1 /* 2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * 11 * The filters are packed to hash tables of key nodes 12 * with a set of 32bit key/mask pairs at every node. 13 * Nodes reference next level hash tables etc. 14 * 15 * This scheme is the best universal classifier I managed to 16 * invent; it is not super-fast, but it is not slow (provided you 17 * program it correctly), and general enough. And its relative 18 * speed grows as the number of rules becomes larger. 19 * 20 * It seems that it represents the best middle point between 21 * speed and manageability both by human and by machine. 22 * 23 * It is especially useful for link sharing combined with QoS; 24 * pure RSVP doesn't need such a general approach and can use 25 * much simpler (and faster) schemes, sort of cls_rsvp.c. 26 * 27 * JHS: We should remove the CONFIG_NET_CLS_IND from here 28 * eventually when the meta match extension is made available 29 * 30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> 31 */ 32 33 #include <linux/module.h> 34 #include <linux/slab.h> 35 #include <linux/types.h> 36 #include <linux/kernel.h> 37 #include <linux/string.h> 38 #include <linux/errno.h> 39 #include <linux/percpu.h> 40 #include <linux/rtnetlink.h> 41 #include <linux/skbuff.h> 42 #include <linux/bitmap.h> 43 #include <net/netlink.h> 44 #include <net/act_api.h> 45 #include <net/pkt_cls.h> 46 47 struct tc_u_knode { 48 struct tc_u_knode __rcu *next; 49 u32 handle; 50 struct tc_u_hnode __rcu *ht_up; 51 struct tcf_exts exts; 52 #ifdef CONFIG_NET_CLS_IND 53 int ifindex; 54 #endif 55 u8 fshift; 56 struct tcf_result res; 57 struct tc_u_hnode __rcu *ht_down; 58 #ifdef CONFIG_CLS_U32_PERF 59 struct tc_u32_pcnt __percpu *pf; 60 #endif 61 #ifdef CONFIG_CLS_U32_MARK 62 u32 val; 63 u32 mask; 64 u32 __percpu *pcpu_success; 65 #endif 66 struct tcf_proto *tp; 67 struct rcu_head rcu; 68 /* The 'sel' field MUST be the last field in structure to allow for 69 * tc_u32_keys allocated at end of structure. 70 */ 71 struct tc_u32_sel sel; 72 }; 73 74 struct tc_u_hnode { 75 struct tc_u_hnode __rcu *next; 76 u32 handle; 77 u32 prio; 78 struct tc_u_common *tp_c; 79 int refcnt; 80 unsigned int divisor; 81 struct rcu_head rcu; 82 /* The 'ht' field MUST be the last field in structure to allow for 83 * more entries allocated at end of structure. 84 */ 85 struct tc_u_knode __rcu *ht[1]; 86 }; 87 88 struct tc_u_common { 89 struct tc_u_hnode __rcu *hlist; 90 struct Qdisc *q; 91 int refcnt; 92 u32 hgenerator; 93 struct rcu_head rcu; 94 }; 95 96 static inline unsigned int u32_hash_fold(__be32 key, 97 const struct tc_u32_sel *sel, 98 u8 fshift) 99 { 100 unsigned int h = ntohl(key & sel->hmask) >> fshift; 101 102 return h; 103 } 104 105 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res) 106 { 107 struct { 108 struct tc_u_knode *knode; 109 unsigned int off; 110 } stack[TC_U32_MAXDEPTH]; 111 112 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root); 113 unsigned int off = skb_network_offset(skb); 114 struct tc_u_knode *n; 115 int sdepth = 0; 116 int off2 = 0; 117 int sel = 0; 118 #ifdef CONFIG_CLS_U32_PERF 119 int j; 120 #endif 121 int i, r; 122 123 next_ht: 124 n = rcu_dereference_bh(ht->ht[sel]); 125 126 next_knode: 127 if (n) { 128 struct tc_u32_key *key = n->sel.keys; 129 130 #ifdef CONFIG_CLS_U32_PERF 131 __this_cpu_inc(n->pf->rcnt); 132 j = 0; 133 #endif 134 135 #ifdef CONFIG_CLS_U32_MARK 136 if ((skb->mark & n->mask) != n->val) { 137 n = rcu_dereference_bh(n->next); 138 goto next_knode; 139 } else { 140 __this_cpu_inc(*n->pcpu_success); 141 } 142 #endif 143 144 for (i = n->sel.nkeys; i > 0; i--, key++) { 145 int toff = off + key->off + (off2 & key->offmask); 146 __be32 *data, hdata; 147 148 if (skb_headroom(skb) + toff > INT_MAX) 149 goto out; 150 151 data = skb_header_pointer(skb, toff, 4, &hdata); 152 if (!data) 153 goto out; 154 if ((*data ^ key->val) & key->mask) { 155 n = rcu_dereference_bh(n->next); 156 goto next_knode; 157 } 158 #ifdef CONFIG_CLS_U32_PERF 159 __this_cpu_inc(n->pf->kcnts[j]); 160 j++; 161 #endif 162 } 163 164 ht = rcu_dereference_bh(n->ht_down); 165 if (!ht) { 166 check_terminal: 167 if (n->sel.flags & TC_U32_TERMINAL) { 168 169 *res = n->res; 170 #ifdef CONFIG_NET_CLS_IND 171 if (!tcf_match_indev(skb, n->ifindex)) { 172 n = rcu_dereference_bh(n->next); 173 goto next_knode; 174 } 175 #endif 176 #ifdef CONFIG_CLS_U32_PERF 177 __this_cpu_inc(n->pf->rhit); 178 #endif 179 r = tcf_exts_exec(skb, &n->exts, res); 180 if (r < 0) { 181 n = rcu_dereference_bh(n->next); 182 goto next_knode; 183 } 184 185 return r; 186 } 187 n = rcu_dereference_bh(n->next); 188 goto next_knode; 189 } 190 191 /* PUSH */ 192 if (sdepth >= TC_U32_MAXDEPTH) 193 goto deadloop; 194 stack[sdepth].knode = n; 195 stack[sdepth].off = off; 196 sdepth++; 197 198 ht = rcu_dereference_bh(n->ht_down); 199 sel = 0; 200 if (ht->divisor) { 201 __be32 *data, hdata; 202 203 data = skb_header_pointer(skb, off + n->sel.hoff, 4, 204 &hdata); 205 if (!data) 206 goto out; 207 sel = ht->divisor & u32_hash_fold(*data, &n->sel, 208 n->fshift); 209 } 210 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT))) 211 goto next_ht; 212 213 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) { 214 off2 = n->sel.off + 3; 215 if (n->sel.flags & TC_U32_VAROFFSET) { 216 __be16 *data, hdata; 217 218 data = skb_header_pointer(skb, 219 off + n->sel.offoff, 220 2, &hdata); 221 if (!data) 222 goto out; 223 off2 += ntohs(n->sel.offmask & *data) >> 224 n->sel.offshift; 225 } 226 off2 &= ~3; 227 } 228 if (n->sel.flags & TC_U32_EAT) { 229 off += off2; 230 off2 = 0; 231 } 232 233 if (off < skb->len) 234 goto next_ht; 235 } 236 237 /* POP */ 238 if (sdepth--) { 239 n = stack[sdepth].knode; 240 ht = rcu_dereference_bh(n->ht_up); 241 off = stack[sdepth].off; 242 goto check_terminal; 243 } 244 out: 245 return -1; 246 247 deadloop: 248 net_warn_ratelimited("cls_u32: dead loop\n"); 249 return -1; 250 } 251 252 static struct tc_u_hnode * 253 u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) 254 { 255 struct tc_u_hnode *ht; 256 257 for (ht = rtnl_dereference(tp_c->hlist); 258 ht; 259 ht = rtnl_dereference(ht->next)) 260 if (ht->handle == handle) 261 break; 262 263 return ht; 264 } 265 266 static struct tc_u_knode * 267 u32_lookup_key(struct tc_u_hnode *ht, u32 handle) 268 { 269 unsigned int sel; 270 struct tc_u_knode *n = NULL; 271 272 sel = TC_U32_HASH(handle); 273 if (sel > ht->divisor) 274 goto out; 275 276 for (n = rtnl_dereference(ht->ht[sel]); 277 n; 278 n = rtnl_dereference(n->next)) 279 if (n->handle == handle) 280 break; 281 out: 282 return n; 283 } 284 285 286 static unsigned long u32_get(struct tcf_proto *tp, u32 handle) 287 { 288 struct tc_u_hnode *ht; 289 struct tc_u_common *tp_c = tp->data; 290 291 if (TC_U32_HTID(handle) == TC_U32_ROOT) 292 ht = rtnl_dereference(tp->root); 293 else 294 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); 295 296 if (!ht) 297 return 0; 298 299 if (TC_U32_KEY(handle) == 0) 300 return (unsigned long)ht; 301 302 return (unsigned long)u32_lookup_key(ht, handle); 303 } 304 305 static u32 gen_new_htid(struct tc_u_common *tp_c) 306 { 307 int i = 0x800; 308 309 /* hgenerator only used inside rtnl lock it is safe to increment 310 * without read _copy_ update semantics 311 */ 312 do { 313 if (++tp_c->hgenerator == 0x7FF) 314 tp_c->hgenerator = 1; 315 } while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20)); 316 317 return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0; 318 } 319 320 static int u32_init(struct tcf_proto *tp) 321 { 322 struct tc_u_hnode *root_ht; 323 struct tc_u_common *tp_c; 324 325 tp_c = tp->q->u32_node; 326 327 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL); 328 if (root_ht == NULL) 329 return -ENOBUFS; 330 331 root_ht->divisor = 0; 332 root_ht->refcnt++; 333 root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000; 334 root_ht->prio = tp->prio; 335 336 if (tp_c == NULL) { 337 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL); 338 if (tp_c == NULL) { 339 kfree(root_ht); 340 return -ENOBUFS; 341 } 342 tp_c->q = tp->q; 343 tp->q->u32_node = tp_c; 344 } 345 346 tp_c->refcnt++; 347 RCU_INIT_POINTER(root_ht->next, tp_c->hlist); 348 rcu_assign_pointer(tp_c->hlist, root_ht); 349 root_ht->tp_c = tp_c; 350 351 rcu_assign_pointer(tp->root, root_ht); 352 tp->data = tp_c; 353 return 0; 354 } 355 356 static int u32_destroy_key(struct tcf_proto *tp, 357 struct tc_u_knode *n, 358 bool free_pf) 359 { 360 tcf_exts_destroy(&n->exts); 361 if (n->ht_down) 362 n->ht_down->refcnt--; 363 #ifdef CONFIG_CLS_U32_PERF 364 if (free_pf) 365 free_percpu(n->pf); 366 #endif 367 #ifdef CONFIG_CLS_U32_MARK 368 if (free_pf) 369 free_percpu(n->pcpu_success); 370 #endif 371 kfree(n); 372 return 0; 373 } 374 375 /* u32_delete_key_rcu should be called when free'ing a copied 376 * version of a tc_u_knode obtained from u32_init_knode(). When 377 * copies are obtained from u32_init_knode() the statistics are 378 * shared between the old and new copies to allow readers to 379 * continue to update the statistics during the copy. To support 380 * this the u32_delete_key_rcu variant does not free the percpu 381 * statistics. 382 */ 383 static void u32_delete_key_rcu(struct rcu_head *rcu) 384 { 385 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 386 387 u32_destroy_key(key->tp, key, false); 388 } 389 390 /* u32_delete_key_freepf_rcu is the rcu callback variant 391 * that free's the entire structure including the statistics 392 * percpu variables. Only use this if the key is not a copy 393 * returned by u32_init_knode(). See u32_delete_key_rcu() 394 * for the variant that should be used with keys return from 395 * u32_init_knode() 396 */ 397 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu) 398 { 399 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 400 401 u32_destroy_key(key->tp, key, true); 402 } 403 404 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key) 405 { 406 struct tc_u_knode __rcu **kp; 407 struct tc_u_knode *pkp; 408 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up); 409 410 if (ht) { 411 kp = &ht->ht[TC_U32_HASH(key->handle)]; 412 for (pkp = rtnl_dereference(*kp); pkp; 413 kp = &pkp->next, pkp = rtnl_dereference(*kp)) { 414 if (pkp == key) { 415 RCU_INIT_POINTER(*kp, key->next); 416 417 tcf_unbind_filter(tp, &key->res); 418 call_rcu(&key->rcu, u32_delete_key_freepf_rcu); 419 return 0; 420 } 421 } 422 } 423 WARN_ON(1); 424 return 0; 425 } 426 427 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 428 { 429 struct tc_u_knode *n; 430 unsigned int h; 431 432 for (h = 0; h <= ht->divisor; h++) { 433 while ((n = rtnl_dereference(ht->ht[h])) != NULL) { 434 RCU_INIT_POINTER(ht->ht[h], 435 rtnl_dereference(n->next)); 436 tcf_unbind_filter(tp, &n->res); 437 call_rcu(&n->rcu, u32_delete_key_freepf_rcu); 438 } 439 } 440 } 441 442 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 443 { 444 struct tc_u_common *tp_c = tp->data; 445 struct tc_u_hnode __rcu **hn; 446 struct tc_u_hnode *phn; 447 448 WARN_ON(ht->refcnt); 449 450 u32_clear_hnode(tp, ht); 451 452 hn = &tp_c->hlist; 453 for (phn = rtnl_dereference(*hn); 454 phn; 455 hn = &phn->next, phn = rtnl_dereference(*hn)) { 456 if (phn == ht) { 457 RCU_INIT_POINTER(*hn, ht->next); 458 kfree_rcu(ht, rcu); 459 return 0; 460 } 461 } 462 463 return -ENOENT; 464 } 465 466 static void u32_destroy(struct tcf_proto *tp) 467 { 468 struct tc_u_common *tp_c = tp->data; 469 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 470 471 WARN_ON(root_ht == NULL); 472 473 if (root_ht && --root_ht->refcnt == 0) 474 u32_destroy_hnode(tp, root_ht); 475 476 if (--tp_c->refcnt == 0) { 477 struct tc_u_hnode *ht; 478 479 tp->q->u32_node = NULL; 480 481 for (ht = rtnl_dereference(tp_c->hlist); 482 ht; 483 ht = rtnl_dereference(ht->next)) { 484 ht->refcnt--; 485 u32_clear_hnode(tp, ht); 486 } 487 488 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) { 489 RCU_INIT_POINTER(tp_c->hlist, ht->next); 490 kfree_rcu(ht, rcu); 491 } 492 493 kfree(tp_c); 494 } 495 496 tp->data = NULL; 497 } 498 499 static int u32_delete(struct tcf_proto *tp, unsigned long arg) 500 { 501 struct tc_u_hnode *ht = (struct tc_u_hnode *)arg; 502 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 503 504 if (ht == NULL) 505 return 0; 506 507 if (TC_U32_KEY(ht->handle)) 508 return u32_delete_key(tp, (struct tc_u_knode *)ht); 509 510 if (root_ht == ht) 511 return -EINVAL; 512 513 if (ht->refcnt == 1) { 514 ht->refcnt--; 515 u32_destroy_hnode(tp, ht); 516 } else { 517 return -EBUSY; 518 } 519 520 return 0; 521 } 522 523 #define NR_U32_NODE (1<<12) 524 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle) 525 { 526 struct tc_u_knode *n; 527 unsigned long i; 528 unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long), 529 GFP_KERNEL); 530 if (!bitmap) 531 return handle | 0xFFF; 532 533 for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]); 534 n; 535 n = rtnl_dereference(n->next)) 536 set_bit(TC_U32_NODE(n->handle), bitmap); 537 538 i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800); 539 if (i >= NR_U32_NODE) 540 i = find_next_zero_bit(bitmap, NR_U32_NODE, 1); 541 542 kfree(bitmap); 543 return handle | (i >= NR_U32_NODE ? 0xFFF : i); 544 } 545 546 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = { 547 [TCA_U32_CLASSID] = { .type = NLA_U32 }, 548 [TCA_U32_HASH] = { .type = NLA_U32 }, 549 [TCA_U32_LINK] = { .type = NLA_U32 }, 550 [TCA_U32_DIVISOR] = { .type = NLA_U32 }, 551 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) }, 552 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ }, 553 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) }, 554 }; 555 556 static int u32_set_parms(struct net *net, struct tcf_proto *tp, 557 unsigned long base, struct tc_u_hnode *ht, 558 struct tc_u_knode *n, struct nlattr **tb, 559 struct nlattr *est, bool ovr) 560 { 561 int err; 562 struct tcf_exts e; 563 564 tcf_exts_init(&e, TCA_U32_ACT, TCA_U32_POLICE); 565 err = tcf_exts_validate(net, tp, tb, est, &e, ovr); 566 if (err < 0) 567 return err; 568 569 err = -EINVAL; 570 if (tb[TCA_U32_LINK]) { 571 u32 handle = nla_get_u32(tb[TCA_U32_LINK]); 572 struct tc_u_hnode *ht_down = NULL, *ht_old; 573 574 if (TC_U32_KEY(handle)) 575 goto errout; 576 577 if (handle) { 578 ht_down = u32_lookup_ht(ht->tp_c, handle); 579 580 if (ht_down == NULL) 581 goto errout; 582 ht_down->refcnt++; 583 } 584 585 ht_old = rtnl_dereference(n->ht_down); 586 rcu_assign_pointer(n->ht_down, ht_down); 587 588 if (ht_old) 589 ht_old->refcnt--; 590 } 591 if (tb[TCA_U32_CLASSID]) { 592 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); 593 tcf_bind_filter(tp, &n->res, base); 594 } 595 596 #ifdef CONFIG_NET_CLS_IND 597 if (tb[TCA_U32_INDEV]) { 598 int ret; 599 ret = tcf_change_indev(net, tb[TCA_U32_INDEV]); 600 if (ret < 0) 601 goto errout; 602 n->ifindex = ret; 603 } 604 #endif 605 tcf_exts_change(tp, &n->exts, &e); 606 607 return 0; 608 errout: 609 tcf_exts_destroy(&e); 610 return err; 611 } 612 613 static void u32_replace_knode(struct tcf_proto *tp, 614 struct tc_u_common *tp_c, 615 struct tc_u_knode *n) 616 { 617 struct tc_u_knode __rcu **ins; 618 struct tc_u_knode *pins; 619 struct tc_u_hnode *ht; 620 621 if (TC_U32_HTID(n->handle) == TC_U32_ROOT) 622 ht = rtnl_dereference(tp->root); 623 else 624 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle)); 625 626 ins = &ht->ht[TC_U32_HASH(n->handle)]; 627 628 /* The node must always exist for it to be replaced if this is not the 629 * case then something went very wrong elsewhere. 630 */ 631 for (pins = rtnl_dereference(*ins); ; 632 ins = &pins->next, pins = rtnl_dereference(*ins)) 633 if (pins->handle == n->handle) 634 break; 635 636 RCU_INIT_POINTER(n->next, pins->next); 637 rcu_assign_pointer(*ins, n); 638 } 639 640 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp, 641 struct tc_u_knode *n) 642 { 643 struct tc_u_knode *new; 644 struct tc_u32_sel *s = &n->sel; 645 646 new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), 647 GFP_KERNEL); 648 649 if (!new) 650 return NULL; 651 652 RCU_INIT_POINTER(new->next, n->next); 653 new->handle = n->handle; 654 RCU_INIT_POINTER(new->ht_up, n->ht_up); 655 656 #ifdef CONFIG_NET_CLS_IND 657 new->ifindex = n->ifindex; 658 #endif 659 new->fshift = n->fshift; 660 new->res = n->res; 661 RCU_INIT_POINTER(new->ht_down, n->ht_down); 662 663 /* bump reference count as long as we hold pointer to structure */ 664 if (new->ht_down) 665 new->ht_down->refcnt++; 666 667 #ifdef CONFIG_CLS_U32_PERF 668 /* Statistics may be incremented by readers during update 669 * so we must keep them in tact. When the node is later destroyed 670 * a special destroy call must be made to not free the pf memory. 671 */ 672 new->pf = n->pf; 673 #endif 674 675 #ifdef CONFIG_CLS_U32_MARK 676 new->val = n->val; 677 new->mask = n->mask; 678 /* Similarly success statistics must be moved as pointers */ 679 new->pcpu_success = n->pcpu_success; 680 #endif 681 new->tp = tp; 682 memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 683 684 tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE); 685 686 return new; 687 } 688 689 static int u32_change(struct net *net, struct sk_buff *in_skb, 690 struct tcf_proto *tp, unsigned long base, u32 handle, 691 struct nlattr **tca, 692 unsigned long *arg, bool ovr) 693 { 694 struct tc_u_common *tp_c = tp->data; 695 struct tc_u_hnode *ht; 696 struct tc_u_knode *n; 697 struct tc_u32_sel *s; 698 struct nlattr *opt = tca[TCA_OPTIONS]; 699 struct nlattr *tb[TCA_U32_MAX + 1]; 700 u32 htid; 701 int err; 702 #ifdef CONFIG_CLS_U32_PERF 703 size_t size; 704 #endif 705 706 if (opt == NULL) 707 return handle ? -EINVAL : 0; 708 709 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy); 710 if (err < 0) 711 return err; 712 713 n = (struct tc_u_knode *)*arg; 714 if (n) { 715 struct tc_u_knode *new; 716 717 if (TC_U32_KEY(n->handle) == 0) 718 return -EINVAL; 719 720 new = u32_init_knode(tp, n); 721 if (!new) 722 return -ENOMEM; 723 724 err = u32_set_parms(net, tp, base, 725 rtnl_dereference(n->ht_up), new, tb, 726 tca[TCA_RATE], ovr); 727 728 if (err) { 729 u32_destroy_key(tp, new, false); 730 return err; 731 } 732 733 u32_replace_knode(tp, tp_c, new); 734 tcf_unbind_filter(tp, &n->res); 735 call_rcu(&n->rcu, u32_delete_key_rcu); 736 return 0; 737 } 738 739 if (tb[TCA_U32_DIVISOR]) { 740 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]); 741 742 if (--divisor > 0x100) 743 return -EINVAL; 744 if (TC_U32_KEY(handle)) 745 return -EINVAL; 746 if (handle == 0) { 747 handle = gen_new_htid(tp->data); 748 if (handle == 0) 749 return -ENOMEM; 750 } 751 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL); 752 if (ht == NULL) 753 return -ENOBUFS; 754 ht->tp_c = tp_c; 755 ht->refcnt = 1; 756 ht->divisor = divisor; 757 ht->handle = handle; 758 ht->prio = tp->prio; 759 RCU_INIT_POINTER(ht->next, tp_c->hlist); 760 rcu_assign_pointer(tp_c->hlist, ht); 761 *arg = (unsigned long)ht; 762 return 0; 763 } 764 765 if (tb[TCA_U32_HASH]) { 766 htid = nla_get_u32(tb[TCA_U32_HASH]); 767 if (TC_U32_HTID(htid) == TC_U32_ROOT) { 768 ht = rtnl_dereference(tp->root); 769 htid = ht->handle; 770 } else { 771 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); 772 if (ht == NULL) 773 return -EINVAL; 774 } 775 } else { 776 ht = rtnl_dereference(tp->root); 777 htid = ht->handle; 778 } 779 780 if (ht->divisor < TC_U32_HASH(htid)) 781 return -EINVAL; 782 783 if (handle) { 784 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid)) 785 return -EINVAL; 786 handle = htid | TC_U32_NODE(handle); 787 } else 788 handle = gen_new_kid(ht, htid); 789 790 if (tb[TCA_U32_SEL] == NULL) 791 return -EINVAL; 792 793 s = nla_data(tb[TCA_U32_SEL]); 794 795 n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL); 796 if (n == NULL) 797 return -ENOBUFS; 798 799 #ifdef CONFIG_CLS_U32_PERF 800 size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64); 801 n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt)); 802 if (!n->pf) { 803 kfree(n); 804 return -ENOBUFS; 805 } 806 #endif 807 808 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 809 RCU_INIT_POINTER(n->ht_up, ht); 810 n->handle = handle; 811 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0; 812 tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE); 813 n->tp = tp; 814 815 #ifdef CONFIG_CLS_U32_MARK 816 n->pcpu_success = alloc_percpu(u32); 817 if (!n->pcpu_success) { 818 err = -ENOMEM; 819 goto errout; 820 } 821 822 if (tb[TCA_U32_MARK]) { 823 struct tc_u32_mark *mark; 824 825 mark = nla_data(tb[TCA_U32_MARK]); 826 n->val = mark->val; 827 n->mask = mark->mask; 828 } 829 #endif 830 831 err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr); 832 if (err == 0) { 833 struct tc_u_knode __rcu **ins; 834 struct tc_u_knode *pins; 835 836 ins = &ht->ht[TC_U32_HASH(handle)]; 837 for (pins = rtnl_dereference(*ins); pins; 838 ins = &pins->next, pins = rtnl_dereference(*ins)) 839 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle)) 840 break; 841 842 RCU_INIT_POINTER(n->next, pins); 843 rcu_assign_pointer(*ins, n); 844 845 *arg = (unsigned long)n; 846 return 0; 847 } 848 849 #ifdef CONFIG_CLS_U32_MARK 850 free_percpu(n->pcpu_success); 851 errout: 852 #endif 853 854 #ifdef CONFIG_CLS_U32_PERF 855 free_percpu(n->pf); 856 #endif 857 kfree(n); 858 return err; 859 } 860 861 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg) 862 { 863 struct tc_u_common *tp_c = tp->data; 864 struct tc_u_hnode *ht; 865 struct tc_u_knode *n; 866 unsigned int h; 867 868 if (arg->stop) 869 return; 870 871 for (ht = rtnl_dereference(tp_c->hlist); 872 ht; 873 ht = rtnl_dereference(ht->next)) { 874 if (ht->prio != tp->prio) 875 continue; 876 if (arg->count >= arg->skip) { 877 if (arg->fn(tp, (unsigned long)ht, arg) < 0) { 878 arg->stop = 1; 879 return; 880 } 881 } 882 arg->count++; 883 for (h = 0; h <= ht->divisor; h++) { 884 for (n = rtnl_dereference(ht->ht[h]); 885 n; 886 n = rtnl_dereference(n->next)) { 887 if (arg->count < arg->skip) { 888 arg->count++; 889 continue; 890 } 891 if (arg->fn(tp, (unsigned long)n, arg) < 0) { 892 arg->stop = 1; 893 return; 894 } 895 arg->count++; 896 } 897 } 898 } 899 } 900 901 static int u32_dump(struct net *net, struct tcf_proto *tp, unsigned long fh, 902 struct sk_buff *skb, struct tcmsg *t) 903 { 904 struct tc_u_knode *n = (struct tc_u_knode *)fh; 905 struct tc_u_hnode *ht_up, *ht_down; 906 struct nlattr *nest; 907 908 if (n == NULL) 909 return skb->len; 910 911 t->tcm_handle = n->handle; 912 913 nest = nla_nest_start(skb, TCA_OPTIONS); 914 if (nest == NULL) 915 goto nla_put_failure; 916 917 if (TC_U32_KEY(n->handle) == 0) { 918 struct tc_u_hnode *ht = (struct tc_u_hnode *)fh; 919 u32 divisor = ht->divisor + 1; 920 921 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor)) 922 goto nla_put_failure; 923 } else { 924 #ifdef CONFIG_CLS_U32_PERF 925 struct tc_u32_pcnt *gpf; 926 int cpu; 927 #endif 928 929 if (nla_put(skb, TCA_U32_SEL, 930 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key), 931 &n->sel)) 932 goto nla_put_failure; 933 934 ht_up = rtnl_dereference(n->ht_up); 935 if (ht_up) { 936 u32 htid = n->handle & 0xFFFFF000; 937 if (nla_put_u32(skb, TCA_U32_HASH, htid)) 938 goto nla_put_failure; 939 } 940 if (n->res.classid && 941 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid)) 942 goto nla_put_failure; 943 944 ht_down = rtnl_dereference(n->ht_down); 945 if (ht_down && 946 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle)) 947 goto nla_put_failure; 948 949 #ifdef CONFIG_CLS_U32_MARK 950 if ((n->val || n->mask)) { 951 struct tc_u32_mark mark = {.val = n->val, 952 .mask = n->mask, 953 .success = 0}; 954 int cpum; 955 956 for_each_possible_cpu(cpum) { 957 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum); 958 959 mark.success += cnt; 960 } 961 962 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark)) 963 goto nla_put_failure; 964 } 965 #endif 966 967 if (tcf_exts_dump(skb, &n->exts) < 0) 968 goto nla_put_failure; 969 970 #ifdef CONFIG_NET_CLS_IND 971 if (n->ifindex) { 972 struct net_device *dev; 973 dev = __dev_get_by_index(net, n->ifindex); 974 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name)) 975 goto nla_put_failure; 976 } 977 #endif 978 #ifdef CONFIG_CLS_U32_PERF 979 gpf = kzalloc(sizeof(struct tc_u32_pcnt) + 980 n->sel.nkeys * sizeof(u64), 981 GFP_KERNEL); 982 if (!gpf) 983 goto nla_put_failure; 984 985 for_each_possible_cpu(cpu) { 986 int i; 987 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu); 988 989 gpf->rcnt += pf->rcnt; 990 gpf->rhit += pf->rhit; 991 for (i = 0; i < n->sel.nkeys; i++) 992 gpf->kcnts[i] += pf->kcnts[i]; 993 } 994 995 if (nla_put(skb, TCA_U32_PCNT, 996 sizeof(struct tc_u32_pcnt) + n->sel.nkeys*sizeof(u64), 997 gpf)) { 998 kfree(gpf); 999 goto nla_put_failure; 1000 } 1001 kfree(gpf); 1002 #endif 1003 } 1004 1005 nla_nest_end(skb, nest); 1006 1007 if (TC_U32_KEY(n->handle)) 1008 if (tcf_exts_dump_stats(skb, &n->exts) < 0) 1009 goto nla_put_failure; 1010 return skb->len; 1011 1012 nla_put_failure: 1013 nla_nest_cancel(skb, nest); 1014 return -1; 1015 } 1016 1017 static struct tcf_proto_ops cls_u32_ops __read_mostly = { 1018 .kind = "u32", 1019 .classify = u32_classify, 1020 .init = u32_init, 1021 .destroy = u32_destroy, 1022 .get = u32_get, 1023 .change = u32_change, 1024 .delete = u32_delete, 1025 .walk = u32_walk, 1026 .dump = u32_dump, 1027 .owner = THIS_MODULE, 1028 }; 1029 1030 static int __init init_u32(void) 1031 { 1032 pr_info("u32 classifier\n"); 1033 #ifdef CONFIG_CLS_U32_PERF 1034 pr_info(" Performance counters on\n"); 1035 #endif 1036 #ifdef CONFIG_NET_CLS_IND 1037 pr_info(" input device check on\n"); 1038 #endif 1039 #ifdef CONFIG_NET_CLS_ACT 1040 pr_info(" Actions configured\n"); 1041 #endif 1042 return register_tcf_proto_ops(&cls_u32_ops); 1043 } 1044 1045 static void __exit exit_u32(void) 1046 { 1047 unregister_tcf_proto_ops(&cls_u32_ops); 1048 } 1049 1050 module_init(init_u32) 1051 module_exit(exit_u32) 1052 MODULE_LICENSE("GPL"); 1053