1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 3 /* COMMON Applications Kept Enhanced (CAKE) discipline 4 * 5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com> 6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk> 7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com> 8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de> 9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk> 10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au> 11 * 12 * The CAKE Principles: 13 * (or, how to have your cake and eat it too) 14 * 15 * This is a combination of several shaping, AQM and FQ techniques into one 16 * easy-to-use package: 17 * 18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE 19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq), 20 * eliminating the need for any sort of burst parameter (eg. token bucket 21 * depth). Burst support is limited to that necessary to overcome scheduling 22 * latency. 23 * 24 * - A Diffserv-aware priority queue, giving more priority to certain classes, 25 * up to a specified fraction of bandwidth. Above that bandwidth threshold, 26 * the priority is reduced to avoid starving other tins. 27 * 28 * - Each priority tin has a separate Flow Queue system, to isolate traffic 29 * flows from each other. This prevents a burst on one flow from increasing 30 * the delay to another. Flows are distributed to queues using a 31 * set-associative hash function. 32 * 33 * - Each queue is actively managed by Cobalt, which is a combination of the 34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals 35 * congestion early via ECN (if available) and/or packet drops, to keep 36 * latency low. The codel parameters are auto-tuned based on the bandwidth 37 * setting, as is necessary at low bandwidths. 38 * 39 * The configuration parameters are kept deliberately simple for ease of use. 40 * Everything has sane defaults. Complete generality of configuration is *not* 41 * a goal. 42 * 43 * The priority queue operates according to a weighted DRR scheme, combined with 44 * a bandwidth tracker which reuses the shaper logic to detect which side of the 45 * bandwidth sharing threshold the tin is operating. This determines whether a 46 * priority-based weight (high) or a bandwidth-based weight (low) is used for 47 * that tin in the current pass. 48 * 49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly 50 * granted us permission to leverage. 51 */ 52 53 #include <linux/module.h> 54 #include <linux/types.h> 55 #include <linux/kernel.h> 56 #include <linux/jiffies.h> 57 #include <linux/string.h> 58 #include <linux/in.h> 59 #include <linux/errno.h> 60 #include <linux/init.h> 61 #include <linux/skbuff.h> 62 #include <linux/jhash.h> 63 #include <linux/slab.h> 64 #include <linux/vmalloc.h> 65 #include <linux/reciprocal_div.h> 66 #include <net/netlink.h> 67 #include <linux/if_vlan.h> 68 #include <net/gso.h> 69 #include <net/pkt_sched.h> 70 #include <net/pkt_cls.h> 71 #include <net/tcp.h> 72 #include <net/flow_dissector.h> 73 74 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 75 #include <net/netfilter/nf_conntrack_core.h> 76 #endif 77 78 #define CAKE_SET_WAYS (8) 79 #define CAKE_MAX_TINS (8) 80 #define CAKE_QUEUES (1024) 81 #define CAKE_FLOW_MASK 63 82 #define CAKE_FLOW_NAT_FLAG 64 83 84 /* struct cobalt_params - contains codel and blue parameters 85 * @interval: codel initial drop rate 86 * @target: maximum persistent sojourn time & blue update rate 87 * @mtu_time: serialisation delay of maximum-size packet 88 * @p_inc: increment of blue drop probability (0.32 fxp) 89 * @p_dec: decrement of blue drop probability (0.32 fxp) 90 */ 91 struct cobalt_params { 92 u64 interval; 93 u64 target; 94 u64 mtu_time; 95 u32 p_inc; 96 u32 p_dec; 97 }; 98 99 /* struct cobalt_vars - contains codel and blue variables 100 * @count: codel dropping frequency 101 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1 102 * @drop_next: time to drop next packet, or when we dropped last 103 * @blue_timer: Blue time to next drop 104 * @p_drop: BLUE drop probability (0.32 fxp) 105 * @dropping: set if in dropping state 106 * @ecn_marked: set if marked 107 */ 108 struct cobalt_vars { 109 u32 count; 110 u32 rec_inv_sqrt; 111 ktime_t drop_next; 112 ktime_t blue_timer; 113 u32 p_drop; 114 bool dropping; 115 bool ecn_marked; 116 }; 117 118 enum { 119 CAKE_SET_NONE = 0, 120 CAKE_SET_SPARSE, 121 CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */ 122 CAKE_SET_BULK, 123 CAKE_SET_DECAYING 124 }; 125 126 struct cake_flow { 127 /* this stuff is all needed per-flow at dequeue time */ 128 struct sk_buff *head; 129 struct sk_buff *tail; 130 struct list_head flowchain; 131 s32 deficit; 132 u32 dropped; 133 struct cobalt_vars cvars; 134 u16 srchost; /* index into cake_host table */ 135 u16 dsthost; 136 u8 set; 137 }; /* please try to keep this structure <= 64 bytes */ 138 139 struct cake_host { 140 u32 srchost_tag; 141 u32 dsthost_tag; 142 u16 srchost_bulk_flow_count; 143 u16 dsthost_bulk_flow_count; 144 }; 145 146 struct cake_heap_entry { 147 u16 t:3, b:10; 148 }; 149 150 struct cake_tin_data { 151 struct cake_flow flows[CAKE_QUEUES]; 152 u32 backlogs[CAKE_QUEUES]; 153 u32 tags[CAKE_QUEUES]; /* for set association */ 154 u16 overflow_idx[CAKE_QUEUES]; 155 struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */ 156 u16 flow_quantum; 157 158 struct cobalt_params cparams; 159 u32 drop_overlimit; 160 u16 bulk_flow_count; 161 u16 sparse_flow_count; 162 u16 decaying_flow_count; 163 u16 unresponsive_flow_count; 164 165 u32 max_skblen; 166 167 struct list_head new_flows; 168 struct list_head old_flows; 169 struct list_head decaying_flows; 170 171 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */ 172 ktime_t time_next_packet; 173 u64 tin_rate_ns; 174 u64 tin_rate_bps; 175 u16 tin_rate_shft; 176 177 u16 tin_quantum; 178 s32 tin_deficit; 179 u32 tin_backlog; 180 u32 tin_dropped; 181 u32 tin_ecn_mark; 182 183 u32 packets; 184 u64 bytes; 185 186 u32 ack_drops; 187 188 /* moving averages */ 189 u64 avge_delay; 190 u64 peak_delay; 191 u64 base_delay; 192 193 /* hash function stats */ 194 u32 way_directs; 195 u32 way_hits; 196 u32 way_misses; 197 u32 way_collisions; 198 }; /* number of tins is small, so size of this struct doesn't matter much */ 199 200 struct cake_sched_data { 201 struct tcf_proto __rcu *filter_list; /* optional external classifier */ 202 struct tcf_block *block; 203 struct cake_tin_data *tins; 204 205 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS]; 206 u16 overflow_timeout; 207 208 u16 tin_cnt; 209 u8 tin_mode; 210 u8 flow_mode; 211 u8 ack_filter; 212 u8 atm_mode; 213 214 u32 fwmark_mask; 215 u16 fwmark_shft; 216 217 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */ 218 u16 rate_shft; 219 ktime_t time_next_packet; 220 ktime_t failsafe_next_packet; 221 u64 rate_ns; 222 u64 rate_bps; 223 u16 rate_flags; 224 s16 rate_overhead; 225 u16 rate_mpu; 226 u64 interval; 227 u64 target; 228 229 /* resource tracking */ 230 u32 buffer_used; 231 u32 buffer_max_used; 232 u32 buffer_limit; 233 u32 buffer_config_limit; 234 235 /* indices for dequeue */ 236 u16 cur_tin; 237 u16 cur_flow; 238 239 struct qdisc_watchdog watchdog; 240 const u8 *tin_index; 241 const u8 *tin_order; 242 243 /* bandwidth capacity estimate */ 244 ktime_t last_packet_time; 245 ktime_t avg_window_begin; 246 u64 avg_packet_interval; 247 u64 avg_window_bytes; 248 u64 avg_peak_bandwidth; 249 ktime_t last_reconfig_time; 250 251 /* packet length stats */ 252 u32 avg_netoff; 253 u16 max_netlen; 254 u16 max_adjlen; 255 u16 min_netlen; 256 u16 min_adjlen; 257 }; 258 259 enum { 260 CAKE_FLAG_OVERHEAD = BIT(0), 261 CAKE_FLAG_AUTORATE_INGRESS = BIT(1), 262 CAKE_FLAG_INGRESS = BIT(2), 263 CAKE_FLAG_WASH = BIT(3), 264 CAKE_FLAG_SPLIT_GSO = BIT(4) 265 }; 266 267 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to 268 * obtain the best features of each. Codel is excellent on flows which 269 * respond to congestion signals in a TCP-like way. BLUE is more effective on 270 * unresponsive flows. 271 */ 272 273 struct cobalt_skb_cb { 274 ktime_t enqueue_time; 275 u32 adjusted_len; 276 }; 277 278 static u64 us_to_ns(u64 us) 279 { 280 return us * NSEC_PER_USEC; 281 } 282 283 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb) 284 { 285 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb)); 286 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data; 287 } 288 289 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb) 290 { 291 return get_cobalt_cb(skb)->enqueue_time; 292 } 293 294 static void cobalt_set_enqueue_time(struct sk_buff *skb, 295 ktime_t now) 296 { 297 get_cobalt_cb(skb)->enqueue_time = now; 298 } 299 300 static u16 quantum_div[CAKE_QUEUES + 1] = {0}; 301 302 /* Diffserv lookup tables */ 303 304 static const u8 precedence[] = { 305 0, 0, 0, 0, 0, 0, 0, 0, 306 1, 1, 1, 1, 1, 1, 1, 1, 307 2, 2, 2, 2, 2, 2, 2, 2, 308 3, 3, 3, 3, 3, 3, 3, 3, 309 4, 4, 4, 4, 4, 4, 4, 4, 310 5, 5, 5, 5, 5, 5, 5, 5, 311 6, 6, 6, 6, 6, 6, 6, 6, 312 7, 7, 7, 7, 7, 7, 7, 7, 313 }; 314 315 static const u8 diffserv8[] = { 316 2, 0, 1, 2, 4, 2, 2, 2, 317 1, 2, 1, 2, 1, 2, 1, 2, 318 5, 2, 4, 2, 4, 2, 4, 2, 319 3, 2, 3, 2, 3, 2, 3, 2, 320 6, 2, 3, 2, 3, 2, 3, 2, 321 6, 2, 2, 2, 6, 2, 6, 2, 322 7, 2, 2, 2, 2, 2, 2, 2, 323 7, 2, 2, 2, 2, 2, 2, 2, 324 }; 325 326 static const u8 diffserv4[] = { 327 0, 1, 0, 0, 2, 0, 0, 0, 328 1, 0, 0, 0, 0, 0, 0, 0, 329 2, 0, 2, 0, 2, 0, 2, 0, 330 2, 0, 2, 0, 2, 0, 2, 0, 331 3, 0, 2, 0, 2, 0, 2, 0, 332 3, 0, 0, 0, 3, 0, 3, 0, 333 3, 0, 0, 0, 0, 0, 0, 0, 334 3, 0, 0, 0, 0, 0, 0, 0, 335 }; 336 337 static const u8 diffserv3[] = { 338 0, 1, 0, 0, 2, 0, 0, 0, 339 1, 0, 0, 0, 0, 0, 0, 0, 340 0, 0, 0, 0, 0, 0, 0, 0, 341 0, 0, 0, 0, 0, 0, 0, 0, 342 0, 0, 0, 0, 0, 0, 0, 0, 343 0, 0, 0, 0, 2, 0, 2, 0, 344 2, 0, 0, 0, 0, 0, 0, 0, 345 2, 0, 0, 0, 0, 0, 0, 0, 346 }; 347 348 static const u8 besteffort[] = { 349 0, 0, 0, 0, 0, 0, 0, 0, 350 0, 0, 0, 0, 0, 0, 0, 0, 351 0, 0, 0, 0, 0, 0, 0, 0, 352 0, 0, 0, 0, 0, 0, 0, 0, 353 0, 0, 0, 0, 0, 0, 0, 0, 354 0, 0, 0, 0, 0, 0, 0, 0, 355 0, 0, 0, 0, 0, 0, 0, 0, 356 0, 0, 0, 0, 0, 0, 0, 0, 357 }; 358 359 /* tin priority order for stats dumping */ 360 361 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7}; 362 static const u8 bulk_order[] = {1, 0, 2, 3}; 363 364 /* There is a big difference in timing between the accurate values placed in the 365 * cache and the approximations given by a single Newton step for small count 366 * values, particularly when stepping from count 1 to 2 or vice versa. Hence, 367 * these values are calculated using eight Newton steps, using the 368 * implementation below. Above 16, a single Newton step gives sufficient 369 * accuracy in either direction, given the precision stored. 370 * 371 * The magnitude of the error when stepping up to count 2 is such as to give the 372 * value that *should* have been produced at count 4. 373 */ 374 375 #define REC_INV_SQRT_CACHE (16) 376 static const u32 inv_sqrt_cache[REC_INV_SQRT_CACHE] = { 377 ~0, ~0, 3037000500, 2479700525, 378 2147483647, 1920767767, 1753413056, 1623345051, 379 1518500250, 1431655765, 1358187914, 1294981364, 380 1239850263, 1191209601, 1147878294, 1108955788 381 }; 382 383 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots 384 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2) 385 * 386 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32 387 */ 388 389 static void cobalt_newton_step(struct cobalt_vars *vars) 390 { 391 u32 invsqrt, invsqrt2; 392 u64 val; 393 394 invsqrt = vars->rec_inv_sqrt; 395 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32; 396 val = (3LL << 32) - ((u64)vars->count * invsqrt2); 397 398 val >>= 2; /* avoid overflow in following multiply */ 399 val = (val * invsqrt) >> (32 - 2 + 1); 400 401 vars->rec_inv_sqrt = val; 402 } 403 404 static void cobalt_invsqrt(struct cobalt_vars *vars) 405 { 406 if (vars->count < REC_INV_SQRT_CACHE) 407 vars->rec_inv_sqrt = inv_sqrt_cache[vars->count]; 408 else 409 cobalt_newton_step(vars); 410 } 411 412 static void cobalt_vars_init(struct cobalt_vars *vars) 413 { 414 memset(vars, 0, sizeof(*vars)); 415 } 416 417 /* CoDel control_law is t + interval/sqrt(count) 418 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid 419 * both sqrt() and divide operation. 420 */ 421 static ktime_t cobalt_control(ktime_t t, 422 u64 interval, 423 u32 rec_inv_sqrt) 424 { 425 return ktime_add_ns(t, reciprocal_scale(interval, 426 rec_inv_sqrt)); 427 } 428 429 /* Call this when a packet had to be dropped due to queue overflow. Returns 430 * true if the BLUE state was quiescent before but active after this call. 431 */ 432 static bool cobalt_queue_full(struct cobalt_vars *vars, 433 struct cobalt_params *p, 434 ktime_t now) 435 { 436 bool up = false; 437 438 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) { 439 up = !vars->p_drop; 440 vars->p_drop += p->p_inc; 441 if (vars->p_drop < p->p_inc) 442 vars->p_drop = ~0; 443 vars->blue_timer = now; 444 } 445 vars->dropping = true; 446 vars->drop_next = now; 447 if (!vars->count) 448 vars->count = 1; 449 450 return up; 451 } 452 453 /* Call this when the queue was serviced but turned out to be empty. Returns 454 * true if the BLUE state was active before but quiescent after this call. 455 */ 456 static bool cobalt_queue_empty(struct cobalt_vars *vars, 457 struct cobalt_params *p, 458 ktime_t now) 459 { 460 bool down = false; 461 462 if (vars->p_drop && 463 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) { 464 if (vars->p_drop < p->p_dec) 465 vars->p_drop = 0; 466 else 467 vars->p_drop -= p->p_dec; 468 vars->blue_timer = now; 469 down = !vars->p_drop; 470 } 471 vars->dropping = false; 472 473 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) { 474 vars->count--; 475 cobalt_invsqrt(vars); 476 vars->drop_next = cobalt_control(vars->drop_next, 477 p->interval, 478 vars->rec_inv_sqrt); 479 } 480 481 return down; 482 } 483 484 /* Call this with a freshly dequeued packet for possible congestion marking. 485 * Returns true as an instruction to drop the packet, false for delivery. 486 */ 487 static enum skb_drop_reason cobalt_should_drop(struct cobalt_vars *vars, 488 struct cobalt_params *p, 489 ktime_t now, 490 struct sk_buff *skb, 491 u32 bulk_flows) 492 { 493 enum skb_drop_reason reason = SKB_NOT_DROPPED_YET; 494 bool next_due, over_target; 495 ktime_t schedule; 496 u64 sojourn; 497 498 /* The 'schedule' variable records, in its sign, whether 'now' is before or 499 * after 'drop_next'. This allows 'drop_next' to be updated before the next 500 * scheduling decision is actually branched, without destroying that 501 * information. Similarly, the first 'schedule' value calculated is preserved 502 * in the boolean 'next_due'. 503 * 504 * As for 'drop_next', we take advantage of the fact that 'interval' is both 505 * the delay between first exceeding 'target' and the first signalling event, 506 * *and* the scaling factor for the signalling frequency. It's therefore very 507 * natural to use a single mechanism for both purposes, and eliminates a 508 * significant amount of reference Codel's spaghetti code. To help with this, 509 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close 510 * as possible to 1.0 in fixed-point. 511 */ 512 513 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb))); 514 schedule = ktime_sub(now, vars->drop_next); 515 over_target = sojourn > p->target && 516 sojourn > p->mtu_time * bulk_flows * 2 && 517 sojourn > p->mtu_time * 4; 518 next_due = vars->count && ktime_to_ns(schedule) >= 0; 519 520 vars->ecn_marked = false; 521 522 if (over_target) { 523 if (!vars->dropping) { 524 vars->dropping = true; 525 vars->drop_next = cobalt_control(now, 526 p->interval, 527 vars->rec_inv_sqrt); 528 } 529 if (!vars->count) 530 vars->count = 1; 531 } else if (vars->dropping) { 532 vars->dropping = false; 533 } 534 535 if (next_due && vars->dropping) { 536 /* Use ECN mark if possible, otherwise drop */ 537 if (!(vars->ecn_marked = INET_ECN_set_ce(skb))) 538 reason = SKB_DROP_REASON_QDISC_CONGESTED; 539 540 vars->count++; 541 if (!vars->count) 542 vars->count--; 543 cobalt_invsqrt(vars); 544 vars->drop_next = cobalt_control(vars->drop_next, 545 p->interval, 546 vars->rec_inv_sqrt); 547 schedule = ktime_sub(now, vars->drop_next); 548 } else { 549 while (next_due) { 550 vars->count--; 551 cobalt_invsqrt(vars); 552 vars->drop_next = cobalt_control(vars->drop_next, 553 p->interval, 554 vars->rec_inv_sqrt); 555 schedule = ktime_sub(now, vars->drop_next); 556 next_due = vars->count && ktime_to_ns(schedule) >= 0; 557 } 558 } 559 560 /* Simple BLUE implementation. Lack of ECN is deliberate. */ 561 if (vars->p_drop && reason == SKB_NOT_DROPPED_YET && 562 get_random_u32() < vars->p_drop) 563 reason = SKB_DROP_REASON_CAKE_FLOOD; 564 565 /* Overload the drop_next field as an activity timeout */ 566 if (!vars->count) 567 vars->drop_next = ktime_add_ns(now, p->interval); 568 else if (ktime_to_ns(schedule) > 0 && reason == SKB_NOT_DROPPED_YET) 569 vars->drop_next = now; 570 571 return reason; 572 } 573 574 static bool cake_update_flowkeys(struct flow_keys *keys, 575 const struct sk_buff *skb) 576 { 577 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 578 struct nf_conntrack_tuple tuple = {}; 579 bool rev = !skb->_nfct, upd = false; 580 __be32 ip; 581 582 if (skb_protocol(skb, true) != htons(ETH_P_IP)) 583 return false; 584 585 if (!nf_ct_get_tuple_skb(&tuple, skb)) 586 return false; 587 588 ip = rev ? tuple.dst.u3.ip : tuple.src.u3.ip; 589 if (ip != keys->addrs.v4addrs.src) { 590 keys->addrs.v4addrs.src = ip; 591 upd = true; 592 } 593 ip = rev ? tuple.src.u3.ip : tuple.dst.u3.ip; 594 if (ip != keys->addrs.v4addrs.dst) { 595 keys->addrs.v4addrs.dst = ip; 596 upd = true; 597 } 598 599 if (keys->ports.ports) { 600 __be16 port; 601 602 port = rev ? tuple.dst.u.all : tuple.src.u.all; 603 if (port != keys->ports.src) { 604 keys->ports.src = port; 605 upd = true; 606 } 607 port = rev ? tuple.src.u.all : tuple.dst.u.all; 608 if (port != keys->ports.dst) { 609 port = keys->ports.dst; 610 upd = true; 611 } 612 } 613 return upd; 614 #else 615 return false; 616 #endif 617 } 618 619 /* Cake has several subtle multiple bit settings. In these cases you 620 * would be matching triple isolate mode as well. 621 */ 622 623 static bool cake_dsrc(int flow_mode) 624 { 625 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC; 626 } 627 628 static bool cake_ddst(int flow_mode) 629 { 630 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST; 631 } 632 633 static void cake_dec_srchost_bulk_flow_count(struct cake_tin_data *q, 634 struct cake_flow *flow, 635 int flow_mode) 636 { 637 if (likely(cake_dsrc(flow_mode) && 638 q->hosts[flow->srchost].srchost_bulk_flow_count)) 639 q->hosts[flow->srchost].srchost_bulk_flow_count--; 640 } 641 642 static void cake_inc_srchost_bulk_flow_count(struct cake_tin_data *q, 643 struct cake_flow *flow, 644 int flow_mode) 645 { 646 if (likely(cake_dsrc(flow_mode) && 647 q->hosts[flow->srchost].srchost_bulk_flow_count < CAKE_QUEUES)) 648 q->hosts[flow->srchost].srchost_bulk_flow_count++; 649 } 650 651 static void cake_dec_dsthost_bulk_flow_count(struct cake_tin_data *q, 652 struct cake_flow *flow, 653 int flow_mode) 654 { 655 if (likely(cake_ddst(flow_mode) && 656 q->hosts[flow->dsthost].dsthost_bulk_flow_count)) 657 q->hosts[flow->dsthost].dsthost_bulk_flow_count--; 658 } 659 660 static void cake_inc_dsthost_bulk_flow_count(struct cake_tin_data *q, 661 struct cake_flow *flow, 662 int flow_mode) 663 { 664 if (likely(cake_ddst(flow_mode) && 665 q->hosts[flow->dsthost].dsthost_bulk_flow_count < CAKE_QUEUES)) 666 q->hosts[flow->dsthost].dsthost_bulk_flow_count++; 667 } 668 669 static u16 cake_get_flow_quantum(struct cake_tin_data *q, 670 struct cake_flow *flow, 671 int flow_mode) 672 { 673 u16 host_load = 1; 674 675 if (cake_dsrc(flow_mode)) 676 host_load = max(host_load, 677 q->hosts[flow->srchost].srchost_bulk_flow_count); 678 679 if (cake_ddst(flow_mode)) 680 host_load = max(host_load, 681 q->hosts[flow->dsthost].dsthost_bulk_flow_count); 682 683 /* The get_random_u16() is a way to apply dithering to avoid 684 * accumulating roundoff errors 685 */ 686 return (q->flow_quantum * quantum_div[host_load] + 687 get_random_u16()) >> 16; 688 } 689 690 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb, 691 int flow_mode, u16 flow_override, u16 host_override) 692 { 693 bool hash_flows = (!flow_override && !!(flow_mode & CAKE_FLOW_FLOWS)); 694 bool hash_hosts = (!host_override && !!(flow_mode & CAKE_FLOW_HOSTS)); 695 bool nat_enabled = !!(flow_mode & CAKE_FLOW_NAT_FLAG); 696 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0; 697 u16 reduced_hash, srchost_idx, dsthost_idx; 698 struct flow_keys keys, host_keys; 699 bool use_skbhash = skb->l4_hash; 700 701 if (unlikely(flow_mode == CAKE_FLOW_NONE)) 702 return 0; 703 704 /* If both overrides are set, or we can use the SKB hash and nat mode is 705 * disabled, we can skip packet dissection entirely. If nat mode is 706 * enabled there's another check below after doing the conntrack lookup. 707 */ 708 if ((!hash_flows || (use_skbhash && !nat_enabled)) && !hash_hosts) 709 goto skip_hash; 710 711 skb_flow_dissect_flow_keys(skb, &keys, 712 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); 713 714 /* Don't use the SKB hash if we change the lookup keys from conntrack */ 715 if (nat_enabled && cake_update_flowkeys(&keys, skb)) 716 use_skbhash = false; 717 718 /* If we can still use the SKB hash and don't need the host hash, we can 719 * skip the rest of the hashing procedure 720 */ 721 if (use_skbhash && !hash_hosts) 722 goto skip_hash; 723 724 /* flow_hash_from_keys() sorts the addresses by value, so we have 725 * to preserve their order in a separate data structure to treat 726 * src and dst host addresses as independently selectable. 727 */ 728 host_keys = keys; 729 host_keys.ports.ports = 0; 730 host_keys.basic.ip_proto = 0; 731 host_keys.keyid.keyid = 0; 732 host_keys.tags.flow_label = 0; 733 734 switch (host_keys.control.addr_type) { 735 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 736 host_keys.addrs.v4addrs.src = 0; 737 dsthost_hash = flow_hash_from_keys(&host_keys); 738 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src; 739 host_keys.addrs.v4addrs.dst = 0; 740 srchost_hash = flow_hash_from_keys(&host_keys); 741 break; 742 743 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 744 memset(&host_keys.addrs.v6addrs.src, 0, 745 sizeof(host_keys.addrs.v6addrs.src)); 746 dsthost_hash = flow_hash_from_keys(&host_keys); 747 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; 748 memset(&host_keys.addrs.v6addrs.dst, 0, 749 sizeof(host_keys.addrs.v6addrs.dst)); 750 srchost_hash = flow_hash_from_keys(&host_keys); 751 break; 752 753 default: 754 dsthost_hash = 0; 755 srchost_hash = 0; 756 } 757 758 /* This *must* be after the above switch, since as a 759 * side-effect it sorts the src and dst addresses. 760 */ 761 if (hash_flows && !use_skbhash) 762 flow_hash = flow_hash_from_keys(&keys); 763 764 skip_hash: 765 if (flow_override) 766 flow_hash = flow_override - 1; 767 else if (use_skbhash && (flow_mode & CAKE_FLOW_FLOWS)) 768 flow_hash = skb->hash; 769 if (host_override) { 770 dsthost_hash = host_override - 1; 771 srchost_hash = host_override - 1; 772 } 773 774 if (!(flow_mode & CAKE_FLOW_FLOWS)) { 775 if (flow_mode & CAKE_FLOW_SRC_IP) 776 flow_hash ^= srchost_hash; 777 778 if (flow_mode & CAKE_FLOW_DST_IP) 779 flow_hash ^= dsthost_hash; 780 } 781 782 reduced_hash = flow_hash % CAKE_QUEUES; 783 784 /* set-associative hashing */ 785 /* fast path if no hash collision (direct lookup succeeds) */ 786 if (likely(q->tags[reduced_hash] == flow_hash && 787 q->flows[reduced_hash].set)) { 788 q->way_directs++; 789 } else { 790 u32 inner_hash = reduced_hash % CAKE_SET_WAYS; 791 u32 outer_hash = reduced_hash - inner_hash; 792 bool allocate_src = false; 793 bool allocate_dst = false; 794 u32 i, k; 795 796 /* check if any active queue in the set is reserved for 797 * this flow. 798 */ 799 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS; 800 i++, k = (k + 1) % CAKE_SET_WAYS) { 801 if (q->tags[outer_hash + k] == flow_hash) { 802 if (i) 803 q->way_hits++; 804 805 if (!q->flows[outer_hash + k].set) { 806 /* need to increment host refcnts */ 807 allocate_src = cake_dsrc(flow_mode); 808 allocate_dst = cake_ddst(flow_mode); 809 } 810 811 goto found; 812 } 813 } 814 815 /* no queue is reserved for this flow, look for an 816 * empty one. 817 */ 818 for (i = 0; i < CAKE_SET_WAYS; 819 i++, k = (k + 1) % CAKE_SET_WAYS) { 820 if (!q->flows[outer_hash + k].set) { 821 q->way_misses++; 822 allocate_src = cake_dsrc(flow_mode); 823 allocate_dst = cake_ddst(flow_mode); 824 goto found; 825 } 826 } 827 828 /* With no empty queues, default to the original 829 * queue, accept the collision, update the host tags. 830 */ 831 q->way_collisions++; 832 allocate_src = cake_dsrc(flow_mode); 833 allocate_dst = cake_ddst(flow_mode); 834 835 if (q->flows[outer_hash + k].set == CAKE_SET_BULK) { 836 cake_dec_srchost_bulk_flow_count(q, &q->flows[outer_hash + k], flow_mode); 837 cake_dec_dsthost_bulk_flow_count(q, &q->flows[outer_hash + k], flow_mode); 838 } 839 found: 840 /* reserve queue for future packets in same flow */ 841 reduced_hash = outer_hash + k; 842 q->tags[reduced_hash] = flow_hash; 843 844 if (allocate_src) { 845 srchost_idx = srchost_hash % CAKE_QUEUES; 846 inner_hash = srchost_idx % CAKE_SET_WAYS; 847 outer_hash = srchost_idx - inner_hash; 848 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS; 849 i++, k = (k + 1) % CAKE_SET_WAYS) { 850 if (q->hosts[outer_hash + k].srchost_tag == 851 srchost_hash) 852 goto found_src; 853 } 854 for (i = 0; i < CAKE_SET_WAYS; 855 i++, k = (k + 1) % CAKE_SET_WAYS) { 856 if (!q->hosts[outer_hash + k].srchost_bulk_flow_count) 857 break; 858 } 859 q->hosts[outer_hash + k].srchost_tag = srchost_hash; 860 found_src: 861 srchost_idx = outer_hash + k; 862 q->flows[reduced_hash].srchost = srchost_idx; 863 864 if (q->flows[reduced_hash].set == CAKE_SET_BULK) 865 cake_inc_srchost_bulk_flow_count(q, &q->flows[reduced_hash], flow_mode); 866 } 867 868 if (allocate_dst) { 869 dsthost_idx = dsthost_hash % CAKE_QUEUES; 870 inner_hash = dsthost_idx % CAKE_SET_WAYS; 871 outer_hash = dsthost_idx - inner_hash; 872 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS; 873 i++, k = (k + 1) % CAKE_SET_WAYS) { 874 if (q->hosts[outer_hash + k].dsthost_tag == 875 dsthost_hash) 876 goto found_dst; 877 } 878 for (i = 0; i < CAKE_SET_WAYS; 879 i++, k = (k + 1) % CAKE_SET_WAYS) { 880 if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count) 881 break; 882 } 883 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash; 884 found_dst: 885 dsthost_idx = outer_hash + k; 886 q->flows[reduced_hash].dsthost = dsthost_idx; 887 888 if (q->flows[reduced_hash].set == CAKE_SET_BULK) 889 cake_inc_dsthost_bulk_flow_count(q, &q->flows[reduced_hash], flow_mode); 890 } 891 } 892 893 return reduced_hash; 894 } 895 896 /* helper functions : might be changed when/if skb use a standard list_head */ 897 /* remove one skb from head of slot queue */ 898 899 static struct sk_buff *dequeue_head(struct cake_flow *flow) 900 { 901 struct sk_buff *skb = flow->head; 902 903 if (skb) { 904 flow->head = skb->next; 905 skb_mark_not_on_list(skb); 906 } 907 908 return skb; 909 } 910 911 /* add skb to flow queue (tail add) */ 912 913 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb) 914 { 915 if (!flow->head) 916 flow->head = skb; 917 else 918 flow->tail->next = skb; 919 flow->tail = skb; 920 skb->next = NULL; 921 } 922 923 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb, 924 struct ipv6hdr *buf) 925 { 926 unsigned int offset = skb_network_offset(skb); 927 struct iphdr *iph; 928 929 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf); 930 931 if (!iph) 932 return NULL; 933 934 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6) 935 return skb_header_pointer(skb, offset + iph->ihl * 4, 936 sizeof(struct ipv6hdr), buf); 937 938 else if (iph->version == 4) 939 return iph; 940 941 else if (iph->version == 6) 942 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr), 943 buf); 944 945 return NULL; 946 } 947 948 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb, 949 void *buf, unsigned int bufsize) 950 { 951 unsigned int offset = skb_network_offset(skb); 952 const struct ipv6hdr *ipv6h; 953 const struct tcphdr *tcph; 954 const struct iphdr *iph; 955 struct ipv6hdr _ipv6h; 956 struct tcphdr _tcph; 957 958 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 959 960 if (!ipv6h) 961 return NULL; 962 963 if (ipv6h->version == 4) { 964 iph = (struct iphdr *)ipv6h; 965 offset += iph->ihl * 4; 966 967 /* special-case 6in4 tunnelling, as that is a common way to get 968 * v6 connectivity in the home 969 */ 970 if (iph->protocol == IPPROTO_IPV6) { 971 ipv6h = skb_header_pointer(skb, offset, 972 sizeof(_ipv6h), &_ipv6h); 973 974 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 975 return NULL; 976 977 offset += sizeof(struct ipv6hdr); 978 979 } else if (iph->protocol != IPPROTO_TCP) { 980 return NULL; 981 } 982 983 } else if (ipv6h->version == 6) { 984 if (ipv6h->nexthdr != IPPROTO_TCP) 985 return NULL; 986 987 offset += sizeof(struct ipv6hdr); 988 } else { 989 return NULL; 990 } 991 992 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 993 if (!tcph || tcph->doff < 5) 994 return NULL; 995 996 return skb_header_pointer(skb, offset, 997 min(__tcp_hdrlen(tcph), bufsize), buf); 998 } 999 1000 static const void *cake_get_tcpopt(const struct tcphdr *tcph, 1001 int code, int *oplen) 1002 { 1003 /* inspired by tcp_parse_options in tcp_input.c */ 1004 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr); 1005 const u8 *ptr = (const u8 *)(tcph + 1); 1006 1007 while (length > 0) { 1008 int opcode = *ptr++; 1009 int opsize; 1010 1011 if (opcode == TCPOPT_EOL) 1012 break; 1013 if (opcode == TCPOPT_NOP) { 1014 length--; 1015 continue; 1016 } 1017 if (length < 2) 1018 break; 1019 opsize = *ptr++; 1020 if (opsize < 2 || opsize > length) 1021 break; 1022 1023 if (opcode == code) { 1024 *oplen = opsize; 1025 return ptr; 1026 } 1027 1028 ptr += opsize - 2; 1029 length -= opsize; 1030 } 1031 1032 return NULL; 1033 } 1034 1035 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more 1036 * bytes than the other. In the case where both sequences ACKs bytes that the 1037 * other doesn't, A is considered greater. DSACKs in A also makes A be 1038 * considered greater. 1039 * 1040 * @return -1, 0 or 1 as normal compare functions 1041 */ 1042 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a, 1043 const struct tcphdr *tcph_b) 1044 { 1045 const struct tcp_sack_block_wire *sack_a, *sack_b; 1046 u32 ack_seq_a = ntohl(tcph_a->ack_seq); 1047 u32 bytes_a = 0, bytes_b = 0; 1048 int oplen_a, oplen_b; 1049 bool first = true; 1050 1051 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a); 1052 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b); 1053 1054 /* pointers point to option contents */ 1055 oplen_a -= TCPOLEN_SACK_BASE; 1056 oplen_b -= TCPOLEN_SACK_BASE; 1057 1058 if (sack_a && oplen_a >= sizeof(*sack_a) && 1059 (!sack_b || oplen_b < sizeof(*sack_b))) 1060 return -1; 1061 else if (sack_b && oplen_b >= sizeof(*sack_b) && 1062 (!sack_a || oplen_a < sizeof(*sack_a))) 1063 return 1; 1064 else if ((!sack_a || oplen_a < sizeof(*sack_a)) && 1065 (!sack_b || oplen_b < sizeof(*sack_b))) 1066 return 0; 1067 1068 while (oplen_a >= sizeof(*sack_a)) { 1069 const struct tcp_sack_block_wire *sack_tmp = sack_b; 1070 u32 start_a = get_unaligned_be32(&sack_a->start_seq); 1071 u32 end_a = get_unaligned_be32(&sack_a->end_seq); 1072 int oplen_tmp = oplen_b; 1073 bool found = false; 1074 1075 /* DSACK; always considered greater to prevent dropping */ 1076 if (before(start_a, ack_seq_a)) 1077 return -1; 1078 1079 bytes_a += end_a - start_a; 1080 1081 while (oplen_tmp >= sizeof(*sack_tmp)) { 1082 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq); 1083 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq); 1084 1085 /* first time through we count the total size */ 1086 if (first) 1087 bytes_b += end_b - start_b; 1088 1089 if (!after(start_b, start_a) && !before(end_b, end_a)) { 1090 found = true; 1091 if (!first) 1092 break; 1093 } 1094 oplen_tmp -= sizeof(*sack_tmp); 1095 sack_tmp++; 1096 } 1097 1098 if (!found) 1099 return -1; 1100 1101 oplen_a -= sizeof(*sack_a); 1102 sack_a++; 1103 first = false; 1104 } 1105 1106 /* If we made it this far, all ranges SACKed by A are covered by B, so 1107 * either the SACKs are equal, or B SACKs more bytes. 1108 */ 1109 return bytes_b > bytes_a ? 1 : 0; 1110 } 1111 1112 static void cake_tcph_get_tstamp(const struct tcphdr *tcph, 1113 u32 *tsval, u32 *tsecr) 1114 { 1115 const u8 *ptr; 1116 int opsize; 1117 1118 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize); 1119 1120 if (ptr && opsize == TCPOLEN_TIMESTAMP) { 1121 *tsval = get_unaligned_be32(ptr); 1122 *tsecr = get_unaligned_be32(ptr + 4); 1123 } 1124 } 1125 1126 static bool cake_tcph_may_drop(const struct tcphdr *tcph, 1127 u32 tstamp_new, u32 tsecr_new) 1128 { 1129 /* inspired by tcp_parse_options in tcp_input.c */ 1130 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr); 1131 const u8 *ptr = (const u8 *)(tcph + 1); 1132 u32 tstamp, tsecr; 1133 1134 /* 3 reserved flags must be unset to avoid future breakage 1135 * ACK must be set 1136 * ECE/CWR are handled separately 1137 * All other flags URG/PSH/RST/SYN/FIN must be unset 1138 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero) 1139 * 0x00C00000 = CWR/ECE (handled separately) 1140 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000 1141 */ 1142 if (((tcp_flag_word(tcph) & 1143 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK)) 1144 return false; 1145 1146 while (length > 0) { 1147 int opcode = *ptr++; 1148 int opsize; 1149 1150 if (opcode == TCPOPT_EOL) 1151 break; 1152 if (opcode == TCPOPT_NOP) { 1153 length--; 1154 continue; 1155 } 1156 if (length < 2) 1157 break; 1158 opsize = *ptr++; 1159 if (opsize < 2 || opsize > length) 1160 break; 1161 1162 switch (opcode) { 1163 case TCPOPT_MD5SIG: /* doesn't influence state */ 1164 break; 1165 1166 case TCPOPT_SACK: /* stricter checking performed later */ 1167 if (opsize % 8 != 2) 1168 return false; 1169 break; 1170 1171 case TCPOPT_TIMESTAMP: 1172 /* only drop timestamps lower than new */ 1173 if (opsize != TCPOLEN_TIMESTAMP) 1174 return false; 1175 tstamp = get_unaligned_be32(ptr); 1176 tsecr = get_unaligned_be32(ptr + 4); 1177 if (after(tstamp, tstamp_new) || 1178 after(tsecr, tsecr_new)) 1179 return false; 1180 break; 1181 1182 case TCPOPT_MSS: /* these should only be set on SYN */ 1183 case TCPOPT_WINDOW: 1184 case TCPOPT_SACK_PERM: 1185 case TCPOPT_FASTOPEN: 1186 case TCPOPT_EXP: 1187 default: /* don't drop if any unknown options are present */ 1188 return false; 1189 } 1190 1191 ptr += opsize - 2; 1192 length -= opsize; 1193 } 1194 1195 return true; 1196 } 1197 1198 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q, 1199 struct cake_flow *flow) 1200 { 1201 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE; 1202 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL; 1203 struct sk_buff *skb_check, *skb_prev = NULL; 1204 const struct ipv6hdr *ipv6h, *ipv6h_check; 1205 unsigned char _tcph[64], _tcph_check[64]; 1206 const struct tcphdr *tcph, *tcph_check; 1207 const struct iphdr *iph, *iph_check; 1208 struct ipv6hdr _iph, _iph_check; 1209 const struct sk_buff *skb; 1210 int seglen, num_found = 0; 1211 u32 tstamp = 0, tsecr = 0; 1212 __be32 elig_flags = 0; 1213 int sack_comp; 1214 1215 /* no other possible ACKs to filter */ 1216 if (flow->head == flow->tail) 1217 return NULL; 1218 1219 skb = flow->tail; 1220 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph)); 1221 iph = cake_get_iphdr(skb, &_iph); 1222 if (!tcph) 1223 return NULL; 1224 1225 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr); 1226 1227 /* the 'triggering' packet need only have the ACK flag set. 1228 * also check that SYN is not set, as there won't be any previous ACKs. 1229 */ 1230 if ((tcp_flag_word(tcph) & 1231 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK) 1232 return NULL; 1233 1234 /* the 'triggering' ACK is at the tail of the queue, we have already 1235 * returned if it is the only packet in the flow. loop through the rest 1236 * of the queue looking for pure ACKs with the same 5-tuple as the 1237 * triggering one. 1238 */ 1239 for (skb_check = flow->head; 1240 skb_check && skb_check != skb; 1241 skb_prev = skb_check, skb_check = skb_check->next) { 1242 iph_check = cake_get_iphdr(skb_check, &_iph_check); 1243 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check, 1244 sizeof(_tcph_check)); 1245 1246 /* only TCP packets with matching 5-tuple are eligible, and only 1247 * drop safe headers 1248 */ 1249 if (!tcph_check || iph->version != iph_check->version || 1250 tcph_check->source != tcph->source || 1251 tcph_check->dest != tcph->dest) 1252 continue; 1253 1254 if (iph_check->version == 4) { 1255 if (iph_check->saddr != iph->saddr || 1256 iph_check->daddr != iph->daddr) 1257 continue; 1258 1259 seglen = iph_totlen(skb, iph_check) - 1260 (4 * iph_check->ihl); 1261 } else if (iph_check->version == 6) { 1262 ipv6h = (struct ipv6hdr *)iph; 1263 ipv6h_check = (struct ipv6hdr *)iph_check; 1264 1265 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) || 1266 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr)) 1267 continue; 1268 1269 seglen = ntohs(ipv6h_check->payload_len); 1270 } else { 1271 WARN_ON(1); /* shouldn't happen */ 1272 continue; 1273 } 1274 1275 /* If the ECE/CWR flags changed from the previous eligible 1276 * packet in the same flow, we should no longer be dropping that 1277 * previous packet as this would lose information. 1278 */ 1279 if (elig_ack && (tcp_flag_word(tcph_check) & 1280 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) { 1281 elig_ack = NULL; 1282 elig_ack_prev = NULL; 1283 num_found--; 1284 } 1285 1286 /* Check TCP options and flags, don't drop ACKs with segment 1287 * data, and don't drop ACKs with a higher cumulative ACK 1288 * counter than the triggering packet. Check ACK seqno here to 1289 * avoid parsing SACK options of packets we are going to exclude 1290 * anyway. 1291 */ 1292 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) || 1293 (seglen - __tcp_hdrlen(tcph_check)) != 0 || 1294 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq))) 1295 continue; 1296 1297 /* Check SACK options. The triggering packet must SACK more data 1298 * than the ACK under consideration, or SACK the same range but 1299 * have a larger cumulative ACK counter. The latter is a 1300 * pathological case, but is contained in the following check 1301 * anyway, just to be safe. 1302 */ 1303 sack_comp = cake_tcph_sack_compare(tcph_check, tcph); 1304 1305 if (sack_comp < 0 || 1306 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) && 1307 sack_comp == 0)) 1308 continue; 1309 1310 /* At this point we have found an eligible pure ACK to drop; if 1311 * we are in aggressive mode, we are done. Otherwise, keep 1312 * searching unless this is the second eligible ACK we 1313 * found. 1314 * 1315 * Since we want to drop ACK closest to the head of the queue, 1316 * save the first eligible ACK we find, even if we need to loop 1317 * again. 1318 */ 1319 if (!elig_ack) { 1320 elig_ack = skb_check; 1321 elig_ack_prev = skb_prev; 1322 elig_flags = (tcp_flag_word(tcph_check) 1323 & (TCP_FLAG_ECE | TCP_FLAG_CWR)); 1324 } 1325 1326 if (num_found++ > 0) 1327 goto found; 1328 } 1329 1330 /* We made it through the queue without finding two eligible ACKs . If 1331 * we found a single eligible ACK we can drop it in aggressive mode if 1332 * we can guarantee that this does not interfere with ECN flag 1333 * information. We ensure this by dropping it only if the enqueued 1334 * packet is consecutive with the eligible ACK, and their flags match. 1335 */ 1336 if (elig_ack && aggressive && elig_ack->next == skb && 1337 (elig_flags == (tcp_flag_word(tcph) & 1338 (TCP_FLAG_ECE | TCP_FLAG_CWR)))) 1339 goto found; 1340 1341 return NULL; 1342 1343 found: 1344 if (elig_ack_prev) 1345 elig_ack_prev->next = elig_ack->next; 1346 else 1347 flow->head = elig_ack->next; 1348 1349 skb_mark_not_on_list(elig_ack); 1350 1351 return elig_ack; 1352 } 1353 1354 static u64 cake_ewma(u64 avg, u64 sample, u32 shift) 1355 { 1356 avg -= avg >> shift; 1357 avg += sample >> shift; 1358 return avg; 1359 } 1360 1361 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off) 1362 { 1363 if (q->rate_flags & CAKE_FLAG_OVERHEAD) 1364 len -= off; 1365 1366 if (q->max_netlen < len) 1367 q->max_netlen = len; 1368 if (q->min_netlen > len) 1369 q->min_netlen = len; 1370 1371 len += q->rate_overhead; 1372 1373 if (len < q->rate_mpu) 1374 len = q->rate_mpu; 1375 1376 if (q->atm_mode == CAKE_ATM_ATM) { 1377 len += 47; 1378 len /= 48; 1379 len *= 53; 1380 } else if (q->atm_mode == CAKE_ATM_PTM) { 1381 /* Add one byte per 64 bytes or part thereof. 1382 * This is conservative and easier to calculate than the 1383 * precise value. 1384 */ 1385 len += (len + 63) / 64; 1386 } 1387 1388 if (q->max_adjlen < len) 1389 q->max_adjlen = len; 1390 if (q->min_adjlen > len) 1391 q->min_adjlen = len; 1392 1393 return len; 1394 } 1395 1396 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb) 1397 { 1398 const struct skb_shared_info *shinfo = skb_shinfo(skb); 1399 unsigned int hdr_len, last_len = 0; 1400 u32 off = skb_network_offset(skb); 1401 u16 segs = qdisc_pkt_segs(skb); 1402 u32 len = qdisc_pkt_len(skb); 1403 1404 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8); 1405 1406 if (segs == 1) 1407 return cake_calc_overhead(q, len, off); 1408 1409 /* borrowed from qdisc_pkt_len_segs_init() */ 1410 if (!skb->encapsulation) 1411 hdr_len = skb_transport_offset(skb); 1412 else 1413 hdr_len = skb_inner_transport_offset(skb); 1414 1415 /* + transport layer */ 1416 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | 1417 SKB_GSO_TCPV6))) { 1418 const struct tcphdr *th; 1419 struct tcphdr _tcphdr; 1420 1421 th = skb_header_pointer(skb, hdr_len, 1422 sizeof(_tcphdr), &_tcphdr); 1423 if (likely(th)) 1424 hdr_len += __tcp_hdrlen(th); 1425 } else { 1426 struct udphdr _udphdr; 1427 1428 if (skb_header_pointer(skb, hdr_len, 1429 sizeof(_udphdr), &_udphdr)) 1430 hdr_len += sizeof(struct udphdr); 1431 } 1432 1433 len = shinfo->gso_size + hdr_len; 1434 last_len = skb->len - shinfo->gso_size * (segs - 1); 1435 1436 return (cake_calc_overhead(q, len, off) * (segs - 1) + 1437 cake_calc_overhead(q, last_len, off)); 1438 } 1439 1440 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j) 1441 { 1442 struct cake_heap_entry ii = q->overflow_heap[i]; 1443 struct cake_heap_entry jj = q->overflow_heap[j]; 1444 1445 q->overflow_heap[i] = jj; 1446 q->overflow_heap[j] = ii; 1447 1448 q->tins[ii.t].overflow_idx[ii.b] = j; 1449 q->tins[jj.t].overflow_idx[jj.b] = i; 1450 } 1451 1452 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i) 1453 { 1454 struct cake_heap_entry ii = q->overflow_heap[i]; 1455 1456 return q->tins[ii.t].backlogs[ii.b]; 1457 } 1458 1459 static void cake_heapify(struct cake_sched_data *q, u16 i) 1460 { 1461 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES; 1462 u32 mb = cake_heap_get_backlog(q, i); 1463 u32 m = i; 1464 1465 while (m < a) { 1466 u32 l = m + m + 1; 1467 u32 r = l + 1; 1468 1469 if (l < a) { 1470 u32 lb = cake_heap_get_backlog(q, l); 1471 1472 if (lb > mb) { 1473 m = l; 1474 mb = lb; 1475 } 1476 } 1477 1478 if (r < a) { 1479 u32 rb = cake_heap_get_backlog(q, r); 1480 1481 if (rb > mb) { 1482 m = r; 1483 mb = rb; 1484 } 1485 } 1486 1487 if (m != i) { 1488 cake_heap_swap(q, i, m); 1489 i = m; 1490 } else { 1491 break; 1492 } 1493 } 1494 } 1495 1496 static void cake_heapify_up(struct cake_sched_data *q, u16 i) 1497 { 1498 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) { 1499 u16 p = (i - 1) >> 1; 1500 u32 ib = cake_heap_get_backlog(q, i); 1501 u32 pb = cake_heap_get_backlog(q, p); 1502 1503 if (ib > pb) { 1504 cake_heap_swap(q, i, p); 1505 i = p; 1506 } else { 1507 break; 1508 } 1509 } 1510 } 1511 1512 static int cake_advance_shaper(struct cake_sched_data *q, 1513 struct cake_tin_data *b, 1514 struct sk_buff *skb, 1515 ktime_t now, bool drop) 1516 { 1517 u32 len = get_cobalt_cb(skb)->adjusted_len; 1518 1519 /* charge packet bandwidth to this tin 1520 * and to the global shaper. 1521 */ 1522 if (q->rate_ns) { 1523 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft; 1524 u64 global_dur = (len * q->rate_ns) >> q->rate_shft; 1525 u64 failsafe_dur = global_dur + (global_dur >> 1); 1526 1527 if (ktime_before(b->time_next_packet, now)) 1528 b->time_next_packet = ktime_add_ns(b->time_next_packet, 1529 tin_dur); 1530 1531 else if (ktime_before(b->time_next_packet, 1532 ktime_add_ns(now, tin_dur))) 1533 b->time_next_packet = ktime_add_ns(now, tin_dur); 1534 1535 q->time_next_packet = ktime_add_ns(q->time_next_packet, 1536 global_dur); 1537 if (!drop) 1538 q->failsafe_next_packet = \ 1539 ktime_add_ns(q->failsafe_next_packet, 1540 failsafe_dur); 1541 } 1542 return len; 1543 } 1544 1545 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free) 1546 { 1547 struct cake_sched_data *q = qdisc_priv(sch); 1548 ktime_t now = ktime_get(); 1549 u32 idx = 0, tin = 0, len; 1550 struct cake_heap_entry qq; 1551 struct cake_tin_data *b; 1552 struct cake_flow *flow; 1553 struct sk_buff *skb; 1554 1555 if (!q->overflow_timeout) { 1556 int i; 1557 /* Build fresh max-heap */ 1558 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2 - 1; i >= 0; i--) 1559 cake_heapify(q, i); 1560 } 1561 q->overflow_timeout = 65535; 1562 1563 /* select longest queue for pruning */ 1564 qq = q->overflow_heap[0]; 1565 tin = qq.t; 1566 idx = qq.b; 1567 1568 b = &q->tins[tin]; 1569 flow = &b->flows[idx]; 1570 skb = dequeue_head(flow); 1571 if (unlikely(!skb)) { 1572 /* heap has gone wrong, rebuild it next time */ 1573 q->overflow_timeout = 0; 1574 return idx + (tin << 16); 1575 } 1576 1577 if (cobalt_queue_full(&flow->cvars, &b->cparams, now)) 1578 b->unresponsive_flow_count++; 1579 1580 len = qdisc_pkt_len(skb); 1581 q->buffer_used -= skb->truesize; 1582 b->backlogs[idx] -= len; 1583 b->tin_backlog -= len; 1584 sch->qstats.backlog -= len; 1585 1586 flow->dropped++; 1587 b->tin_dropped++; 1588 1589 if (q->rate_flags & CAKE_FLAG_INGRESS) 1590 cake_advance_shaper(q, b, skb, now, true); 1591 1592 qdisc_drop_reason(skb, sch, to_free, SKB_DROP_REASON_QDISC_OVERLIMIT); 1593 sch->q.qlen--; 1594 qdisc_tree_reduce_backlog(sch, 1, len); 1595 1596 cake_heapify(q, 0); 1597 1598 return idx + (tin << 16); 1599 } 1600 1601 static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash) 1602 { 1603 const int offset = skb_network_offset(skb); 1604 u16 *buf, buf_; 1605 u8 dscp; 1606 1607 switch (skb_protocol(skb, true)) { 1608 case htons(ETH_P_IP): 1609 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_); 1610 if (unlikely(!buf)) 1611 return 0; 1612 1613 /* ToS is in the second byte of iphdr */ 1614 dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2; 1615 1616 if (wash && dscp) { 1617 const int wlen = offset + sizeof(struct iphdr); 1618 1619 if (!pskb_may_pull(skb, wlen) || 1620 skb_try_make_writable(skb, wlen)) 1621 return 0; 1622 1623 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0); 1624 } 1625 1626 return dscp; 1627 1628 case htons(ETH_P_IPV6): 1629 buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_); 1630 if (unlikely(!buf)) 1631 return 0; 1632 1633 /* Traffic class is in the first and second bytes of ipv6hdr */ 1634 dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2; 1635 1636 if (wash && dscp) { 1637 const int wlen = offset + sizeof(struct ipv6hdr); 1638 1639 if (!pskb_may_pull(skb, wlen) || 1640 skb_try_make_writable(skb, wlen)) 1641 return 0; 1642 1643 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0); 1644 } 1645 1646 return dscp; 1647 1648 case htons(ETH_P_ARP): 1649 return 0x38; /* CS7 - Net Control */ 1650 1651 default: 1652 /* If there is no Diffserv field, treat as best-effort */ 1653 return 0; 1654 } 1655 } 1656 1657 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch, 1658 struct sk_buff *skb) 1659 { 1660 struct cake_sched_data *q = qdisc_priv(sch); 1661 u32 tin, mark; 1662 bool wash; 1663 u8 dscp; 1664 1665 /* Tin selection: Default to diffserv-based selection, allow overriding 1666 * using firewall marks or skb->priority. Call DSCP parsing early if 1667 * wash is enabled, otherwise defer to below to skip unneeded parsing. 1668 */ 1669 mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft; 1670 wash = !!(q->rate_flags & CAKE_FLAG_WASH); 1671 if (wash) 1672 dscp = cake_handle_diffserv(skb, wash); 1673 1674 if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT) 1675 tin = 0; 1676 1677 else if (mark && mark <= q->tin_cnt) 1678 tin = q->tin_order[mark - 1]; 1679 1680 else if (TC_H_MAJ(skb->priority) == sch->handle && 1681 TC_H_MIN(skb->priority) > 0 && 1682 TC_H_MIN(skb->priority) <= q->tin_cnt) 1683 tin = q->tin_order[TC_H_MIN(skb->priority) - 1]; 1684 1685 else { 1686 if (!wash) 1687 dscp = cake_handle_diffserv(skb, wash); 1688 tin = q->tin_index[dscp]; 1689 1690 if (unlikely(tin >= q->tin_cnt)) 1691 tin = 0; 1692 } 1693 1694 return &q->tins[tin]; 1695 } 1696 1697 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t, 1698 struct sk_buff *skb, int flow_mode, int *qerr) 1699 { 1700 struct cake_sched_data *q = qdisc_priv(sch); 1701 struct tcf_proto *filter; 1702 struct tcf_result res; 1703 u16 flow = 0, host = 0; 1704 int result; 1705 1706 filter = rcu_dereference_bh(q->filter_list); 1707 if (!filter) 1708 goto hash; 1709 1710 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 1711 result = tcf_classify(skb, NULL, filter, &res, false); 1712 1713 if (result >= 0) { 1714 #ifdef CONFIG_NET_CLS_ACT 1715 switch (result) { 1716 case TC_ACT_STOLEN: 1717 case TC_ACT_QUEUED: 1718 case TC_ACT_TRAP: 1719 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 1720 fallthrough; 1721 case TC_ACT_SHOT: 1722 return 0; 1723 } 1724 #endif 1725 if (TC_H_MIN(res.classid) <= CAKE_QUEUES) 1726 flow = TC_H_MIN(res.classid); 1727 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16)) 1728 host = TC_H_MAJ(res.classid) >> 16; 1729 } 1730 hash: 1731 *t = cake_select_tin(sch, skb); 1732 return cake_hash(*t, skb, flow_mode, flow, host) + 1; 1733 } 1734 1735 static void cake_reconfigure(struct Qdisc *sch); 1736 1737 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch, 1738 struct sk_buff **to_free) 1739 { 1740 struct cake_sched_data *q = qdisc_priv(sch); 1741 int len = qdisc_pkt_len(skb); 1742 int ret; 1743 struct sk_buff *ack = NULL; 1744 ktime_t now = ktime_get(); 1745 struct cake_tin_data *b; 1746 struct cake_flow *flow; 1747 u32 idx, tin; 1748 1749 /* choose flow to insert into */ 1750 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret); 1751 if (idx == 0) { 1752 if (ret & __NET_XMIT_BYPASS) 1753 qdisc_qstats_drop(sch); 1754 __qdisc_drop(skb, to_free); 1755 return ret; 1756 } 1757 tin = (u32)(b - q->tins); 1758 idx--; 1759 flow = &b->flows[idx]; 1760 1761 /* ensure shaper state isn't stale */ 1762 if (!b->tin_backlog) { 1763 if (ktime_before(b->time_next_packet, now)) 1764 b->time_next_packet = now; 1765 1766 if (!sch->q.qlen) { 1767 if (ktime_before(q->time_next_packet, now)) { 1768 q->failsafe_next_packet = now; 1769 q->time_next_packet = now; 1770 } else if (ktime_after(q->time_next_packet, now) && 1771 ktime_after(q->failsafe_next_packet, now)) { 1772 u64 next = \ 1773 min(ktime_to_ns(q->time_next_packet), 1774 ktime_to_ns( 1775 q->failsafe_next_packet)); 1776 sch->qstats.overlimits++; 1777 qdisc_watchdog_schedule_ns(&q->watchdog, next); 1778 } 1779 } 1780 } 1781 1782 if (unlikely(len > b->max_skblen)) 1783 b->max_skblen = len; 1784 1785 if (qdisc_pkt_segs(skb) > 1 && q->rate_flags & CAKE_FLAG_SPLIT_GSO) { 1786 struct sk_buff *segs, *nskb; 1787 netdev_features_t features = netif_skb_features(skb); 1788 unsigned int slen = 0, numsegs = 0; 1789 1790 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 1791 if (IS_ERR_OR_NULL(segs)) 1792 return qdisc_drop(skb, sch, to_free); 1793 1794 skb_list_walk_safe(segs, segs, nskb) { 1795 skb_mark_not_on_list(segs); 1796 qdisc_skb_cb(segs)->pkt_len = segs->len; 1797 qdisc_skb_cb(segs)->pkt_segs = 1; 1798 cobalt_set_enqueue_time(segs, now); 1799 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q, 1800 segs); 1801 flow_queue_add(flow, segs); 1802 1803 sch->q.qlen++; 1804 numsegs++; 1805 slen += segs->len; 1806 q->buffer_used += segs->truesize; 1807 b->packets++; 1808 } 1809 1810 /* stats */ 1811 b->bytes += slen; 1812 b->backlogs[idx] += slen; 1813 b->tin_backlog += slen; 1814 sch->qstats.backlog += slen; 1815 q->avg_window_bytes += slen; 1816 1817 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen); 1818 consume_skb(skb); 1819 } else { 1820 /* not splitting */ 1821 cobalt_set_enqueue_time(skb, now); 1822 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb); 1823 flow_queue_add(flow, skb); 1824 1825 if (q->ack_filter) 1826 ack = cake_ack_filter(q, flow); 1827 1828 if (ack) { 1829 b->ack_drops++; 1830 sch->qstats.drops++; 1831 b->bytes += qdisc_pkt_len(ack); 1832 len -= qdisc_pkt_len(ack); 1833 q->buffer_used += skb->truesize - ack->truesize; 1834 if (q->rate_flags & CAKE_FLAG_INGRESS) 1835 cake_advance_shaper(q, b, ack, now, true); 1836 1837 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack)); 1838 consume_skb(ack); 1839 } else { 1840 sch->q.qlen++; 1841 q->buffer_used += skb->truesize; 1842 } 1843 1844 /* stats */ 1845 b->packets++; 1846 b->bytes += len; 1847 b->backlogs[idx] += len; 1848 b->tin_backlog += len; 1849 sch->qstats.backlog += len; 1850 q->avg_window_bytes += len; 1851 } 1852 1853 if (q->overflow_timeout) 1854 cake_heapify_up(q, b->overflow_idx[idx]); 1855 1856 /* incoming bandwidth capacity estimate */ 1857 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) { 1858 u64 packet_interval = \ 1859 ktime_to_ns(ktime_sub(now, q->last_packet_time)); 1860 1861 if (packet_interval > NSEC_PER_SEC) 1862 packet_interval = NSEC_PER_SEC; 1863 1864 /* filter out short-term bursts, eg. wifi aggregation */ 1865 q->avg_packet_interval = \ 1866 cake_ewma(q->avg_packet_interval, 1867 packet_interval, 1868 (packet_interval > q->avg_packet_interval ? 1869 2 : 8)); 1870 1871 q->last_packet_time = now; 1872 1873 if (packet_interval > q->avg_packet_interval) { 1874 u64 window_interval = \ 1875 ktime_to_ns(ktime_sub(now, 1876 q->avg_window_begin)); 1877 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC; 1878 1879 b = div64_u64(b, window_interval); 1880 q->avg_peak_bandwidth = 1881 cake_ewma(q->avg_peak_bandwidth, b, 1882 b > q->avg_peak_bandwidth ? 2 : 8); 1883 q->avg_window_bytes = 0; 1884 q->avg_window_begin = now; 1885 1886 if (ktime_after(now, 1887 ktime_add_ms(q->last_reconfig_time, 1888 250))) { 1889 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4; 1890 cake_reconfigure(sch); 1891 } 1892 } 1893 } else { 1894 q->avg_window_bytes = 0; 1895 q->last_packet_time = now; 1896 } 1897 1898 /* flowchain */ 1899 if (!flow->set || flow->set == CAKE_SET_DECAYING) { 1900 if (!flow->set) { 1901 list_add_tail(&flow->flowchain, &b->new_flows); 1902 } else { 1903 b->decaying_flow_count--; 1904 list_move_tail(&flow->flowchain, &b->new_flows); 1905 } 1906 flow->set = CAKE_SET_SPARSE; 1907 b->sparse_flow_count++; 1908 1909 flow->deficit = cake_get_flow_quantum(b, flow, q->flow_mode); 1910 } else if (flow->set == CAKE_SET_SPARSE_WAIT) { 1911 /* this flow was empty, accounted as a sparse flow, but actually 1912 * in the bulk rotation. 1913 */ 1914 flow->set = CAKE_SET_BULK; 1915 b->sparse_flow_count--; 1916 b->bulk_flow_count++; 1917 1918 cake_inc_srchost_bulk_flow_count(b, flow, q->flow_mode); 1919 cake_inc_dsthost_bulk_flow_count(b, flow, q->flow_mode); 1920 } 1921 1922 if (q->buffer_used > q->buffer_max_used) 1923 q->buffer_max_used = q->buffer_used; 1924 1925 if (q->buffer_used > q->buffer_limit) { 1926 bool same_flow = false; 1927 u32 dropped = 0; 1928 u32 drop_id; 1929 1930 while (q->buffer_used > q->buffer_limit) { 1931 dropped++; 1932 drop_id = cake_drop(sch, to_free); 1933 1934 if ((drop_id >> 16) == tin && 1935 (drop_id & 0xFFFF) == idx) 1936 same_flow = true; 1937 } 1938 b->drop_overlimit += dropped; 1939 1940 if (same_flow) 1941 return NET_XMIT_CN; 1942 } 1943 return NET_XMIT_SUCCESS; 1944 } 1945 1946 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch) 1947 { 1948 struct cake_sched_data *q = qdisc_priv(sch); 1949 struct cake_tin_data *b = &q->tins[q->cur_tin]; 1950 struct cake_flow *flow = &b->flows[q->cur_flow]; 1951 struct sk_buff *skb = NULL; 1952 u32 len; 1953 1954 if (flow->head) { 1955 skb = dequeue_head(flow); 1956 len = qdisc_pkt_len(skb); 1957 b->backlogs[q->cur_flow] -= len; 1958 b->tin_backlog -= len; 1959 sch->qstats.backlog -= len; 1960 q->buffer_used -= skb->truesize; 1961 sch->q.qlen--; 1962 1963 if (q->overflow_timeout) 1964 cake_heapify(q, b->overflow_idx[q->cur_flow]); 1965 } 1966 return skb; 1967 } 1968 1969 /* Discard leftover packets from a tin no longer in use. */ 1970 static void cake_clear_tin(struct Qdisc *sch, u16 tin) 1971 { 1972 struct cake_sched_data *q = qdisc_priv(sch); 1973 struct sk_buff *skb; 1974 1975 q->cur_tin = tin; 1976 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++) 1977 while (!!(skb = cake_dequeue_one(sch))) 1978 kfree_skb_reason(skb, SKB_DROP_REASON_QUEUE_PURGE); 1979 } 1980 1981 static struct sk_buff *cake_dequeue(struct Qdisc *sch) 1982 { 1983 struct cake_sched_data *q = qdisc_priv(sch); 1984 struct cake_tin_data *b = &q->tins[q->cur_tin]; 1985 enum skb_drop_reason reason; 1986 ktime_t now = ktime_get(); 1987 struct cake_flow *flow; 1988 struct list_head *head; 1989 bool first_flow = true; 1990 struct sk_buff *skb; 1991 u64 delay; 1992 u32 len; 1993 1994 begin: 1995 if (!sch->q.qlen) 1996 return NULL; 1997 1998 /* global hard shaper */ 1999 if (ktime_after(q->time_next_packet, now) && 2000 ktime_after(q->failsafe_next_packet, now)) { 2001 u64 next = min(ktime_to_ns(q->time_next_packet), 2002 ktime_to_ns(q->failsafe_next_packet)); 2003 2004 sch->qstats.overlimits++; 2005 qdisc_watchdog_schedule_ns(&q->watchdog, next); 2006 return NULL; 2007 } 2008 2009 /* Choose a class to work on. */ 2010 if (!q->rate_ns) { 2011 /* In unlimited mode, can't rely on shaper timings, just balance 2012 * with DRR 2013 */ 2014 bool wrapped = false, empty = true; 2015 2016 while (b->tin_deficit < 0 || 2017 !(b->sparse_flow_count + b->bulk_flow_count)) { 2018 if (b->tin_deficit <= 0) 2019 b->tin_deficit += b->tin_quantum; 2020 if (b->sparse_flow_count + b->bulk_flow_count) 2021 empty = false; 2022 2023 q->cur_tin++; 2024 b++; 2025 if (q->cur_tin >= q->tin_cnt) { 2026 q->cur_tin = 0; 2027 b = q->tins; 2028 2029 if (wrapped) { 2030 /* It's possible for q->qlen to be 2031 * nonzero when we actually have no 2032 * packets anywhere. 2033 */ 2034 if (empty) 2035 return NULL; 2036 } else { 2037 wrapped = true; 2038 } 2039 } 2040 } 2041 } else { 2042 /* In shaped mode, choose: 2043 * - Highest-priority tin with queue and meeting schedule, or 2044 * - The earliest-scheduled tin with queue. 2045 */ 2046 ktime_t best_time = KTIME_MAX; 2047 int tin, best_tin = 0; 2048 2049 for (tin = 0; tin < q->tin_cnt; tin++) { 2050 b = q->tins + tin; 2051 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) { 2052 ktime_t time_to_pkt = \ 2053 ktime_sub(b->time_next_packet, now); 2054 2055 if (ktime_to_ns(time_to_pkt) <= 0 || 2056 ktime_compare(time_to_pkt, 2057 best_time) <= 0) { 2058 best_time = time_to_pkt; 2059 best_tin = tin; 2060 } 2061 } 2062 } 2063 2064 q->cur_tin = best_tin; 2065 b = q->tins + best_tin; 2066 2067 /* No point in going further if no packets to deliver. */ 2068 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count))) 2069 return NULL; 2070 } 2071 2072 retry: 2073 /* service this class */ 2074 head = &b->decaying_flows; 2075 if (!first_flow || list_empty(head)) { 2076 head = &b->new_flows; 2077 if (list_empty(head)) { 2078 head = &b->old_flows; 2079 if (unlikely(list_empty(head))) { 2080 head = &b->decaying_flows; 2081 if (unlikely(list_empty(head))) 2082 goto begin; 2083 } 2084 } 2085 } 2086 flow = list_first_entry(head, struct cake_flow, flowchain); 2087 q->cur_flow = flow - b->flows; 2088 first_flow = false; 2089 2090 /* flow isolation (DRR++) */ 2091 if (flow->deficit <= 0) { 2092 /* Keep all flows with deficits out of the sparse and decaying 2093 * rotations. No non-empty flow can go into the decaying 2094 * rotation, so they can't get deficits 2095 */ 2096 if (flow->set == CAKE_SET_SPARSE) { 2097 if (flow->head) { 2098 b->sparse_flow_count--; 2099 b->bulk_flow_count++; 2100 2101 cake_inc_srchost_bulk_flow_count(b, flow, q->flow_mode); 2102 cake_inc_dsthost_bulk_flow_count(b, flow, q->flow_mode); 2103 2104 flow->set = CAKE_SET_BULK; 2105 } else { 2106 /* we've moved it to the bulk rotation for 2107 * correct deficit accounting but we still want 2108 * to count it as a sparse flow, not a bulk one. 2109 */ 2110 flow->set = CAKE_SET_SPARSE_WAIT; 2111 } 2112 } 2113 2114 flow->deficit += cake_get_flow_quantum(b, flow, q->flow_mode); 2115 list_move_tail(&flow->flowchain, &b->old_flows); 2116 2117 goto retry; 2118 } 2119 2120 /* Retrieve a packet via the AQM */ 2121 while (1) { 2122 skb = cake_dequeue_one(sch); 2123 if (!skb) { 2124 /* this queue was actually empty */ 2125 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now)) 2126 b->unresponsive_flow_count--; 2127 2128 if (flow->cvars.p_drop || flow->cvars.count || 2129 ktime_before(now, flow->cvars.drop_next)) { 2130 /* keep in the flowchain until the state has 2131 * decayed to rest 2132 */ 2133 list_move_tail(&flow->flowchain, 2134 &b->decaying_flows); 2135 if (flow->set == CAKE_SET_BULK) { 2136 b->bulk_flow_count--; 2137 2138 cake_dec_srchost_bulk_flow_count(b, flow, q->flow_mode); 2139 cake_dec_dsthost_bulk_flow_count(b, flow, q->flow_mode); 2140 2141 b->decaying_flow_count++; 2142 } else if (flow->set == CAKE_SET_SPARSE || 2143 flow->set == CAKE_SET_SPARSE_WAIT) { 2144 b->sparse_flow_count--; 2145 b->decaying_flow_count++; 2146 } 2147 flow->set = CAKE_SET_DECAYING; 2148 } else { 2149 /* remove empty queue from the flowchain */ 2150 list_del_init(&flow->flowchain); 2151 if (flow->set == CAKE_SET_SPARSE || 2152 flow->set == CAKE_SET_SPARSE_WAIT) 2153 b->sparse_flow_count--; 2154 else if (flow->set == CAKE_SET_BULK) { 2155 b->bulk_flow_count--; 2156 2157 cake_dec_srchost_bulk_flow_count(b, flow, q->flow_mode); 2158 cake_dec_dsthost_bulk_flow_count(b, flow, q->flow_mode); 2159 } else 2160 b->decaying_flow_count--; 2161 2162 flow->set = CAKE_SET_NONE; 2163 } 2164 goto begin; 2165 } 2166 2167 reason = cobalt_should_drop(&flow->cvars, &b->cparams, now, skb, 2168 (b->bulk_flow_count * 2169 !!(q->rate_flags & 2170 CAKE_FLAG_INGRESS))); 2171 /* Last packet in queue may be marked, shouldn't be dropped */ 2172 if (reason == SKB_NOT_DROPPED_YET || !flow->head) 2173 break; 2174 2175 /* drop this packet, get another one */ 2176 if (q->rate_flags & CAKE_FLAG_INGRESS) { 2177 len = cake_advance_shaper(q, b, skb, 2178 now, true); 2179 flow->deficit -= len; 2180 b->tin_deficit -= len; 2181 } 2182 flow->dropped++; 2183 b->tin_dropped++; 2184 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb)); 2185 qdisc_qstats_drop(sch); 2186 qdisc_dequeue_drop(sch, skb, reason); 2187 if (q->rate_flags & CAKE_FLAG_INGRESS) 2188 goto retry; 2189 } 2190 2191 b->tin_ecn_mark += !!flow->cvars.ecn_marked; 2192 qdisc_bstats_update(sch, skb); 2193 2194 /* collect delay stats */ 2195 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb))); 2196 b->avge_delay = cake_ewma(b->avge_delay, delay, 8); 2197 b->peak_delay = cake_ewma(b->peak_delay, delay, 2198 delay > b->peak_delay ? 2 : 8); 2199 b->base_delay = cake_ewma(b->base_delay, delay, 2200 delay < b->base_delay ? 2 : 8); 2201 2202 len = cake_advance_shaper(q, b, skb, now, false); 2203 flow->deficit -= len; 2204 b->tin_deficit -= len; 2205 2206 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) { 2207 u64 next = min(ktime_to_ns(q->time_next_packet), 2208 ktime_to_ns(q->failsafe_next_packet)); 2209 2210 qdisc_watchdog_schedule_ns(&q->watchdog, next); 2211 } else if (!sch->q.qlen) { 2212 int i; 2213 2214 for (i = 0; i < q->tin_cnt; i++) { 2215 if (q->tins[i].decaying_flow_count) { 2216 ktime_t next = \ 2217 ktime_add_ns(now, 2218 q->tins[i].cparams.target); 2219 2220 qdisc_watchdog_schedule_ns(&q->watchdog, 2221 ktime_to_ns(next)); 2222 break; 2223 } 2224 } 2225 } 2226 2227 if (q->overflow_timeout) 2228 q->overflow_timeout--; 2229 2230 return skb; 2231 } 2232 2233 static void cake_reset(struct Qdisc *sch) 2234 { 2235 struct cake_sched_data *q = qdisc_priv(sch); 2236 u32 c; 2237 2238 if (!q->tins) 2239 return; 2240 2241 for (c = 0; c < CAKE_MAX_TINS; c++) 2242 cake_clear_tin(sch, c); 2243 } 2244 2245 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = { 2246 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 }, 2247 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 }, 2248 [TCA_CAKE_ATM] = { .type = NLA_U32 }, 2249 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 }, 2250 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 }, 2251 [TCA_CAKE_RTT] = { .type = NLA_U32 }, 2252 [TCA_CAKE_TARGET] = { .type = NLA_U32 }, 2253 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 }, 2254 [TCA_CAKE_MEMORY] = { .type = NLA_U32 }, 2255 [TCA_CAKE_NAT] = { .type = NLA_U32 }, 2256 [TCA_CAKE_RAW] = { .type = NLA_U32 }, 2257 [TCA_CAKE_WASH] = { .type = NLA_U32 }, 2258 [TCA_CAKE_MPU] = { .type = NLA_U32 }, 2259 [TCA_CAKE_INGRESS] = { .type = NLA_U32 }, 2260 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 }, 2261 [TCA_CAKE_SPLIT_GSO] = { .type = NLA_U32 }, 2262 [TCA_CAKE_FWMARK] = { .type = NLA_U32 }, 2263 }; 2264 2265 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu, 2266 u64 target_ns, u64 rtt_est_ns) 2267 { 2268 /* convert byte-rate into time-per-byte 2269 * so it will always unwedge in reasonable time. 2270 */ 2271 static const u64 MIN_RATE = 64; 2272 u32 byte_target = mtu; 2273 u64 byte_target_ns; 2274 u8 rate_shft = 0; 2275 u64 rate_ns = 0; 2276 2277 b->flow_quantum = 1514; 2278 if (rate) { 2279 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL); 2280 rate_shft = 34; 2281 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft; 2282 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate)); 2283 while (!!(rate_ns >> 34)) { 2284 rate_ns >>= 1; 2285 rate_shft--; 2286 } 2287 } /* else unlimited, ie. zero delay */ 2288 2289 b->tin_rate_bps = rate; 2290 b->tin_rate_ns = rate_ns; 2291 b->tin_rate_shft = rate_shft; 2292 2293 byte_target_ns = (byte_target * rate_ns) >> rate_shft; 2294 2295 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns); 2296 b->cparams.interval = max(rtt_est_ns + 2297 b->cparams.target - target_ns, 2298 b->cparams.target * 2); 2299 b->cparams.mtu_time = byte_target_ns; 2300 b->cparams.p_inc = 1 << 24; /* 1/256 */ 2301 b->cparams.p_dec = 1 << 20; /* 1/4096 */ 2302 } 2303 2304 static int cake_config_besteffort(struct Qdisc *sch) 2305 { 2306 struct cake_sched_data *q = qdisc_priv(sch); 2307 struct cake_tin_data *b = &q->tins[0]; 2308 u32 mtu = psched_mtu(qdisc_dev(sch)); 2309 u64 rate = q->rate_bps; 2310 2311 q->tin_cnt = 1; 2312 2313 q->tin_index = besteffort; 2314 q->tin_order = normal_order; 2315 2316 cake_set_rate(b, rate, mtu, 2317 us_to_ns(q->target), us_to_ns(q->interval)); 2318 b->tin_quantum = 65535; 2319 2320 return 0; 2321 } 2322 2323 static int cake_config_precedence(struct Qdisc *sch) 2324 { 2325 /* convert high-level (user visible) parameters into internal format */ 2326 struct cake_sched_data *q = qdisc_priv(sch); 2327 u32 mtu = psched_mtu(qdisc_dev(sch)); 2328 u64 rate = q->rate_bps; 2329 u32 quantum = 256; 2330 u32 i; 2331 2332 q->tin_cnt = 8; 2333 q->tin_index = precedence; 2334 q->tin_order = normal_order; 2335 2336 for (i = 0; i < q->tin_cnt; i++) { 2337 struct cake_tin_data *b = &q->tins[i]; 2338 2339 cake_set_rate(b, rate, mtu, us_to_ns(q->target), 2340 us_to_ns(q->interval)); 2341 2342 b->tin_quantum = max_t(u16, 1U, quantum); 2343 2344 /* calculate next class's parameters */ 2345 rate *= 7; 2346 rate >>= 3; 2347 2348 quantum *= 7; 2349 quantum >>= 3; 2350 } 2351 2352 return 0; 2353 } 2354 2355 /* List of known Diffserv codepoints: 2356 * 2357 * Default Forwarding (DF/CS0) - Best Effort 2358 * Max Throughput (TOS2) 2359 * Min Delay (TOS4) 2360 * LLT "La" (TOS5) 2361 * Assured Forwarding 1 (AF1x) - x3 2362 * Assured Forwarding 2 (AF2x) - x3 2363 * Assured Forwarding 3 (AF3x) - x3 2364 * Assured Forwarding 4 (AF4x) - x3 2365 * Precedence Class 1 (CS1) 2366 * Precedence Class 2 (CS2) 2367 * Precedence Class 3 (CS3) 2368 * Precedence Class 4 (CS4) 2369 * Precedence Class 5 (CS5) 2370 * Precedence Class 6 (CS6) 2371 * Precedence Class 7 (CS7) 2372 * Voice Admit (VA) 2373 * Expedited Forwarding (EF) 2374 * Lower Effort (LE) 2375 * 2376 * Total 26 codepoints. 2377 */ 2378 2379 /* List of traffic classes in RFC 4594, updated by RFC 8622: 2380 * (roughly descending order of contended priority) 2381 * (roughly ascending order of uncontended throughput) 2382 * 2383 * Network Control (CS6,CS7) - routing traffic 2384 * Telephony (EF,VA) - aka. VoIP streams 2385 * Signalling (CS5) - VoIP setup 2386 * Multimedia Conferencing (AF4x) - aka. video calls 2387 * Realtime Interactive (CS4) - eg. games 2388 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch 2389 * Broadcast Video (CS3) 2390 * Low-Latency Data (AF2x,TOS4) - eg. database 2391 * Ops, Admin, Management (CS2) - eg. ssh 2392 * Standard Service (DF & unrecognised codepoints) 2393 * High-Throughput Data (AF1x,TOS2) - eg. web traffic 2394 * Low-Priority Data (LE,CS1) - eg. BitTorrent 2395 * 2396 * Total 12 traffic classes. 2397 */ 2398 2399 static int cake_config_diffserv8(struct Qdisc *sch) 2400 { 2401 /* Pruned list of traffic classes for typical applications: 2402 * 2403 * Network Control (CS6, CS7) 2404 * Minimum Latency (EF, VA, CS5, CS4) 2405 * Interactive Shell (CS2) 2406 * Low Latency Transactions (AF2x, TOS4) 2407 * Video Streaming (AF4x, AF3x, CS3) 2408 * Bog Standard (DF etc.) 2409 * High Throughput (AF1x, TOS2, CS1) 2410 * Background Traffic (LE) 2411 * 2412 * Total 8 traffic classes. 2413 */ 2414 2415 struct cake_sched_data *q = qdisc_priv(sch); 2416 u32 mtu = psched_mtu(qdisc_dev(sch)); 2417 u64 rate = q->rate_bps; 2418 u32 quantum = 256; 2419 u32 i; 2420 2421 q->tin_cnt = 8; 2422 2423 /* codepoint to class mapping */ 2424 q->tin_index = diffserv8; 2425 q->tin_order = normal_order; 2426 2427 /* class characteristics */ 2428 for (i = 0; i < q->tin_cnt; i++) { 2429 struct cake_tin_data *b = &q->tins[i]; 2430 2431 cake_set_rate(b, rate, mtu, us_to_ns(q->target), 2432 us_to_ns(q->interval)); 2433 2434 b->tin_quantum = max_t(u16, 1U, quantum); 2435 2436 /* calculate next class's parameters */ 2437 rate *= 7; 2438 rate >>= 3; 2439 2440 quantum *= 7; 2441 quantum >>= 3; 2442 } 2443 2444 return 0; 2445 } 2446 2447 static int cake_config_diffserv4(struct Qdisc *sch) 2448 { 2449 /* Further pruned list of traffic classes for four-class system: 2450 * 2451 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4) 2452 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2) 2453 * Best Effort (DF, AF1x, TOS2, and those not specified) 2454 * Background Traffic (LE, CS1) 2455 * 2456 * Total 4 traffic classes. 2457 */ 2458 2459 struct cake_sched_data *q = qdisc_priv(sch); 2460 u32 mtu = psched_mtu(qdisc_dev(sch)); 2461 u64 rate = q->rate_bps; 2462 u32 quantum = 1024; 2463 2464 q->tin_cnt = 4; 2465 2466 /* codepoint to class mapping */ 2467 q->tin_index = diffserv4; 2468 q->tin_order = bulk_order; 2469 2470 /* class characteristics */ 2471 cake_set_rate(&q->tins[0], rate, mtu, 2472 us_to_ns(q->target), us_to_ns(q->interval)); 2473 cake_set_rate(&q->tins[1], rate >> 4, mtu, 2474 us_to_ns(q->target), us_to_ns(q->interval)); 2475 cake_set_rate(&q->tins[2], rate >> 1, mtu, 2476 us_to_ns(q->target), us_to_ns(q->interval)); 2477 cake_set_rate(&q->tins[3], rate >> 2, mtu, 2478 us_to_ns(q->target), us_to_ns(q->interval)); 2479 2480 /* bandwidth-sharing weights */ 2481 q->tins[0].tin_quantum = quantum; 2482 q->tins[1].tin_quantum = quantum >> 4; 2483 q->tins[2].tin_quantum = quantum >> 1; 2484 q->tins[3].tin_quantum = quantum >> 2; 2485 2486 return 0; 2487 } 2488 2489 static int cake_config_diffserv3(struct Qdisc *sch) 2490 { 2491 /* Simplified Diffserv structure with 3 tins. 2492 * Latency Sensitive (CS7, CS6, EF, VA, TOS4) 2493 * Best Effort 2494 * Low Priority (LE, CS1) 2495 */ 2496 struct cake_sched_data *q = qdisc_priv(sch); 2497 u32 mtu = psched_mtu(qdisc_dev(sch)); 2498 u64 rate = q->rate_bps; 2499 u32 quantum = 1024; 2500 2501 q->tin_cnt = 3; 2502 2503 /* codepoint to class mapping */ 2504 q->tin_index = diffserv3; 2505 q->tin_order = bulk_order; 2506 2507 /* class characteristics */ 2508 cake_set_rate(&q->tins[0], rate, mtu, 2509 us_to_ns(q->target), us_to_ns(q->interval)); 2510 cake_set_rate(&q->tins[1], rate >> 4, mtu, 2511 us_to_ns(q->target), us_to_ns(q->interval)); 2512 cake_set_rate(&q->tins[2], rate >> 2, mtu, 2513 us_to_ns(q->target), us_to_ns(q->interval)); 2514 2515 /* bandwidth-sharing weights */ 2516 q->tins[0].tin_quantum = quantum; 2517 q->tins[1].tin_quantum = quantum >> 4; 2518 q->tins[2].tin_quantum = quantum >> 2; 2519 2520 return 0; 2521 } 2522 2523 static void cake_reconfigure(struct Qdisc *sch) 2524 { 2525 struct cake_sched_data *q = qdisc_priv(sch); 2526 int c, ft; 2527 2528 switch (q->tin_mode) { 2529 case CAKE_DIFFSERV_BESTEFFORT: 2530 ft = cake_config_besteffort(sch); 2531 break; 2532 2533 case CAKE_DIFFSERV_PRECEDENCE: 2534 ft = cake_config_precedence(sch); 2535 break; 2536 2537 case CAKE_DIFFSERV_DIFFSERV8: 2538 ft = cake_config_diffserv8(sch); 2539 break; 2540 2541 case CAKE_DIFFSERV_DIFFSERV4: 2542 ft = cake_config_diffserv4(sch); 2543 break; 2544 2545 case CAKE_DIFFSERV_DIFFSERV3: 2546 default: 2547 ft = cake_config_diffserv3(sch); 2548 break; 2549 } 2550 2551 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) { 2552 cake_clear_tin(sch, c); 2553 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time; 2554 } 2555 2556 q->rate_ns = q->tins[ft].tin_rate_ns; 2557 q->rate_shft = q->tins[ft].tin_rate_shft; 2558 2559 if (q->buffer_config_limit) { 2560 q->buffer_limit = q->buffer_config_limit; 2561 } else if (q->rate_bps) { 2562 u64 t = q->rate_bps * q->interval; 2563 2564 do_div(t, USEC_PER_SEC / 4); 2565 q->buffer_limit = max_t(u32, t, 4U << 20); 2566 } else { 2567 q->buffer_limit = ~0; 2568 } 2569 2570 sch->flags &= ~TCQ_F_CAN_BYPASS; 2571 2572 q->buffer_limit = min(q->buffer_limit, 2573 max(sch->limit * psched_mtu(qdisc_dev(sch)), 2574 q->buffer_config_limit)); 2575 } 2576 2577 static int cake_change(struct Qdisc *sch, struct nlattr *opt, 2578 struct netlink_ext_ack *extack) 2579 { 2580 struct cake_sched_data *q = qdisc_priv(sch); 2581 struct nlattr *tb[TCA_CAKE_MAX + 1]; 2582 u16 rate_flags; 2583 u8 flow_mode; 2584 int err; 2585 2586 err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy, 2587 extack); 2588 if (err < 0) 2589 return err; 2590 2591 flow_mode = q->flow_mode; 2592 if (tb[TCA_CAKE_NAT]) { 2593 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 2594 flow_mode &= ~CAKE_FLOW_NAT_FLAG; 2595 flow_mode |= CAKE_FLOW_NAT_FLAG * 2596 !!nla_get_u32(tb[TCA_CAKE_NAT]); 2597 #else 2598 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT], 2599 "No conntrack support in kernel"); 2600 return -EOPNOTSUPP; 2601 #endif 2602 } 2603 2604 if (tb[TCA_CAKE_BASE_RATE64]) 2605 WRITE_ONCE(q->rate_bps, 2606 nla_get_u64(tb[TCA_CAKE_BASE_RATE64])); 2607 2608 if (tb[TCA_CAKE_DIFFSERV_MODE]) 2609 WRITE_ONCE(q->tin_mode, 2610 nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE])); 2611 2612 rate_flags = q->rate_flags; 2613 if (tb[TCA_CAKE_WASH]) { 2614 if (!!nla_get_u32(tb[TCA_CAKE_WASH])) 2615 rate_flags |= CAKE_FLAG_WASH; 2616 else 2617 rate_flags &= ~CAKE_FLAG_WASH; 2618 } 2619 2620 if (tb[TCA_CAKE_FLOW_MODE]) 2621 flow_mode = ((flow_mode & CAKE_FLOW_NAT_FLAG) | 2622 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) & 2623 CAKE_FLOW_MASK)); 2624 2625 if (tb[TCA_CAKE_ATM]) 2626 WRITE_ONCE(q->atm_mode, 2627 nla_get_u32(tb[TCA_CAKE_ATM])); 2628 2629 if (tb[TCA_CAKE_OVERHEAD]) { 2630 WRITE_ONCE(q->rate_overhead, 2631 nla_get_s32(tb[TCA_CAKE_OVERHEAD])); 2632 rate_flags |= CAKE_FLAG_OVERHEAD; 2633 2634 q->max_netlen = 0; 2635 q->max_adjlen = 0; 2636 q->min_netlen = ~0; 2637 q->min_adjlen = ~0; 2638 } 2639 2640 if (tb[TCA_CAKE_RAW]) { 2641 rate_flags &= ~CAKE_FLAG_OVERHEAD; 2642 2643 q->max_netlen = 0; 2644 q->max_adjlen = 0; 2645 q->min_netlen = ~0; 2646 q->min_adjlen = ~0; 2647 } 2648 2649 if (tb[TCA_CAKE_MPU]) 2650 WRITE_ONCE(q->rate_mpu, 2651 nla_get_u32(tb[TCA_CAKE_MPU])); 2652 2653 if (tb[TCA_CAKE_RTT]) { 2654 u32 interval = nla_get_u32(tb[TCA_CAKE_RTT]); 2655 2656 WRITE_ONCE(q->interval, max(interval, 1U)); 2657 } 2658 2659 if (tb[TCA_CAKE_TARGET]) { 2660 u32 target = nla_get_u32(tb[TCA_CAKE_TARGET]); 2661 2662 WRITE_ONCE(q->target, max(target, 1U)); 2663 } 2664 2665 if (tb[TCA_CAKE_AUTORATE]) { 2666 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE])) 2667 rate_flags |= CAKE_FLAG_AUTORATE_INGRESS; 2668 else 2669 rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS; 2670 } 2671 2672 if (tb[TCA_CAKE_INGRESS]) { 2673 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS])) 2674 rate_flags |= CAKE_FLAG_INGRESS; 2675 else 2676 rate_flags &= ~CAKE_FLAG_INGRESS; 2677 } 2678 2679 if (tb[TCA_CAKE_ACK_FILTER]) 2680 WRITE_ONCE(q->ack_filter, 2681 nla_get_u32(tb[TCA_CAKE_ACK_FILTER])); 2682 2683 if (tb[TCA_CAKE_MEMORY]) 2684 WRITE_ONCE(q->buffer_config_limit, 2685 nla_get_u32(tb[TCA_CAKE_MEMORY])); 2686 2687 if (tb[TCA_CAKE_SPLIT_GSO]) { 2688 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO])) 2689 rate_flags |= CAKE_FLAG_SPLIT_GSO; 2690 else 2691 rate_flags &= ~CAKE_FLAG_SPLIT_GSO; 2692 } 2693 2694 if (tb[TCA_CAKE_FWMARK]) { 2695 WRITE_ONCE(q->fwmark_mask, nla_get_u32(tb[TCA_CAKE_FWMARK])); 2696 WRITE_ONCE(q->fwmark_shft, 2697 q->fwmark_mask ? __ffs(q->fwmark_mask) : 0); 2698 } 2699 2700 WRITE_ONCE(q->rate_flags, rate_flags); 2701 WRITE_ONCE(q->flow_mode, flow_mode); 2702 if (q->tins) { 2703 sch_tree_lock(sch); 2704 cake_reconfigure(sch); 2705 sch_tree_unlock(sch); 2706 } 2707 2708 return 0; 2709 } 2710 2711 static void cake_destroy(struct Qdisc *sch) 2712 { 2713 struct cake_sched_data *q = qdisc_priv(sch); 2714 2715 qdisc_watchdog_cancel(&q->watchdog); 2716 tcf_block_put(q->block); 2717 kvfree(q->tins); 2718 } 2719 2720 static int cake_init(struct Qdisc *sch, struct nlattr *opt, 2721 struct netlink_ext_ack *extack) 2722 { 2723 struct cake_sched_data *q = qdisc_priv(sch); 2724 int i, j, err; 2725 2726 sch->limit = 10240; 2727 sch->flags |= TCQ_F_DEQUEUE_DROPS; 2728 2729 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3; 2730 q->flow_mode = CAKE_FLOW_TRIPLE; 2731 2732 q->rate_bps = 0; /* unlimited by default */ 2733 2734 q->interval = 100000; /* 100ms default */ 2735 q->target = 5000; /* 5ms: codel RFC argues 2736 * for 5 to 10% of interval 2737 */ 2738 q->rate_flags |= CAKE_FLAG_SPLIT_GSO; 2739 q->cur_tin = 0; 2740 q->cur_flow = 0; 2741 2742 qdisc_watchdog_init(&q->watchdog, sch); 2743 2744 if (opt) { 2745 err = cake_change(sch, opt, extack); 2746 2747 if (err) 2748 return err; 2749 } 2750 2751 err = tcf_block_get(&q->block, &q->filter_list, sch, extack); 2752 if (err) 2753 return err; 2754 2755 quantum_div[0] = ~0; 2756 for (i = 1; i <= CAKE_QUEUES; i++) 2757 quantum_div[i] = 65535 / i; 2758 2759 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data), 2760 GFP_KERNEL); 2761 if (!q->tins) 2762 return -ENOMEM; 2763 2764 for (i = 0; i < CAKE_MAX_TINS; i++) { 2765 struct cake_tin_data *b = q->tins + i; 2766 2767 INIT_LIST_HEAD(&b->new_flows); 2768 INIT_LIST_HEAD(&b->old_flows); 2769 INIT_LIST_HEAD(&b->decaying_flows); 2770 b->sparse_flow_count = 0; 2771 b->bulk_flow_count = 0; 2772 b->decaying_flow_count = 0; 2773 2774 for (j = 0; j < CAKE_QUEUES; j++) { 2775 struct cake_flow *flow = b->flows + j; 2776 u32 k = j * CAKE_MAX_TINS + i; 2777 2778 INIT_LIST_HEAD(&flow->flowchain); 2779 cobalt_vars_init(&flow->cvars); 2780 2781 q->overflow_heap[k].t = i; 2782 q->overflow_heap[k].b = j; 2783 b->overflow_idx[j] = k; 2784 } 2785 } 2786 2787 cake_reconfigure(sch); 2788 q->avg_peak_bandwidth = q->rate_bps; 2789 q->min_netlen = ~0; 2790 q->min_adjlen = ~0; 2791 return 0; 2792 } 2793 2794 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb) 2795 { 2796 struct cake_sched_data *q = qdisc_priv(sch); 2797 struct nlattr *opts; 2798 u16 rate_flags; 2799 u8 flow_mode; 2800 2801 opts = nla_nest_start_noflag(skb, TCA_OPTIONS); 2802 if (!opts) 2803 goto nla_put_failure; 2804 2805 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, 2806 READ_ONCE(q->rate_bps), TCA_CAKE_PAD)) 2807 goto nla_put_failure; 2808 2809 flow_mode = READ_ONCE(q->flow_mode); 2810 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE, flow_mode & CAKE_FLOW_MASK)) 2811 goto nla_put_failure; 2812 2813 if (nla_put_u32(skb, TCA_CAKE_RTT, READ_ONCE(q->interval))) 2814 goto nla_put_failure; 2815 2816 if (nla_put_u32(skb, TCA_CAKE_TARGET, READ_ONCE(q->target))) 2817 goto nla_put_failure; 2818 2819 if (nla_put_u32(skb, TCA_CAKE_MEMORY, 2820 READ_ONCE(q->buffer_config_limit))) 2821 goto nla_put_failure; 2822 2823 rate_flags = READ_ONCE(q->rate_flags); 2824 if (nla_put_u32(skb, TCA_CAKE_AUTORATE, 2825 !!(rate_flags & CAKE_FLAG_AUTORATE_INGRESS))) 2826 goto nla_put_failure; 2827 2828 if (nla_put_u32(skb, TCA_CAKE_INGRESS, 2829 !!(rate_flags & CAKE_FLAG_INGRESS))) 2830 goto nla_put_failure; 2831 2832 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, READ_ONCE(q->ack_filter))) 2833 goto nla_put_failure; 2834 2835 if (nla_put_u32(skb, TCA_CAKE_NAT, 2836 !!(flow_mode & CAKE_FLOW_NAT_FLAG))) 2837 goto nla_put_failure; 2838 2839 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, READ_ONCE(q->tin_mode))) 2840 goto nla_put_failure; 2841 2842 if (nla_put_u32(skb, TCA_CAKE_WASH, 2843 !!(rate_flags & CAKE_FLAG_WASH))) 2844 goto nla_put_failure; 2845 2846 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, READ_ONCE(q->rate_overhead))) 2847 goto nla_put_failure; 2848 2849 if (!(rate_flags & CAKE_FLAG_OVERHEAD)) 2850 if (nla_put_u32(skb, TCA_CAKE_RAW, 0)) 2851 goto nla_put_failure; 2852 2853 if (nla_put_u32(skb, TCA_CAKE_ATM, READ_ONCE(q->atm_mode))) 2854 goto nla_put_failure; 2855 2856 if (nla_put_u32(skb, TCA_CAKE_MPU, READ_ONCE(q->rate_mpu))) 2857 goto nla_put_failure; 2858 2859 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO, 2860 !!(rate_flags & CAKE_FLAG_SPLIT_GSO))) 2861 goto nla_put_failure; 2862 2863 if (nla_put_u32(skb, TCA_CAKE_FWMARK, READ_ONCE(q->fwmark_mask))) 2864 goto nla_put_failure; 2865 2866 return nla_nest_end(skb, opts); 2867 2868 nla_put_failure: 2869 return -1; 2870 } 2871 2872 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 2873 { 2874 struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP); 2875 struct cake_sched_data *q = qdisc_priv(sch); 2876 struct nlattr *tstats, *ts; 2877 int i; 2878 2879 if (!stats) 2880 return -1; 2881 2882 #define PUT_STAT_U32(attr, data) do { \ 2883 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \ 2884 goto nla_put_failure; \ 2885 } while (0) 2886 #define PUT_STAT_U64(attr, data) do { \ 2887 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \ 2888 data, TCA_CAKE_STATS_PAD)) \ 2889 goto nla_put_failure; \ 2890 } while (0) 2891 2892 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth); 2893 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit); 2894 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used); 2895 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16)); 2896 PUT_STAT_U32(MAX_NETLEN, q->max_netlen); 2897 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen); 2898 PUT_STAT_U32(MIN_NETLEN, q->min_netlen); 2899 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen); 2900 2901 #undef PUT_STAT_U32 2902 #undef PUT_STAT_U64 2903 2904 tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS); 2905 if (!tstats) 2906 goto nla_put_failure; 2907 2908 #define PUT_TSTAT_U32(attr, data) do { \ 2909 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \ 2910 goto nla_put_failure; \ 2911 } while (0) 2912 #define PUT_TSTAT_U64(attr, data) do { \ 2913 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \ 2914 data, TCA_CAKE_TIN_STATS_PAD)) \ 2915 goto nla_put_failure; \ 2916 } while (0) 2917 2918 for (i = 0; i < q->tin_cnt; i++) { 2919 struct cake_tin_data *b = &q->tins[q->tin_order[i]]; 2920 2921 ts = nla_nest_start_noflag(d->skb, i + 1); 2922 if (!ts) 2923 goto nla_put_failure; 2924 2925 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps); 2926 PUT_TSTAT_U64(SENT_BYTES64, b->bytes); 2927 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog); 2928 2929 PUT_TSTAT_U32(TARGET_US, 2930 ktime_to_us(ns_to_ktime(b->cparams.target))); 2931 PUT_TSTAT_U32(INTERVAL_US, 2932 ktime_to_us(ns_to_ktime(b->cparams.interval))); 2933 2934 PUT_TSTAT_U32(SENT_PACKETS, b->packets); 2935 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped); 2936 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark); 2937 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops); 2938 2939 PUT_TSTAT_U32(PEAK_DELAY_US, 2940 ktime_to_us(ns_to_ktime(b->peak_delay))); 2941 PUT_TSTAT_U32(AVG_DELAY_US, 2942 ktime_to_us(ns_to_ktime(b->avge_delay))); 2943 PUT_TSTAT_U32(BASE_DELAY_US, 2944 ktime_to_us(ns_to_ktime(b->base_delay))); 2945 2946 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits); 2947 PUT_TSTAT_U32(WAY_MISSES, b->way_misses); 2948 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions); 2949 2950 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count + 2951 b->decaying_flow_count); 2952 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count); 2953 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count); 2954 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen); 2955 2956 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum); 2957 nla_nest_end(d->skb, ts); 2958 } 2959 2960 #undef PUT_TSTAT_U32 2961 #undef PUT_TSTAT_U64 2962 2963 nla_nest_end(d->skb, tstats); 2964 return nla_nest_end(d->skb, stats); 2965 2966 nla_put_failure: 2967 nla_nest_cancel(d->skb, stats); 2968 return -1; 2969 } 2970 2971 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg) 2972 { 2973 return NULL; 2974 } 2975 2976 static unsigned long cake_find(struct Qdisc *sch, u32 classid) 2977 { 2978 return 0; 2979 } 2980 2981 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent, 2982 u32 classid) 2983 { 2984 return 0; 2985 } 2986 2987 static void cake_unbind(struct Qdisc *q, unsigned long cl) 2988 { 2989 } 2990 2991 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl, 2992 struct netlink_ext_ack *extack) 2993 { 2994 struct cake_sched_data *q = qdisc_priv(sch); 2995 2996 if (cl) 2997 return NULL; 2998 return q->block; 2999 } 3000 3001 static int cake_dump_class(struct Qdisc *sch, unsigned long cl, 3002 struct sk_buff *skb, struct tcmsg *tcm) 3003 { 3004 tcm->tcm_handle |= TC_H_MIN(cl); 3005 return 0; 3006 } 3007 3008 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl, 3009 struct gnet_dump *d) 3010 { 3011 struct cake_sched_data *q = qdisc_priv(sch); 3012 const struct cake_flow *flow = NULL; 3013 struct gnet_stats_queue qs = { 0 }; 3014 struct nlattr *stats; 3015 u32 idx = cl - 1; 3016 3017 if (idx < CAKE_QUEUES * q->tin_cnt) { 3018 const struct cake_tin_data *b = \ 3019 &q->tins[q->tin_order[idx / CAKE_QUEUES]]; 3020 const struct sk_buff *skb; 3021 3022 flow = &b->flows[idx % CAKE_QUEUES]; 3023 3024 if (flow->head) { 3025 sch_tree_lock(sch); 3026 skb = flow->head; 3027 while (skb) { 3028 qs.qlen++; 3029 skb = skb->next; 3030 } 3031 sch_tree_unlock(sch); 3032 } 3033 qs.backlog = b->backlogs[idx % CAKE_QUEUES]; 3034 qs.drops = flow->dropped; 3035 } 3036 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0) 3037 return -1; 3038 if (flow) { 3039 ktime_t now = ktime_get(); 3040 3041 stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP); 3042 if (!stats) 3043 return -1; 3044 3045 #define PUT_STAT_U32(attr, data) do { \ 3046 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \ 3047 goto nla_put_failure; \ 3048 } while (0) 3049 #define PUT_STAT_S32(attr, data) do { \ 3050 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \ 3051 goto nla_put_failure; \ 3052 } while (0) 3053 3054 PUT_STAT_S32(DEFICIT, flow->deficit); 3055 PUT_STAT_U32(DROPPING, flow->cvars.dropping); 3056 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count); 3057 PUT_STAT_U32(P_DROP, flow->cvars.p_drop); 3058 if (flow->cvars.p_drop) { 3059 PUT_STAT_S32(BLUE_TIMER_US, 3060 ktime_to_us( 3061 ktime_sub(now, 3062 flow->cvars.blue_timer))); 3063 } 3064 if (flow->cvars.dropping) { 3065 PUT_STAT_S32(DROP_NEXT_US, 3066 ktime_to_us( 3067 ktime_sub(now, 3068 flow->cvars.drop_next))); 3069 } 3070 3071 if (nla_nest_end(d->skb, stats) < 0) 3072 return -1; 3073 } 3074 3075 return 0; 3076 3077 nla_put_failure: 3078 nla_nest_cancel(d->skb, stats); 3079 return -1; 3080 } 3081 3082 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg) 3083 { 3084 struct cake_sched_data *q = qdisc_priv(sch); 3085 unsigned int i, j; 3086 3087 if (arg->stop) 3088 return; 3089 3090 for (i = 0; i < q->tin_cnt; i++) { 3091 struct cake_tin_data *b = &q->tins[q->tin_order[i]]; 3092 3093 for (j = 0; j < CAKE_QUEUES; j++) { 3094 if (list_empty(&b->flows[j].flowchain)) { 3095 arg->count++; 3096 continue; 3097 } 3098 if (!tc_qdisc_stats_dump(sch, i * CAKE_QUEUES + j + 1, 3099 arg)) 3100 break; 3101 } 3102 } 3103 } 3104 3105 static const struct Qdisc_class_ops cake_class_ops = { 3106 .leaf = cake_leaf, 3107 .find = cake_find, 3108 .tcf_block = cake_tcf_block, 3109 .bind_tcf = cake_bind, 3110 .unbind_tcf = cake_unbind, 3111 .dump = cake_dump_class, 3112 .dump_stats = cake_dump_class_stats, 3113 .walk = cake_walk, 3114 }; 3115 3116 static struct Qdisc_ops cake_qdisc_ops __read_mostly = { 3117 .cl_ops = &cake_class_ops, 3118 .id = "cake", 3119 .priv_size = sizeof(struct cake_sched_data), 3120 .enqueue = cake_enqueue, 3121 .dequeue = cake_dequeue, 3122 .peek = qdisc_peek_dequeued, 3123 .init = cake_init, 3124 .reset = cake_reset, 3125 .destroy = cake_destroy, 3126 .change = cake_change, 3127 .dump = cake_dump, 3128 .dump_stats = cake_dump_stats, 3129 .owner = THIS_MODULE, 3130 }; 3131 MODULE_ALIAS_NET_SCH("cake"); 3132 3133 static int __init cake_module_init(void) 3134 { 3135 return register_qdisc(&cake_qdisc_ops); 3136 } 3137 3138 static void __exit cake_module_exit(void) 3139 { 3140 unregister_qdisc(&cake_qdisc_ops); 3141 } 3142 3143 module_init(cake_module_init) 3144 module_exit(cake_module_exit) 3145 MODULE_AUTHOR("Jonathan Morton"); 3146 MODULE_LICENSE("Dual BSD/GPL"); 3147 MODULE_DESCRIPTION("The CAKE shaper."); 3148