1 /* 2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * 11 * The filters are packed to hash tables of key nodes 12 * with a set of 32bit key/mask pairs at every node. 13 * Nodes reference next level hash tables etc. 14 * 15 * This scheme is the best universal classifier I managed to 16 * invent; it is not super-fast, but it is not slow (provided you 17 * program it correctly), and general enough. And its relative 18 * speed grows as the number of rules becomes larger. 19 * 20 * It seems that it represents the best middle point between 21 * speed and manageability both by human and by machine. 22 * 23 * It is especially useful for link sharing combined with QoS; 24 * pure RSVP doesn't need such a general approach and can use 25 * much simpler (and faster) schemes, sort of cls_rsvp.c. 26 * 27 * JHS: We should remove the CONFIG_NET_CLS_IND from here 28 * eventually when the meta match extension is made available 29 * 30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> 31 */ 32 33 #include <linux/module.h> 34 #include <linux/slab.h> 35 #include <linux/types.h> 36 #include <linux/kernel.h> 37 #include <linux/string.h> 38 #include <linux/errno.h> 39 #include <linux/percpu.h> 40 #include <linux/rtnetlink.h> 41 #include <linux/skbuff.h> 42 #include <linux/bitmap.h> 43 #include <net/netlink.h> 44 #include <net/act_api.h> 45 #include <net/pkt_cls.h> 46 #include <linux/netdevice.h> 47 48 struct tc_u_knode { 49 struct tc_u_knode __rcu *next; 50 u32 handle; 51 struct tc_u_hnode __rcu *ht_up; 52 struct tcf_exts exts; 53 #ifdef CONFIG_NET_CLS_IND 54 int ifindex; 55 #endif 56 u8 fshift; 57 struct tcf_result res; 58 struct tc_u_hnode __rcu *ht_down; 59 #ifdef CONFIG_CLS_U32_PERF 60 struct tc_u32_pcnt __percpu *pf; 61 #endif 62 u32 flags; 63 #ifdef CONFIG_CLS_U32_MARK 64 u32 val; 65 u32 mask; 66 u32 __percpu *pcpu_success; 67 #endif 68 struct tcf_proto *tp; 69 struct rcu_head rcu; 70 /* The 'sel' field MUST be the last field in structure to allow for 71 * tc_u32_keys allocated at end of structure. 72 */ 73 struct tc_u32_sel sel; 74 }; 75 76 struct tc_u_hnode { 77 struct tc_u_hnode __rcu *next; 78 u32 handle; 79 u32 prio; 80 struct tc_u_common *tp_c; 81 int refcnt; 82 unsigned int divisor; 83 struct rcu_head rcu; 84 /* The 'ht' field MUST be the last field in structure to allow for 85 * more entries allocated at end of structure. 86 */ 87 struct tc_u_knode __rcu *ht[1]; 88 }; 89 90 struct tc_u_common { 91 struct tc_u_hnode __rcu *hlist; 92 struct Qdisc *q; 93 int refcnt; 94 u32 hgenerator; 95 struct rcu_head rcu; 96 }; 97 98 static inline unsigned int u32_hash_fold(__be32 key, 99 const struct tc_u32_sel *sel, 100 u8 fshift) 101 { 102 unsigned int h = ntohl(key & sel->hmask) >> fshift; 103 104 return h; 105 } 106 107 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp, 108 struct tcf_result *res) 109 { 110 struct { 111 struct tc_u_knode *knode; 112 unsigned int off; 113 } stack[TC_U32_MAXDEPTH]; 114 115 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root); 116 unsigned int off = skb_network_offset(skb); 117 struct tc_u_knode *n; 118 int sdepth = 0; 119 int off2 = 0; 120 int sel = 0; 121 #ifdef CONFIG_CLS_U32_PERF 122 int j; 123 #endif 124 int i, r; 125 126 next_ht: 127 n = rcu_dereference_bh(ht->ht[sel]); 128 129 next_knode: 130 if (n) { 131 struct tc_u32_key *key = n->sel.keys; 132 133 #ifdef CONFIG_CLS_U32_PERF 134 __this_cpu_inc(n->pf->rcnt); 135 j = 0; 136 #endif 137 138 if (tc_skip_sw(n->flags)) { 139 n = rcu_dereference_bh(n->next); 140 goto next_knode; 141 } 142 143 #ifdef CONFIG_CLS_U32_MARK 144 if ((skb->mark & n->mask) != n->val) { 145 n = rcu_dereference_bh(n->next); 146 goto next_knode; 147 } else { 148 __this_cpu_inc(*n->pcpu_success); 149 } 150 #endif 151 152 for (i = n->sel.nkeys; i > 0; i--, key++) { 153 int toff = off + key->off + (off2 & key->offmask); 154 __be32 *data, hdata; 155 156 if (skb_headroom(skb) + toff > INT_MAX) 157 goto out; 158 159 data = skb_header_pointer(skb, toff, 4, &hdata); 160 if (!data) 161 goto out; 162 if ((*data ^ key->val) & key->mask) { 163 n = rcu_dereference_bh(n->next); 164 goto next_knode; 165 } 166 #ifdef CONFIG_CLS_U32_PERF 167 __this_cpu_inc(n->pf->kcnts[j]); 168 j++; 169 #endif 170 } 171 172 ht = rcu_dereference_bh(n->ht_down); 173 if (!ht) { 174 check_terminal: 175 if (n->sel.flags & TC_U32_TERMINAL) { 176 177 *res = n->res; 178 #ifdef CONFIG_NET_CLS_IND 179 if (!tcf_match_indev(skb, n->ifindex)) { 180 n = rcu_dereference_bh(n->next); 181 goto next_knode; 182 } 183 #endif 184 #ifdef CONFIG_CLS_U32_PERF 185 __this_cpu_inc(n->pf->rhit); 186 #endif 187 r = tcf_exts_exec(skb, &n->exts, res); 188 if (r < 0) { 189 n = rcu_dereference_bh(n->next); 190 goto next_knode; 191 } 192 193 return r; 194 } 195 n = rcu_dereference_bh(n->next); 196 goto next_knode; 197 } 198 199 /* PUSH */ 200 if (sdepth >= TC_U32_MAXDEPTH) 201 goto deadloop; 202 stack[sdepth].knode = n; 203 stack[sdepth].off = off; 204 sdepth++; 205 206 ht = rcu_dereference_bh(n->ht_down); 207 sel = 0; 208 if (ht->divisor) { 209 __be32 *data, hdata; 210 211 data = skb_header_pointer(skb, off + n->sel.hoff, 4, 212 &hdata); 213 if (!data) 214 goto out; 215 sel = ht->divisor & u32_hash_fold(*data, &n->sel, 216 n->fshift); 217 } 218 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT))) 219 goto next_ht; 220 221 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) { 222 off2 = n->sel.off + 3; 223 if (n->sel.flags & TC_U32_VAROFFSET) { 224 __be16 *data, hdata; 225 226 data = skb_header_pointer(skb, 227 off + n->sel.offoff, 228 2, &hdata); 229 if (!data) 230 goto out; 231 off2 += ntohs(n->sel.offmask & *data) >> 232 n->sel.offshift; 233 } 234 off2 &= ~3; 235 } 236 if (n->sel.flags & TC_U32_EAT) { 237 off += off2; 238 off2 = 0; 239 } 240 241 if (off < skb->len) 242 goto next_ht; 243 } 244 245 /* POP */ 246 if (sdepth--) { 247 n = stack[sdepth].knode; 248 ht = rcu_dereference_bh(n->ht_up); 249 off = stack[sdepth].off; 250 goto check_terminal; 251 } 252 out: 253 return -1; 254 255 deadloop: 256 net_warn_ratelimited("cls_u32: dead loop\n"); 257 return -1; 258 } 259 260 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) 261 { 262 struct tc_u_hnode *ht; 263 264 for (ht = rtnl_dereference(tp_c->hlist); 265 ht; 266 ht = rtnl_dereference(ht->next)) 267 if (ht->handle == handle) 268 break; 269 270 return ht; 271 } 272 273 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle) 274 { 275 unsigned int sel; 276 struct tc_u_knode *n = NULL; 277 278 sel = TC_U32_HASH(handle); 279 if (sel > ht->divisor) 280 goto out; 281 282 for (n = rtnl_dereference(ht->ht[sel]); 283 n; 284 n = rtnl_dereference(n->next)) 285 if (n->handle == handle) 286 break; 287 out: 288 return n; 289 } 290 291 292 static unsigned long u32_get(struct tcf_proto *tp, u32 handle) 293 { 294 struct tc_u_hnode *ht; 295 struct tc_u_common *tp_c = tp->data; 296 297 if (TC_U32_HTID(handle) == TC_U32_ROOT) 298 ht = rtnl_dereference(tp->root); 299 else 300 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); 301 302 if (!ht) 303 return 0; 304 305 if (TC_U32_KEY(handle) == 0) 306 return (unsigned long)ht; 307 308 return (unsigned long)u32_lookup_key(ht, handle); 309 } 310 311 static u32 gen_new_htid(struct tc_u_common *tp_c) 312 { 313 int i = 0x800; 314 315 /* hgenerator only used inside rtnl lock it is safe to increment 316 * without read _copy_ update semantics 317 */ 318 do { 319 if (++tp_c->hgenerator == 0x7FF) 320 tp_c->hgenerator = 1; 321 } while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20)); 322 323 return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0; 324 } 325 326 static int u32_init(struct tcf_proto *tp) 327 { 328 struct tc_u_hnode *root_ht; 329 struct tc_u_common *tp_c; 330 331 tp_c = tp->q->u32_node; 332 333 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL); 334 if (root_ht == NULL) 335 return -ENOBUFS; 336 337 root_ht->divisor = 0; 338 root_ht->refcnt++; 339 root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000; 340 root_ht->prio = tp->prio; 341 342 if (tp_c == NULL) { 343 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL); 344 if (tp_c == NULL) { 345 kfree(root_ht); 346 return -ENOBUFS; 347 } 348 tp_c->q = tp->q; 349 tp->q->u32_node = tp_c; 350 } 351 352 tp_c->refcnt++; 353 RCU_INIT_POINTER(root_ht->next, tp_c->hlist); 354 rcu_assign_pointer(tp_c->hlist, root_ht); 355 root_ht->tp_c = tp_c; 356 357 rcu_assign_pointer(tp->root, root_ht); 358 tp->data = tp_c; 359 return 0; 360 } 361 362 static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n, 363 bool free_pf) 364 { 365 tcf_exts_destroy(&n->exts); 366 if (n->ht_down) 367 n->ht_down->refcnt--; 368 #ifdef CONFIG_CLS_U32_PERF 369 if (free_pf) 370 free_percpu(n->pf); 371 #endif 372 #ifdef CONFIG_CLS_U32_MARK 373 if (free_pf) 374 free_percpu(n->pcpu_success); 375 #endif 376 kfree(n); 377 return 0; 378 } 379 380 /* u32_delete_key_rcu should be called when free'ing a copied 381 * version of a tc_u_knode obtained from u32_init_knode(). When 382 * copies are obtained from u32_init_knode() the statistics are 383 * shared between the old and new copies to allow readers to 384 * continue to update the statistics during the copy. To support 385 * this the u32_delete_key_rcu variant does not free the percpu 386 * statistics. 387 */ 388 static void u32_delete_key_rcu(struct rcu_head *rcu) 389 { 390 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 391 392 u32_destroy_key(key->tp, key, false); 393 } 394 395 /* u32_delete_key_freepf_rcu is the rcu callback variant 396 * that free's the entire structure including the statistics 397 * percpu variables. Only use this if the key is not a copy 398 * returned by u32_init_knode(). See u32_delete_key_rcu() 399 * for the variant that should be used with keys return from 400 * u32_init_knode() 401 */ 402 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu) 403 { 404 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); 405 406 u32_destroy_key(key->tp, key, true); 407 } 408 409 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key) 410 { 411 struct tc_u_knode __rcu **kp; 412 struct tc_u_knode *pkp; 413 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up); 414 415 if (ht) { 416 kp = &ht->ht[TC_U32_HASH(key->handle)]; 417 for (pkp = rtnl_dereference(*kp); pkp; 418 kp = &pkp->next, pkp = rtnl_dereference(*kp)) { 419 if (pkp == key) { 420 RCU_INIT_POINTER(*kp, key->next); 421 422 tcf_unbind_filter(tp, &key->res); 423 call_rcu(&key->rcu, u32_delete_key_freepf_rcu); 424 return 0; 425 } 426 } 427 } 428 WARN_ON(1); 429 return 0; 430 } 431 432 static void u32_remove_hw_knode(struct tcf_proto *tp, u32 handle) 433 { 434 struct net_device *dev = tp->q->dev_queue->dev; 435 struct tc_cls_u32_offload u32_offload = {0}; 436 struct tc_to_netdev offload; 437 438 offload.type = TC_SETUP_CLSU32; 439 offload.cls_u32 = &u32_offload; 440 441 if (tc_should_offload(dev, tp, 0)) { 442 offload.cls_u32->command = TC_CLSU32_DELETE_KNODE; 443 offload.cls_u32->knode.handle = handle; 444 dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle, 445 tp->protocol, &offload); 446 } 447 } 448 449 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h, 450 u32 flags) 451 { 452 struct net_device *dev = tp->q->dev_queue->dev; 453 struct tc_cls_u32_offload u32_offload = {0}; 454 struct tc_to_netdev offload; 455 int err; 456 457 if (!tc_should_offload(dev, tp, flags)) 458 return tc_skip_sw(flags) ? -EINVAL : 0; 459 460 offload.type = TC_SETUP_CLSU32; 461 offload.cls_u32 = &u32_offload; 462 463 offload.cls_u32->command = TC_CLSU32_NEW_HNODE; 464 offload.cls_u32->hnode.divisor = h->divisor; 465 offload.cls_u32->hnode.handle = h->handle; 466 offload.cls_u32->hnode.prio = h->prio; 467 468 err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle, 469 tp->protocol, &offload); 470 if (tc_skip_sw(flags)) 471 return err; 472 473 return 0; 474 } 475 476 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h) 477 { 478 struct net_device *dev = tp->q->dev_queue->dev; 479 struct tc_cls_u32_offload u32_offload = {0}; 480 struct tc_to_netdev offload; 481 482 offload.type = TC_SETUP_CLSU32; 483 offload.cls_u32 = &u32_offload; 484 485 if (tc_should_offload(dev, tp, 0)) { 486 offload.cls_u32->command = TC_CLSU32_DELETE_HNODE; 487 offload.cls_u32->hnode.divisor = h->divisor; 488 offload.cls_u32->hnode.handle = h->handle; 489 offload.cls_u32->hnode.prio = h->prio; 490 491 dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle, 492 tp->protocol, &offload); 493 } 494 } 495 496 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n, 497 u32 flags) 498 { 499 struct net_device *dev = tp->q->dev_queue->dev; 500 struct tc_cls_u32_offload u32_offload = {0}; 501 struct tc_to_netdev offload; 502 int err; 503 504 offload.type = TC_SETUP_CLSU32; 505 offload.cls_u32 = &u32_offload; 506 507 if (!tc_should_offload(dev, tp, flags)) 508 return tc_skip_sw(flags) ? -EINVAL : 0; 509 510 offload.cls_u32->command = TC_CLSU32_REPLACE_KNODE; 511 offload.cls_u32->knode.handle = n->handle; 512 offload.cls_u32->knode.fshift = n->fshift; 513 #ifdef CONFIG_CLS_U32_MARK 514 offload.cls_u32->knode.val = n->val; 515 offload.cls_u32->knode.mask = n->mask; 516 #else 517 offload.cls_u32->knode.val = 0; 518 offload.cls_u32->knode.mask = 0; 519 #endif 520 offload.cls_u32->knode.sel = &n->sel; 521 offload.cls_u32->knode.exts = &n->exts; 522 if (n->ht_down) 523 offload.cls_u32->knode.link_handle = n->ht_down->handle; 524 525 err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle, 526 tp->protocol, &offload); 527 if (tc_skip_sw(flags)) 528 return err; 529 530 return 0; 531 } 532 533 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 534 { 535 struct tc_u_knode *n; 536 unsigned int h; 537 538 for (h = 0; h <= ht->divisor; h++) { 539 while ((n = rtnl_dereference(ht->ht[h])) != NULL) { 540 RCU_INIT_POINTER(ht->ht[h], 541 rtnl_dereference(n->next)); 542 tcf_unbind_filter(tp, &n->res); 543 u32_remove_hw_knode(tp, n->handle); 544 call_rcu(&n->rcu, u32_delete_key_freepf_rcu); 545 } 546 } 547 } 548 549 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) 550 { 551 struct tc_u_common *tp_c = tp->data; 552 struct tc_u_hnode __rcu **hn; 553 struct tc_u_hnode *phn; 554 555 WARN_ON(ht->refcnt); 556 557 u32_clear_hnode(tp, ht); 558 559 hn = &tp_c->hlist; 560 for (phn = rtnl_dereference(*hn); 561 phn; 562 hn = &phn->next, phn = rtnl_dereference(*hn)) { 563 if (phn == ht) { 564 u32_clear_hw_hnode(tp, ht); 565 RCU_INIT_POINTER(*hn, ht->next); 566 kfree_rcu(ht, rcu); 567 return 0; 568 } 569 } 570 571 return -ENOENT; 572 } 573 574 static bool ht_empty(struct tc_u_hnode *ht) 575 { 576 unsigned int h; 577 578 for (h = 0; h <= ht->divisor; h++) 579 if (rcu_access_pointer(ht->ht[h])) 580 return false; 581 582 return true; 583 } 584 585 static bool u32_destroy(struct tcf_proto *tp, bool force) 586 { 587 struct tc_u_common *tp_c = tp->data; 588 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 589 590 WARN_ON(root_ht == NULL); 591 592 if (!force) { 593 if (root_ht) { 594 if (root_ht->refcnt > 1) 595 return false; 596 if (root_ht->refcnt == 1) { 597 if (!ht_empty(root_ht)) 598 return false; 599 } 600 } 601 602 if (tp_c->refcnt > 1) 603 return false; 604 605 if (tp_c->refcnt == 1) { 606 struct tc_u_hnode *ht; 607 608 for (ht = rtnl_dereference(tp_c->hlist); 609 ht; 610 ht = rtnl_dereference(ht->next)) 611 if (!ht_empty(ht)) 612 return false; 613 } 614 } 615 616 if (root_ht && --root_ht->refcnt == 0) 617 u32_destroy_hnode(tp, root_ht); 618 619 if (--tp_c->refcnt == 0) { 620 struct tc_u_hnode *ht; 621 622 tp->q->u32_node = NULL; 623 624 for (ht = rtnl_dereference(tp_c->hlist); 625 ht; 626 ht = rtnl_dereference(ht->next)) { 627 ht->refcnt--; 628 u32_clear_hnode(tp, ht); 629 } 630 631 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) { 632 RCU_INIT_POINTER(tp_c->hlist, ht->next); 633 kfree_rcu(ht, rcu); 634 } 635 636 kfree(tp_c); 637 } 638 639 tp->data = NULL; 640 return true; 641 } 642 643 static int u32_delete(struct tcf_proto *tp, unsigned long arg) 644 { 645 struct tc_u_hnode *ht = (struct tc_u_hnode *)arg; 646 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); 647 648 if (ht == NULL) 649 return 0; 650 651 if (TC_U32_KEY(ht->handle)) { 652 u32_remove_hw_knode(tp, ht->handle); 653 return u32_delete_key(tp, (struct tc_u_knode *)ht); 654 } 655 656 if (root_ht == ht) 657 return -EINVAL; 658 659 if (ht->refcnt == 1) { 660 ht->refcnt--; 661 u32_destroy_hnode(tp, ht); 662 } else { 663 return -EBUSY; 664 } 665 666 return 0; 667 } 668 669 #define NR_U32_NODE (1<<12) 670 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle) 671 { 672 struct tc_u_knode *n; 673 unsigned long i; 674 unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long), 675 GFP_KERNEL); 676 if (!bitmap) 677 return handle | 0xFFF; 678 679 for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]); 680 n; 681 n = rtnl_dereference(n->next)) 682 set_bit(TC_U32_NODE(n->handle), bitmap); 683 684 i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800); 685 if (i >= NR_U32_NODE) 686 i = find_next_zero_bit(bitmap, NR_U32_NODE, 1); 687 688 kfree(bitmap); 689 return handle | (i >= NR_U32_NODE ? 0xFFF : i); 690 } 691 692 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = { 693 [TCA_U32_CLASSID] = { .type = NLA_U32 }, 694 [TCA_U32_HASH] = { .type = NLA_U32 }, 695 [TCA_U32_LINK] = { .type = NLA_U32 }, 696 [TCA_U32_DIVISOR] = { .type = NLA_U32 }, 697 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) }, 698 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ }, 699 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) }, 700 [TCA_U32_FLAGS] = { .type = NLA_U32 }, 701 }; 702 703 static int u32_set_parms(struct net *net, struct tcf_proto *tp, 704 unsigned long base, struct tc_u_hnode *ht, 705 struct tc_u_knode *n, struct nlattr **tb, 706 struct nlattr *est, bool ovr) 707 { 708 struct tcf_exts e; 709 int err; 710 711 err = tcf_exts_init(&e, TCA_U32_ACT, TCA_U32_POLICE); 712 if (err < 0) 713 return err; 714 err = tcf_exts_validate(net, tp, tb, est, &e, ovr); 715 if (err < 0) 716 goto errout; 717 718 err = -EINVAL; 719 if (tb[TCA_U32_LINK]) { 720 u32 handle = nla_get_u32(tb[TCA_U32_LINK]); 721 struct tc_u_hnode *ht_down = NULL, *ht_old; 722 723 if (TC_U32_KEY(handle)) 724 goto errout; 725 726 if (handle) { 727 ht_down = u32_lookup_ht(ht->tp_c, handle); 728 729 if (ht_down == NULL) 730 goto errout; 731 ht_down->refcnt++; 732 } 733 734 ht_old = rtnl_dereference(n->ht_down); 735 rcu_assign_pointer(n->ht_down, ht_down); 736 737 if (ht_old) 738 ht_old->refcnt--; 739 } 740 if (tb[TCA_U32_CLASSID]) { 741 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); 742 tcf_bind_filter(tp, &n->res, base); 743 } 744 745 #ifdef CONFIG_NET_CLS_IND 746 if (tb[TCA_U32_INDEV]) { 747 int ret; 748 ret = tcf_change_indev(net, tb[TCA_U32_INDEV]); 749 if (ret < 0) 750 goto errout; 751 n->ifindex = ret; 752 } 753 #endif 754 tcf_exts_change(tp, &n->exts, &e); 755 756 return 0; 757 errout: 758 tcf_exts_destroy(&e); 759 return err; 760 } 761 762 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c, 763 struct tc_u_knode *n) 764 { 765 struct tc_u_knode __rcu **ins; 766 struct tc_u_knode *pins; 767 struct tc_u_hnode *ht; 768 769 if (TC_U32_HTID(n->handle) == TC_U32_ROOT) 770 ht = rtnl_dereference(tp->root); 771 else 772 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle)); 773 774 ins = &ht->ht[TC_U32_HASH(n->handle)]; 775 776 /* The node must always exist for it to be replaced if this is not the 777 * case then something went very wrong elsewhere. 778 */ 779 for (pins = rtnl_dereference(*ins); ; 780 ins = &pins->next, pins = rtnl_dereference(*ins)) 781 if (pins->handle == n->handle) 782 break; 783 784 RCU_INIT_POINTER(n->next, pins->next); 785 rcu_assign_pointer(*ins, n); 786 } 787 788 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp, 789 struct tc_u_knode *n) 790 { 791 struct tc_u_knode *new; 792 struct tc_u32_sel *s = &n->sel; 793 794 new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), 795 GFP_KERNEL); 796 797 if (!new) 798 return NULL; 799 800 RCU_INIT_POINTER(new->next, n->next); 801 new->handle = n->handle; 802 RCU_INIT_POINTER(new->ht_up, n->ht_up); 803 804 #ifdef CONFIG_NET_CLS_IND 805 new->ifindex = n->ifindex; 806 #endif 807 new->fshift = n->fshift; 808 new->res = n->res; 809 new->flags = n->flags; 810 RCU_INIT_POINTER(new->ht_down, n->ht_down); 811 812 /* bump reference count as long as we hold pointer to structure */ 813 if (new->ht_down) 814 new->ht_down->refcnt++; 815 816 #ifdef CONFIG_CLS_U32_PERF 817 /* Statistics may be incremented by readers during update 818 * so we must keep them in tact. When the node is later destroyed 819 * a special destroy call must be made to not free the pf memory. 820 */ 821 new->pf = n->pf; 822 #endif 823 824 #ifdef CONFIG_CLS_U32_MARK 825 new->val = n->val; 826 new->mask = n->mask; 827 /* Similarly success statistics must be moved as pointers */ 828 new->pcpu_success = n->pcpu_success; 829 #endif 830 new->tp = tp; 831 memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 832 833 if (tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE)) { 834 kfree(new); 835 return NULL; 836 } 837 838 return new; 839 } 840 841 static int u32_change(struct net *net, struct sk_buff *in_skb, 842 struct tcf_proto *tp, unsigned long base, u32 handle, 843 struct nlattr **tca, unsigned long *arg, bool ovr) 844 { 845 struct tc_u_common *tp_c = tp->data; 846 struct tc_u_hnode *ht; 847 struct tc_u_knode *n; 848 struct tc_u32_sel *s; 849 struct nlattr *opt = tca[TCA_OPTIONS]; 850 struct nlattr *tb[TCA_U32_MAX + 1]; 851 u32 htid, flags = 0; 852 int err; 853 #ifdef CONFIG_CLS_U32_PERF 854 size_t size; 855 #endif 856 857 if (opt == NULL) 858 return handle ? -EINVAL : 0; 859 860 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy); 861 if (err < 0) 862 return err; 863 864 if (tb[TCA_U32_FLAGS]) { 865 flags = nla_get_u32(tb[TCA_U32_FLAGS]); 866 if (!tc_flags_valid(flags)) 867 return -EINVAL; 868 } 869 870 n = (struct tc_u_knode *)*arg; 871 if (n) { 872 struct tc_u_knode *new; 873 874 if (TC_U32_KEY(n->handle) == 0) 875 return -EINVAL; 876 877 if (n->flags != flags) 878 return -EINVAL; 879 880 new = u32_init_knode(tp, n); 881 if (!new) 882 return -ENOMEM; 883 884 err = u32_set_parms(net, tp, base, 885 rtnl_dereference(n->ht_up), new, tb, 886 tca[TCA_RATE], ovr); 887 888 if (err) { 889 u32_destroy_key(tp, new, false); 890 return err; 891 } 892 893 err = u32_replace_hw_knode(tp, new, flags); 894 if (err) { 895 u32_destroy_key(tp, new, false); 896 return err; 897 } 898 899 u32_replace_knode(tp, tp_c, new); 900 tcf_unbind_filter(tp, &n->res); 901 call_rcu(&n->rcu, u32_delete_key_rcu); 902 return 0; 903 } 904 905 if (tb[TCA_U32_DIVISOR]) { 906 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]); 907 908 if (--divisor > 0x100) 909 return -EINVAL; 910 if (TC_U32_KEY(handle)) 911 return -EINVAL; 912 if (handle == 0) { 913 handle = gen_new_htid(tp->data); 914 if (handle == 0) 915 return -ENOMEM; 916 } 917 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL); 918 if (ht == NULL) 919 return -ENOBUFS; 920 ht->tp_c = tp_c; 921 ht->refcnt = 1; 922 ht->divisor = divisor; 923 ht->handle = handle; 924 ht->prio = tp->prio; 925 926 err = u32_replace_hw_hnode(tp, ht, flags); 927 if (err) { 928 kfree(ht); 929 return err; 930 } 931 932 RCU_INIT_POINTER(ht->next, tp_c->hlist); 933 rcu_assign_pointer(tp_c->hlist, ht); 934 *arg = (unsigned long)ht; 935 936 return 0; 937 } 938 939 if (tb[TCA_U32_HASH]) { 940 htid = nla_get_u32(tb[TCA_U32_HASH]); 941 if (TC_U32_HTID(htid) == TC_U32_ROOT) { 942 ht = rtnl_dereference(tp->root); 943 htid = ht->handle; 944 } else { 945 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); 946 if (ht == NULL) 947 return -EINVAL; 948 } 949 } else { 950 ht = rtnl_dereference(tp->root); 951 htid = ht->handle; 952 } 953 954 if (ht->divisor < TC_U32_HASH(htid)) 955 return -EINVAL; 956 957 if (handle) { 958 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid)) 959 return -EINVAL; 960 handle = htid | TC_U32_NODE(handle); 961 } else 962 handle = gen_new_kid(ht, htid); 963 964 if (tb[TCA_U32_SEL] == NULL) 965 return -EINVAL; 966 967 s = nla_data(tb[TCA_U32_SEL]); 968 969 n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL); 970 if (n == NULL) 971 return -ENOBUFS; 972 973 #ifdef CONFIG_CLS_U32_PERF 974 size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64); 975 n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt)); 976 if (!n->pf) { 977 kfree(n); 978 return -ENOBUFS; 979 } 980 #endif 981 982 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); 983 RCU_INIT_POINTER(n->ht_up, ht); 984 n->handle = handle; 985 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0; 986 n->flags = flags; 987 n->tp = tp; 988 989 err = tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE); 990 if (err < 0) 991 goto errout; 992 993 #ifdef CONFIG_CLS_U32_MARK 994 n->pcpu_success = alloc_percpu(u32); 995 if (!n->pcpu_success) { 996 err = -ENOMEM; 997 goto errout; 998 } 999 1000 if (tb[TCA_U32_MARK]) { 1001 struct tc_u32_mark *mark; 1002 1003 mark = nla_data(tb[TCA_U32_MARK]); 1004 n->val = mark->val; 1005 n->mask = mark->mask; 1006 } 1007 #endif 1008 1009 err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr); 1010 if (err == 0) { 1011 struct tc_u_knode __rcu **ins; 1012 struct tc_u_knode *pins; 1013 1014 err = u32_replace_hw_knode(tp, n, flags); 1015 if (err) 1016 goto errhw; 1017 1018 ins = &ht->ht[TC_U32_HASH(handle)]; 1019 for (pins = rtnl_dereference(*ins); pins; 1020 ins = &pins->next, pins = rtnl_dereference(*ins)) 1021 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle)) 1022 break; 1023 1024 RCU_INIT_POINTER(n->next, pins); 1025 rcu_assign_pointer(*ins, n); 1026 *arg = (unsigned long)n; 1027 return 0; 1028 } 1029 1030 errhw: 1031 #ifdef CONFIG_CLS_U32_MARK 1032 free_percpu(n->pcpu_success); 1033 #endif 1034 1035 errout: 1036 tcf_exts_destroy(&n->exts); 1037 #ifdef CONFIG_CLS_U32_PERF 1038 free_percpu(n->pf); 1039 #endif 1040 kfree(n); 1041 return err; 1042 } 1043 1044 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg) 1045 { 1046 struct tc_u_common *tp_c = tp->data; 1047 struct tc_u_hnode *ht; 1048 struct tc_u_knode *n; 1049 unsigned int h; 1050 1051 if (arg->stop) 1052 return; 1053 1054 for (ht = rtnl_dereference(tp_c->hlist); 1055 ht; 1056 ht = rtnl_dereference(ht->next)) { 1057 if (ht->prio != tp->prio) 1058 continue; 1059 if (arg->count >= arg->skip) { 1060 if (arg->fn(tp, (unsigned long)ht, arg) < 0) { 1061 arg->stop = 1; 1062 return; 1063 } 1064 } 1065 arg->count++; 1066 for (h = 0; h <= ht->divisor; h++) { 1067 for (n = rtnl_dereference(ht->ht[h]); 1068 n; 1069 n = rtnl_dereference(n->next)) { 1070 if (arg->count < arg->skip) { 1071 arg->count++; 1072 continue; 1073 } 1074 if (arg->fn(tp, (unsigned long)n, arg) < 0) { 1075 arg->stop = 1; 1076 return; 1077 } 1078 arg->count++; 1079 } 1080 } 1081 } 1082 } 1083 1084 static int u32_dump(struct net *net, struct tcf_proto *tp, unsigned long fh, 1085 struct sk_buff *skb, struct tcmsg *t) 1086 { 1087 struct tc_u_knode *n = (struct tc_u_knode *)fh; 1088 struct tc_u_hnode *ht_up, *ht_down; 1089 struct nlattr *nest; 1090 1091 if (n == NULL) 1092 return skb->len; 1093 1094 t->tcm_handle = n->handle; 1095 1096 nest = nla_nest_start(skb, TCA_OPTIONS); 1097 if (nest == NULL) 1098 goto nla_put_failure; 1099 1100 if (TC_U32_KEY(n->handle) == 0) { 1101 struct tc_u_hnode *ht = (struct tc_u_hnode *)fh; 1102 u32 divisor = ht->divisor + 1; 1103 1104 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor)) 1105 goto nla_put_failure; 1106 } else { 1107 #ifdef CONFIG_CLS_U32_PERF 1108 struct tc_u32_pcnt *gpf; 1109 int cpu; 1110 #endif 1111 1112 if (nla_put(skb, TCA_U32_SEL, 1113 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key), 1114 &n->sel)) 1115 goto nla_put_failure; 1116 1117 ht_up = rtnl_dereference(n->ht_up); 1118 if (ht_up) { 1119 u32 htid = n->handle & 0xFFFFF000; 1120 if (nla_put_u32(skb, TCA_U32_HASH, htid)) 1121 goto nla_put_failure; 1122 } 1123 if (n->res.classid && 1124 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid)) 1125 goto nla_put_failure; 1126 1127 ht_down = rtnl_dereference(n->ht_down); 1128 if (ht_down && 1129 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle)) 1130 goto nla_put_failure; 1131 1132 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags)) 1133 goto nla_put_failure; 1134 1135 #ifdef CONFIG_CLS_U32_MARK 1136 if ((n->val || n->mask)) { 1137 struct tc_u32_mark mark = {.val = n->val, 1138 .mask = n->mask, 1139 .success = 0}; 1140 int cpum; 1141 1142 for_each_possible_cpu(cpum) { 1143 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum); 1144 1145 mark.success += cnt; 1146 } 1147 1148 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark)) 1149 goto nla_put_failure; 1150 } 1151 #endif 1152 1153 if (tcf_exts_dump(skb, &n->exts) < 0) 1154 goto nla_put_failure; 1155 1156 #ifdef CONFIG_NET_CLS_IND 1157 if (n->ifindex) { 1158 struct net_device *dev; 1159 dev = __dev_get_by_index(net, n->ifindex); 1160 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name)) 1161 goto nla_put_failure; 1162 } 1163 #endif 1164 #ifdef CONFIG_CLS_U32_PERF 1165 gpf = kzalloc(sizeof(struct tc_u32_pcnt) + 1166 n->sel.nkeys * sizeof(u64), 1167 GFP_KERNEL); 1168 if (!gpf) 1169 goto nla_put_failure; 1170 1171 for_each_possible_cpu(cpu) { 1172 int i; 1173 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu); 1174 1175 gpf->rcnt += pf->rcnt; 1176 gpf->rhit += pf->rhit; 1177 for (i = 0; i < n->sel.nkeys; i++) 1178 gpf->kcnts[i] += pf->kcnts[i]; 1179 } 1180 1181 if (nla_put_64bit(skb, TCA_U32_PCNT, 1182 sizeof(struct tc_u32_pcnt) + 1183 n->sel.nkeys * sizeof(u64), 1184 gpf, TCA_U32_PAD)) { 1185 kfree(gpf); 1186 goto nla_put_failure; 1187 } 1188 kfree(gpf); 1189 #endif 1190 } 1191 1192 nla_nest_end(skb, nest); 1193 1194 if (TC_U32_KEY(n->handle)) 1195 if (tcf_exts_dump_stats(skb, &n->exts) < 0) 1196 goto nla_put_failure; 1197 return skb->len; 1198 1199 nla_put_failure: 1200 nla_nest_cancel(skb, nest); 1201 return -1; 1202 } 1203 1204 static struct tcf_proto_ops cls_u32_ops __read_mostly = { 1205 .kind = "u32", 1206 .classify = u32_classify, 1207 .init = u32_init, 1208 .destroy = u32_destroy, 1209 .get = u32_get, 1210 .change = u32_change, 1211 .delete = u32_delete, 1212 .walk = u32_walk, 1213 .dump = u32_dump, 1214 .owner = THIS_MODULE, 1215 }; 1216 1217 static int __init init_u32(void) 1218 { 1219 pr_info("u32 classifier\n"); 1220 #ifdef CONFIG_CLS_U32_PERF 1221 pr_info(" Performance counters on\n"); 1222 #endif 1223 #ifdef CONFIG_NET_CLS_IND 1224 pr_info(" input device check on\n"); 1225 #endif 1226 #ifdef CONFIG_NET_CLS_ACT 1227 pr_info(" Actions configured\n"); 1228 #endif 1229 return register_tcf_proto_ops(&cls_u32_ops); 1230 } 1231 1232 static void __exit exit_u32(void) 1233 { 1234 unregister_tcf_proto_ops(&cls_u32_ops); 1235 } 1236 1237 module_init(init_u32) 1238 module_exit(exit_u32) 1239 MODULE_LICENSE("GPL"); 1240