xref: /linux/net/sched/sch_cake.c (revision 017bcff7321af438f1190dbdf417815ea8ef60c0)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 
3 /* COMMON Applications Kept Enhanced (CAKE) discipline
4  *
5  * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6  * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7  * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8  * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9  * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10  * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
11  *
12  * The CAKE Principles:
13  *		   (or, how to have your cake and eat it too)
14  *
15  * This is a combination of several shaping, AQM and FQ techniques into one
16  * easy-to-use package:
17  *
18  * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19  *   equipment and bloated MACs.  This operates in deficit mode (as in sch_fq),
20  *   eliminating the need for any sort of burst parameter (eg. token bucket
21  *   depth).  Burst support is limited to that necessary to overcome scheduling
22  *   latency.
23  *
24  * - A Diffserv-aware priority queue, giving more priority to certain classes,
25  *   up to a specified fraction of bandwidth.  Above that bandwidth threshold,
26  *   the priority is reduced to avoid starving other tins.
27  *
28  * - Each priority tin has a separate Flow Queue system, to isolate traffic
29  *   flows from each other.  This prevents a burst on one flow from increasing
30  *   the delay to another.  Flows are distributed to queues using a
31  *   set-associative hash function.
32  *
33  * - Each queue is actively managed by Cobalt, which is a combination of the
34  *   Codel and Blue AQM algorithms.  This serves flows fairly, and signals
35  *   congestion early via ECN (if available) and/or packet drops, to keep
36  *   latency low.  The codel parameters are auto-tuned based on the bandwidth
37  *   setting, as is necessary at low bandwidths.
38  *
39  * The configuration parameters are kept deliberately simple for ease of use.
40  * Everything has sane defaults.  Complete generality of configuration is *not*
41  * a goal.
42  *
43  * The priority queue operates according to a weighted DRR scheme, combined with
44  * a bandwidth tracker which reuses the shaper logic to detect which side of the
45  * bandwidth sharing threshold the tin is operating.  This determines whether a
46  * priority-based weight (high) or a bandwidth-based weight (low) is used for
47  * that tin in the current pass.
48  *
49  * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50  * granted us permission to leverage.
51  */
52 
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/kernel.h>
56 #include <linux/jiffies.h>
57 #include <linux/string.h>
58 #include <linux/in.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/skbuff.h>
62 #include <linux/jhash.h>
63 #include <linux/slab.h>
64 #include <linux/vmalloc.h>
65 #include <linux/reciprocal_div.h>
66 #include <net/netlink.h>
67 #include <linux/if_vlan.h>
68 #include <net/gso.h>
69 #include <net/pkt_sched.h>
70 #include <net/pkt_cls.h>
71 #include <net/tcp.h>
72 #include <net/flow_dissector.h>
73 
74 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
75 #include <net/netfilter/nf_conntrack_core.h>
76 #endif
77 
78 #define CAKE_SET_WAYS (8)
79 #define CAKE_MAX_TINS (8)
80 #define CAKE_QUEUES (1024)
81 #define CAKE_FLOW_MASK 63
82 #define CAKE_FLOW_NAT_FLAG 64
83 
84 /* struct cobalt_params - contains codel and blue parameters
85  * @interval:	codel initial drop rate
86  * @target:     maximum persistent sojourn time & blue update rate
87  * @mtu_time:   serialisation delay of maximum-size packet
88  * @p_inc:      increment of blue drop probability (0.32 fxp)
89  * @p_dec:      decrement of blue drop probability (0.32 fxp)
90  */
91 struct cobalt_params {
92 	u64	interval;
93 	u64	target;
94 	u64	mtu_time;
95 	u32	p_inc;
96 	u32	p_dec;
97 };
98 
99 /* struct cobalt_vars - contains codel and blue variables
100  * @count:		codel dropping frequency
101  * @rec_inv_sqrt:	reciprocal value of sqrt(count) >> 1
102  * @drop_next:		time to drop next packet, or when we dropped last
103  * @blue_timer:		Blue time to next drop
104  * @p_drop:		BLUE drop probability (0.32 fxp)
105  * @dropping:		set if in dropping state
106  * @ecn_marked:		set if marked
107  */
108 struct cobalt_vars {
109 	u32	count;
110 	u32	rec_inv_sqrt;
111 	ktime_t	drop_next;
112 	ktime_t	blue_timer;
113 	u32     p_drop;
114 	bool	dropping;
115 	bool    ecn_marked;
116 };
117 
118 enum {
119 	CAKE_SET_NONE = 0,
120 	CAKE_SET_SPARSE,
121 	CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
122 	CAKE_SET_BULK,
123 	CAKE_SET_DECAYING
124 };
125 
126 struct cake_flow {
127 	/* this stuff is all needed per-flow at dequeue time */
128 	struct sk_buff	  *head;
129 	struct sk_buff	  *tail;
130 	struct list_head  flowchain;
131 	s32		  deficit;
132 	u32		  dropped;
133 	struct cobalt_vars cvars;
134 	u16		  srchost; /* index into cake_host table */
135 	u16		  dsthost;
136 	u8		  set;
137 }; /* please try to keep this structure <= 64 bytes */
138 
139 struct cake_host {
140 	u32 srchost_tag;
141 	u32 dsthost_tag;
142 	u16 srchost_bulk_flow_count;
143 	u16 dsthost_bulk_flow_count;
144 };
145 
146 struct cake_heap_entry {
147 	u16 t:3, b:10;
148 };
149 
150 struct cake_tin_data {
151 	struct cake_flow flows[CAKE_QUEUES];
152 	u32	backlogs[CAKE_QUEUES];
153 	u32	tags[CAKE_QUEUES]; /* for set association */
154 	u16	overflow_idx[CAKE_QUEUES];
155 	struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
156 	u16	flow_quantum;
157 
158 	struct cobalt_params cparams;
159 	u32	drop_overlimit;
160 	u16	bulk_flow_count;
161 	u16	sparse_flow_count;
162 	u16	decaying_flow_count;
163 	u16	unresponsive_flow_count;
164 
165 	u32	max_skblen;
166 
167 	struct list_head new_flows;
168 	struct list_head old_flows;
169 	struct list_head decaying_flows;
170 
171 	/* time_next = time_this + ((len * rate_ns) >> rate_shft) */
172 	ktime_t	time_next_packet;
173 	u64	tin_rate_ns;
174 	u64	tin_rate_bps;
175 	u16	tin_rate_shft;
176 
177 	u16	tin_quantum;
178 	s32	tin_deficit;
179 	u32	tin_backlog;
180 	u32	tin_dropped;
181 	u32	tin_ecn_mark;
182 
183 	u32	packets;
184 	u64	bytes;
185 
186 	u32	ack_drops;
187 
188 	/* moving averages */
189 	u64 avge_delay;
190 	u64 peak_delay;
191 	u64 base_delay;
192 
193 	/* hash function stats */
194 	u32	way_directs;
195 	u32	way_hits;
196 	u32	way_misses;
197 	u32	way_collisions;
198 }; /* number of tins is small, so size of this struct doesn't matter much */
199 
200 struct cake_sched_data {
201 	struct tcf_proto __rcu *filter_list; /* optional external classifier */
202 	struct tcf_block *block;
203 	struct cake_tin_data *tins;
204 
205 	struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
206 	u16		overflow_timeout;
207 
208 	u16		tin_cnt;
209 	u8		tin_mode;
210 	u8		flow_mode;
211 	u8		ack_filter;
212 	u8		atm_mode;
213 
214 	u32		fwmark_mask;
215 	u16		fwmark_shft;
216 
217 	/* time_next = time_this + ((len * rate_ns) >> rate_shft) */
218 	u16		rate_shft;
219 	ktime_t		time_next_packet;
220 	ktime_t		failsafe_next_packet;
221 	u64		rate_ns;
222 	u64		rate_bps;
223 	u16		rate_flags;
224 	s16		rate_overhead;
225 	u16		rate_mpu;
226 	u64		interval;
227 	u64		target;
228 
229 	/* resource tracking */
230 	u32		buffer_used;
231 	u32		buffer_max_used;
232 	u32		buffer_limit;
233 	u32		buffer_config_limit;
234 
235 	/* indices for dequeue */
236 	u16		cur_tin;
237 	u16		cur_flow;
238 
239 	struct qdisc_watchdog watchdog;
240 	const u8	*tin_index;
241 	const u8	*tin_order;
242 
243 	/* bandwidth capacity estimate */
244 	ktime_t		last_packet_time;
245 	ktime_t		avg_window_begin;
246 	u64		avg_packet_interval;
247 	u64		avg_window_bytes;
248 	u64		avg_peak_bandwidth;
249 	ktime_t		last_reconfig_time;
250 
251 	/* packet length stats */
252 	u32		avg_netoff;
253 	u16		max_netlen;
254 	u16		max_adjlen;
255 	u16		min_netlen;
256 	u16		min_adjlen;
257 };
258 
259 enum {
260 	CAKE_FLAG_OVERHEAD	   = BIT(0),
261 	CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
262 	CAKE_FLAG_INGRESS	   = BIT(2),
263 	CAKE_FLAG_WASH		   = BIT(3),
264 	CAKE_FLAG_SPLIT_GSO	   = BIT(4)
265 };
266 
267 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
268  * obtain the best features of each.  Codel is excellent on flows which
269  * respond to congestion signals in a TCP-like way.  BLUE is more effective on
270  * unresponsive flows.
271  */
272 
273 struct cobalt_skb_cb {
274 	ktime_t enqueue_time;
275 	u32     adjusted_len;
276 };
277 
278 static u64 us_to_ns(u64 us)
279 {
280 	return us * NSEC_PER_USEC;
281 }
282 
283 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
284 {
285 	qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
286 	return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
287 }
288 
289 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
290 {
291 	return get_cobalt_cb(skb)->enqueue_time;
292 }
293 
294 static void cobalt_set_enqueue_time(struct sk_buff *skb,
295 				    ktime_t now)
296 {
297 	get_cobalt_cb(skb)->enqueue_time = now;
298 }
299 
300 static u16 quantum_div[CAKE_QUEUES + 1] = {0};
301 
302 /* Diffserv lookup tables */
303 
304 static const u8 precedence[] = {
305 	0, 0, 0, 0, 0, 0, 0, 0,
306 	1, 1, 1, 1, 1, 1, 1, 1,
307 	2, 2, 2, 2, 2, 2, 2, 2,
308 	3, 3, 3, 3, 3, 3, 3, 3,
309 	4, 4, 4, 4, 4, 4, 4, 4,
310 	5, 5, 5, 5, 5, 5, 5, 5,
311 	6, 6, 6, 6, 6, 6, 6, 6,
312 	7, 7, 7, 7, 7, 7, 7, 7,
313 };
314 
315 static const u8 diffserv8[] = {
316 	2, 0, 1, 2, 4, 2, 2, 2,
317 	1, 2, 1, 2, 1, 2, 1, 2,
318 	5, 2, 4, 2, 4, 2, 4, 2,
319 	3, 2, 3, 2, 3, 2, 3, 2,
320 	6, 2, 3, 2, 3, 2, 3, 2,
321 	6, 2, 2, 2, 6, 2, 6, 2,
322 	7, 2, 2, 2, 2, 2, 2, 2,
323 	7, 2, 2, 2, 2, 2, 2, 2,
324 };
325 
326 static const u8 diffserv4[] = {
327 	0, 1, 0, 0, 2, 0, 0, 0,
328 	1, 0, 0, 0, 0, 0, 0, 0,
329 	2, 0, 2, 0, 2, 0, 2, 0,
330 	2, 0, 2, 0, 2, 0, 2, 0,
331 	3, 0, 2, 0, 2, 0, 2, 0,
332 	3, 0, 0, 0, 3, 0, 3, 0,
333 	3, 0, 0, 0, 0, 0, 0, 0,
334 	3, 0, 0, 0, 0, 0, 0, 0,
335 };
336 
337 static const u8 diffserv3[] = {
338 	0, 1, 0, 0, 2, 0, 0, 0,
339 	1, 0, 0, 0, 0, 0, 0, 0,
340 	0, 0, 0, 0, 0, 0, 0, 0,
341 	0, 0, 0, 0, 0, 0, 0, 0,
342 	0, 0, 0, 0, 0, 0, 0, 0,
343 	0, 0, 0, 0, 2, 0, 2, 0,
344 	2, 0, 0, 0, 0, 0, 0, 0,
345 	2, 0, 0, 0, 0, 0, 0, 0,
346 };
347 
348 static const u8 besteffort[] = {
349 	0, 0, 0, 0, 0, 0, 0, 0,
350 	0, 0, 0, 0, 0, 0, 0, 0,
351 	0, 0, 0, 0, 0, 0, 0, 0,
352 	0, 0, 0, 0, 0, 0, 0, 0,
353 	0, 0, 0, 0, 0, 0, 0, 0,
354 	0, 0, 0, 0, 0, 0, 0, 0,
355 	0, 0, 0, 0, 0, 0, 0, 0,
356 	0, 0, 0, 0, 0, 0, 0, 0,
357 };
358 
359 /* tin priority order for stats dumping */
360 
361 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
362 static const u8 bulk_order[] = {1, 0, 2, 3};
363 
364 /* There is a big difference in timing between the accurate values placed in the
365  * cache and the approximations given by a single Newton step for small count
366  * values, particularly when stepping from count 1 to 2 or vice versa. Hence,
367  * these values are calculated using eight Newton steps, using the
368  * implementation below. Above 16, a single Newton step gives sufficient
369  * accuracy in either direction, given the precision stored.
370  *
371  * The magnitude of the error when stepping up to count 2 is such as to give the
372  * value that *should* have been produced at count 4.
373  */
374 
375 #define REC_INV_SQRT_CACHE (16)
376 static const u32 inv_sqrt_cache[REC_INV_SQRT_CACHE] = {
377 		~0,         ~0, 3037000500, 2479700525,
378 	2147483647, 1920767767, 1753413056, 1623345051,
379 	1518500250, 1431655765, 1358187914, 1294981364,
380 	1239850263, 1191209601, 1147878294, 1108955788
381 };
382 
383 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
384  * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
385  *
386  * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
387  */
388 
389 static void cobalt_newton_step(struct cobalt_vars *vars)
390 {
391 	u32 invsqrt, invsqrt2;
392 	u64 val;
393 
394 	invsqrt = vars->rec_inv_sqrt;
395 	invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
396 	val = (3LL << 32) - ((u64)vars->count * invsqrt2);
397 
398 	val >>= 2; /* avoid overflow in following multiply */
399 	val = (val * invsqrt) >> (32 - 2 + 1);
400 
401 	vars->rec_inv_sqrt = val;
402 }
403 
404 static void cobalt_invsqrt(struct cobalt_vars *vars)
405 {
406 	if (vars->count < REC_INV_SQRT_CACHE)
407 		vars->rec_inv_sqrt = inv_sqrt_cache[vars->count];
408 	else
409 		cobalt_newton_step(vars);
410 }
411 
412 static void cobalt_vars_init(struct cobalt_vars *vars)
413 {
414 	memset(vars, 0, sizeof(*vars));
415 }
416 
417 /* CoDel control_law is t + interval/sqrt(count)
418  * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
419  * both sqrt() and divide operation.
420  */
421 static ktime_t cobalt_control(ktime_t t,
422 			      u64 interval,
423 			      u32 rec_inv_sqrt)
424 {
425 	return ktime_add_ns(t, reciprocal_scale(interval,
426 						rec_inv_sqrt));
427 }
428 
429 /* Call this when a packet had to be dropped due to queue overflow.  Returns
430  * true if the BLUE state was quiescent before but active after this call.
431  */
432 static bool cobalt_queue_full(struct cobalt_vars *vars,
433 			      struct cobalt_params *p,
434 			      ktime_t now)
435 {
436 	bool up = false;
437 
438 	if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
439 		up = !vars->p_drop;
440 		vars->p_drop += p->p_inc;
441 		if (vars->p_drop < p->p_inc)
442 			vars->p_drop = ~0;
443 		vars->blue_timer = now;
444 	}
445 	vars->dropping = true;
446 	vars->drop_next = now;
447 	if (!vars->count)
448 		vars->count = 1;
449 
450 	return up;
451 }
452 
453 /* Call this when the queue was serviced but turned out to be empty.  Returns
454  * true if the BLUE state was active before but quiescent after this call.
455  */
456 static bool cobalt_queue_empty(struct cobalt_vars *vars,
457 			       struct cobalt_params *p,
458 			       ktime_t now)
459 {
460 	bool down = false;
461 
462 	if (vars->p_drop &&
463 	    ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
464 		if (vars->p_drop < p->p_dec)
465 			vars->p_drop = 0;
466 		else
467 			vars->p_drop -= p->p_dec;
468 		vars->blue_timer = now;
469 		down = !vars->p_drop;
470 	}
471 	vars->dropping = false;
472 
473 	if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
474 		vars->count--;
475 		cobalt_invsqrt(vars);
476 		vars->drop_next = cobalt_control(vars->drop_next,
477 						 p->interval,
478 						 vars->rec_inv_sqrt);
479 	}
480 
481 	return down;
482 }
483 
484 /* Call this with a freshly dequeued packet for possible congestion marking.
485  * Returns true as an instruction to drop the packet, false for delivery.
486  */
487 static enum skb_drop_reason cobalt_should_drop(struct cobalt_vars *vars,
488 					       struct cobalt_params *p,
489 					       ktime_t now,
490 					       struct sk_buff *skb,
491 					       u32 bulk_flows)
492 {
493 	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
494 	bool next_due, over_target;
495 	ktime_t schedule;
496 	u64 sojourn;
497 
498 /* The 'schedule' variable records, in its sign, whether 'now' is before or
499  * after 'drop_next'.  This allows 'drop_next' to be updated before the next
500  * scheduling decision is actually branched, without destroying that
501  * information.  Similarly, the first 'schedule' value calculated is preserved
502  * in the boolean 'next_due'.
503  *
504  * As for 'drop_next', we take advantage of the fact that 'interval' is both
505  * the delay between first exceeding 'target' and the first signalling event,
506  * *and* the scaling factor for the signalling frequency.  It's therefore very
507  * natural to use a single mechanism for both purposes, and eliminates a
508  * significant amount of reference Codel's spaghetti code.  To help with this,
509  * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
510  * as possible to 1.0 in fixed-point.
511  */
512 
513 	sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
514 	schedule = ktime_sub(now, vars->drop_next);
515 	over_target = sojourn > p->target &&
516 		      sojourn > p->mtu_time * bulk_flows * 2 &&
517 		      sojourn > p->mtu_time * 4;
518 	next_due = vars->count && ktime_to_ns(schedule) >= 0;
519 
520 	vars->ecn_marked = false;
521 
522 	if (over_target) {
523 		if (!vars->dropping) {
524 			vars->dropping = true;
525 			vars->drop_next = cobalt_control(now,
526 							 p->interval,
527 							 vars->rec_inv_sqrt);
528 		}
529 		if (!vars->count)
530 			vars->count = 1;
531 	} else if (vars->dropping) {
532 		vars->dropping = false;
533 	}
534 
535 	if (next_due && vars->dropping) {
536 		/* Use ECN mark if possible, otherwise drop */
537 		if (!(vars->ecn_marked = INET_ECN_set_ce(skb)))
538 			reason = SKB_DROP_REASON_QDISC_CONGESTED;
539 
540 		vars->count++;
541 		if (!vars->count)
542 			vars->count--;
543 		cobalt_invsqrt(vars);
544 		vars->drop_next = cobalt_control(vars->drop_next,
545 						 p->interval,
546 						 vars->rec_inv_sqrt);
547 		schedule = ktime_sub(now, vars->drop_next);
548 	} else {
549 		while (next_due) {
550 			vars->count--;
551 			cobalt_invsqrt(vars);
552 			vars->drop_next = cobalt_control(vars->drop_next,
553 							 p->interval,
554 							 vars->rec_inv_sqrt);
555 			schedule = ktime_sub(now, vars->drop_next);
556 			next_due = vars->count && ktime_to_ns(schedule) >= 0;
557 		}
558 	}
559 
560 	/* Simple BLUE implementation.  Lack of ECN is deliberate. */
561 	if (vars->p_drop && reason == SKB_NOT_DROPPED_YET &&
562 	    get_random_u32() < vars->p_drop)
563 		reason = SKB_DROP_REASON_CAKE_FLOOD;
564 
565 	/* Overload the drop_next field as an activity timeout */
566 	if (!vars->count)
567 		vars->drop_next = ktime_add_ns(now, p->interval);
568 	else if (ktime_to_ns(schedule) > 0 && reason == SKB_NOT_DROPPED_YET)
569 		vars->drop_next = now;
570 
571 	return reason;
572 }
573 
574 static bool cake_update_flowkeys(struct flow_keys *keys,
575 				 const struct sk_buff *skb)
576 {
577 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
578 	struct nf_conntrack_tuple tuple = {};
579 	bool rev = !skb->_nfct, upd = false;
580 	__be32 ip;
581 
582 	if (skb_protocol(skb, true) != htons(ETH_P_IP))
583 		return false;
584 
585 	if (!nf_ct_get_tuple_skb(&tuple, skb))
586 		return false;
587 
588 	ip = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
589 	if (ip != keys->addrs.v4addrs.src) {
590 		keys->addrs.v4addrs.src = ip;
591 		upd = true;
592 	}
593 	ip = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
594 	if (ip != keys->addrs.v4addrs.dst) {
595 		keys->addrs.v4addrs.dst = ip;
596 		upd = true;
597 	}
598 
599 	if (keys->ports.ports) {
600 		__be16 port;
601 
602 		port = rev ? tuple.dst.u.all : tuple.src.u.all;
603 		if (port != keys->ports.src) {
604 			keys->ports.src = port;
605 			upd = true;
606 		}
607 		port = rev ? tuple.src.u.all : tuple.dst.u.all;
608 		if (port != keys->ports.dst) {
609 			port = keys->ports.dst;
610 			upd = true;
611 		}
612 	}
613 	return upd;
614 #else
615 	return false;
616 #endif
617 }
618 
619 /* Cake has several subtle multiple bit settings. In these cases you
620  *  would be matching triple isolate mode as well.
621  */
622 
623 static bool cake_dsrc(int flow_mode)
624 {
625 	return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
626 }
627 
628 static bool cake_ddst(int flow_mode)
629 {
630 	return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
631 }
632 
633 static void cake_dec_srchost_bulk_flow_count(struct cake_tin_data *q,
634 					     struct cake_flow *flow,
635 					     int flow_mode)
636 {
637 	if (likely(cake_dsrc(flow_mode) &&
638 		   q->hosts[flow->srchost].srchost_bulk_flow_count))
639 		q->hosts[flow->srchost].srchost_bulk_flow_count--;
640 }
641 
642 static void cake_inc_srchost_bulk_flow_count(struct cake_tin_data *q,
643 					     struct cake_flow *flow,
644 					     int flow_mode)
645 {
646 	if (likely(cake_dsrc(flow_mode) &&
647 		   q->hosts[flow->srchost].srchost_bulk_flow_count < CAKE_QUEUES))
648 		q->hosts[flow->srchost].srchost_bulk_flow_count++;
649 }
650 
651 static void cake_dec_dsthost_bulk_flow_count(struct cake_tin_data *q,
652 					     struct cake_flow *flow,
653 					     int flow_mode)
654 {
655 	if (likely(cake_ddst(flow_mode) &&
656 		   q->hosts[flow->dsthost].dsthost_bulk_flow_count))
657 		q->hosts[flow->dsthost].dsthost_bulk_flow_count--;
658 }
659 
660 static void cake_inc_dsthost_bulk_flow_count(struct cake_tin_data *q,
661 					     struct cake_flow *flow,
662 					     int flow_mode)
663 {
664 	if (likely(cake_ddst(flow_mode) &&
665 		   q->hosts[flow->dsthost].dsthost_bulk_flow_count < CAKE_QUEUES))
666 		q->hosts[flow->dsthost].dsthost_bulk_flow_count++;
667 }
668 
669 static u16 cake_get_flow_quantum(struct cake_tin_data *q,
670 				 struct cake_flow *flow,
671 				 int flow_mode)
672 {
673 	u16 host_load = 1;
674 
675 	if (cake_dsrc(flow_mode))
676 		host_load = max(host_load,
677 				q->hosts[flow->srchost].srchost_bulk_flow_count);
678 
679 	if (cake_ddst(flow_mode))
680 		host_load = max(host_load,
681 				q->hosts[flow->dsthost].dsthost_bulk_flow_count);
682 
683 	/* The get_random_u16() is a way to apply dithering to avoid
684 	 * accumulating roundoff errors
685 	 */
686 	return (q->flow_quantum * quantum_div[host_load] +
687 		get_random_u16()) >> 16;
688 }
689 
690 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
691 		     int flow_mode, u16 flow_override, u16 host_override)
692 {
693 	bool hash_flows = (!flow_override && !!(flow_mode & CAKE_FLOW_FLOWS));
694 	bool hash_hosts = (!host_override && !!(flow_mode & CAKE_FLOW_HOSTS));
695 	bool nat_enabled = !!(flow_mode & CAKE_FLOW_NAT_FLAG);
696 	u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
697 	u16 reduced_hash, srchost_idx, dsthost_idx;
698 	struct flow_keys keys, host_keys;
699 	bool use_skbhash = skb->l4_hash;
700 
701 	if (unlikely(flow_mode == CAKE_FLOW_NONE))
702 		return 0;
703 
704 	/* If both overrides are set, or we can use the SKB hash and nat mode is
705 	 * disabled, we can skip packet dissection entirely. If nat mode is
706 	 * enabled there's another check below after doing the conntrack lookup.
707 	 */
708 	if ((!hash_flows || (use_skbhash && !nat_enabled)) && !hash_hosts)
709 		goto skip_hash;
710 
711 	skb_flow_dissect_flow_keys(skb, &keys,
712 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
713 
714 	/* Don't use the SKB hash if we change the lookup keys from conntrack */
715 	if (nat_enabled && cake_update_flowkeys(&keys, skb))
716 		use_skbhash = false;
717 
718 	/* If we can still use the SKB hash and don't need the host hash, we can
719 	 * skip the rest of the hashing procedure
720 	 */
721 	if (use_skbhash && !hash_hosts)
722 		goto skip_hash;
723 
724 	/* flow_hash_from_keys() sorts the addresses by value, so we have
725 	 * to preserve their order in a separate data structure to treat
726 	 * src and dst host addresses as independently selectable.
727 	 */
728 	host_keys = keys;
729 	host_keys.ports.ports     = 0;
730 	host_keys.basic.ip_proto  = 0;
731 	host_keys.keyid.keyid     = 0;
732 	host_keys.tags.flow_label = 0;
733 
734 	switch (host_keys.control.addr_type) {
735 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
736 		host_keys.addrs.v4addrs.src = 0;
737 		dsthost_hash = flow_hash_from_keys(&host_keys);
738 		host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
739 		host_keys.addrs.v4addrs.dst = 0;
740 		srchost_hash = flow_hash_from_keys(&host_keys);
741 		break;
742 
743 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
744 		memset(&host_keys.addrs.v6addrs.src, 0,
745 		       sizeof(host_keys.addrs.v6addrs.src));
746 		dsthost_hash = flow_hash_from_keys(&host_keys);
747 		host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
748 		memset(&host_keys.addrs.v6addrs.dst, 0,
749 		       sizeof(host_keys.addrs.v6addrs.dst));
750 		srchost_hash = flow_hash_from_keys(&host_keys);
751 		break;
752 
753 	default:
754 		dsthost_hash = 0;
755 		srchost_hash = 0;
756 	}
757 
758 	/* This *must* be after the above switch, since as a
759 	 * side-effect it sorts the src and dst addresses.
760 	 */
761 	if (hash_flows && !use_skbhash)
762 		flow_hash = flow_hash_from_keys(&keys);
763 
764 skip_hash:
765 	if (flow_override)
766 		flow_hash = flow_override - 1;
767 	else if (use_skbhash && (flow_mode & CAKE_FLOW_FLOWS))
768 		flow_hash = skb->hash;
769 	if (host_override) {
770 		dsthost_hash = host_override - 1;
771 		srchost_hash = host_override - 1;
772 	}
773 
774 	if (!(flow_mode & CAKE_FLOW_FLOWS)) {
775 		if (flow_mode & CAKE_FLOW_SRC_IP)
776 			flow_hash ^= srchost_hash;
777 
778 		if (flow_mode & CAKE_FLOW_DST_IP)
779 			flow_hash ^= dsthost_hash;
780 	}
781 
782 	reduced_hash = flow_hash % CAKE_QUEUES;
783 
784 	/* set-associative hashing */
785 	/* fast path if no hash collision (direct lookup succeeds) */
786 	if (likely(q->tags[reduced_hash] == flow_hash &&
787 		   q->flows[reduced_hash].set)) {
788 		q->way_directs++;
789 	} else {
790 		u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
791 		u32 outer_hash = reduced_hash - inner_hash;
792 		bool allocate_src = false;
793 		bool allocate_dst = false;
794 		u32 i, k;
795 
796 		/* check if any active queue in the set is reserved for
797 		 * this flow.
798 		 */
799 		for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
800 		     i++, k = (k + 1) % CAKE_SET_WAYS) {
801 			if (q->tags[outer_hash + k] == flow_hash) {
802 				if (i)
803 					q->way_hits++;
804 
805 				if (!q->flows[outer_hash + k].set) {
806 					/* need to increment host refcnts */
807 					allocate_src = cake_dsrc(flow_mode);
808 					allocate_dst = cake_ddst(flow_mode);
809 				}
810 
811 				goto found;
812 			}
813 		}
814 
815 		/* no queue is reserved for this flow, look for an
816 		 * empty one.
817 		 */
818 		for (i = 0; i < CAKE_SET_WAYS;
819 			 i++, k = (k + 1) % CAKE_SET_WAYS) {
820 			if (!q->flows[outer_hash + k].set) {
821 				q->way_misses++;
822 				allocate_src = cake_dsrc(flow_mode);
823 				allocate_dst = cake_ddst(flow_mode);
824 				goto found;
825 			}
826 		}
827 
828 		/* With no empty queues, default to the original
829 		 * queue, accept the collision, update the host tags.
830 		 */
831 		q->way_collisions++;
832 		allocate_src = cake_dsrc(flow_mode);
833 		allocate_dst = cake_ddst(flow_mode);
834 
835 		if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
836 			cake_dec_srchost_bulk_flow_count(q, &q->flows[outer_hash + k], flow_mode);
837 			cake_dec_dsthost_bulk_flow_count(q, &q->flows[outer_hash + k], flow_mode);
838 		}
839 found:
840 		/* reserve queue for future packets in same flow */
841 		reduced_hash = outer_hash + k;
842 		q->tags[reduced_hash] = flow_hash;
843 
844 		if (allocate_src) {
845 			srchost_idx = srchost_hash % CAKE_QUEUES;
846 			inner_hash = srchost_idx % CAKE_SET_WAYS;
847 			outer_hash = srchost_idx - inner_hash;
848 			for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
849 				i++, k = (k + 1) % CAKE_SET_WAYS) {
850 				if (q->hosts[outer_hash + k].srchost_tag ==
851 				    srchost_hash)
852 					goto found_src;
853 			}
854 			for (i = 0; i < CAKE_SET_WAYS;
855 				i++, k = (k + 1) % CAKE_SET_WAYS) {
856 				if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
857 					break;
858 			}
859 			q->hosts[outer_hash + k].srchost_tag = srchost_hash;
860 found_src:
861 			srchost_idx = outer_hash + k;
862 			q->flows[reduced_hash].srchost = srchost_idx;
863 
864 			if (q->flows[reduced_hash].set == CAKE_SET_BULK)
865 				cake_inc_srchost_bulk_flow_count(q, &q->flows[reduced_hash], flow_mode);
866 		}
867 
868 		if (allocate_dst) {
869 			dsthost_idx = dsthost_hash % CAKE_QUEUES;
870 			inner_hash = dsthost_idx % CAKE_SET_WAYS;
871 			outer_hash = dsthost_idx - inner_hash;
872 			for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
873 			     i++, k = (k + 1) % CAKE_SET_WAYS) {
874 				if (q->hosts[outer_hash + k].dsthost_tag ==
875 				    dsthost_hash)
876 					goto found_dst;
877 			}
878 			for (i = 0; i < CAKE_SET_WAYS;
879 			     i++, k = (k + 1) % CAKE_SET_WAYS) {
880 				if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
881 					break;
882 			}
883 			q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
884 found_dst:
885 			dsthost_idx = outer_hash + k;
886 			q->flows[reduced_hash].dsthost = dsthost_idx;
887 
888 			if (q->flows[reduced_hash].set == CAKE_SET_BULK)
889 				cake_inc_dsthost_bulk_flow_count(q, &q->flows[reduced_hash], flow_mode);
890 		}
891 	}
892 
893 	return reduced_hash;
894 }
895 
896 /* helper functions : might be changed when/if skb use a standard list_head */
897 /* remove one skb from head of slot queue */
898 
899 static struct sk_buff *dequeue_head(struct cake_flow *flow)
900 {
901 	struct sk_buff *skb = flow->head;
902 
903 	if (skb) {
904 		flow->head = skb->next;
905 		skb_mark_not_on_list(skb);
906 	}
907 
908 	return skb;
909 }
910 
911 /* add skb to flow queue (tail add) */
912 
913 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
914 {
915 	if (!flow->head)
916 		flow->head = skb;
917 	else
918 		flow->tail->next = skb;
919 	flow->tail = skb;
920 	skb->next = NULL;
921 }
922 
923 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
924 				    struct ipv6hdr *buf)
925 {
926 	unsigned int offset = skb_network_offset(skb);
927 	struct iphdr *iph;
928 
929 	iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
930 
931 	if (!iph)
932 		return NULL;
933 
934 	if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
935 		return skb_header_pointer(skb, offset + iph->ihl * 4,
936 					  sizeof(struct ipv6hdr), buf);
937 
938 	else if (iph->version == 4)
939 		return iph;
940 
941 	else if (iph->version == 6)
942 		return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
943 					  buf);
944 
945 	return NULL;
946 }
947 
948 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
949 				      void *buf, unsigned int bufsize)
950 {
951 	unsigned int offset = skb_network_offset(skb);
952 	const struct ipv6hdr *ipv6h;
953 	const struct tcphdr *tcph;
954 	const struct iphdr *iph;
955 	struct ipv6hdr _ipv6h;
956 	struct tcphdr _tcph;
957 
958 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
959 
960 	if (!ipv6h)
961 		return NULL;
962 
963 	if (ipv6h->version == 4) {
964 		iph = (struct iphdr *)ipv6h;
965 		offset += iph->ihl * 4;
966 
967 		/* special-case 6in4 tunnelling, as that is a common way to get
968 		 * v6 connectivity in the home
969 		 */
970 		if (iph->protocol == IPPROTO_IPV6) {
971 			ipv6h = skb_header_pointer(skb, offset,
972 						   sizeof(_ipv6h), &_ipv6h);
973 
974 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
975 				return NULL;
976 
977 			offset += sizeof(struct ipv6hdr);
978 
979 		} else if (iph->protocol != IPPROTO_TCP) {
980 			return NULL;
981 		}
982 
983 	} else if (ipv6h->version == 6) {
984 		if (ipv6h->nexthdr != IPPROTO_TCP)
985 			return NULL;
986 
987 		offset += sizeof(struct ipv6hdr);
988 	} else {
989 		return NULL;
990 	}
991 
992 	tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
993 	if (!tcph || tcph->doff < 5)
994 		return NULL;
995 
996 	return skb_header_pointer(skb, offset,
997 				  min(__tcp_hdrlen(tcph), bufsize), buf);
998 }
999 
1000 static const void *cake_get_tcpopt(const struct tcphdr *tcph,
1001 				   int code, int *oplen)
1002 {
1003 	/* inspired by tcp_parse_options in tcp_input.c */
1004 	int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1005 	const u8 *ptr = (const u8 *)(tcph + 1);
1006 
1007 	while (length > 0) {
1008 		int opcode = *ptr++;
1009 		int opsize;
1010 
1011 		if (opcode == TCPOPT_EOL)
1012 			break;
1013 		if (opcode == TCPOPT_NOP) {
1014 			length--;
1015 			continue;
1016 		}
1017 		if (length < 2)
1018 			break;
1019 		opsize = *ptr++;
1020 		if (opsize < 2 || opsize > length)
1021 			break;
1022 
1023 		if (opcode == code) {
1024 			*oplen = opsize;
1025 			return ptr;
1026 		}
1027 
1028 		ptr += opsize - 2;
1029 		length -= opsize;
1030 	}
1031 
1032 	return NULL;
1033 }
1034 
1035 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
1036  * bytes than the other. In the case where both sequences ACKs bytes that the
1037  * other doesn't, A is considered greater. DSACKs in A also makes A be
1038  * considered greater.
1039  *
1040  * @return -1, 0 or 1 as normal compare functions
1041  */
1042 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
1043 				  const struct tcphdr *tcph_b)
1044 {
1045 	const struct tcp_sack_block_wire *sack_a, *sack_b;
1046 	u32 ack_seq_a = ntohl(tcph_a->ack_seq);
1047 	u32 bytes_a = 0, bytes_b = 0;
1048 	int oplen_a, oplen_b;
1049 	bool first = true;
1050 
1051 	sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
1052 	sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
1053 
1054 	/* pointers point to option contents */
1055 	oplen_a -= TCPOLEN_SACK_BASE;
1056 	oplen_b -= TCPOLEN_SACK_BASE;
1057 
1058 	if (sack_a && oplen_a >= sizeof(*sack_a) &&
1059 	    (!sack_b || oplen_b < sizeof(*sack_b)))
1060 		return -1;
1061 	else if (sack_b && oplen_b >= sizeof(*sack_b) &&
1062 		 (!sack_a || oplen_a < sizeof(*sack_a)))
1063 		return 1;
1064 	else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
1065 		 (!sack_b || oplen_b < sizeof(*sack_b)))
1066 		return 0;
1067 
1068 	while (oplen_a >= sizeof(*sack_a)) {
1069 		const struct tcp_sack_block_wire *sack_tmp = sack_b;
1070 		u32 start_a = get_unaligned_be32(&sack_a->start_seq);
1071 		u32 end_a = get_unaligned_be32(&sack_a->end_seq);
1072 		int oplen_tmp = oplen_b;
1073 		bool found = false;
1074 
1075 		/* DSACK; always considered greater to prevent dropping */
1076 		if (before(start_a, ack_seq_a))
1077 			return -1;
1078 
1079 		bytes_a += end_a - start_a;
1080 
1081 		while (oplen_tmp >= sizeof(*sack_tmp)) {
1082 			u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
1083 			u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
1084 
1085 			/* first time through we count the total size */
1086 			if (first)
1087 				bytes_b += end_b - start_b;
1088 
1089 			if (!after(start_b, start_a) && !before(end_b, end_a)) {
1090 				found = true;
1091 				if (!first)
1092 					break;
1093 			}
1094 			oplen_tmp -= sizeof(*sack_tmp);
1095 			sack_tmp++;
1096 		}
1097 
1098 		if (!found)
1099 			return -1;
1100 
1101 		oplen_a -= sizeof(*sack_a);
1102 		sack_a++;
1103 		first = false;
1104 	}
1105 
1106 	/* If we made it this far, all ranges SACKed by A are covered by B, so
1107 	 * either the SACKs are equal, or B SACKs more bytes.
1108 	 */
1109 	return bytes_b > bytes_a ? 1 : 0;
1110 }
1111 
1112 static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1113 				 u32 *tsval, u32 *tsecr)
1114 {
1115 	const u8 *ptr;
1116 	int opsize;
1117 
1118 	ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1119 
1120 	if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1121 		*tsval = get_unaligned_be32(ptr);
1122 		*tsecr = get_unaligned_be32(ptr + 4);
1123 	}
1124 }
1125 
1126 static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1127 			       u32 tstamp_new, u32 tsecr_new)
1128 {
1129 	/* inspired by tcp_parse_options in tcp_input.c */
1130 	int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1131 	const u8 *ptr = (const u8 *)(tcph + 1);
1132 	u32 tstamp, tsecr;
1133 
1134 	/* 3 reserved flags must be unset to avoid future breakage
1135 	 * ACK must be set
1136 	 * ECE/CWR are handled separately
1137 	 * All other flags URG/PSH/RST/SYN/FIN must be unset
1138 	 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1139 	 * 0x00C00000 = CWR/ECE (handled separately)
1140 	 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1141 	 */
1142 	if (((tcp_flag_word(tcph) &
1143 	      cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1144 		return false;
1145 
1146 	while (length > 0) {
1147 		int opcode = *ptr++;
1148 		int opsize;
1149 
1150 		if (opcode == TCPOPT_EOL)
1151 			break;
1152 		if (opcode == TCPOPT_NOP) {
1153 			length--;
1154 			continue;
1155 		}
1156 		if (length < 2)
1157 			break;
1158 		opsize = *ptr++;
1159 		if (opsize < 2 || opsize > length)
1160 			break;
1161 
1162 		switch (opcode) {
1163 		case TCPOPT_MD5SIG: /* doesn't influence state */
1164 			break;
1165 
1166 		case TCPOPT_SACK: /* stricter checking performed later */
1167 			if (opsize % 8 != 2)
1168 				return false;
1169 			break;
1170 
1171 		case TCPOPT_TIMESTAMP:
1172 			/* only drop timestamps lower than new */
1173 			if (opsize != TCPOLEN_TIMESTAMP)
1174 				return false;
1175 			tstamp = get_unaligned_be32(ptr);
1176 			tsecr = get_unaligned_be32(ptr + 4);
1177 			if (after(tstamp, tstamp_new) ||
1178 			    after(tsecr, tsecr_new))
1179 				return false;
1180 			break;
1181 
1182 		case TCPOPT_MSS:  /* these should only be set on SYN */
1183 		case TCPOPT_WINDOW:
1184 		case TCPOPT_SACK_PERM:
1185 		case TCPOPT_FASTOPEN:
1186 		case TCPOPT_EXP:
1187 		default: /* don't drop if any unknown options are present */
1188 			return false;
1189 		}
1190 
1191 		ptr += opsize - 2;
1192 		length -= opsize;
1193 	}
1194 
1195 	return true;
1196 }
1197 
1198 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1199 				       struct cake_flow *flow)
1200 {
1201 	bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1202 	struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1203 	struct sk_buff *skb_check, *skb_prev = NULL;
1204 	const struct ipv6hdr *ipv6h, *ipv6h_check;
1205 	unsigned char _tcph[64], _tcph_check[64];
1206 	const struct tcphdr *tcph, *tcph_check;
1207 	const struct iphdr *iph, *iph_check;
1208 	struct ipv6hdr _iph, _iph_check;
1209 	const struct sk_buff *skb;
1210 	int seglen, num_found = 0;
1211 	u32 tstamp = 0, tsecr = 0;
1212 	__be32 elig_flags = 0;
1213 	int sack_comp;
1214 
1215 	/* no other possible ACKs to filter */
1216 	if (flow->head == flow->tail)
1217 		return NULL;
1218 
1219 	skb = flow->tail;
1220 	tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1221 	iph = cake_get_iphdr(skb, &_iph);
1222 	if (!tcph)
1223 		return NULL;
1224 
1225 	cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1226 
1227 	/* the 'triggering' packet need only have the ACK flag set.
1228 	 * also check that SYN is not set, as there won't be any previous ACKs.
1229 	 */
1230 	if ((tcp_flag_word(tcph) &
1231 	     (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1232 		return NULL;
1233 
1234 	/* the 'triggering' ACK is at the tail of the queue, we have already
1235 	 * returned if it is the only packet in the flow. loop through the rest
1236 	 * of the queue looking for pure ACKs with the same 5-tuple as the
1237 	 * triggering one.
1238 	 */
1239 	for (skb_check = flow->head;
1240 	     skb_check && skb_check != skb;
1241 	     skb_prev = skb_check, skb_check = skb_check->next) {
1242 		iph_check = cake_get_iphdr(skb_check, &_iph_check);
1243 		tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1244 					     sizeof(_tcph_check));
1245 
1246 		/* only TCP packets with matching 5-tuple are eligible, and only
1247 		 * drop safe headers
1248 		 */
1249 		if (!tcph_check || iph->version != iph_check->version ||
1250 		    tcph_check->source != tcph->source ||
1251 		    tcph_check->dest != tcph->dest)
1252 			continue;
1253 
1254 		if (iph_check->version == 4) {
1255 			if (iph_check->saddr != iph->saddr ||
1256 			    iph_check->daddr != iph->daddr)
1257 				continue;
1258 
1259 			seglen = iph_totlen(skb, iph_check) -
1260 				       (4 * iph_check->ihl);
1261 		} else if (iph_check->version == 6) {
1262 			ipv6h = (struct ipv6hdr *)iph;
1263 			ipv6h_check = (struct ipv6hdr *)iph_check;
1264 
1265 			if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1266 			    ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1267 				continue;
1268 
1269 			seglen = ntohs(ipv6h_check->payload_len);
1270 		} else {
1271 			WARN_ON(1);  /* shouldn't happen */
1272 			continue;
1273 		}
1274 
1275 		/* If the ECE/CWR flags changed from the previous eligible
1276 		 * packet in the same flow, we should no longer be dropping that
1277 		 * previous packet as this would lose information.
1278 		 */
1279 		if (elig_ack && (tcp_flag_word(tcph_check) &
1280 				 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1281 			elig_ack = NULL;
1282 			elig_ack_prev = NULL;
1283 			num_found--;
1284 		}
1285 
1286 		/* Check TCP options and flags, don't drop ACKs with segment
1287 		 * data, and don't drop ACKs with a higher cumulative ACK
1288 		 * counter than the triggering packet. Check ACK seqno here to
1289 		 * avoid parsing SACK options of packets we are going to exclude
1290 		 * anyway.
1291 		 */
1292 		if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1293 		    (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1294 		    after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1295 			continue;
1296 
1297 		/* Check SACK options. The triggering packet must SACK more data
1298 		 * than the ACK under consideration, or SACK the same range but
1299 		 * have a larger cumulative ACK counter. The latter is a
1300 		 * pathological case, but is contained in the following check
1301 		 * anyway, just to be safe.
1302 		 */
1303 		sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1304 
1305 		if (sack_comp < 0 ||
1306 		    (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1307 		     sack_comp == 0))
1308 			continue;
1309 
1310 		/* At this point we have found an eligible pure ACK to drop; if
1311 		 * we are in aggressive mode, we are done. Otherwise, keep
1312 		 * searching unless this is the second eligible ACK we
1313 		 * found.
1314 		 *
1315 		 * Since we want to drop ACK closest to the head of the queue,
1316 		 * save the first eligible ACK we find, even if we need to loop
1317 		 * again.
1318 		 */
1319 		if (!elig_ack) {
1320 			elig_ack = skb_check;
1321 			elig_ack_prev = skb_prev;
1322 			elig_flags = (tcp_flag_word(tcph_check)
1323 				      & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1324 		}
1325 
1326 		if (num_found++ > 0)
1327 			goto found;
1328 	}
1329 
1330 	/* We made it through the queue without finding two eligible ACKs . If
1331 	 * we found a single eligible ACK we can drop it in aggressive mode if
1332 	 * we can guarantee that this does not interfere with ECN flag
1333 	 * information. We ensure this by dropping it only if the enqueued
1334 	 * packet is consecutive with the eligible ACK, and their flags match.
1335 	 */
1336 	if (elig_ack && aggressive && elig_ack->next == skb &&
1337 	    (elig_flags == (tcp_flag_word(tcph) &
1338 			    (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1339 		goto found;
1340 
1341 	return NULL;
1342 
1343 found:
1344 	if (elig_ack_prev)
1345 		elig_ack_prev->next = elig_ack->next;
1346 	else
1347 		flow->head = elig_ack->next;
1348 
1349 	skb_mark_not_on_list(elig_ack);
1350 
1351 	return elig_ack;
1352 }
1353 
1354 static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1355 {
1356 	avg -= avg >> shift;
1357 	avg += sample >> shift;
1358 	return avg;
1359 }
1360 
1361 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1362 {
1363 	if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1364 		len -= off;
1365 
1366 	if (q->max_netlen < len)
1367 		q->max_netlen = len;
1368 	if (q->min_netlen > len)
1369 		q->min_netlen = len;
1370 
1371 	len += q->rate_overhead;
1372 
1373 	if (len < q->rate_mpu)
1374 		len = q->rate_mpu;
1375 
1376 	if (q->atm_mode == CAKE_ATM_ATM) {
1377 		len += 47;
1378 		len /= 48;
1379 		len *= 53;
1380 	} else if (q->atm_mode == CAKE_ATM_PTM) {
1381 		/* Add one byte per 64 bytes or part thereof.
1382 		 * This is conservative and easier to calculate than the
1383 		 * precise value.
1384 		 */
1385 		len += (len + 63) / 64;
1386 	}
1387 
1388 	if (q->max_adjlen < len)
1389 		q->max_adjlen = len;
1390 	if (q->min_adjlen > len)
1391 		q->min_adjlen = len;
1392 
1393 	return len;
1394 }
1395 
1396 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1397 {
1398 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
1399 	unsigned int hdr_len, last_len = 0;
1400 	u32 off = skb_network_offset(skb);
1401 	u16 segs = qdisc_pkt_segs(skb);
1402 	u32 len = qdisc_pkt_len(skb);
1403 
1404 	q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1405 
1406 	if (segs == 1)
1407 		return cake_calc_overhead(q, len, off);
1408 
1409 	/* borrowed from qdisc_pkt_len_segs_init() */
1410 	if (!skb->encapsulation)
1411 		hdr_len = skb_transport_offset(skb);
1412 	else
1413 		hdr_len = skb_inner_transport_offset(skb);
1414 
1415 	/* + transport layer */
1416 	if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1417 						SKB_GSO_TCPV6))) {
1418 		const struct tcphdr *th;
1419 		struct tcphdr _tcphdr;
1420 
1421 		th = skb_header_pointer(skb, hdr_len,
1422 					sizeof(_tcphdr), &_tcphdr);
1423 		if (likely(th))
1424 			hdr_len += __tcp_hdrlen(th);
1425 	} else {
1426 		struct udphdr _udphdr;
1427 
1428 		if (skb_header_pointer(skb, hdr_len,
1429 				       sizeof(_udphdr), &_udphdr))
1430 			hdr_len += sizeof(struct udphdr);
1431 	}
1432 
1433 	len = shinfo->gso_size + hdr_len;
1434 	last_len = skb->len - shinfo->gso_size * (segs - 1);
1435 
1436 	return (cake_calc_overhead(q, len, off) * (segs - 1) +
1437 		cake_calc_overhead(q, last_len, off));
1438 }
1439 
1440 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1441 {
1442 	struct cake_heap_entry ii = q->overflow_heap[i];
1443 	struct cake_heap_entry jj = q->overflow_heap[j];
1444 
1445 	q->overflow_heap[i] = jj;
1446 	q->overflow_heap[j] = ii;
1447 
1448 	q->tins[ii.t].overflow_idx[ii.b] = j;
1449 	q->tins[jj.t].overflow_idx[jj.b] = i;
1450 }
1451 
1452 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1453 {
1454 	struct cake_heap_entry ii = q->overflow_heap[i];
1455 
1456 	return q->tins[ii.t].backlogs[ii.b];
1457 }
1458 
1459 static void cake_heapify(struct cake_sched_data *q, u16 i)
1460 {
1461 	static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1462 	u32 mb = cake_heap_get_backlog(q, i);
1463 	u32 m = i;
1464 
1465 	while (m < a) {
1466 		u32 l = m + m + 1;
1467 		u32 r = l + 1;
1468 
1469 		if (l < a) {
1470 			u32 lb = cake_heap_get_backlog(q, l);
1471 
1472 			if (lb > mb) {
1473 				m  = l;
1474 				mb = lb;
1475 			}
1476 		}
1477 
1478 		if (r < a) {
1479 			u32 rb = cake_heap_get_backlog(q, r);
1480 
1481 			if (rb > mb) {
1482 				m  = r;
1483 				mb = rb;
1484 			}
1485 		}
1486 
1487 		if (m != i) {
1488 			cake_heap_swap(q, i, m);
1489 			i = m;
1490 		} else {
1491 			break;
1492 		}
1493 	}
1494 }
1495 
1496 static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1497 {
1498 	while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1499 		u16 p = (i - 1) >> 1;
1500 		u32 ib = cake_heap_get_backlog(q, i);
1501 		u32 pb = cake_heap_get_backlog(q, p);
1502 
1503 		if (ib > pb) {
1504 			cake_heap_swap(q, i, p);
1505 			i = p;
1506 		} else {
1507 			break;
1508 		}
1509 	}
1510 }
1511 
1512 static int cake_advance_shaper(struct cake_sched_data *q,
1513 			       struct cake_tin_data *b,
1514 			       struct sk_buff *skb,
1515 			       ktime_t now, bool drop)
1516 {
1517 	u32 len = get_cobalt_cb(skb)->adjusted_len;
1518 
1519 	/* charge packet bandwidth to this tin
1520 	 * and to the global shaper.
1521 	 */
1522 	if (q->rate_ns) {
1523 		u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1524 		u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1525 		u64 failsafe_dur = global_dur + (global_dur >> 1);
1526 
1527 		if (ktime_before(b->time_next_packet, now))
1528 			b->time_next_packet = ktime_add_ns(b->time_next_packet,
1529 							   tin_dur);
1530 
1531 		else if (ktime_before(b->time_next_packet,
1532 				      ktime_add_ns(now, tin_dur)))
1533 			b->time_next_packet = ktime_add_ns(now, tin_dur);
1534 
1535 		q->time_next_packet = ktime_add_ns(q->time_next_packet,
1536 						   global_dur);
1537 		if (!drop)
1538 			q->failsafe_next_packet = \
1539 				ktime_add_ns(q->failsafe_next_packet,
1540 					     failsafe_dur);
1541 	}
1542 	return len;
1543 }
1544 
1545 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1546 {
1547 	struct cake_sched_data *q = qdisc_priv(sch);
1548 	ktime_t now = ktime_get();
1549 	u32 idx = 0, tin = 0, len;
1550 	struct cake_heap_entry qq;
1551 	struct cake_tin_data *b;
1552 	struct cake_flow *flow;
1553 	struct sk_buff *skb;
1554 
1555 	if (!q->overflow_timeout) {
1556 		int i;
1557 		/* Build fresh max-heap */
1558 		for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2 - 1; i >= 0; i--)
1559 			cake_heapify(q, i);
1560 	}
1561 	q->overflow_timeout = 65535;
1562 
1563 	/* select longest queue for pruning */
1564 	qq  = q->overflow_heap[0];
1565 	tin = qq.t;
1566 	idx = qq.b;
1567 
1568 	b = &q->tins[tin];
1569 	flow = &b->flows[idx];
1570 	skb = dequeue_head(flow);
1571 	if (unlikely(!skb)) {
1572 		/* heap has gone wrong, rebuild it next time */
1573 		q->overflow_timeout = 0;
1574 		return idx + (tin << 16);
1575 	}
1576 
1577 	if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1578 		b->unresponsive_flow_count++;
1579 
1580 	len = qdisc_pkt_len(skb);
1581 	q->buffer_used      -= skb->truesize;
1582 	b->backlogs[idx]    -= len;
1583 	b->tin_backlog      -= len;
1584 	sch->qstats.backlog -= len;
1585 
1586 	flow->dropped++;
1587 	b->tin_dropped++;
1588 
1589 	if (q->rate_flags & CAKE_FLAG_INGRESS)
1590 		cake_advance_shaper(q, b, skb, now, true);
1591 
1592 	qdisc_drop_reason(skb, sch, to_free, SKB_DROP_REASON_QDISC_OVERLIMIT);
1593 	sch->q.qlen--;
1594 	qdisc_tree_reduce_backlog(sch, 1, len);
1595 
1596 	cake_heapify(q, 0);
1597 
1598 	return idx + (tin << 16);
1599 }
1600 
1601 static u8 cake_handle_diffserv(struct sk_buff *skb, bool wash)
1602 {
1603 	const int offset = skb_network_offset(skb);
1604 	u16 *buf, buf_;
1605 	u8 dscp;
1606 
1607 	switch (skb_protocol(skb, true)) {
1608 	case htons(ETH_P_IP):
1609 		buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1610 		if (unlikely(!buf))
1611 			return 0;
1612 
1613 		/* ToS is in the second byte of iphdr */
1614 		dscp = ipv4_get_dsfield((struct iphdr *)buf) >> 2;
1615 
1616 		if (wash && dscp) {
1617 			const int wlen = offset + sizeof(struct iphdr);
1618 
1619 			if (!pskb_may_pull(skb, wlen) ||
1620 			    skb_try_make_writable(skb, wlen))
1621 				return 0;
1622 
1623 			ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1624 		}
1625 
1626 		return dscp;
1627 
1628 	case htons(ETH_P_IPV6):
1629 		buf = skb_header_pointer(skb, offset, sizeof(buf_), &buf_);
1630 		if (unlikely(!buf))
1631 			return 0;
1632 
1633 		/* Traffic class is in the first and second bytes of ipv6hdr */
1634 		dscp = ipv6_get_dsfield((struct ipv6hdr *)buf) >> 2;
1635 
1636 		if (wash && dscp) {
1637 			const int wlen = offset + sizeof(struct ipv6hdr);
1638 
1639 			if (!pskb_may_pull(skb, wlen) ||
1640 			    skb_try_make_writable(skb, wlen))
1641 				return 0;
1642 
1643 			ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1644 		}
1645 
1646 		return dscp;
1647 
1648 	case htons(ETH_P_ARP):
1649 		return 0x38;  /* CS7 - Net Control */
1650 
1651 	default:
1652 		/* If there is no Diffserv field, treat as best-effort */
1653 		return 0;
1654 	}
1655 }
1656 
1657 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1658 					     struct sk_buff *skb)
1659 {
1660 	struct cake_sched_data *q = qdisc_priv(sch);
1661 	u32 tin, mark;
1662 	bool wash;
1663 	u8 dscp;
1664 
1665 	/* Tin selection: Default to diffserv-based selection, allow overriding
1666 	 * using firewall marks or skb->priority. Call DSCP parsing early if
1667 	 * wash is enabled, otherwise defer to below to skip unneeded parsing.
1668 	 */
1669 	mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
1670 	wash = !!(q->rate_flags & CAKE_FLAG_WASH);
1671 	if (wash)
1672 		dscp = cake_handle_diffserv(skb, wash);
1673 
1674 	if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
1675 		tin = 0;
1676 
1677 	else if (mark && mark <= q->tin_cnt)
1678 		tin = q->tin_order[mark - 1];
1679 
1680 	else if (TC_H_MAJ(skb->priority) == sch->handle &&
1681 		 TC_H_MIN(skb->priority) > 0 &&
1682 		 TC_H_MIN(skb->priority) <= q->tin_cnt)
1683 		tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1684 
1685 	else {
1686 		if (!wash)
1687 			dscp = cake_handle_diffserv(skb, wash);
1688 		tin = q->tin_index[dscp];
1689 
1690 		if (unlikely(tin >= q->tin_cnt))
1691 			tin = 0;
1692 	}
1693 
1694 	return &q->tins[tin];
1695 }
1696 
1697 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
1698 			 struct sk_buff *skb, int flow_mode, int *qerr)
1699 {
1700 	struct cake_sched_data *q = qdisc_priv(sch);
1701 	struct tcf_proto *filter;
1702 	struct tcf_result res;
1703 	u16 flow = 0, host = 0;
1704 	int result;
1705 
1706 	filter = rcu_dereference_bh(q->filter_list);
1707 	if (!filter)
1708 		goto hash;
1709 
1710 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1711 	result = tcf_classify(skb, NULL, filter, &res, false);
1712 
1713 	if (result >= 0) {
1714 #ifdef CONFIG_NET_CLS_ACT
1715 		switch (result) {
1716 		case TC_ACT_STOLEN:
1717 		case TC_ACT_QUEUED:
1718 		case TC_ACT_TRAP:
1719 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1720 			fallthrough;
1721 		case TC_ACT_SHOT:
1722 			return 0;
1723 		}
1724 #endif
1725 		if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
1726 			flow = TC_H_MIN(res.classid);
1727 		if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1728 			host = TC_H_MAJ(res.classid) >> 16;
1729 	}
1730 hash:
1731 	*t = cake_select_tin(sch, skb);
1732 	return cake_hash(*t, skb, flow_mode, flow, host) + 1;
1733 }
1734 
1735 static void cake_reconfigure(struct Qdisc *sch);
1736 
1737 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1738 			struct sk_buff **to_free)
1739 {
1740 	struct cake_sched_data *q = qdisc_priv(sch);
1741 	int len = qdisc_pkt_len(skb);
1742 	int ret;
1743 	struct sk_buff *ack = NULL;
1744 	ktime_t now = ktime_get();
1745 	struct cake_tin_data *b;
1746 	struct cake_flow *flow;
1747 	u32 idx, tin;
1748 
1749 	/* choose flow to insert into */
1750 	idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
1751 	if (idx == 0) {
1752 		if (ret & __NET_XMIT_BYPASS)
1753 			qdisc_qstats_drop(sch);
1754 		__qdisc_drop(skb, to_free);
1755 		return ret;
1756 	}
1757 	tin = (u32)(b - q->tins);
1758 	idx--;
1759 	flow = &b->flows[idx];
1760 
1761 	/* ensure shaper state isn't stale */
1762 	if (!b->tin_backlog) {
1763 		if (ktime_before(b->time_next_packet, now))
1764 			b->time_next_packet = now;
1765 
1766 		if (!sch->q.qlen) {
1767 			if (ktime_before(q->time_next_packet, now)) {
1768 				q->failsafe_next_packet = now;
1769 				q->time_next_packet = now;
1770 			} else if (ktime_after(q->time_next_packet, now) &&
1771 				   ktime_after(q->failsafe_next_packet, now)) {
1772 				u64 next = \
1773 					min(ktime_to_ns(q->time_next_packet),
1774 					    ktime_to_ns(
1775 						   q->failsafe_next_packet));
1776 				sch->qstats.overlimits++;
1777 				qdisc_watchdog_schedule_ns(&q->watchdog, next);
1778 			}
1779 		}
1780 	}
1781 
1782 	if (unlikely(len > b->max_skblen))
1783 		b->max_skblen = len;
1784 
1785 	if (qdisc_pkt_segs(skb) > 1 && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1786 		struct sk_buff *segs, *nskb;
1787 		netdev_features_t features = netif_skb_features(skb);
1788 		unsigned int slen = 0, numsegs = 0;
1789 
1790 		segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1791 		if (IS_ERR_OR_NULL(segs))
1792 			return qdisc_drop(skb, sch, to_free);
1793 
1794 		skb_list_walk_safe(segs, segs, nskb) {
1795 			skb_mark_not_on_list(segs);
1796 			qdisc_skb_cb(segs)->pkt_len = segs->len;
1797 			qdisc_skb_cb(segs)->pkt_segs = 1;
1798 			cobalt_set_enqueue_time(segs, now);
1799 			get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1800 									  segs);
1801 			flow_queue_add(flow, segs);
1802 
1803 			sch->q.qlen++;
1804 			numsegs++;
1805 			slen += segs->len;
1806 			q->buffer_used += segs->truesize;
1807 			b->packets++;
1808 		}
1809 
1810 		/* stats */
1811 		b->bytes	    += slen;
1812 		b->backlogs[idx]    += slen;
1813 		b->tin_backlog      += slen;
1814 		sch->qstats.backlog += slen;
1815 		q->avg_window_bytes += slen;
1816 
1817 		qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
1818 		consume_skb(skb);
1819 	} else {
1820 		/* not splitting */
1821 		cobalt_set_enqueue_time(skb, now);
1822 		get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1823 		flow_queue_add(flow, skb);
1824 
1825 		if (q->ack_filter)
1826 			ack = cake_ack_filter(q, flow);
1827 
1828 		if (ack) {
1829 			b->ack_drops++;
1830 			sch->qstats.drops++;
1831 			b->bytes += qdisc_pkt_len(ack);
1832 			len -= qdisc_pkt_len(ack);
1833 			q->buffer_used += skb->truesize - ack->truesize;
1834 			if (q->rate_flags & CAKE_FLAG_INGRESS)
1835 				cake_advance_shaper(q, b, ack, now, true);
1836 
1837 			qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1838 			consume_skb(ack);
1839 		} else {
1840 			sch->q.qlen++;
1841 			q->buffer_used      += skb->truesize;
1842 		}
1843 
1844 		/* stats */
1845 		b->packets++;
1846 		b->bytes	    += len;
1847 		b->backlogs[idx]    += len;
1848 		b->tin_backlog      += len;
1849 		sch->qstats.backlog += len;
1850 		q->avg_window_bytes += len;
1851 	}
1852 
1853 	if (q->overflow_timeout)
1854 		cake_heapify_up(q, b->overflow_idx[idx]);
1855 
1856 	/* incoming bandwidth capacity estimate */
1857 	if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1858 		u64 packet_interval = \
1859 			ktime_to_ns(ktime_sub(now, q->last_packet_time));
1860 
1861 		if (packet_interval > NSEC_PER_SEC)
1862 			packet_interval = NSEC_PER_SEC;
1863 
1864 		/* filter out short-term bursts, eg. wifi aggregation */
1865 		q->avg_packet_interval = \
1866 			cake_ewma(q->avg_packet_interval,
1867 				  packet_interval,
1868 				  (packet_interval > q->avg_packet_interval ?
1869 					  2 : 8));
1870 
1871 		q->last_packet_time = now;
1872 
1873 		if (packet_interval > q->avg_packet_interval) {
1874 			u64 window_interval = \
1875 				ktime_to_ns(ktime_sub(now,
1876 						      q->avg_window_begin));
1877 			u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1878 
1879 			b = div64_u64(b, window_interval);
1880 			q->avg_peak_bandwidth =
1881 				cake_ewma(q->avg_peak_bandwidth, b,
1882 					  b > q->avg_peak_bandwidth ? 2 : 8);
1883 			q->avg_window_bytes = 0;
1884 			q->avg_window_begin = now;
1885 
1886 			if (ktime_after(now,
1887 					ktime_add_ms(q->last_reconfig_time,
1888 						     250))) {
1889 				q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1890 				cake_reconfigure(sch);
1891 			}
1892 		}
1893 	} else {
1894 		q->avg_window_bytes = 0;
1895 		q->last_packet_time = now;
1896 	}
1897 
1898 	/* flowchain */
1899 	if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1900 		if (!flow->set) {
1901 			list_add_tail(&flow->flowchain, &b->new_flows);
1902 		} else {
1903 			b->decaying_flow_count--;
1904 			list_move_tail(&flow->flowchain, &b->new_flows);
1905 		}
1906 		flow->set = CAKE_SET_SPARSE;
1907 		b->sparse_flow_count++;
1908 
1909 		flow->deficit = cake_get_flow_quantum(b, flow, q->flow_mode);
1910 	} else if (flow->set == CAKE_SET_SPARSE_WAIT) {
1911 		/* this flow was empty, accounted as a sparse flow, but actually
1912 		 * in the bulk rotation.
1913 		 */
1914 		flow->set = CAKE_SET_BULK;
1915 		b->sparse_flow_count--;
1916 		b->bulk_flow_count++;
1917 
1918 		cake_inc_srchost_bulk_flow_count(b, flow, q->flow_mode);
1919 		cake_inc_dsthost_bulk_flow_count(b, flow, q->flow_mode);
1920 	}
1921 
1922 	if (q->buffer_used > q->buffer_max_used)
1923 		q->buffer_max_used = q->buffer_used;
1924 
1925 	if (q->buffer_used > q->buffer_limit) {
1926 		bool same_flow = false;
1927 		u32 dropped = 0;
1928 		u32 drop_id;
1929 
1930 		while (q->buffer_used > q->buffer_limit) {
1931 			dropped++;
1932 			drop_id = cake_drop(sch, to_free);
1933 
1934 			if ((drop_id >> 16) == tin &&
1935 			    (drop_id & 0xFFFF) == idx)
1936 				same_flow = true;
1937 		}
1938 		b->drop_overlimit += dropped;
1939 
1940 		if (same_flow)
1941 			return NET_XMIT_CN;
1942 	}
1943 	return NET_XMIT_SUCCESS;
1944 }
1945 
1946 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1947 {
1948 	struct cake_sched_data *q = qdisc_priv(sch);
1949 	struct cake_tin_data *b = &q->tins[q->cur_tin];
1950 	struct cake_flow *flow = &b->flows[q->cur_flow];
1951 	struct sk_buff *skb = NULL;
1952 	u32 len;
1953 
1954 	if (flow->head) {
1955 		skb = dequeue_head(flow);
1956 		len = qdisc_pkt_len(skb);
1957 		b->backlogs[q->cur_flow] -= len;
1958 		b->tin_backlog		 -= len;
1959 		sch->qstats.backlog      -= len;
1960 		q->buffer_used		 -= skb->truesize;
1961 		sch->q.qlen--;
1962 
1963 		if (q->overflow_timeout)
1964 			cake_heapify(q, b->overflow_idx[q->cur_flow]);
1965 	}
1966 	return skb;
1967 }
1968 
1969 /* Discard leftover packets from a tin no longer in use. */
1970 static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1971 {
1972 	struct cake_sched_data *q = qdisc_priv(sch);
1973 	struct sk_buff *skb;
1974 
1975 	q->cur_tin = tin;
1976 	for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1977 		while (!!(skb = cake_dequeue_one(sch)))
1978 			kfree_skb_reason(skb, SKB_DROP_REASON_QUEUE_PURGE);
1979 }
1980 
1981 static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1982 {
1983 	struct cake_sched_data *q = qdisc_priv(sch);
1984 	struct cake_tin_data *b = &q->tins[q->cur_tin];
1985 	enum skb_drop_reason reason;
1986 	ktime_t now = ktime_get();
1987 	struct cake_flow *flow;
1988 	struct list_head *head;
1989 	bool first_flow = true;
1990 	struct sk_buff *skb;
1991 	u64 delay;
1992 	u32 len;
1993 
1994 begin:
1995 	if (!sch->q.qlen)
1996 		return NULL;
1997 
1998 	/* global hard shaper */
1999 	if (ktime_after(q->time_next_packet, now) &&
2000 	    ktime_after(q->failsafe_next_packet, now)) {
2001 		u64 next = min(ktime_to_ns(q->time_next_packet),
2002 			       ktime_to_ns(q->failsafe_next_packet));
2003 
2004 		sch->qstats.overlimits++;
2005 		qdisc_watchdog_schedule_ns(&q->watchdog, next);
2006 		return NULL;
2007 	}
2008 
2009 	/* Choose a class to work on. */
2010 	if (!q->rate_ns) {
2011 		/* In unlimited mode, can't rely on shaper timings, just balance
2012 		 * with DRR
2013 		 */
2014 		bool wrapped = false, empty = true;
2015 
2016 		while (b->tin_deficit < 0 ||
2017 		       !(b->sparse_flow_count + b->bulk_flow_count)) {
2018 			if (b->tin_deficit <= 0)
2019 				b->tin_deficit += b->tin_quantum;
2020 			if (b->sparse_flow_count + b->bulk_flow_count)
2021 				empty = false;
2022 
2023 			q->cur_tin++;
2024 			b++;
2025 			if (q->cur_tin >= q->tin_cnt) {
2026 				q->cur_tin = 0;
2027 				b = q->tins;
2028 
2029 				if (wrapped) {
2030 					/* It's possible for q->qlen to be
2031 					 * nonzero when we actually have no
2032 					 * packets anywhere.
2033 					 */
2034 					if (empty)
2035 						return NULL;
2036 				} else {
2037 					wrapped = true;
2038 				}
2039 			}
2040 		}
2041 	} else {
2042 		/* In shaped mode, choose:
2043 		 * - Highest-priority tin with queue and meeting schedule, or
2044 		 * - The earliest-scheduled tin with queue.
2045 		 */
2046 		ktime_t best_time = KTIME_MAX;
2047 		int tin, best_tin = 0;
2048 
2049 		for (tin = 0; tin < q->tin_cnt; tin++) {
2050 			b = q->tins + tin;
2051 			if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
2052 				ktime_t time_to_pkt = \
2053 					ktime_sub(b->time_next_packet, now);
2054 
2055 				if (ktime_to_ns(time_to_pkt) <= 0 ||
2056 				    ktime_compare(time_to_pkt,
2057 						  best_time) <= 0) {
2058 					best_time = time_to_pkt;
2059 					best_tin = tin;
2060 				}
2061 			}
2062 		}
2063 
2064 		q->cur_tin = best_tin;
2065 		b = q->tins + best_tin;
2066 
2067 		/* No point in going further if no packets to deliver. */
2068 		if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
2069 			return NULL;
2070 	}
2071 
2072 retry:
2073 	/* service this class */
2074 	head = &b->decaying_flows;
2075 	if (!first_flow || list_empty(head)) {
2076 		head = &b->new_flows;
2077 		if (list_empty(head)) {
2078 			head = &b->old_flows;
2079 			if (unlikely(list_empty(head))) {
2080 				head = &b->decaying_flows;
2081 				if (unlikely(list_empty(head)))
2082 					goto begin;
2083 			}
2084 		}
2085 	}
2086 	flow = list_first_entry(head, struct cake_flow, flowchain);
2087 	q->cur_flow = flow - b->flows;
2088 	first_flow = false;
2089 
2090 	/* flow isolation (DRR++) */
2091 	if (flow->deficit <= 0) {
2092 		/* Keep all flows with deficits out of the sparse and decaying
2093 		 * rotations.  No non-empty flow can go into the decaying
2094 		 * rotation, so they can't get deficits
2095 		 */
2096 		if (flow->set == CAKE_SET_SPARSE) {
2097 			if (flow->head) {
2098 				b->sparse_flow_count--;
2099 				b->bulk_flow_count++;
2100 
2101 				cake_inc_srchost_bulk_flow_count(b, flow, q->flow_mode);
2102 				cake_inc_dsthost_bulk_flow_count(b, flow, q->flow_mode);
2103 
2104 				flow->set = CAKE_SET_BULK;
2105 			} else {
2106 				/* we've moved it to the bulk rotation for
2107 				 * correct deficit accounting but we still want
2108 				 * to count it as a sparse flow, not a bulk one.
2109 				 */
2110 				flow->set = CAKE_SET_SPARSE_WAIT;
2111 			}
2112 		}
2113 
2114 		flow->deficit += cake_get_flow_quantum(b, flow, q->flow_mode);
2115 		list_move_tail(&flow->flowchain, &b->old_flows);
2116 
2117 		goto retry;
2118 	}
2119 
2120 	/* Retrieve a packet via the AQM */
2121 	while (1) {
2122 		skb = cake_dequeue_one(sch);
2123 		if (!skb) {
2124 			/* this queue was actually empty */
2125 			if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2126 				b->unresponsive_flow_count--;
2127 
2128 			if (flow->cvars.p_drop || flow->cvars.count ||
2129 			    ktime_before(now, flow->cvars.drop_next)) {
2130 				/* keep in the flowchain until the state has
2131 				 * decayed to rest
2132 				 */
2133 				list_move_tail(&flow->flowchain,
2134 					       &b->decaying_flows);
2135 				if (flow->set == CAKE_SET_BULK) {
2136 					b->bulk_flow_count--;
2137 
2138 					cake_dec_srchost_bulk_flow_count(b, flow, q->flow_mode);
2139 					cake_dec_dsthost_bulk_flow_count(b, flow, q->flow_mode);
2140 
2141 					b->decaying_flow_count++;
2142 				} else if (flow->set == CAKE_SET_SPARSE ||
2143 					   flow->set == CAKE_SET_SPARSE_WAIT) {
2144 					b->sparse_flow_count--;
2145 					b->decaying_flow_count++;
2146 				}
2147 				flow->set = CAKE_SET_DECAYING;
2148 			} else {
2149 				/* remove empty queue from the flowchain */
2150 				list_del_init(&flow->flowchain);
2151 				if (flow->set == CAKE_SET_SPARSE ||
2152 				    flow->set == CAKE_SET_SPARSE_WAIT)
2153 					b->sparse_flow_count--;
2154 				else if (flow->set == CAKE_SET_BULK) {
2155 					b->bulk_flow_count--;
2156 
2157 					cake_dec_srchost_bulk_flow_count(b, flow, q->flow_mode);
2158 					cake_dec_dsthost_bulk_flow_count(b, flow, q->flow_mode);
2159 				} else
2160 					b->decaying_flow_count--;
2161 
2162 				flow->set = CAKE_SET_NONE;
2163 			}
2164 			goto begin;
2165 		}
2166 
2167 		reason = cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2168 					    (b->bulk_flow_count *
2169 					     !!(q->rate_flags &
2170 						CAKE_FLAG_INGRESS)));
2171 		/* Last packet in queue may be marked, shouldn't be dropped */
2172 		if (reason == SKB_NOT_DROPPED_YET || !flow->head)
2173 			break;
2174 
2175 		/* drop this packet, get another one */
2176 		if (q->rate_flags & CAKE_FLAG_INGRESS) {
2177 			len = cake_advance_shaper(q, b, skb,
2178 						  now, true);
2179 			flow->deficit -= len;
2180 			b->tin_deficit -= len;
2181 		}
2182 		flow->dropped++;
2183 		b->tin_dropped++;
2184 		qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2185 		qdisc_qstats_drop(sch);
2186 		qdisc_dequeue_drop(sch, skb, reason);
2187 		if (q->rate_flags & CAKE_FLAG_INGRESS)
2188 			goto retry;
2189 	}
2190 
2191 	b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2192 	qdisc_bstats_update(sch, skb);
2193 
2194 	/* collect delay stats */
2195 	delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2196 	b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2197 	b->peak_delay = cake_ewma(b->peak_delay, delay,
2198 				  delay > b->peak_delay ? 2 : 8);
2199 	b->base_delay = cake_ewma(b->base_delay, delay,
2200 				  delay < b->base_delay ? 2 : 8);
2201 
2202 	len = cake_advance_shaper(q, b, skb, now, false);
2203 	flow->deficit -= len;
2204 	b->tin_deficit -= len;
2205 
2206 	if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2207 		u64 next = min(ktime_to_ns(q->time_next_packet),
2208 			       ktime_to_ns(q->failsafe_next_packet));
2209 
2210 		qdisc_watchdog_schedule_ns(&q->watchdog, next);
2211 	} else if (!sch->q.qlen) {
2212 		int i;
2213 
2214 		for (i = 0; i < q->tin_cnt; i++) {
2215 			if (q->tins[i].decaying_flow_count) {
2216 				ktime_t next = \
2217 					ktime_add_ns(now,
2218 						     q->tins[i].cparams.target);
2219 
2220 				qdisc_watchdog_schedule_ns(&q->watchdog,
2221 							   ktime_to_ns(next));
2222 				break;
2223 			}
2224 		}
2225 	}
2226 
2227 	if (q->overflow_timeout)
2228 		q->overflow_timeout--;
2229 
2230 	return skb;
2231 }
2232 
2233 static void cake_reset(struct Qdisc *sch)
2234 {
2235 	struct cake_sched_data *q = qdisc_priv(sch);
2236 	u32 c;
2237 
2238 	if (!q->tins)
2239 		return;
2240 
2241 	for (c = 0; c < CAKE_MAX_TINS; c++)
2242 		cake_clear_tin(sch, c);
2243 }
2244 
2245 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2246 	[TCA_CAKE_BASE_RATE64]   = { .type = NLA_U64 },
2247 	[TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2248 	[TCA_CAKE_ATM]		 = { .type = NLA_U32 },
2249 	[TCA_CAKE_FLOW_MODE]     = { .type = NLA_U32 },
2250 	[TCA_CAKE_OVERHEAD]      = { .type = NLA_S32 },
2251 	[TCA_CAKE_RTT]		 = { .type = NLA_U32 },
2252 	[TCA_CAKE_TARGET]	 = { .type = NLA_U32 },
2253 	[TCA_CAKE_AUTORATE]      = { .type = NLA_U32 },
2254 	[TCA_CAKE_MEMORY]	 = { .type = NLA_U32 },
2255 	[TCA_CAKE_NAT]		 = { .type = NLA_U32 },
2256 	[TCA_CAKE_RAW]		 = { .type = NLA_U32 },
2257 	[TCA_CAKE_WASH]		 = { .type = NLA_U32 },
2258 	[TCA_CAKE_MPU]		 = { .type = NLA_U32 },
2259 	[TCA_CAKE_INGRESS]	 = { .type = NLA_U32 },
2260 	[TCA_CAKE_ACK_FILTER]	 = { .type = NLA_U32 },
2261 	[TCA_CAKE_SPLIT_GSO]	 = { .type = NLA_U32 },
2262 	[TCA_CAKE_FWMARK]	 = { .type = NLA_U32 },
2263 };
2264 
2265 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2266 			  u64 target_ns, u64 rtt_est_ns)
2267 {
2268 	/* convert byte-rate into time-per-byte
2269 	 * so it will always unwedge in reasonable time.
2270 	 */
2271 	static const u64 MIN_RATE = 64;
2272 	u32 byte_target = mtu;
2273 	u64 byte_target_ns;
2274 	u8  rate_shft = 0;
2275 	u64 rate_ns = 0;
2276 
2277 	b->flow_quantum = 1514;
2278 	if (rate) {
2279 		b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2280 		rate_shft = 34;
2281 		rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2282 		rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2283 		while (!!(rate_ns >> 34)) {
2284 			rate_ns >>= 1;
2285 			rate_shft--;
2286 		}
2287 	} /* else unlimited, ie. zero delay */
2288 
2289 	b->tin_rate_bps  = rate;
2290 	b->tin_rate_ns   = rate_ns;
2291 	b->tin_rate_shft = rate_shft;
2292 
2293 	byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2294 
2295 	b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2296 	b->cparams.interval = max(rtt_est_ns +
2297 				     b->cparams.target - target_ns,
2298 				     b->cparams.target * 2);
2299 	b->cparams.mtu_time = byte_target_ns;
2300 	b->cparams.p_inc = 1 << 24; /* 1/256 */
2301 	b->cparams.p_dec = 1 << 20; /* 1/4096 */
2302 }
2303 
2304 static int cake_config_besteffort(struct Qdisc *sch)
2305 {
2306 	struct cake_sched_data *q = qdisc_priv(sch);
2307 	struct cake_tin_data *b = &q->tins[0];
2308 	u32 mtu = psched_mtu(qdisc_dev(sch));
2309 	u64 rate = q->rate_bps;
2310 
2311 	q->tin_cnt = 1;
2312 
2313 	q->tin_index = besteffort;
2314 	q->tin_order = normal_order;
2315 
2316 	cake_set_rate(b, rate, mtu,
2317 		      us_to_ns(q->target), us_to_ns(q->interval));
2318 	b->tin_quantum = 65535;
2319 
2320 	return 0;
2321 }
2322 
2323 static int cake_config_precedence(struct Qdisc *sch)
2324 {
2325 	/* convert high-level (user visible) parameters into internal format */
2326 	struct cake_sched_data *q = qdisc_priv(sch);
2327 	u32 mtu = psched_mtu(qdisc_dev(sch));
2328 	u64 rate = q->rate_bps;
2329 	u32 quantum = 256;
2330 	u32 i;
2331 
2332 	q->tin_cnt = 8;
2333 	q->tin_index = precedence;
2334 	q->tin_order = normal_order;
2335 
2336 	for (i = 0; i < q->tin_cnt; i++) {
2337 		struct cake_tin_data *b = &q->tins[i];
2338 
2339 		cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2340 			      us_to_ns(q->interval));
2341 
2342 		b->tin_quantum = max_t(u16, 1U, quantum);
2343 
2344 		/* calculate next class's parameters */
2345 		rate  *= 7;
2346 		rate >>= 3;
2347 
2348 		quantum  *= 7;
2349 		quantum >>= 3;
2350 	}
2351 
2352 	return 0;
2353 }
2354 
2355 /*	List of known Diffserv codepoints:
2356  *
2357  *	Default Forwarding (DF/CS0) - Best Effort
2358  *	Max Throughput (TOS2)
2359  *	Min Delay (TOS4)
2360  *	LLT "La" (TOS5)
2361  *	Assured Forwarding 1 (AF1x) - x3
2362  *	Assured Forwarding 2 (AF2x) - x3
2363  *	Assured Forwarding 3 (AF3x) - x3
2364  *	Assured Forwarding 4 (AF4x) - x3
2365  *	Precedence Class 1 (CS1)
2366  *	Precedence Class 2 (CS2)
2367  *	Precedence Class 3 (CS3)
2368  *	Precedence Class 4 (CS4)
2369  *	Precedence Class 5 (CS5)
2370  *	Precedence Class 6 (CS6)
2371  *	Precedence Class 7 (CS7)
2372  *	Voice Admit (VA)
2373  *	Expedited Forwarding (EF)
2374  *	Lower Effort (LE)
2375  *
2376  *	Total 26 codepoints.
2377  */
2378 
2379 /*	List of traffic classes in RFC 4594, updated by RFC 8622:
2380  *		(roughly descending order of contended priority)
2381  *		(roughly ascending order of uncontended throughput)
2382  *
2383  *	Network Control (CS6,CS7)      - routing traffic
2384  *	Telephony (EF,VA)         - aka. VoIP streams
2385  *	Signalling (CS5)               - VoIP setup
2386  *	Multimedia Conferencing (AF4x) - aka. video calls
2387  *	Realtime Interactive (CS4)     - eg. games
2388  *	Multimedia Streaming (AF3x)    - eg. YouTube, NetFlix, Twitch
2389  *	Broadcast Video (CS3)
2390  *	Low-Latency Data (AF2x,TOS4)      - eg. database
2391  *	Ops, Admin, Management (CS2)      - eg. ssh
2392  *	Standard Service (DF & unrecognised codepoints)
2393  *	High-Throughput Data (AF1x,TOS2)  - eg. web traffic
2394  *	Low-Priority Data (LE,CS1)        - eg. BitTorrent
2395  *
2396  *	Total 12 traffic classes.
2397  */
2398 
2399 static int cake_config_diffserv8(struct Qdisc *sch)
2400 {
2401 /*	Pruned list of traffic classes for typical applications:
2402  *
2403  *		Network Control          (CS6, CS7)
2404  *		Minimum Latency          (EF, VA, CS5, CS4)
2405  *		Interactive Shell        (CS2)
2406  *		Low Latency Transactions (AF2x, TOS4)
2407  *		Video Streaming          (AF4x, AF3x, CS3)
2408  *		Bog Standard             (DF etc.)
2409  *		High Throughput          (AF1x, TOS2, CS1)
2410  *		Background Traffic       (LE)
2411  *
2412  *		Total 8 traffic classes.
2413  */
2414 
2415 	struct cake_sched_data *q = qdisc_priv(sch);
2416 	u32 mtu = psched_mtu(qdisc_dev(sch));
2417 	u64 rate = q->rate_bps;
2418 	u32 quantum = 256;
2419 	u32 i;
2420 
2421 	q->tin_cnt = 8;
2422 
2423 	/* codepoint to class mapping */
2424 	q->tin_index = diffserv8;
2425 	q->tin_order = normal_order;
2426 
2427 	/* class characteristics */
2428 	for (i = 0; i < q->tin_cnt; i++) {
2429 		struct cake_tin_data *b = &q->tins[i];
2430 
2431 		cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2432 			      us_to_ns(q->interval));
2433 
2434 		b->tin_quantum = max_t(u16, 1U, quantum);
2435 
2436 		/* calculate next class's parameters */
2437 		rate  *= 7;
2438 		rate >>= 3;
2439 
2440 		quantum  *= 7;
2441 		quantum >>= 3;
2442 	}
2443 
2444 	return 0;
2445 }
2446 
2447 static int cake_config_diffserv4(struct Qdisc *sch)
2448 {
2449 /*  Further pruned list of traffic classes for four-class system:
2450  *
2451  *	    Latency Sensitive  (CS7, CS6, EF, VA, CS5, CS4)
2452  *	    Streaming Media    (AF4x, AF3x, CS3, AF2x, TOS4, CS2)
2453  *	    Best Effort        (DF, AF1x, TOS2, and those not specified)
2454  *	    Background Traffic (LE, CS1)
2455  *
2456  *		Total 4 traffic classes.
2457  */
2458 
2459 	struct cake_sched_data *q = qdisc_priv(sch);
2460 	u32 mtu = psched_mtu(qdisc_dev(sch));
2461 	u64 rate = q->rate_bps;
2462 	u32 quantum = 1024;
2463 
2464 	q->tin_cnt = 4;
2465 
2466 	/* codepoint to class mapping */
2467 	q->tin_index = diffserv4;
2468 	q->tin_order = bulk_order;
2469 
2470 	/* class characteristics */
2471 	cake_set_rate(&q->tins[0], rate, mtu,
2472 		      us_to_ns(q->target), us_to_ns(q->interval));
2473 	cake_set_rate(&q->tins[1], rate >> 4, mtu,
2474 		      us_to_ns(q->target), us_to_ns(q->interval));
2475 	cake_set_rate(&q->tins[2], rate >> 1, mtu,
2476 		      us_to_ns(q->target), us_to_ns(q->interval));
2477 	cake_set_rate(&q->tins[3], rate >> 2, mtu,
2478 		      us_to_ns(q->target), us_to_ns(q->interval));
2479 
2480 	/* bandwidth-sharing weights */
2481 	q->tins[0].tin_quantum = quantum;
2482 	q->tins[1].tin_quantum = quantum >> 4;
2483 	q->tins[2].tin_quantum = quantum >> 1;
2484 	q->tins[3].tin_quantum = quantum >> 2;
2485 
2486 	return 0;
2487 }
2488 
2489 static int cake_config_diffserv3(struct Qdisc *sch)
2490 {
2491 /*  Simplified Diffserv structure with 3 tins.
2492  *		Latency Sensitive	(CS7, CS6, EF, VA, TOS4)
2493  *		Best Effort
2494  *		Low Priority		(LE, CS1)
2495  */
2496 	struct cake_sched_data *q = qdisc_priv(sch);
2497 	u32 mtu = psched_mtu(qdisc_dev(sch));
2498 	u64 rate = q->rate_bps;
2499 	u32 quantum = 1024;
2500 
2501 	q->tin_cnt = 3;
2502 
2503 	/* codepoint to class mapping */
2504 	q->tin_index = diffserv3;
2505 	q->tin_order = bulk_order;
2506 
2507 	/* class characteristics */
2508 	cake_set_rate(&q->tins[0], rate, mtu,
2509 		      us_to_ns(q->target), us_to_ns(q->interval));
2510 	cake_set_rate(&q->tins[1], rate >> 4, mtu,
2511 		      us_to_ns(q->target), us_to_ns(q->interval));
2512 	cake_set_rate(&q->tins[2], rate >> 2, mtu,
2513 		      us_to_ns(q->target), us_to_ns(q->interval));
2514 
2515 	/* bandwidth-sharing weights */
2516 	q->tins[0].tin_quantum = quantum;
2517 	q->tins[1].tin_quantum = quantum >> 4;
2518 	q->tins[2].tin_quantum = quantum >> 2;
2519 
2520 	return 0;
2521 }
2522 
2523 static void cake_reconfigure(struct Qdisc *sch)
2524 {
2525 	struct cake_sched_data *q = qdisc_priv(sch);
2526 	int c, ft;
2527 
2528 	switch (q->tin_mode) {
2529 	case CAKE_DIFFSERV_BESTEFFORT:
2530 		ft = cake_config_besteffort(sch);
2531 		break;
2532 
2533 	case CAKE_DIFFSERV_PRECEDENCE:
2534 		ft = cake_config_precedence(sch);
2535 		break;
2536 
2537 	case CAKE_DIFFSERV_DIFFSERV8:
2538 		ft = cake_config_diffserv8(sch);
2539 		break;
2540 
2541 	case CAKE_DIFFSERV_DIFFSERV4:
2542 		ft = cake_config_diffserv4(sch);
2543 		break;
2544 
2545 	case CAKE_DIFFSERV_DIFFSERV3:
2546 	default:
2547 		ft = cake_config_diffserv3(sch);
2548 		break;
2549 	}
2550 
2551 	for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2552 		cake_clear_tin(sch, c);
2553 		q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2554 	}
2555 
2556 	q->rate_ns   = q->tins[ft].tin_rate_ns;
2557 	q->rate_shft = q->tins[ft].tin_rate_shft;
2558 
2559 	if (q->buffer_config_limit) {
2560 		q->buffer_limit = q->buffer_config_limit;
2561 	} else if (q->rate_bps) {
2562 		u64 t = q->rate_bps * q->interval;
2563 
2564 		do_div(t, USEC_PER_SEC / 4);
2565 		q->buffer_limit = max_t(u32, t, 4U << 20);
2566 	} else {
2567 		q->buffer_limit = ~0;
2568 	}
2569 
2570 	sch->flags &= ~TCQ_F_CAN_BYPASS;
2571 
2572 	q->buffer_limit = min(q->buffer_limit,
2573 			      max(sch->limit * psched_mtu(qdisc_dev(sch)),
2574 				  q->buffer_config_limit));
2575 }
2576 
2577 static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2578 		       struct netlink_ext_ack *extack)
2579 {
2580 	struct cake_sched_data *q = qdisc_priv(sch);
2581 	struct nlattr *tb[TCA_CAKE_MAX + 1];
2582 	u16 rate_flags;
2583 	u8 flow_mode;
2584 	int err;
2585 
2586 	err = nla_parse_nested_deprecated(tb, TCA_CAKE_MAX, opt, cake_policy,
2587 					  extack);
2588 	if (err < 0)
2589 		return err;
2590 
2591 	flow_mode = q->flow_mode;
2592 	if (tb[TCA_CAKE_NAT]) {
2593 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2594 		flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2595 		flow_mode |= CAKE_FLOW_NAT_FLAG *
2596 			!!nla_get_u32(tb[TCA_CAKE_NAT]);
2597 #else
2598 		NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2599 				    "No conntrack support in kernel");
2600 		return -EOPNOTSUPP;
2601 #endif
2602 	}
2603 
2604 	if (tb[TCA_CAKE_BASE_RATE64])
2605 		WRITE_ONCE(q->rate_bps,
2606 			   nla_get_u64(tb[TCA_CAKE_BASE_RATE64]));
2607 
2608 	if (tb[TCA_CAKE_DIFFSERV_MODE])
2609 		WRITE_ONCE(q->tin_mode,
2610 			   nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]));
2611 
2612 	rate_flags = q->rate_flags;
2613 	if (tb[TCA_CAKE_WASH]) {
2614 		if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2615 			rate_flags |= CAKE_FLAG_WASH;
2616 		else
2617 			rate_flags &= ~CAKE_FLAG_WASH;
2618 	}
2619 
2620 	if (tb[TCA_CAKE_FLOW_MODE])
2621 		flow_mode = ((flow_mode & CAKE_FLOW_NAT_FLAG) |
2622 				(nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2623 					CAKE_FLOW_MASK));
2624 
2625 	if (tb[TCA_CAKE_ATM])
2626 		WRITE_ONCE(q->atm_mode,
2627 			   nla_get_u32(tb[TCA_CAKE_ATM]));
2628 
2629 	if (tb[TCA_CAKE_OVERHEAD]) {
2630 		WRITE_ONCE(q->rate_overhead,
2631 			   nla_get_s32(tb[TCA_CAKE_OVERHEAD]));
2632 		rate_flags |= CAKE_FLAG_OVERHEAD;
2633 
2634 		q->max_netlen = 0;
2635 		q->max_adjlen = 0;
2636 		q->min_netlen = ~0;
2637 		q->min_adjlen = ~0;
2638 	}
2639 
2640 	if (tb[TCA_CAKE_RAW]) {
2641 		rate_flags &= ~CAKE_FLAG_OVERHEAD;
2642 
2643 		q->max_netlen = 0;
2644 		q->max_adjlen = 0;
2645 		q->min_netlen = ~0;
2646 		q->min_adjlen = ~0;
2647 	}
2648 
2649 	if (tb[TCA_CAKE_MPU])
2650 		WRITE_ONCE(q->rate_mpu,
2651 			   nla_get_u32(tb[TCA_CAKE_MPU]));
2652 
2653 	if (tb[TCA_CAKE_RTT]) {
2654 		u32 interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2655 
2656 		WRITE_ONCE(q->interval, max(interval, 1U));
2657 	}
2658 
2659 	if (tb[TCA_CAKE_TARGET]) {
2660 		u32 target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2661 
2662 		WRITE_ONCE(q->target, max(target, 1U));
2663 	}
2664 
2665 	if (tb[TCA_CAKE_AUTORATE]) {
2666 		if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2667 			rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2668 		else
2669 			rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2670 	}
2671 
2672 	if (tb[TCA_CAKE_INGRESS]) {
2673 		if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2674 			rate_flags |= CAKE_FLAG_INGRESS;
2675 		else
2676 			rate_flags &= ~CAKE_FLAG_INGRESS;
2677 	}
2678 
2679 	if (tb[TCA_CAKE_ACK_FILTER])
2680 		WRITE_ONCE(q->ack_filter,
2681 			   nla_get_u32(tb[TCA_CAKE_ACK_FILTER]));
2682 
2683 	if (tb[TCA_CAKE_MEMORY])
2684 		WRITE_ONCE(q->buffer_config_limit,
2685 			   nla_get_u32(tb[TCA_CAKE_MEMORY]));
2686 
2687 	if (tb[TCA_CAKE_SPLIT_GSO]) {
2688 		if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2689 			rate_flags |= CAKE_FLAG_SPLIT_GSO;
2690 		else
2691 			rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2692 	}
2693 
2694 	if (tb[TCA_CAKE_FWMARK]) {
2695 		WRITE_ONCE(q->fwmark_mask, nla_get_u32(tb[TCA_CAKE_FWMARK]));
2696 		WRITE_ONCE(q->fwmark_shft,
2697 			   q->fwmark_mask ? __ffs(q->fwmark_mask) : 0);
2698 	}
2699 
2700 	WRITE_ONCE(q->rate_flags, rate_flags);
2701 	WRITE_ONCE(q->flow_mode, flow_mode);
2702 	if (q->tins) {
2703 		sch_tree_lock(sch);
2704 		cake_reconfigure(sch);
2705 		sch_tree_unlock(sch);
2706 	}
2707 
2708 	return 0;
2709 }
2710 
2711 static void cake_destroy(struct Qdisc *sch)
2712 {
2713 	struct cake_sched_data *q = qdisc_priv(sch);
2714 
2715 	qdisc_watchdog_cancel(&q->watchdog);
2716 	tcf_block_put(q->block);
2717 	kvfree(q->tins);
2718 }
2719 
2720 static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2721 		     struct netlink_ext_ack *extack)
2722 {
2723 	struct cake_sched_data *q = qdisc_priv(sch);
2724 	int i, j, err;
2725 
2726 	sch->limit = 10240;
2727 	sch->flags |= TCQ_F_DEQUEUE_DROPS;
2728 
2729 	q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
2730 	q->flow_mode  = CAKE_FLOW_TRIPLE;
2731 
2732 	q->rate_bps = 0; /* unlimited by default */
2733 
2734 	q->interval = 100000; /* 100ms default */
2735 	q->target   =   5000; /* 5ms: codel RFC argues
2736 			       * for 5 to 10% of interval
2737 			       */
2738 	q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2739 	q->cur_tin = 0;
2740 	q->cur_flow  = 0;
2741 
2742 	qdisc_watchdog_init(&q->watchdog, sch);
2743 
2744 	if (opt) {
2745 		err = cake_change(sch, opt, extack);
2746 
2747 		if (err)
2748 			return err;
2749 	}
2750 
2751 	err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2752 	if (err)
2753 		return err;
2754 
2755 	quantum_div[0] = ~0;
2756 	for (i = 1; i <= CAKE_QUEUES; i++)
2757 		quantum_div[i] = 65535 / i;
2758 
2759 	q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
2760 			   GFP_KERNEL);
2761 	if (!q->tins)
2762 		return -ENOMEM;
2763 
2764 	for (i = 0; i < CAKE_MAX_TINS; i++) {
2765 		struct cake_tin_data *b = q->tins + i;
2766 
2767 		INIT_LIST_HEAD(&b->new_flows);
2768 		INIT_LIST_HEAD(&b->old_flows);
2769 		INIT_LIST_HEAD(&b->decaying_flows);
2770 		b->sparse_flow_count = 0;
2771 		b->bulk_flow_count = 0;
2772 		b->decaying_flow_count = 0;
2773 
2774 		for (j = 0; j < CAKE_QUEUES; j++) {
2775 			struct cake_flow *flow = b->flows + j;
2776 			u32 k = j * CAKE_MAX_TINS + i;
2777 
2778 			INIT_LIST_HEAD(&flow->flowchain);
2779 			cobalt_vars_init(&flow->cvars);
2780 
2781 			q->overflow_heap[k].t = i;
2782 			q->overflow_heap[k].b = j;
2783 			b->overflow_idx[j] = k;
2784 		}
2785 	}
2786 
2787 	cake_reconfigure(sch);
2788 	q->avg_peak_bandwidth = q->rate_bps;
2789 	q->min_netlen = ~0;
2790 	q->min_adjlen = ~0;
2791 	return 0;
2792 }
2793 
2794 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2795 {
2796 	struct cake_sched_data *q = qdisc_priv(sch);
2797 	struct nlattr *opts;
2798 	u16 rate_flags;
2799 	u8 flow_mode;
2800 
2801 	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
2802 	if (!opts)
2803 		goto nla_put_failure;
2804 
2805 	if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64,
2806 			      READ_ONCE(q->rate_bps), TCA_CAKE_PAD))
2807 		goto nla_put_failure;
2808 
2809 	flow_mode = READ_ONCE(q->flow_mode);
2810 	if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE, flow_mode & CAKE_FLOW_MASK))
2811 		goto nla_put_failure;
2812 
2813 	if (nla_put_u32(skb, TCA_CAKE_RTT, READ_ONCE(q->interval)))
2814 		goto nla_put_failure;
2815 
2816 	if (nla_put_u32(skb, TCA_CAKE_TARGET, READ_ONCE(q->target)))
2817 		goto nla_put_failure;
2818 
2819 	if (nla_put_u32(skb, TCA_CAKE_MEMORY,
2820 			READ_ONCE(q->buffer_config_limit)))
2821 		goto nla_put_failure;
2822 
2823 	rate_flags = READ_ONCE(q->rate_flags);
2824 	if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2825 			!!(rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2826 		goto nla_put_failure;
2827 
2828 	if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2829 			!!(rate_flags & CAKE_FLAG_INGRESS)))
2830 		goto nla_put_failure;
2831 
2832 	if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, READ_ONCE(q->ack_filter)))
2833 		goto nla_put_failure;
2834 
2835 	if (nla_put_u32(skb, TCA_CAKE_NAT,
2836 			!!(flow_mode & CAKE_FLOW_NAT_FLAG)))
2837 		goto nla_put_failure;
2838 
2839 	if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, READ_ONCE(q->tin_mode)))
2840 		goto nla_put_failure;
2841 
2842 	if (nla_put_u32(skb, TCA_CAKE_WASH,
2843 			!!(rate_flags & CAKE_FLAG_WASH)))
2844 		goto nla_put_failure;
2845 
2846 	if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, READ_ONCE(q->rate_overhead)))
2847 		goto nla_put_failure;
2848 
2849 	if (!(rate_flags & CAKE_FLAG_OVERHEAD))
2850 		if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2851 			goto nla_put_failure;
2852 
2853 	if (nla_put_u32(skb, TCA_CAKE_ATM, READ_ONCE(q->atm_mode)))
2854 		goto nla_put_failure;
2855 
2856 	if (nla_put_u32(skb, TCA_CAKE_MPU, READ_ONCE(q->rate_mpu)))
2857 		goto nla_put_failure;
2858 
2859 	if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2860 			!!(rate_flags & CAKE_FLAG_SPLIT_GSO)))
2861 		goto nla_put_failure;
2862 
2863 	if (nla_put_u32(skb, TCA_CAKE_FWMARK, READ_ONCE(q->fwmark_mask)))
2864 		goto nla_put_failure;
2865 
2866 	return nla_nest_end(skb, opts);
2867 
2868 nla_put_failure:
2869 	return -1;
2870 }
2871 
2872 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2873 {
2874 	struct nlattr *stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
2875 	struct cake_sched_data *q = qdisc_priv(sch);
2876 	struct nlattr *tstats, *ts;
2877 	int i;
2878 
2879 	if (!stats)
2880 		return -1;
2881 
2882 #define PUT_STAT_U32(attr, data) do {				       \
2883 		if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2884 			goto nla_put_failure;			       \
2885 	} while (0)
2886 #define PUT_STAT_U64(attr, data) do {				       \
2887 		if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2888 					data, TCA_CAKE_STATS_PAD)) \
2889 			goto nla_put_failure;			       \
2890 	} while (0)
2891 
2892 	PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2893 	PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2894 	PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2895 	PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2896 	PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2897 	PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2898 	PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2899 	PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2900 
2901 #undef PUT_STAT_U32
2902 #undef PUT_STAT_U64
2903 
2904 	tstats = nla_nest_start_noflag(d->skb, TCA_CAKE_STATS_TIN_STATS);
2905 	if (!tstats)
2906 		goto nla_put_failure;
2907 
2908 #define PUT_TSTAT_U32(attr, data) do {					\
2909 		if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2910 			goto nla_put_failure;				\
2911 	} while (0)
2912 #define PUT_TSTAT_U64(attr, data) do {					\
2913 		if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2914 					data, TCA_CAKE_TIN_STATS_PAD))	\
2915 			goto nla_put_failure;				\
2916 	} while (0)
2917 
2918 	for (i = 0; i < q->tin_cnt; i++) {
2919 		struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2920 
2921 		ts = nla_nest_start_noflag(d->skb, i + 1);
2922 		if (!ts)
2923 			goto nla_put_failure;
2924 
2925 		PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2926 		PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2927 		PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2928 
2929 		PUT_TSTAT_U32(TARGET_US,
2930 			      ktime_to_us(ns_to_ktime(b->cparams.target)));
2931 		PUT_TSTAT_U32(INTERVAL_US,
2932 			      ktime_to_us(ns_to_ktime(b->cparams.interval)));
2933 
2934 		PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2935 		PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2936 		PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2937 		PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2938 
2939 		PUT_TSTAT_U32(PEAK_DELAY_US,
2940 			      ktime_to_us(ns_to_ktime(b->peak_delay)));
2941 		PUT_TSTAT_U32(AVG_DELAY_US,
2942 			      ktime_to_us(ns_to_ktime(b->avge_delay)));
2943 		PUT_TSTAT_U32(BASE_DELAY_US,
2944 			      ktime_to_us(ns_to_ktime(b->base_delay)));
2945 
2946 		PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2947 		PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2948 		PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2949 
2950 		PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2951 					    b->decaying_flow_count);
2952 		PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2953 		PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2954 		PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2955 
2956 		PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2957 		nla_nest_end(d->skb, ts);
2958 	}
2959 
2960 #undef PUT_TSTAT_U32
2961 #undef PUT_TSTAT_U64
2962 
2963 	nla_nest_end(d->skb, tstats);
2964 	return nla_nest_end(d->skb, stats);
2965 
2966 nla_put_failure:
2967 	nla_nest_cancel(d->skb, stats);
2968 	return -1;
2969 }
2970 
2971 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2972 {
2973 	return NULL;
2974 }
2975 
2976 static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2977 {
2978 	return 0;
2979 }
2980 
2981 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2982 			       u32 classid)
2983 {
2984 	return 0;
2985 }
2986 
2987 static void cake_unbind(struct Qdisc *q, unsigned long cl)
2988 {
2989 }
2990 
2991 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2992 					struct netlink_ext_ack *extack)
2993 {
2994 	struct cake_sched_data *q = qdisc_priv(sch);
2995 
2996 	if (cl)
2997 		return NULL;
2998 	return q->block;
2999 }
3000 
3001 static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
3002 			   struct sk_buff *skb, struct tcmsg *tcm)
3003 {
3004 	tcm->tcm_handle |= TC_H_MIN(cl);
3005 	return 0;
3006 }
3007 
3008 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
3009 				 struct gnet_dump *d)
3010 {
3011 	struct cake_sched_data *q = qdisc_priv(sch);
3012 	const struct cake_flow *flow = NULL;
3013 	struct gnet_stats_queue qs = { 0 };
3014 	struct nlattr *stats;
3015 	u32 idx = cl - 1;
3016 
3017 	if (idx < CAKE_QUEUES * q->tin_cnt) {
3018 		const struct cake_tin_data *b = \
3019 			&q->tins[q->tin_order[idx / CAKE_QUEUES]];
3020 		const struct sk_buff *skb;
3021 
3022 		flow = &b->flows[idx % CAKE_QUEUES];
3023 
3024 		if (flow->head) {
3025 			sch_tree_lock(sch);
3026 			skb = flow->head;
3027 			while (skb) {
3028 				qs.qlen++;
3029 				skb = skb->next;
3030 			}
3031 			sch_tree_unlock(sch);
3032 		}
3033 		qs.backlog = b->backlogs[idx % CAKE_QUEUES];
3034 		qs.drops = flow->dropped;
3035 	}
3036 	if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
3037 		return -1;
3038 	if (flow) {
3039 		ktime_t now = ktime_get();
3040 
3041 		stats = nla_nest_start_noflag(d->skb, TCA_STATS_APP);
3042 		if (!stats)
3043 			return -1;
3044 
3045 #define PUT_STAT_U32(attr, data) do {				       \
3046 		if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3047 			goto nla_put_failure;			       \
3048 	} while (0)
3049 #define PUT_STAT_S32(attr, data) do {				       \
3050 		if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
3051 			goto nla_put_failure;			       \
3052 	} while (0)
3053 
3054 		PUT_STAT_S32(DEFICIT, flow->deficit);
3055 		PUT_STAT_U32(DROPPING, flow->cvars.dropping);
3056 		PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
3057 		PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
3058 		if (flow->cvars.p_drop) {
3059 			PUT_STAT_S32(BLUE_TIMER_US,
3060 				     ktime_to_us(
3061 					     ktime_sub(now,
3062 						       flow->cvars.blue_timer)));
3063 		}
3064 		if (flow->cvars.dropping) {
3065 			PUT_STAT_S32(DROP_NEXT_US,
3066 				     ktime_to_us(
3067 					     ktime_sub(now,
3068 						       flow->cvars.drop_next)));
3069 		}
3070 
3071 		if (nla_nest_end(d->skb, stats) < 0)
3072 			return -1;
3073 	}
3074 
3075 	return 0;
3076 
3077 nla_put_failure:
3078 	nla_nest_cancel(d->skb, stats);
3079 	return -1;
3080 }
3081 
3082 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
3083 {
3084 	struct cake_sched_data *q = qdisc_priv(sch);
3085 	unsigned int i, j;
3086 
3087 	if (arg->stop)
3088 		return;
3089 
3090 	for (i = 0; i < q->tin_cnt; i++) {
3091 		struct cake_tin_data *b = &q->tins[q->tin_order[i]];
3092 
3093 		for (j = 0; j < CAKE_QUEUES; j++) {
3094 			if (list_empty(&b->flows[j].flowchain)) {
3095 				arg->count++;
3096 				continue;
3097 			}
3098 			if (!tc_qdisc_stats_dump(sch, i * CAKE_QUEUES + j + 1,
3099 						 arg))
3100 				break;
3101 		}
3102 	}
3103 }
3104 
3105 static const struct Qdisc_class_ops cake_class_ops = {
3106 	.leaf		=	cake_leaf,
3107 	.find		=	cake_find,
3108 	.tcf_block	=	cake_tcf_block,
3109 	.bind_tcf	=	cake_bind,
3110 	.unbind_tcf	=	cake_unbind,
3111 	.dump		=	cake_dump_class,
3112 	.dump_stats	=	cake_dump_class_stats,
3113 	.walk		=	cake_walk,
3114 };
3115 
3116 static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3117 	.cl_ops		=	&cake_class_ops,
3118 	.id		=	"cake",
3119 	.priv_size	=	sizeof(struct cake_sched_data),
3120 	.enqueue	=	cake_enqueue,
3121 	.dequeue	=	cake_dequeue,
3122 	.peek		=	qdisc_peek_dequeued,
3123 	.init		=	cake_init,
3124 	.reset		=	cake_reset,
3125 	.destroy	=	cake_destroy,
3126 	.change		=	cake_change,
3127 	.dump		=	cake_dump,
3128 	.dump_stats	=	cake_dump_stats,
3129 	.owner		=	THIS_MODULE,
3130 };
3131 MODULE_ALIAS_NET_SCH("cake");
3132 
3133 static int __init cake_module_init(void)
3134 {
3135 	return register_qdisc(&cake_qdisc_ops);
3136 }
3137 
3138 static void __exit cake_module_exit(void)
3139 {
3140 	unregister_qdisc(&cake_qdisc_ops);
3141 }
3142 
3143 module_init(cake_module_init)
3144 module_exit(cake_module_exit)
3145 MODULE_AUTHOR("Jonathan Morton");
3146 MODULE_LICENSE("Dual BSD/GPL");
3147 MODULE_DESCRIPTION("The CAKE shaper.");
3148