1 /* 2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * 11 * The filters are packed to hash tables of key nodes 12 * with a set of 32bit key/mask pairs at every node. 13 * Nodes reference next level hash tables etc. 14 * 15 * This scheme is the best universal classifier I managed to 16 * invent; it is not super-fast, but it is not slow (provided you 17 * program it correctly), and general enough. And its relative 18 * speed grows as the number of rules becomes larger. 19 * 20 * It seems that it represents the best middle point between 21 * speed and manageability both by human and by machine. 22 * 23 * It is especially useful for link sharing combined with QoS; 24 * pure RSVP doesn't need such a general approach and can use 25 * much simpler (and faster) schemes, sort of cls_rsvp.c. 26 * 27 * JHS: We should remove the CONFIG_NET_CLS_IND from here 28 * eventually when the meta match extension is made available 29 * 30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> 31 */ 32 33 #include <linux/module.h> 34 #include <linux/slab.h> 35 #include <linux/types.h> 36 #include <linux/kernel.h> 37 #include <linux/string.h> 38 #include <linux/errno.h> 39 #include <linux/percpu.h> 40 #include <linux/rtnetlink.h> 41 #include <linux/skbuff.h> 42 #include <linux/bitmap.h> 43 #include <linux/netdevice.h> 44 #include <linux/hash.h> 45 #include <net/netlink.h> 46 #include <net/act_api.h> 47 #include <net/pkt_cls.h> 48 #include <linux/netdevice.h> 49 #include <linux/idr.h> 50 51 struct tc_u_knode { 52 struct tc_u_knode __rcu *next; 53 u32 handle; 54 struct tc_u_hnode __rcu *ht_up; 55 struct tcf_exts exts; 56 #ifdef CONFIG_NET_CLS_IND 57 int ifindex; 58 #endif 59 u8 fshift; 60 struct tcf_result res; 61 struct tc_u_hnode __rcu *ht_down; 62 #ifdef CONFIG_CLS_U32_PERF 63 struct tc_u32_pcnt __percpu *pf; 64 #endif 65 u32 flags; 66 #ifdef CONFIG_CLS_U32_MARK 67 u32 val; 68 u32 mask; 69 u32 __percpu *pcpu_success; 70 #endif 71 struct tcf_proto *tp; 72 union { 73 struct work_struct work; 74 struct rcu_head rcu; 75 }; 76 /* The 'sel' field MUST be the last field in structure to allow for 77 * tc_u32_keys allocated at end of structure. 78 */ 79 struct tc_u32_sel sel; 80 }; 81 82 struct tc_u_hnode { 83 struct tc_u_hnode __rcu *next; 84 u32 handle; 85 u32 prio; 86 struct tc_u_common *tp_c; 87 int refcnt; 88 unsigned int divisor; 89 struct idr handle_idr; 90 struct rcu_head rcu; 91 /* The 'ht' field MUST be the last field in structure to allow for 92 * more entries allocated at end of structure. 93 */ 94 struct tc_u_knode __rcu *ht[1]; 95 }; 96 97 struct tc_u_common { 98 struct tc_u_hnode __rcu *hlist; 99 struct tcf_block *block; 100 int refcnt; 101 struct idr handle_idr; 102 struct hlist_node hnode; 103 struct rcu_head rcu; 104 }; 105 106 static inline unsigned int u32_hash_fold(__be32 key, 107 const struct tc_u32_sel *sel, 108 u8 fshift) 109 { 110 unsigned int h = ntohl(key & sel->hmask) >> fshift; 111 112 return h; 113 } 114 115 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp, 116 struct tcf_result *res) 117 { 118 struct { 119 struct tc_u_knode *knode; 120 unsigned int off; 121 } stack[TC_U32_MAXDEPTH]; 122 123 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root); 124 unsigned int off = skb_network_offset(skb); 125 struct tc_u_knode *n; 126 int sdepth = 0; 127 int off2 = 0; 128 int sel = 0; 129 #ifdef CONFIG_CLS_U32_PERF 130 int j; 131 #endif 132 int i, r; 133 134 next_ht: 135 n = rcu_dereference_bh(ht->ht[sel]); 136 137 next_knode: 138 if (n) { 139 struct tc_u32_key *key = n->sel.keys; 140 141 #ifdef CONFIG_CLS_U32_PERF 142 __this_cpu_inc(n->pf->rcnt); 143 j = 0; 144 #endif 145 146 if (tc_skip_sw(n->flags)) { 147 n = rcu_dereference_bh(n->next); 148 goto next_knode; 149 } 150 151 #ifdef CONFIG_CLS_U32_MARK 152 if ((skb->mark & n->mask) != n->val) { 153 n = rcu_dereference_bh(n->next); 154 goto next_knode; 155 } else { 156 __this_cpu_inc(*n->pcpu_success); 157 } 158 #endif 159 160 for (i = n->sel.nkeys; i > 0; i--, key++) { 161 int toff = off + key->off + (off2 & key->offmask); 162 __be32 *data, hdata; 163 164 if (skb_headroom(skb) + toff > INT_MAX) 165 goto out; 166 167 data = skb_header_pointer(skb, toff, 4, &hdata); 168 if (!data) 169 goto out; 170 if ((*data ^ key->val) & key->mask) { 171 n = rcu_dereference_bh(n->next); 172 goto next_knode; 173 } 174 #ifdef CONFIG_CLS_U32_PERF 175 __this_cpu_inc(n->pf->kcnts[j]); 176 j++; 177 #endif 178 } 179 180 ht = rcu_dereference_bh(n->ht_down); 181 if (!ht) { 182 check_terminal: 183 if (n->sel.flags & TC_U32_TERMINAL) { 184 185 *res = n->res; 186 #ifdef CONFIG_NET_CLS_IND 187 if (!tcf_match_indev(skb, n->ifindex)) { 188 n = rcu_dereference_bh(n->next); 189 goto next_knode; 190 } 191 #endif 192 #ifdef CONFIG_CLS_U32_PERF 193 __this_cpu_inc(n->pf->rhit); 194 #endif 195 r = tcf_exts_exec(skb, &n->exts, res); 196 if (r < 0) { 197 n = rcu_dereference_bh(n->next); 198 goto next_knode; 199 } 200 201 return r; 202 } 203 n = rcu_dereference_bh(n->next); 204 goto next_knode; 205 } 206 207 /* PUSH */ 208 if (sdepth >= TC_U32_MAXDEPTH) 209 goto deadloop; 210 stack[sdepth].knode = n; 211 stack[sdepth].off = off; 212 sdepth++; 213 214 ht = rcu_dereference_bh(n->ht_down); 215 sel = 0; 216 if (ht->divisor) { 217 __be32 *data, hdata; 218 219 data = skb_header_pointer(skb, off + n->sel.hoff, 4, 220 &hdata); 221 if (!data) 222 goto out; 223 sel = ht->divisor & u32_hash_fold(*data, &n->sel, 224 n->fshift); 225 } 226 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT))) 227 goto next_ht; 228 229 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) { 230 off2 = n->sel.off + 3; 231 if (n->sel.flags & TC_U32_VAROFFSET) { 232 __be16 *data, hdata; 233 234 data = skb_header_pointer(skb, 235 off + n->sel.offoff, 236 2, &hdata); 237 if (!data) 238 goto out; 239 off2 += ntohs(n->sel.offmask & *data) >> 240 n->sel.offshift; 241 } 242 off2 &= ~3; 243 } 244 if (n->sel.flags & TC_U32_EAT) { 245 off += off2; 246 off2 = 0; 247 } 248 249 if (off < skb->len) 250 goto next_ht; 251 } 252 253 /* POP */ 254 if (sdepth--) { 255 n = stack[sdepth].knode; 256 ht = rcu_dereference_bh(n->ht_up); 257 off = stack[sdepth].off; 258 goto check_terminal; 259 } 260 out: 261 return -1; 262 263 deadloop: 264 net_warn_ratelimited("cls_u32: dead loop\n"); 265 return -1; 266 } 267 268 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) 269 { 270 struct tc_u_hnode *ht; 271 272 for (ht = rtnl_dereference(tp_c->hlist); 273 ht; 274 ht = rtnl_dereference(ht->next)) 275 if (ht->handle == handle) 276 break; 277 278 return ht; 279 } 280 281 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle) 282 { 283 unsigned int sel; 284 struct tc_u_knode *n = NULL; 285 286 sel = TC_U32_HASH(handle); 287 if (sel > ht->divisor) 288 goto out; 289 290 for (n = rtnl_dereference(ht->ht[sel]); 291 n; 292 n = rtnl_dereference(n->next)) 293 if (n->handle == handle) 294 break; 295 out: 296 return n; 297 } 298 299 300 static void *u32_get(struct tcf_proto *tp, u32 handle) 301 { 302 struct tc_u_hnode *ht; 303 struct tc_u_common *tp_c = tp->data; 304 305 if (TC_U32_HTID(handle) == TC_U32_ROOT) 306 ht = rtnl_dereference(tp->root); 307 else 308 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); 309 310 if (!ht) 311 return NULL; 312 313 if (TC_U32_KEY(handle) == 0) 314 return ht; 315 316 return u32_lookup_key(ht, handle); 317 } 318 319 static u32 gen_new_htid(struct tc_u_common *tp_c, struct tc_u_hnode *ptr) 320 { 321 unsigned long idr_index; 322 int err; 323 324 /* This is only used inside rtnl lock it is safe to increment 325 * without read _copy_ update semantics 326 */ 327 err = idr_alloc_ext(&tp_c->handle_idr, ptr, &idr_index, 328 1, 0x7FF, GFP_KERNEL); 329 if (err) 330 return 0; 331 return (u32)(idr_index | 0x800) << 20; 332 } 333 334 static struct hlist_head *tc_u_common_hash; 335 336 #define U32_HASH_SHIFT 10 337 #define U32_HASH_SIZE (1 << U32_HASH_SHIFT) 338 339 static unsigned int tc_u_hash(const struct tcf_proto *tp) 340 { 341 return hash_ptr(tp->chain->block, U32_HASH_SHIFT); 342 } 343 344 static struct tc_u_common *tc_u_common_find(const struct tcf_proto *tp) 345 { 346 struct tc_u_common *tc; 347 unsigned int h; 348 349 h = tc_u_hash(tp); 350 hlist_for_each_entry(tc, &tc_u_common_hash[h], hnode) { 351 if (tc->block == tp->chain->block) 352 return tc; 353 } 354 return NULL; 355 } 356 357 static int u32_init(struct tcf_proto *tp) 358 { 359 struct tc_u_hnode *root_ht; 360 struct tc_u_common *tp_c; 361 unsigned int h; 362 363 tp_c = tc_u_common_find(tp); 364 365 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL); 366 if (root_ht == NULL) 367 return -ENOBUFS; 368 369 root_ht->refcnt++; 370 root_ht->handle = tp_c ? gen_new_htid(tp_c, root_ht) : 0x80000000; 371 root_ht->prio = tp->prio; 372 idr_init(&root_ht->handle_idr); 373 374 if (tp_c == NULL) { 375 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL); 376 if (tp_c == NULL) { 377 kfree(root_ht); 378 return -ENOBUFS; 379 } 380 tp_c->block = tp->chain->block; 381 INIT_HLIST_NODE(&tp_c->hnode); 382 idr_init(&tp_c->handle_idr); 383 384 h = tc_u_hash(tp); 385 hlist_add_head(&tp_c->hnode, &tc_u_common_hash[h]); 386 } 387 388 tp_c->refcnt++; 389 RCU_INIT_POINTER(root_ht->next, tp_c->hlist); 390 rcu_assign_pointer(tp_c->hlist, root_ht); 391 root_ht->tp_c = tp_c; 392 393 rcu_assign_pointer(tp->root, root_ht); 394 tp->data = tp_c; 395 return 0; 396 } 397 398 static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n, 399 bool free_pf) 400 { 401 tcf_exts_destroy(&n->exts); 402 if (n->ht_down) 403 n->ht_down->refcnt--; 404 #ifdef CONFIG_CLS_U32_PERF 405 if (free_pf) 406 free_percpu(n->pf); 407 #endif 408 #ifdef CONFIG_CLS_U32_MARK 409 if (free_pf) 410 free_percpu(n->pcpu_success); 411 #endif 412 kfree(n); 413 return 0; 414 } 415 416 /* u32_delete_key_rcu should be called when free'ing a copied 417 * version of a tc_u_knode obtained from u32_init_knode(). When 418 * copies are obtained from u32_init_knode() the statistics are 419 * shared between the old and new copies to allow readers to 420 * continue to update the statistics during the copy. To support 421 * this the u32_delete_key_rcu variant does not free the percpu 422 * statistics. 423 */ 424 static void u32_delete_key_work(struct work_struct *work) 425 { 426 struct tc_u_knode *key = container_of(work, struct tc_u_knode, work); 427 428 rtnl_lock(); 429 u32_destroy_key(key->tp, key, false); 430 rtnl_unlock(); 431 } 432 433 static void u32_delete_key_rcu(struct rcu_head *rcu) 434 { 435 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 436 437 INIT_WORK(&key->work, u32_delete_key_work); 438 tcf_queue_work(&key->work); 439 } 440 441 /* u32_delete_key_freepf_rcu is the rcu callback variant 442 * that free's the entire structure including the statistics 443 * percpu variables. Only use this if the key is not a copy 444 * returned by u32_init_knode(). See u32_delete_key_rcu() 445 * for the variant that should be used with keys return from 446 * u32_init_knode() 447 */ 448 static void u32_delete_key_freepf_work(struct work_struct *work) 449 { 450 struct tc_u_knode *key = container_of(work, struct tc_u_knode, work); 451 452 rtnl_lock(); 453 u32_destroy_key(key->tp, key, true); 454 rtnl_unlock(); 455 } 456 457 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu) 458 { 459 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 460 461 INIT_WORK(&key->work, u32_delete_key_freepf_work); 462 tcf_queue_work(&key->work); 463 } 464 465 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key) 466 { 467 struct tc_u_knode __rcu **kp; 468 struct tc_u_knode *pkp; 469 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up); 470 471 if (ht) { 472 kp = &ht->ht[TC_U32_HASH(key->handle)]; 473 for (pkp = rtnl_dereference(*kp); pkp; 474 kp = &pkp->next, pkp = rtnl_dereference(*kp)) { 475 if (pkp == key) { 476 RCU_INIT_POINTER(*kp, key->next); 477 478 tcf_unbind_filter(tp, &key->res); 479 call_rcu(&key->rcu, u32_delete_key_freepf_rcu); 480 return 0; 481 } 482 } 483 } 484 WARN_ON(1); 485 return 0; 486 } 487 488 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h) 489 { 490 struct tcf_block *block = tp->chain->block; 491 struct tc_cls_u32_offload cls_u32 = {}; 492 493 tc_cls_common_offload_init(&cls_u32.common, tp); 494 cls_u32.command = TC_CLSU32_DELETE_HNODE; 495 cls_u32.hnode.divisor = h->divisor; 496 cls_u32.hnode.handle = h->handle; 497 cls_u32.hnode.prio = h->prio; 498 499 tc_setup_cb_call(block, NULL, TC_SETUP_CLSU32, &cls_u32, false); 500 } 501 502 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h, 503 u32 flags) 504 { 505 struct tcf_block *block = tp->chain->block; 506 struct tc_cls_u32_offload cls_u32 = {}; 507 bool skip_sw = tc_skip_sw(flags); 508 bool offloaded = false; 509 int err; 510 511 tc_cls_common_offload_init(&cls_u32.common, tp); 512 cls_u32.command = TC_CLSU32_NEW_HNODE; 513 cls_u32.hnode.divisor = h->divisor; 514 cls_u32.hnode.handle = h->handle; 515 cls_u32.hnode.prio = h->prio; 516 517 err = tc_setup_cb_call(block, NULL, TC_SETUP_CLSU32, &cls_u32, skip_sw); 518 if (err < 0) { 519 u32_clear_hw_hnode(tp, h); 520 return err; 521 } else if (err > 0) { 522 offloaded = true; 523 } 524 525 if (skip_sw && !offloaded) 526 return -EINVAL; 527 528 return 0; 529 } 530 531 static void u32_remove_hw_knode(struct tcf_proto *tp, u32 handle) 532 { 533 struct tcf_block *block = tp->chain->block; 534 struct tc_cls_u32_offload cls_u32 = {}; 535 536 tc_cls_common_offload_init(&cls_u32.common, tp); 537 cls_u32.command = TC_CLSU32_DELETE_KNODE; 538 cls_u32.knode.handle = handle; 539 540 tc_setup_cb_call(block, NULL, TC_SETUP_CLSU32, &cls_u32, false); 541 } 542 543 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n, 544 u32 flags) 545 { 546 struct tcf_block *block = tp->chain->block; 547 struct tc_cls_u32_offload cls_u32 = {}; 548 bool skip_sw = tc_skip_sw(flags); 549 int err; 550 551 tc_cls_common_offload_init(&cls_u32.common, tp); 552 cls_u32.command = TC_CLSU32_REPLACE_KNODE; 553 cls_u32.knode.handle = n->handle; 554 cls_u32.knode.fshift = n->fshift; 555 #ifdef CONFIG_CLS_U32_MARK 556 cls_u32.knode.val = n->val; 557 cls_u32.knode.mask = n->mask; 558 #else 559 cls_u32.knode.val = 0; 560 cls_u32.knode.mask = 0; 561 #endif 562 cls_u32.knode.sel = &n->sel; 563 cls_u32.knode.exts = &n->exts; 564 if (n->ht_down) 565 cls_u32.knode.link_handle = n->ht_down->handle; 566 567 err = tc_setup_cb_call(block, NULL, TC_SETUP_CLSU32, &cls_u32, skip_sw); 568 if (err < 0) { 569 u32_remove_hw_knode(tp, n->handle); 570 return err; 571 } else if (err > 0) { 572 n->flags |= TCA_CLS_FLAGS_IN_HW; 573 } 574 575 if (skip_sw && !(n->flags & TCA_CLS_FLAGS_IN_HW)) 576 return -EINVAL; 577 578 return 0; 579 } 580 581 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 582 { 583 struct tc_u_knode *n; 584 unsigned int h; 585 586 for (h = 0; h <= ht->divisor; h++) { 587 while ((n = rtnl_dereference(ht->ht[h])) != NULL) { 588 RCU_INIT_POINTER(ht->ht[h], 589 rtnl_dereference(n->next)); 590 tcf_unbind_filter(tp, &n->res); 591 u32_remove_hw_knode(tp, n->handle); 592 idr_remove_ext(&ht->handle_idr, n->handle); 593 call_rcu(&n->rcu, u32_delete_key_freepf_rcu); 594 } 595 } 596 } 597 598 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 599 { 600 struct tc_u_common *tp_c = tp->data; 601 struct tc_u_hnode __rcu **hn; 602 struct tc_u_hnode *phn; 603 604 WARN_ON(ht->refcnt); 605 606 u32_clear_hnode(tp, ht); 607 608 hn = &tp_c->hlist; 609 for (phn = rtnl_dereference(*hn); 610 phn; 611 hn = &phn->next, phn = rtnl_dereference(*hn)) { 612 if (phn == ht) { 613 u32_clear_hw_hnode(tp, ht); 614 idr_destroy(&ht->handle_idr); 615 idr_remove_ext(&tp_c->handle_idr, ht->handle); 616 RCU_INIT_POINTER(*hn, ht->next); 617 kfree_rcu(ht, rcu); 618 return 0; 619 } 620 } 621 622 return -ENOENT; 623 } 624 625 static bool ht_empty(struct tc_u_hnode *ht) 626 { 627 unsigned int h; 628 629 for (h = 0; h <= ht->divisor; h++) 630 if (rcu_access_pointer(ht->ht[h])) 631 return false; 632 633 return true; 634 } 635 636 static void u32_destroy(struct tcf_proto *tp) 637 { 638 struct tc_u_common *tp_c = tp->data; 639 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 640 641 WARN_ON(root_ht == NULL); 642 643 if (root_ht && --root_ht->refcnt == 0) 644 u32_destroy_hnode(tp, root_ht); 645 646 if (--tp_c->refcnt == 0) { 647 struct tc_u_hnode *ht; 648 649 hlist_del(&tp_c->hnode); 650 651 for (ht = rtnl_dereference(tp_c->hlist); 652 ht; 653 ht = rtnl_dereference(ht->next)) { 654 ht->refcnt--; 655 u32_clear_hnode(tp, ht); 656 } 657 658 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) { 659 RCU_INIT_POINTER(tp_c->hlist, ht->next); 660 kfree_rcu(ht, rcu); 661 } 662 663 idr_destroy(&tp_c->handle_idr); 664 kfree(tp_c); 665 } 666 667 tp->data = NULL; 668 } 669 670 static int u32_delete(struct tcf_proto *tp, void *arg, bool *last) 671 { 672 struct tc_u_hnode *ht = arg; 673 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 674 struct tc_u_common *tp_c = tp->data; 675 int ret = 0; 676 677 if (ht == NULL) 678 goto out; 679 680 if (TC_U32_KEY(ht->handle)) { 681 u32_remove_hw_knode(tp, ht->handle); 682 ret = u32_delete_key(tp, (struct tc_u_knode *)ht); 683 goto out; 684 } 685 686 if (root_ht == ht) 687 return -EINVAL; 688 689 if (ht->refcnt == 1) { 690 ht->refcnt--; 691 u32_destroy_hnode(tp, ht); 692 } else { 693 return -EBUSY; 694 } 695 696 out: 697 *last = true; 698 if (root_ht) { 699 if (root_ht->refcnt > 1) { 700 *last = false; 701 goto ret; 702 } 703 if (root_ht->refcnt == 1) { 704 if (!ht_empty(root_ht)) { 705 *last = false; 706 goto ret; 707 } 708 } 709 } 710 711 if (tp_c->refcnt > 1) { 712 *last = false; 713 goto ret; 714 } 715 716 if (tp_c->refcnt == 1) { 717 struct tc_u_hnode *ht; 718 719 for (ht = rtnl_dereference(tp_c->hlist); 720 ht; 721 ht = rtnl_dereference(ht->next)) 722 if (!ht_empty(ht)) { 723 *last = false; 724 break; 725 } 726 } 727 728 ret: 729 return ret; 730 } 731 732 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 htid) 733 { 734 unsigned long idr_index; 735 u32 start = htid | 0x800; 736 u32 max = htid | 0xFFF; 737 u32 min = htid; 738 739 if (idr_alloc_ext(&ht->handle_idr, NULL, &idr_index, 740 start, max + 1, GFP_KERNEL)) { 741 if (idr_alloc_ext(&ht->handle_idr, NULL, &idr_index, 742 min + 1, max + 1, GFP_KERNEL)) 743 return max; 744 } 745 746 return (u32)idr_index; 747 } 748 749 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = { 750 [TCA_U32_CLASSID] = { .type = NLA_U32 }, 751 [TCA_U32_HASH] = { .type = NLA_U32 }, 752 [TCA_U32_LINK] = { .type = NLA_U32 }, 753 [TCA_U32_DIVISOR] = { .type = NLA_U32 }, 754 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) }, 755 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ }, 756 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) }, 757 [TCA_U32_FLAGS] = { .type = NLA_U32 }, 758 }; 759 760 static int u32_set_parms(struct net *net, struct tcf_proto *tp, 761 unsigned long base, struct tc_u_hnode *ht, 762 struct tc_u_knode *n, struct nlattr **tb, 763 struct nlattr *est, bool ovr) 764 { 765 int err; 766 767 err = tcf_exts_validate(net, tp, tb, est, &n->exts, ovr); 768 if (err < 0) 769 return err; 770 771 if (tb[TCA_U32_LINK]) { 772 u32 handle = nla_get_u32(tb[TCA_U32_LINK]); 773 struct tc_u_hnode *ht_down = NULL, *ht_old; 774 775 if (TC_U32_KEY(handle)) 776 return -EINVAL; 777 778 if (handle) { 779 ht_down = u32_lookup_ht(ht->tp_c, handle); 780 781 if (ht_down == NULL) 782 return -EINVAL; 783 ht_down->refcnt++; 784 } 785 786 ht_old = rtnl_dereference(n->ht_down); 787 rcu_assign_pointer(n->ht_down, ht_down); 788 789 if (ht_old) 790 ht_old->refcnt--; 791 } 792 if (tb[TCA_U32_CLASSID]) { 793 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); 794 tcf_bind_filter(tp, &n->res, base); 795 } 796 797 #ifdef CONFIG_NET_CLS_IND 798 if (tb[TCA_U32_INDEV]) { 799 int ret; 800 ret = tcf_change_indev(net, tb[TCA_U32_INDEV]); 801 if (ret < 0) 802 return -EINVAL; 803 n->ifindex = ret; 804 } 805 #endif 806 return 0; 807 } 808 809 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c, 810 struct tc_u_knode *n) 811 { 812 struct tc_u_knode __rcu **ins; 813 struct tc_u_knode *pins; 814 struct tc_u_hnode *ht; 815 816 if (TC_U32_HTID(n->handle) == TC_U32_ROOT) 817 ht = rtnl_dereference(tp->root); 818 else 819 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle)); 820 821 ins = &ht->ht[TC_U32_HASH(n->handle)]; 822 823 /* The node must always exist for it to be replaced if this is not the 824 * case then something went very wrong elsewhere. 825 */ 826 for (pins = rtnl_dereference(*ins); ; 827 ins = &pins->next, pins = rtnl_dereference(*ins)) 828 if (pins->handle == n->handle) 829 break; 830 831 idr_replace_ext(&ht->handle_idr, n, n->handle); 832 RCU_INIT_POINTER(n->next, pins->next); 833 rcu_assign_pointer(*ins, n); 834 } 835 836 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp, 837 struct tc_u_knode *n) 838 { 839 struct tc_u_knode *new; 840 struct tc_u32_sel *s = &n->sel; 841 842 new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), 843 GFP_KERNEL); 844 845 if (!new) 846 return NULL; 847 848 RCU_INIT_POINTER(new->next, n->next); 849 new->handle = n->handle; 850 RCU_INIT_POINTER(new->ht_up, n->ht_up); 851 852 #ifdef CONFIG_NET_CLS_IND 853 new->ifindex = n->ifindex; 854 #endif 855 new->fshift = n->fshift; 856 new->res = n->res; 857 new->flags = n->flags; 858 RCU_INIT_POINTER(new->ht_down, n->ht_down); 859 860 /* bump reference count as long as we hold pointer to structure */ 861 if (new->ht_down) 862 new->ht_down->refcnt++; 863 864 #ifdef CONFIG_CLS_U32_PERF 865 /* Statistics may be incremented by readers during update 866 * so we must keep them in tact. When the node is later destroyed 867 * a special destroy call must be made to not free the pf memory. 868 */ 869 new->pf = n->pf; 870 #endif 871 872 #ifdef CONFIG_CLS_U32_MARK 873 new->val = n->val; 874 new->mask = n->mask; 875 /* Similarly success statistics must be moved as pointers */ 876 new->pcpu_success = n->pcpu_success; 877 #endif 878 new->tp = tp; 879 memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 880 881 if (tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE)) { 882 kfree(new); 883 return NULL; 884 } 885 886 return new; 887 } 888 889 static int u32_change(struct net *net, struct sk_buff *in_skb, 890 struct tcf_proto *tp, unsigned long base, u32 handle, 891 struct nlattr **tca, void **arg, bool ovr) 892 { 893 struct tc_u_common *tp_c = tp->data; 894 struct tc_u_hnode *ht; 895 struct tc_u_knode *n; 896 struct tc_u32_sel *s; 897 struct nlattr *opt = tca[TCA_OPTIONS]; 898 struct nlattr *tb[TCA_U32_MAX + 1]; 899 u32 htid, flags = 0; 900 int err; 901 #ifdef CONFIG_CLS_U32_PERF 902 size_t size; 903 #endif 904 905 if (opt == NULL) 906 return handle ? -EINVAL : 0; 907 908 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy, NULL); 909 if (err < 0) 910 return err; 911 912 if (tb[TCA_U32_FLAGS]) { 913 flags = nla_get_u32(tb[TCA_U32_FLAGS]); 914 if (!tc_flags_valid(flags)) 915 return -EINVAL; 916 } 917 918 n = *arg; 919 if (n) { 920 struct tc_u_knode *new; 921 922 if (TC_U32_KEY(n->handle) == 0) 923 return -EINVAL; 924 925 if (n->flags != flags) 926 return -EINVAL; 927 928 new = u32_init_knode(tp, n); 929 if (!new) 930 return -ENOMEM; 931 932 err = u32_set_parms(net, tp, base, 933 rtnl_dereference(n->ht_up), new, tb, 934 tca[TCA_RATE], ovr); 935 936 if (err) { 937 u32_destroy_key(tp, new, false); 938 return err; 939 } 940 941 err = u32_replace_hw_knode(tp, new, flags); 942 if (err) { 943 u32_destroy_key(tp, new, false); 944 return err; 945 } 946 947 if (!tc_in_hw(new->flags)) 948 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 949 950 u32_replace_knode(tp, tp_c, new); 951 tcf_unbind_filter(tp, &n->res); 952 call_rcu(&n->rcu, u32_delete_key_rcu); 953 return 0; 954 } 955 956 if (tb[TCA_U32_DIVISOR]) { 957 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]); 958 959 if (--divisor > 0x100) 960 return -EINVAL; 961 if (TC_U32_KEY(handle)) 962 return -EINVAL; 963 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL); 964 if (ht == NULL) 965 return -ENOBUFS; 966 if (handle == 0) { 967 handle = gen_new_htid(tp->data, ht); 968 if (handle == 0) { 969 kfree(ht); 970 return -ENOMEM; 971 } 972 } else { 973 err = idr_alloc_ext(&tp_c->handle_idr, ht, NULL, 974 handle, handle + 1, GFP_KERNEL); 975 if (err) { 976 kfree(ht); 977 return err; 978 } 979 } 980 ht->tp_c = tp_c; 981 ht->refcnt = 1; 982 ht->divisor = divisor; 983 ht->handle = handle; 984 ht->prio = tp->prio; 985 idr_init(&ht->handle_idr); 986 987 err = u32_replace_hw_hnode(tp, ht, flags); 988 if (err) { 989 idr_remove_ext(&tp_c->handle_idr, handle); 990 kfree(ht); 991 return err; 992 } 993 994 RCU_INIT_POINTER(ht->next, tp_c->hlist); 995 rcu_assign_pointer(tp_c->hlist, ht); 996 *arg = ht; 997 998 return 0; 999 } 1000 1001 if (tb[TCA_U32_HASH]) { 1002 htid = nla_get_u32(tb[TCA_U32_HASH]); 1003 if (TC_U32_HTID(htid) == TC_U32_ROOT) { 1004 ht = rtnl_dereference(tp->root); 1005 htid = ht->handle; 1006 } else { 1007 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); 1008 if (ht == NULL) 1009 return -EINVAL; 1010 } 1011 } else { 1012 ht = rtnl_dereference(tp->root); 1013 htid = ht->handle; 1014 } 1015 1016 if (ht->divisor < TC_U32_HASH(htid)) 1017 return -EINVAL; 1018 1019 if (handle) { 1020 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid)) 1021 return -EINVAL; 1022 handle = htid | TC_U32_NODE(handle); 1023 err = idr_alloc_ext(&ht->handle_idr, NULL, NULL, 1024 handle, handle + 1, 1025 GFP_KERNEL); 1026 if (err) 1027 return err; 1028 } else 1029 handle = gen_new_kid(ht, htid); 1030 1031 if (tb[TCA_U32_SEL] == NULL) { 1032 err = -EINVAL; 1033 goto erridr; 1034 } 1035 1036 s = nla_data(tb[TCA_U32_SEL]); 1037 1038 n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL); 1039 if (n == NULL) { 1040 err = -ENOBUFS; 1041 goto erridr; 1042 } 1043 1044 #ifdef CONFIG_CLS_U32_PERF 1045 size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64); 1046 n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt)); 1047 if (!n->pf) { 1048 err = -ENOBUFS; 1049 goto errfree; 1050 } 1051 #endif 1052 1053 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 1054 RCU_INIT_POINTER(n->ht_up, ht); 1055 n->handle = handle; 1056 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0; 1057 n->flags = flags; 1058 n->tp = tp; 1059 1060 err = tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE); 1061 if (err < 0) 1062 goto errout; 1063 1064 #ifdef CONFIG_CLS_U32_MARK 1065 n->pcpu_success = alloc_percpu(u32); 1066 if (!n->pcpu_success) { 1067 err = -ENOMEM; 1068 goto errout; 1069 } 1070 1071 if (tb[TCA_U32_MARK]) { 1072 struct tc_u32_mark *mark; 1073 1074 mark = nla_data(tb[TCA_U32_MARK]); 1075 n->val = mark->val; 1076 n->mask = mark->mask; 1077 } 1078 #endif 1079 1080 err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr); 1081 if (err == 0) { 1082 struct tc_u_knode __rcu **ins; 1083 struct tc_u_knode *pins; 1084 1085 err = u32_replace_hw_knode(tp, n, flags); 1086 if (err) 1087 goto errhw; 1088 1089 if (!tc_in_hw(n->flags)) 1090 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW; 1091 1092 ins = &ht->ht[TC_U32_HASH(handle)]; 1093 for (pins = rtnl_dereference(*ins); pins; 1094 ins = &pins->next, pins = rtnl_dereference(*ins)) 1095 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle)) 1096 break; 1097 1098 RCU_INIT_POINTER(n->next, pins); 1099 rcu_assign_pointer(*ins, n); 1100 *arg = n; 1101 return 0; 1102 } 1103 1104 errhw: 1105 #ifdef CONFIG_CLS_U32_MARK 1106 free_percpu(n->pcpu_success); 1107 #endif 1108 1109 errout: 1110 tcf_exts_destroy(&n->exts); 1111 #ifdef CONFIG_CLS_U32_PERF 1112 errfree: 1113 free_percpu(n->pf); 1114 #endif 1115 kfree(n); 1116 erridr: 1117 idr_remove_ext(&ht->handle_idr, handle); 1118 return err; 1119 } 1120 1121 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg) 1122 { 1123 struct tc_u_common *tp_c = tp->data; 1124 struct tc_u_hnode *ht; 1125 struct tc_u_knode *n; 1126 unsigned int h; 1127 1128 if (arg->stop) 1129 return; 1130 1131 for (ht = rtnl_dereference(tp_c->hlist); 1132 ht; 1133 ht = rtnl_dereference(ht->next)) { 1134 if (ht->prio != tp->prio) 1135 continue; 1136 if (arg->count >= arg->skip) { 1137 if (arg->fn(tp, ht, arg) < 0) { 1138 arg->stop = 1; 1139 return; 1140 } 1141 } 1142 arg->count++; 1143 for (h = 0; h <= ht->divisor; h++) { 1144 for (n = rtnl_dereference(ht->ht[h]); 1145 n; 1146 n = rtnl_dereference(n->next)) { 1147 if (arg->count < arg->skip) { 1148 arg->count++; 1149 continue; 1150 } 1151 if (arg->fn(tp, n, arg) < 0) { 1152 arg->stop = 1; 1153 return; 1154 } 1155 arg->count++; 1156 } 1157 } 1158 } 1159 } 1160 1161 static void u32_bind_class(void *fh, u32 classid, unsigned long cl) 1162 { 1163 struct tc_u_knode *n = fh; 1164 1165 if (n && n->res.classid == classid) 1166 n->res.class = cl; 1167 } 1168 1169 static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh, 1170 struct sk_buff *skb, struct tcmsg *t) 1171 { 1172 struct tc_u_knode *n = fh; 1173 struct tc_u_hnode *ht_up, *ht_down; 1174 struct nlattr *nest; 1175 1176 if (n == NULL) 1177 return skb->len; 1178 1179 t->tcm_handle = n->handle; 1180 1181 nest = nla_nest_start(skb, TCA_OPTIONS); 1182 if (nest == NULL) 1183 goto nla_put_failure; 1184 1185 if (TC_U32_KEY(n->handle) == 0) { 1186 struct tc_u_hnode *ht = fh; 1187 u32 divisor = ht->divisor + 1; 1188 1189 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor)) 1190 goto nla_put_failure; 1191 } else { 1192 #ifdef CONFIG_CLS_U32_PERF 1193 struct tc_u32_pcnt *gpf; 1194 int cpu; 1195 #endif 1196 1197 if (nla_put(skb, TCA_U32_SEL, 1198 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key), 1199 &n->sel)) 1200 goto nla_put_failure; 1201 1202 ht_up = rtnl_dereference(n->ht_up); 1203 if (ht_up) { 1204 u32 htid = n->handle & 0xFFFFF000; 1205 if (nla_put_u32(skb, TCA_U32_HASH, htid)) 1206 goto nla_put_failure; 1207 } 1208 if (n->res.classid && 1209 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid)) 1210 goto nla_put_failure; 1211 1212 ht_down = rtnl_dereference(n->ht_down); 1213 if (ht_down && 1214 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle)) 1215 goto nla_put_failure; 1216 1217 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags)) 1218 goto nla_put_failure; 1219 1220 #ifdef CONFIG_CLS_U32_MARK 1221 if ((n->val || n->mask)) { 1222 struct tc_u32_mark mark = {.val = n->val, 1223 .mask = n->mask, 1224 .success = 0}; 1225 int cpum; 1226 1227 for_each_possible_cpu(cpum) { 1228 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum); 1229 1230 mark.success += cnt; 1231 } 1232 1233 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark)) 1234 goto nla_put_failure; 1235 } 1236 #endif 1237 1238 if (tcf_exts_dump(skb, &n->exts) < 0) 1239 goto nla_put_failure; 1240 1241 #ifdef CONFIG_NET_CLS_IND 1242 if (n->ifindex) { 1243 struct net_device *dev; 1244 dev = __dev_get_by_index(net, n->ifindex); 1245 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name)) 1246 goto nla_put_failure; 1247 } 1248 #endif 1249 #ifdef CONFIG_CLS_U32_PERF 1250 gpf = kzalloc(sizeof(struct tc_u32_pcnt) + 1251 n->sel.nkeys * sizeof(u64), 1252 GFP_KERNEL); 1253 if (!gpf) 1254 goto nla_put_failure; 1255 1256 for_each_possible_cpu(cpu) { 1257 int i; 1258 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu); 1259 1260 gpf->rcnt += pf->rcnt; 1261 gpf->rhit += pf->rhit; 1262 for (i = 0; i < n->sel.nkeys; i++) 1263 gpf->kcnts[i] += pf->kcnts[i]; 1264 } 1265 1266 if (nla_put_64bit(skb, TCA_U32_PCNT, 1267 sizeof(struct tc_u32_pcnt) + 1268 n->sel.nkeys * sizeof(u64), 1269 gpf, TCA_U32_PAD)) { 1270 kfree(gpf); 1271 goto nla_put_failure; 1272 } 1273 kfree(gpf); 1274 #endif 1275 } 1276 1277 nla_nest_end(skb, nest); 1278 1279 if (TC_U32_KEY(n->handle)) 1280 if (tcf_exts_dump_stats(skb, &n->exts) < 0) 1281 goto nla_put_failure; 1282 return skb->len; 1283 1284 nla_put_failure: 1285 nla_nest_cancel(skb, nest); 1286 return -1; 1287 } 1288 1289 static struct tcf_proto_ops cls_u32_ops __read_mostly = { 1290 .kind = "u32", 1291 .classify = u32_classify, 1292 .init = u32_init, 1293 .destroy = u32_destroy, 1294 .get = u32_get, 1295 .change = u32_change, 1296 .delete = u32_delete, 1297 .walk = u32_walk, 1298 .dump = u32_dump, 1299 .bind_class = u32_bind_class, 1300 .owner = THIS_MODULE, 1301 }; 1302 1303 static int __init init_u32(void) 1304 { 1305 int i, ret; 1306 1307 pr_info("u32 classifier\n"); 1308 #ifdef CONFIG_CLS_U32_PERF 1309 pr_info(" Performance counters on\n"); 1310 #endif 1311 #ifdef CONFIG_NET_CLS_IND 1312 pr_info(" input device check on\n"); 1313 #endif 1314 #ifdef CONFIG_NET_CLS_ACT 1315 pr_info(" Actions configured\n"); 1316 #endif 1317 tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE, 1318 sizeof(struct hlist_head), 1319 GFP_KERNEL); 1320 if (!tc_u_common_hash) 1321 return -ENOMEM; 1322 1323 for (i = 0; i < U32_HASH_SIZE; i++) 1324 INIT_HLIST_HEAD(&tc_u_common_hash[i]); 1325 1326 ret = register_tcf_proto_ops(&cls_u32_ops); 1327 if (ret) 1328 kvfree(tc_u_common_hash); 1329 return ret; 1330 } 1331 1332 static void __exit exit_u32(void) 1333 { 1334 unregister_tcf_proto_ops(&cls_u32_ops); 1335 kvfree(tc_u_common_hash); 1336 } 1337 1338 module_init(init_u32) 1339 module_exit(exit_u32) 1340 MODULE_LICENSE("GPL"); 1341