_pkt, 2046 best_time) <= 0) { 2047 best_time = time_to_pkt; 2048 best_tin = tin; 2049 } 2050 } 2051 } 2052 2053 q->cur_tin = best_tin; 2054 b = q->tins + best_tin; 2055 2056 /* No point in going further if no packets to deliver. */ 2057 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count))) 2058 return NULL; 2059 } 2060 2061 retry: 2062 /* service this class */ 2063 head = &b->decaying_flows; 2064 if (!first_flow || list_empty(head)) { 2065 head = &b->new_flows; 2066 if (list_empty(head)) { 2067 head = &b->old_flows; 2068 if (unlikely(list_empty(head))) { 2069 head = &b->decaying_flows; 2070 if (unlikely(list_empty(head))) 2071 goto begin; 2072 } 2073 } 2074 } 2075 flow = list_first_entry(head, struct cake_flow, flowchain); 2076 q->cur_flow = flow - b->flows; 2077 first_flow = false; 2078 2079 /* flow isolation (DRR++) */ 2080 if (flow->deficit <= 0) { 2081 /* Keep all flows with deficits out of the sparse and decaying 2082 * rotations. No non-empty flow can go into the decaying 2083 * rotation, so they can't get deficits 2084 */ 2085 if (flow->set == CAKE_SET_SPARSE) { 2086 if (flow->head) { 2087 b->sparse_flow_count--; 2088 b->bulk_flow_count++; 2089 2090 cake_inc_srchost_bulk_flow_count(b, flow, q->flow_mode); 2091 cake_inc_dsthost_bulk_flow_count(b, flow, q->flow_mode); 2092 2093 flow->set = CAKE_SET_BULK; 2094 } else { 2095 /* we've moved it to the bulk rotation for 2096 * correct deficit accounting but we still want 2097 * to count it as a sparse flow, not a bulk one. 2098 */ 2099 flow->set = CAKE_SET_SPARSE_WAIT; 2100 } 2101 } 2102 2103 flow->deficit += cake_get_flow_quantum(b, flow, q->flow_mode); 2104 list_move_tail(&flow->flowchain, &b->old_flows); 2105 2106 goto retry; 2107 } 2108 2109 /* Retrieve a packet via the AQM */ 2110 while (1) { 2111 skb = cake_dequeue_one(sch); 2112 if (!skb) { 2113 /* this queue was actually empty */ 2114 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now)) 2115 b->unresponsive_flow_count--; 2116 2117 if (flow->cvars.p_drop || flow->cvars.count || 2118 ktime_before(now, flow->cvars.drop_next)) { 2119 /* keep in the flowchain until the state has 2120 * decayed to rest 2121 */ 2122 list_move_tail(&flow->flowchain, 2123 &b->decaying_flows); 2124 if (flow->set == CAKE_SET_BULK) { 2125 b->bulk_flow_count--; 2126 2127 cake_dec_srchost_bulk_flow_count(b, flow, q->flow_mode); 2128 cake_dec_dsthost_bulk_flow_count(b, flow, q->flow_mode); 2129 2130 b->decaying_flow_count++; 2131 } else if (flow->set == CAKE_SET_SPARSE || 2132 flow->set == CAKE_SET_SPARSE_WAIT) { 2133 b->sparse_flow_count--; 2134 b->decaying_flow_count++; 2135 } 2136 flow->set = CAKE_SET_DECAYING; 2137 } else { 2138 /* remove empty queue from the flowchain */ 2139 list_del_init(&flow->flowchain); 2140 if (flow->set == CAKE_SET_SPARSE || 2141 flow->set == CAKE_SET_SPARSE_WAIT) 2142 b->sparse_flow_count--; 2143 else if (flow->set == CAKE_SET_BULK) { 2144 b->bulk_flow_count--; 2145 2146 cake_dec_srchost_bulk_flow_count(b, flow, q->flow_mode); 2147 cake_dec_dsthost_bulk_flow_count(b, flow, q->flow_mode); 2148 } else 2149 b->decaying_flow_count--; 2150 2151 flow->set = CAKE_SET_NONE; 2152 } 2153 goto begin; 2154 } 2155 2156 /* Last packet in queue may be marked, shouldn't be dropped */ 2157 if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb, 2158 (b->bulk_flow_count * 2159 !!(q->rate_flags & 2160 CAKE_FLAG_INGRESS))) || 2161 !flow->head) 2162 break; 2163 2164 /* drop this packet, get another one */ 2165 if (q->rate_flags & CAKE_FLAG_INGRESS) { 2166 len = cake_advance_shaper(q, b, skb, 2167 now, true); 2168 flow->deficit -= len; 2169 b->tin_deficit -= len; 2170 } 2171 flow->dropped++; 2172 b->tin_dropped++; 2173 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb)); 2174 qdisc_qstats_drop(sch); 2175 kfree_skb(skb); 2176 if (q->rate_flags & CAKE_FLAG_INGRESS) 2177 goto retry; 2178 } 2179 2180 b->tin_ecn_mark += !!flow->cvars.ecn_marked; 2181 qdisc_bstats_update(sch, skb); 2182 2183 /* collect delay stats */ 2184 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb))); 2185 b->avge_delay = cake_ewma(b->avge_delay, delay, 8); 2186 b->peak_delay = cake_ewma(b->peak_delay, delay, 2187 delay > b->peak_delay ? 2 : 8); 2188 b->base_delay = cake_ewma(b->base_delay, delay, 2189 delay < b->base_delay ? 2 : 8); 2190 2191 len = cake_advance_shaper(q, b, skb, now, false); 2192 flow->deficit -= len; 2193 b->tin_deficit -= len; 2194 2195 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) { 2196 u64 next = min(ktime_to_ns(q->time_next_packet), 2197 ktime_to_ns(q->failsafe_next_packet)); 2198 2199 qdisc_watchdog_schedule_ns(&q->watchdog, next); 2200 } else if (!sch->q.qlen) { 2201 int i; 2202 2203 for (i = 0; i < q->tin_cnt; i++) { 2204 if (q->tins[i].decaying_flow_count) { 2205 ktime_t next = \ 2206 ktime_add_ns(now, 2207 q->tins[i].cparams.target); 2208 2209 qdisc_watchdog_schedule_ns(&q->watchdog, 2210 ktime_to_ns(next)); 2211 break; 2212 } 2213 } 2214 } 2215 2216 if (q->overflow_timeout) 2217 q->overflow_timeout--; 2218 2219 return skb; 2220 } 2221 2222 static void cake_reset(struct Qdisc *sch) 2223 { 2224 struct cake_sched_data *q = qdisc_priv(sch); 2225 u32 c; 2226 2227 if (!q->tins) 2228 return; 2229 2230 for (c = 0; c < CAKE_MAX_TINS; c++) 2231 cake_clear_tin(sch, c); 2232 } 2233 2234 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = { 2235 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 }, 2236 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 }, 2237 [TCA_CAKE_ATM] = { .type = NLA_U32 }, 2238 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 }, 2239 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 }, 2240 [TCA_CAKE_RTT] = { .type = NLA_U32 }, 2241 [TCA_CAKE_TARGET] = { .type = NLA_U32 }, 2242 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 }, 2243 [TCA_CAKE_MEMORY] = { .type = NLA_U32 }, 2244 [TCA_CAKE_NAT] = { .type = NLA_U32 }, 2245 [TCA_CAKE_RAW] = { .type = NLA_U32 }, 2246 [TCA_CAKE_WASH] = { .type = NLA_U32 }, 2247 [TCA_CAKE_MPU] = { .type = NLA_U32 }, 2248 [TCA_CAKE_INGRESS] = { .type = NLA_U32 }, 2249 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 }, 2250 [TCA_CAKE_SPLIT_GSO] = { .type = NLA_U32 }, 2251 [TCA_CAKE_FWMARK] = { .type = NLA_U32 }, 2252 }; 2253 2254 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu, 2255 u64 target_ns, u64 rtt_est_ns) 2256 { 2257 /* convert byte-rate into time-per-byte 2258 * so it will always unwedge in reasonable time. 2259 */ 2260 static const u64 MIN_RATE = 64; 2261 u32 byte_target = mtu; 2262 u64 byte_target_ns; 2263 u8 rate_shft = 0; 2264 u64 rate_ns = 0; 2265 2266 b->flow_quantum = 1514; 2267 if (rate) { 2268 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL); 2269 rate_shft = 34; 2270 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft; 2271 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate)); 2272 while (!!(rate_ns >> 34)) { 2273 rate_ns >>= 1; 2274 rate_shft--; 2275 } 2276 } /* else unlimited, ie. zero delay */ 2277 2278 b->tin_rate_bps = rate; 2279 b->tin_rate_ns = rate_ns; 2280 b->tin_rate_shft = rate_shft; 2281 2282 byte_target_ns = (byte_target * rate_ns) >> rate_shft; 2283 2284 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns); 2285 b->cparams.interval = max(rtt_est_ns + 2286 b->cparams.target - target_ns, 2287 b->cparams.target * 2); 2288 b->cparams.mtu_time = byte_target_ns; 2289 b->cparams.p_inc = 1 << 24; /* 1/256 */ 2290 b->cparams.p_dec = 1 << 20; /* 1/4096 */ 2291 } 2292 2293 static int cake_config_besteffort(struct Qdisc *sch) 2294 { 2295 struct cake_sched_data *q = qdisc_priv(sch); 2296 struct cake_tin_data *b = &q->tins[0]; 2297 u32 mtu = psched_mtu(qdisc_dev(sch)); 2298 u64 rate = q->rate_bps; 2299 2300 q->tin_cnt = 1; 2301 2302 q->tin_index = besteffort; 2303 q->tin_order = normal_order; 2304 2305 cake_set_rate(b, rate, mtu, 2306 us_to_ns(q->target), us_to_ns(q->interval)); 2307 b->tin_quantum = 65535; 2308 2309 return 0; 2310 } 2311 2312 static int cake_config_precedence(struct Qdisc *sch) 2313 { 2314 /* convert high-level (user visible) parameters into internal format */ 2315 struct cake_sched_data *q = qdisc_priv(sch); 2316 u32 mtu = psched_mtu(qdisc_dev(sch)); 2317 u64 rate = q->rate_bps; 2318 u32 quantum = 256; 2319 u32 i; 2320 2321 q->tin_cnt = 8; 2322 q->tin_index = precedence; 2323 q->tin_order = normal_order; 2324 2325 for (i = 0; i < q->tin_cnt; i++) { 2326 struct cake_tin_data *b = &q->tins[i]; 2327 2328 cake_set_rate(b, rate, mtu, us_to_ns(q->target), 2329 us_to_ns(q->interval)); 2330 2331 b->tin_quantum = max_t(u16, 1U, quantum); 2332 2333 /* calculate next class's parameters */ 2334 rate *= 7; 2335 rate >>= 3; 2336 2337 quantum *= 7; 2338 quantum >>= 3; 2339 } 2340 2341 return 0; 2342 } 2343 2344 /* List of known Diffserv codepoints: 2345 * 2346 * Default Forwarding (DF/CS0) - Best Effort 2347 * Max Throughput (TOS2) 2348 * Min Delay (TOS4) 2349 * LLT "La" (TOS5) 2350 * Assured Forwarding 1 (AF1x) - x3 2351 * Assured Forwarding 2 (AF2x) - x3 2352 * Assured Forwarding 3 (AF3x) - x3 2353 * Assured Forwarding 4 (AF4x) - x3 2354 * Precedence Class 1 (CS1) 2355 * Precedence Class 2 (CS2) 2356 * Precedence Class 3 (CS3) 2357 * Precedence Class 4 (CS4) 2358 * Precedence Class 5 (CS5) 2359 * Precedence Class 6 (CS6) 2360 * Precedence Class 7 (CS7) 2361 * Voice Admit (VA) 2362 * Expedited Forwarding (EF) 2363 * Lower Effort (LE) 2364 * 2365 * Total 26 codepoints. 2366 */ 2367 2368 /* List of traffic classes in RFC 4594, updated by RFC 8622: 2369 * (roughly descending order of contended priority) 2370 * (roughly ascending order of uncontended throughput) 2371 * 2372 * Network Control (CS6,CS7) - routing traffic 2373 * Telephony (EF,VA) - aka. VoIP streams 2374 * Signalling (CS5) - VoIP setup 2375 * Multimedia Conferencing (AF4x) - aka. video calls 2376 * Realtime Interactive (CS4) - eg. games 2377 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch 2378 * Broadcast Video (CS3) 2379 * Low-Latency Data (AF2x,TOS4) - eg. database 2380 * Ops, Admin, Management (CS2) - eg. ssh 2381 * Standard Service (DF & unrecognised codepoints) 2382 * High-Throughput Data (AF1x,TOS2) - eg. web traffic 2383 * Low-Priority Data (LE,CS1) - eg. BitTorrent 2384 * 2385 * Total 12 traffic classes. 2386 */ 2387 2388 static int cake_config_diffserv8(struct Qdisc *sch) 2389 { 2390 /* Pruned list of traffic classes for typical applications: 2391 * 2392 * Network Control (CS6, CS7) 2393 * Minimum Latency (EF, VA, CS5, CS4) 2394 * Interactive Shell (CS2) 2395 * Low Latency Transactions (AF2x, TOS4) 2396 * Video Streaming (AF4x, AF3x, CS3) 2397 * Bog Standard (DF etc.) 2398 * High Throughput (AF1x, TOS2, CS1) 2399 * Background Traffic (LE) 2400 * 2401 * Total 8 traffic classes. 2402 */ 2403 2404 struct cake_sched_data *q = qdisc_priv(sch); 2405 u32 mtu = psched_mtu(qdisc_dev(sch)); 2406 u64 rate = q->rate_bps; 2407 u32 quantum = 256; 2408 u32 i; 2409 2410 q->tin_cnt = 8; 2411 2412 /* codepoint to class mapping */ 2413 q->tin_index = diffserv8; 2414 q->tin_order = normal_order; 2415 2416 /* class characteristics */ 2417 for (i = 0; i < q->tin_cnt; i++) { 2418 struct cake_tin_data *b = &q->tins[i]; 2419 2420 cake_set_rate(b, rate, mtu, us_to_ns(q->target), 2421 us_to_ns(q->interval)); 2422 2423 b->tin_quantum = max_t(u16, 1U, quantum); 2424 2425 /* calculate next class's parameters */ 2426 rate *= 7; 2427 rate >>= 3; 2428 2429 quantum *= 7; 2430 quantum >>= 3; 2431 } 2432 2433 return 0; 2434 } 2435 2436 static int cake_config_diffserv4(struct Qdisc *sch) 2437 { 2438 /* Further pruned list of traffic classes for four-class system: 2439 * 2440 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4) 2441 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2) 2442 * Best Effort (DF, AF1x, TOS2, and those not specified) 2443 * Background Traffic (LE, CS1) 2444 * 2445 * Total 4 traffic classes. 2446 */ 2447 2448 struct cake_sched_data *q = qdisc_priv(sch); 2449 u32 mtu = psched_mtu(qdisc_dev(sch)); 2450 u64 rate = q->rate_bps; 2451 u32 quantum = 1024; 2452 2453 q->tin_cnt = 4; 2454 2455 /* codepoint to class mapping */ 2456 q->tin_index = diffserv4; 2457 q->tin_order = bulk_order; 2458 2459 /* class characteristics */ 2460 cake_set_rate(&q->tins[0], rate, mtu, 2461 us_to_ns(q->target), us_to_ns(q->interval)); 2462 cake_set_rate(&q->tins[1], rate >> 4, mtu, 2463 us_to_ns(q->target), us_to_ns(q->interval)); 2464 cake_set_rate(&q->tins[2], rate >> 1, mtu, 2465 us_to_ns(q->target), us_to_ns(q->interval)); 2466 cake_set_rate(&q->tins[3], rate >> 2, mtu, 2467 us_to_ns(q->target), us_to_ns(q->interval)); 2468 2469 /* bandwidth-sharing weights */ 2470 q->tins[0].tin_quantum = quantum; 2471 q->tins[1].tin_quantum = quantum >> 4; 2472 q->tins[2].tin_quantum = quantum >> 1; 2473 q->tins[3].tin_quantum = quantum >> 2; 2474 2475 return 0; 2476 } 2477 2478 static int cake_config_diffserv3(struct Qdisc *sch) 2479 { 2480 /* Simplified Diffserv structure with 3 tins. 2481 * Latency Sensitive (CS7, CS6, EF, VA, TOS4) 2482 * Best Effort 2483 * Low Priority (LE, CS1) 2484 */ 2485 struct cake_sched_data *q = qdisc_priv(sch); 2486 u32 mtu = psched_mtu(qdisc_dev(sch)); 2487 u64 rate = q->rate_bps; 2488 u32 quantum = 1024; 2489 2490 q->tin_cnt = 3; 2491 2492 /* codepoint to class mapping */ 2493 q->tin_index = diffserv3; 2494 q->tin_order = bulk_order; 2495 2496 /* class characteristics */ 2497 cake_set_rate(&q->tins[0], rate, mtu, 2498 us_to_ns(q->target), us_to_ns(q->interval)); 2499 cake_set_rate(&q->tins[1], rate >> 4, mtu, 2500 us_to_ns(q->target), us_to_ns(q->interval)); 2501 cake_set_rate(&q->tins[2], rate >> 2, mtu, 2502 us_to_ns(q->target), us_to_ns(q->interval)); 2503 2504 /* bandwidth-sharing weights */ 2505 q->tins[0].tin_quantum = quantum; 2506 q->tins[1].tin_quantum = quantum >> 4; 2507 q->tins[2].tin_quantum = quantum >> 2; 2508 2509 return 0; 2510 } 2511 2512 static void cake_reconfigure(struct Qdisc *sch) 2513 { 2514 struct cake_sched_data *q = qdisc_priv(sch); 2515 int c, ft; 2516 2517 switch (q->tin_mode) { 2518 case CAKE_DIFFSERV_BESTEFFORT: 2519 ft = cake_config_besteffort(sch); 2520 break; 2521 2522 case CAKE_DIFFSERV_PRECEDENCE: 2523 ft = cake_config_precedence(sch); 2524 break; 2525 2526 case CAKE_DIFFSERV_DIFFSERV8: 2527 ft = cake_config_diffserv8(sch); 2528 break; 2529 2530 case CAKE_DIFFSERV_DIFFSERV4: 2531 ft = cake_config_diffserv4(sch); 2532 break; 2533 2534 case CAKE_DIFFSERV_DIFFSERV3: 2535 default: 2536 ft = cake_config_diffserv3(sch); 2537 break; 2538 } 2539 2540 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) { 2541 cake_clear_tin(sch, c); 2542 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time; 2543 } 2544 2545 q->rate_ns = q->tins[ft].tin_rate_ns; 2546 q->rate_shft = q->tins[ft].tin_rate_shft; 2547 2548 if (q->buffer_config_limit) { 2549 q->buffer_limit = q->buffer_config_limit; 2550 } else if (q->rate_bps) { 2551 u64 t = q->rate_bps * q->interval; 2552 2553 do_div(t, USEC_PER_SEC / 4); 2554 q->buffer_limit = max_t(u32, t, 4U << 20); 2555 } else { 2556 q->buffer_limit = ~0; 2557 } 2558 2559 sch->flags &= ~TCQ_F_CAN_BYPASS; 2560 2561 q->buffer_limit = min(q->buffer_limit, 2562 max(sch->limit * psched_mtu(qdisc_dev(sch)), 2563 q->buffer_config_limit)); 2564 } 2565 2566 static int cake_change(struct Qdisc *sch, struct nlattr *opt, 2567 struct netlink_ext_ack *extack) 2568 { 2569 struct cake_sched_data *q = qdisc_priv(sch); 2570 struct nlattr *tb[TCA_CAKE_MAX + 1]; 2571 u16 rate_flags; 2572 u8 flow_mode; 2573 int err; 2574 2575 err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy, 2576 extack); 2577 if (err < 0) 2578 return err; 2579 2580 flow_mode = q->flow_mode; 2581 if (tb[TCA_CAKE_NAT]) { 2582 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 2583 flow_mode &= ~CAKE_FLOW_NAT_FLAG; 2584 flow_mode |= CAKE_FLOW_NAT_FLAG * 2585 !!nla_get_u32(tb[TCA_CAKE_NAT]); 2586 #else 2587 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT], 2588 "No conntrack support in kernel"); 2589 return -EOPNOTSUPP; 2590 #endif 2591 } 2592 2593 if (tb[TCA_CAKE_BASE_RATE64]) 2594 WRITE_ONCE(q->rate_bps, 2595 nla_get_u64(tb[TCA_CAKE_BASE_RATE64])); 2596 2597 if (tb[TCA_CAKE_DIFFSERV_MODE]) 2598 WRITE_ONCE(q->tin_mode, 2599 nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE])); 2600 2601 rate_flags = q->rate_flags; 2602 if (tb[TCA_CAKE_WASH]) { 2603 if (!!nla_get_u32(tb[TCA_CAKE_WASH])) 2604 rate_flags |= CAKE_FLAG_WASH; 2605 else 2606 rate_flags &= ~CAKE_FLAG_WASH; 2607 } 2608 2609 if (tb[TCA_CAKE_FLOW_MODE]) 2610 flow_mode = ((flow_mode & CAKE_FLOW_NAT_FLAG) | 2611 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) & 2612 CAKE_FLOW_MASK)); 2613 2614 if (tb[TCA_CAKE_ATM]) 2615 WRITE_ONCE(q->atm_mode, 2616 nla_get_u32(tb[TCA_CAKE_ATM])); 2617 2618 if (tb[TCA_CAKE_OVERHEAD]) { 2619 WRITE_ONCE(q->rate_overhead, 2620 nla_get_s32(tb[TCA_CAKE_OVERHEAD])); 2621 rate_flags |= CAKE_FLAG_OVERHEAD; 2622 2623 q->max_netlen = 0; 2624 q->max_adjlen = 0; 2625 q->min_netlen = ~0; 2626 q->min_adjlen = ~0; 2627 } 2628 2629 if (tb[TCA_CAKE_RAW]) { 2630 rate_flags &= ~CAKE_FLAG_OVERHEAD; 2631 2632 q->max_netlen = 0; 2633 q->max_adjlen = 0; 2634 q->min_netlen = ~0; 2635 q->min_adjlen = ~0; 2636 } 2637 2638 if (tb[TCA_CAKE_MPU]) 2639 WRITE_ONCE(q->rate_mpu, 2640 nla_get_u32(tb[TCA_CAKE_MPU])); 2641 2642 if (tb[TCA_CAKE_RTT]) { 2643 u32 interval = nla_get_u32(tb[TCA_CAKE_RTT]); 2644 2645 WRITE_ONCE(q->interval, max(interval, 1U)); 2646 } 2647 2648 if (tb[TCA_CAKE_TARGET]) { 2649 u32 target = nla_get_u32(tb[TCA_CAKE_TARGET]); 2650 2651 WRITE_ONCE(q->target, max(target, 1U)); 2652 } 2653 2654 if (tb[TCA_CAKE_AUTORATE]) { 2655 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE])) 2656 rate_flags |= CAKE_FLAG_AUTORATE_INGRESS; 2657 else 2658 rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS; 2659 } 2660 2661 if (tb[TCA_CAKE_INGRESS]) { 2662 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS])) 2663 rate_flags |= CAKE_FLAG_INGRESS; 2664 else 2665 rate_flags &= ~CAKE_FLAG_INGRESS; 2666 } 2667 2668 if (tb[TCA_CAKE_ACK_FILTER]) 2669 WRITE_ONCE(q->ack_filter, 2670 nla_get_u32(tb[TCA_CAKE_ACK_FILTER])); 2671 2672 if (tb[TCA_CAKE_MEMORY]) 2673 WRITE_ONCE(q->buffer_config_limit, 2674 nla_get_u32(tb[TCA_CAKE_MEMORY])); 2675 2676 if (tb[TCA_CAKE_SPLIT_GSO]) { 2677 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO])) 2678 rate_flags |= CAKE_FLAG_SPLIT_GSO; 2679 else 2680 rate_flags &= ~CAKE_FLAG_SPLIT_GSO; 2681 } 2682 2683 if (tb[TCA_CAKE_FWMARK]) { 2684 WRITE_ONCE(q->fwmark_mask, nla_get_u32(tb[TCA_CAKE_FWMARK])); 2685 WRITE_ONCE(q->fwmark_shft, 2686 q->fwmark_mask ? __ffs(q->fwmark_mask) : 0); 2687 } 2688 2689 WRITE_ONCE(q->rate_flags, rate_flags); 2690 WRITE_ONCE(q->flow_mode, flow_mode); 2691 if (q->tins) { 2692 sch_tree_lock(sch); 2693 cake_reconfigure(sch); 2694 sch_tree_unlock(sch); 2695 } 2696 2697 return 0; 2698 } 2699 2700 static void cake_destroy(struct Qdisc *sch) 2701 { 2702 struct cake_sched_data *q = qdisc_priv(sch); 2703 2704 qdisc_watchdog_cancel(&q->watchdog); 2705 tcf_block_put(q->block); 2706 kvfree(q->tins); 2707 } 2708 2709 static int cake_init(struct Qdisc *sch, struct nlattr *opt, 2710 struct netlink_ext_ack *extack) 2711 { 2712 struct cake_sched_data *q = qdisc_priv(sch); 2713 int i, j, err; 2714 2715 sch->limit = 10240; 2716 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3; 2717 q->flow_mode = CAKE_FLOW_TRIPLE; 2718 2719 q->rate_bps = 0; /* unlimited by default */ 2720 2721 q->interval = 100000; /* 100ms default */ 2722 q->target = 5000; /* 5ms: codel RFC argues 2723 * for 5 to 10% of interval 2724 */ 2725 q->rate_flags |= CAKE_FLAG_SPLIT_GSO; 2726 q->cur_tin = 0; 2727 q->cur_flow = 0; 2728 2729 qdisc_watchdog_init(&q->watchdog, sch); 2730 2731 if (opt) { 2732 err = cake_change(sch, opt, extack); 2733 2734 if (err) 2735 return err; 2736 } 2737 2738 err = tcf_block_get(&q->block, &q->filter_list, sch, extack); 2739 if (err) 2740 return err; 2741 2742 quantum_div[0] = ~0; 2743 for (i = 1; i <= CAKE_QUEUES; i++) 2744 quantum_div[i] = 65535 / i; 2745 2746 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data), 2747 GFP_KERNEL); 2748 if (!q->tins) 2749 return -ENOMEM; 2750 2751 for (i = 0; i < CAKE_MAX_TINS; i++) { 2752 struct cake_tin_data *b = q->tins + i; 2753 2754 INIT_LIST_HEAD(&b->new_flows); 2755 INIT_LIST_HEAD(&b->old_flows); 2756 INIT_LIST_HEAD(&b->decaying_flows); 2757 b->sparse_flow_count = 0; 2758 b->bulk_flow_count = 0; 2759 b->decaying_flow_count = 0; 2760 2761 for (j = 0; j < CAKE_QUEUES; j++) { 2762 struct cake_flow *flow = b->flows + j; 2763 u32 k = j * CAKE_MAX_TINS + i; 2764 2765 INIT_LIST_HEAD(&flow->flowchain); 2766 cobalt_vars_init(&flow->cvars); 2767 2768 q->overflow_heap[k].t = i; 2769 q->overflow_heap[k].b = j; 2770 b->overflow_idx[j] = k; 2771 } 2772 } 2773 2774 cake_reconfigure(sch); 2775 q->avg_peak_bandwidth = q->rate_bps; 2776 q->min_netlen = ~0; 2777 q->min_adjlen = ~0; 2778 return 0; 2779 } 2780 2781 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb) 2782 { 2783 struct cake_sched_data *q = qdisc_priv(sch); 2784 struct nlattr *opts; 2785 u16 rate_flags; 2786 u8 flow_mode; 2787 2788 opts = nla_nest_start_noflag(skb, TCA_OPTIONS); 2789 if (!opts) 2790 goto nla_put_failure; 2791 2792 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, 2793 READ_ONCE(q->rate_bps), TCA_CAKE_PAD)) 2794 goto nla_put_failure; 2795 2796 flow_mode = READ_ONCE(q->flow_mode); 2797 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE, flow_mode & CAKE_FLOW_MASK)) 2798 goto nla_put_failure; 2799 2800 if (nla_put_u32(skb, TCA_CAKE_RTT, READ_ONCE(q->interval))) 2801 goto nla_put_failure; 2802 2803 if (nla_put_u32(skb, TCA_CAKE_TARGET, READ_ONCE(q->target))) 2804 goto nla_put_failure; 2805 2806 if (nla_put_u32(skb, TCA_CAKE_MEMORY, 2807 READ_ONCE(q->buffer_config_limit))) 2808 goto nla_put_failure; 2809 2810 rate_flags = READ_ONCE(q->rate_flags); 2811 if (nla_put_u32(skb, TCA_CAKE_AUTORATE, 2812 !!(rate_flags & CAKE_FLAG_AUTORATE_INGRESS))) 2813 goto nla_put_failure; 2814 2815 if (nla_put_u32(skb, TCA_CAKE_INGRESS, 2816 !!(rate_flags & CAKE_FLAG_INGRESS))) 2817 goto nla_put_failure; 2818 2819 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, READ_ONCE(q->ack_filter))) 2820 goto nla_put_failure; 2821 2822 if (nla_put_u32(skb, TCA_CAKE_NAT, 2823 !!(flow_mode & CAKE_FLOW_NAT_FLAG))) 2824 goto nla_put_failure; 2825 2826 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, READ_ONCE(q->tin_mode))) 2827 goto nla_put_failure; 2828 2829 if (nla_put_u32(skb, TCA_CAKE_WASH, 2830 !!(rate_flags & CAKE_FLAG_WASH))) 2831 goto nla_put_failure; 2832 2833 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, READ_ONCE(q->rate_overhead))) 2834 goto nla_put_failure; 2835 2836 if (!(rate_flags & CAKE_FLAG_OVERHEAD)) 2837 if (nla_put_u32(skb, TCA_CAKE_RAW, 0)) 2838 goto nla_put_failure; 2839 2840 if (nla_put_u32(skb, TCA_CAKE_ATM, READ_ONCE(q->atm_mode))) 2841 goto nla_put_failure; 2842 2843 if (nla_put_u32(skb, TCA_CAKE_MPU, READ_ONCE(q->rate_mpu))) 2844 goto nla_put_failure; 2845 2846 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO, 2847 !!(rate_flags & CAKE_FLAG_SPLIT_GSO))) 2848 goto nla_put_failure; 2849 2850 if (nla_put_u32(skb, TCA_CAKE_FWMARK, READ_ONCE(q->fwmark_mask))) 2851 goto nla_put_failure; 2852 2853 return nla_nest_end(skb, opts); 2854 2855 nla_put_failure: 2856 return -1; 2857 } 2858 2859 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 2860 { 2861 struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP); 2862 struct cake_sched_data *q = qdisc_priv(sch); 2863 struct nlattr *tstats, *ts; 2864 int i; 2865 2866 if (!stats) 2867 return -1; 2868 2869 #define PUT_STAT_U32(attr, data) do { \ 2870 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \ 2871 goto nla_put_failure; \ 2872 } while (0) 2873 #define PUT_STAT_U64(attr, data) do { \ 2874 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \ 2875 data, TCA_CAKE_STATS_PAD)) \ 2876 goto nla_put_failure; \ 2877 } while (0) 2878 2879 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth); 2880 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit); 2881 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used); 2882 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16)); 2883 PUT_STAT_U32(MAX_NETLEN, q->max_netlen); 2884 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen); 2885 PUT_STAT_U32(MIN_NETLEN, q->min_netlen); 2886 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen); 2887 2888 #undef PUT_STAT_U32 2889 #undef PUT_STAT_U64 2890 2891 tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS); 2892 if (!tstats) 2893 goto nla_put_failure; 2894 2895 #define PUT_TSTAT_U32(attr, data) do { \ 2896 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \ 2897 goto nla_put_failure; \ 2898 } while (0) 2899 #define PUT_TSTAT_U64(attr, data) do { \ 2900 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \ 2901 data, TCA_CAKE_TIN_STATS_PAD)) \ 2902 goto nla_put_failure; \ 2903 } while (0) 2904 2905 for (i = 0; i < q->tin_cnt; i++) { 2906 struct cake_tin_data *b = &q->tins[q->tin_order[i]]; 2907 2908 ts = nla_nest_start_noflag(d->skb, i + 1); 2909 if (!ts) 2910 goto nla_put_failure; 2911 2912 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps); 2913 PUT_TSTAT_U64(SENT_BYTES64, b->bytes); 2914 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog); 2915 2916 PUT_TSTAT_U32(TARGET_US, 2917 ktime_to_us(ns_to_ktime(b->cparams.target))); 2918 PUT_TSTAT_U32(INTERVAL_US, 2919 ktime_to_us(ns_to_ktime(b->cparams.interval))); 2920 2921 PUT_TSTAT_U32(SENT_PACKETS, b->packets); 2922 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped); 2923 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark); 2924 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops); 2925 2926 PUT_TSTAT_U32(PEAK_DELAY_US, 2927 ktime_to_us(ns_to_ktime(b->peak_delay))); 2928 PUT_TSTAT_U32(AVG_DELAY_US, 2929 ktime_to_us(ns_to_ktime(b->avge_delay))); 2930 PUT_TSTAT_U32(BASE_DELAY_US, 2931 ktime_to_us(ns_to_ktime(b->base_delay))); 2932 2933 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits); 2934 PUT_TSTAT_U32(WAY_MISSES, b->way_misses); 2935 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions); 2936 2937 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count + 2938 b->decaying_flow_count); 2939 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count); 2940 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count); 2941 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen); 2942 2943 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum); 2944 nla_nest_end(d->skb, ts); 2945 } 2946 2947 #undef PUT_TSTAT_U32 2948 #undef PUT_TSTAT_U64 2949 2950 nla_nest_end(d->skb, tstats); 2951 return nla_nest_end(d->skb, stats); 2952 2953 nla_put_failure: 2954 nla_nest_cancel(d->skb, stats); 2955 return -1; 2956 } 2957 2958 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg) 2959 { 2960 return NULL; 2961 } 2962 2963 static unsigned long cake_find(struct Qdisc *sch, u32 classid) 2964 { 2965 return 0; 2966 } 2967 2968 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent, 2969 u32 classid) 2970 { 2971 return 0; 2972 } 2973 2974 static void cake_unbind(struct Qdisc *q, unsigned long cl) 2975 { 2976 } 2977 2978 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl, 2979 struct netlink_ext_ack *extack) 2980 { 2981 struct cake_sched_data *q = qdisc_priv(sch); 2982 2983 if (cl) 2984 return NULL; 2985 return q->block; 2986 } 2987 2988 static int cake_dump_class(struct Qdisc *sch, unsigned long cl, 2989 struct sk_buff *skb, struct tcmsg *tcm) 2990 { 2991 tcm->tcm_handle |= TC_H_MIN(cl); 2992 return 0; 2993 } 2994 2995 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl, 2996 struct gnet_dump *d) 2997 { 2998 struct cake_sched_data *q = qdisc_priv(sch); 2999 const struct cake_flow *flow = NULL; 3000 struct gnet_stats_queue qs = { 0 }; 3001 struct nlattr *stats; 3002 u32 idx = cl - 1; 3003 3004 if (idx < CAKE_QUEUES * q->tin_cnt) { 3005 const struct cake_tin_data *b = \ 3006 &q->tins[q->tin_order[idx / CAKE_QUEUES]]; 3007 const struct sk_buff *skb; 3008 3009 flow = &b->flows[idx % CAKE_QUEUES]; 3010 3011 if (flow->head) { 3012 sch_tree_lock(sch); 3013 skb = flow->head; 3014 while (skb) { 3015 qs.qlen++; 3016 skb = skb->next; 3017 } 3018 sch_tree_unlock(sch); 3019 } 3020 qs.backlog = b->backlogs[idx % CAKE_QUEUES]; 3021 qs.drops = flow->dropped; 3022 } 3023 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0) 3024 return -1; 3025 if (flow) { 3026 ktime_t now = ktime_get(); 3027 3028 stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP); 3029 if (!stats) 3030 return -1; 3031 3032 #define PUT_STAT_U32(attr, data) do { \ 3033 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \ 3034 goto nla_put_failure; \ 3035 } while (0) 3036 #define PUT_STAT_S32(attr, data) do { \ 3037 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \ 3038 goto nla_put_failure; \ 3039 } while (0) 3040 3041 PUT_STAT_S32(DEFICIT, flow->deficit); 3042 PUT_STAT_U32(DROPPING, flow->cvars.dropping); 3043 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count); 3044 PUT_STAT_U32(P_DROP, flow->cvars.p_drop); 3045 if (flow->cvars.p_drop) { 3046 PUT_STAT_S32(BLUE_TIMER_US, 3047 ktime_to_us( 3048 ktime_sub(now, 3049 flow->cvars.blue_timer))); 3050 } 3051 if (flow->cvars.dropping) { 3052 PUT_STAT_S32(DROP_NEXT_US, 3053 ktime_to_us( 3054 ktime_sub(now, 3055 flow->cvars.drop_next))); 3056 } 3057 3058 if (nla_nest_end(d->skb, stats) < 0) 3059 return -1; 3060 } 3061 3062 return 0; 3063 3064 nla_put_failure: 3065 nla_nest_cancel(d->skb, stats); 3066 return -1; 3067 } 3068 3069 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg) 3070 { 3071 struct cake_sched_data *q = qdisc_priv(sch); 3072 unsigned int i, j; 3073 3074 if (arg->stop) 3075 return; 3076 3077 for (i = 0; i < q->tin_cnt; i++) { 3078 struct cake_tin_data *b = &q->tins[q->tin_order[i]]; 3079 3080 for (j = 0; j < CAKE_QUEUES; j++) { 3081 if (list_empty(&b->flows[j].flowchain)) { 3082 arg->count++; 3083 continue; 3084 } 3085 if (!tc_qdisc_stats_dump(sch, i * CAKE_QUEUES + j + 1, 3086 arg)) 3087 break; 3088 } 3089 } 3090 } 3091 3092 static const struct Qdisc_class_ops cake_class_ops = { 3093 .leaf = cake_leaf, 3094 .find = cake_find, 3095 .tcf_block = cake_tcf_block, 3096 .bind_tcf = cake_bind, 3097 .unbind_tcf = cake_unbind, 3098 .dump = cake_dump_class, 3099 .dump_stats = cake_dump_class_stats, 3100 .walk = cake_walk, 3101 }; 3102 3103 static struct Qdisc_ops cake_qdisc_ops __read_mostly = { 3104 .cl_ops = &cake_class_ops, 3105 .id = "cake", 3106 .priv_size = sizeof(struct cake_sched_data), 3107 .enqueue = cake_enqueue, 3108 .dequeue = cake_dequeue, 3109 .peek = qdisc_peek_dequeued, 3110 .init = cake_init, 3111 .reset = cake_reset, 3112 .destroy = cake_destroy, 3113 .change = cake_change, 3114 .dump = cake_dump, 3115 .dump_stats = cake_dump_stats, 3116 .owner = THIS_MODULE, 3117 }; 3118 MODULE_ALIAS_NET_SCH("cake"); 3119 3120 static int __init cake_module_init(void) 3121 { 3122 return register_qdisc(&cake_qdisc_ops); 3123 } 3124 3125 static void __exit cake_module_exit(void) 3126 { 3127 unregister_qdisc(&cake_qdisc_ops); 3128 } 3129 3130 module_init(cake_module_init) 3131 module_exit(cake_module_exit) 3132 MODULE_AUTHOR("Jonathan Morton"); 3133 MODULE_LICENSE("Dual BSD/GPL"); 3134 MODULE_DESCRIPTION("The CAKE shaper."); 3135