1 /* 2 * net/sched/cls_flow.c Generic flow classifier 3 * 4 * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/init.h> 14 #include <linux/list.h> 15 #include <linux/jhash.h> 16 #include <linux/random.h> 17 #include <linux/pkt_cls.h> 18 #include <linux/skbuff.h> 19 #include <linux/in.h> 20 #include <linux/ip.h> 21 #include <linux/ipv6.h> 22 #include <linux/if_vlan.h> 23 #include <linux/slab.h> 24 #include <linux/module.h> 25 26 #include <net/pkt_cls.h> 27 #include <net/ip.h> 28 #include <net/route.h> 29 #include <net/flow_keys.h> 30 31 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 32 #include <net/netfilter/nf_conntrack.h> 33 #endif 34 35 struct flow_head { 36 struct list_head filters; 37 struct rcu_head rcu; 38 }; 39 40 struct flow_filter { 41 struct list_head list; 42 struct tcf_exts exts; 43 struct tcf_ematch_tree ematches; 44 struct tcf_proto *tp; 45 struct timer_list perturb_timer; 46 u32 perturb_period; 47 u32 handle; 48 49 u32 nkeys; 50 u32 keymask; 51 u32 mode; 52 u32 mask; 53 u32 xor; 54 u32 rshift; 55 u32 addend; 56 u32 divisor; 57 u32 baseclass; 58 u32 hashrnd; 59 struct rcu_head rcu; 60 }; 61 62 static inline u32 addr_fold(void *addr) 63 { 64 unsigned long a = (unsigned long)addr; 65 66 return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0); 67 } 68 69 static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow) 70 { 71 if (flow->src) 72 return ntohl(flow->src); 73 return addr_fold(skb->sk); 74 } 75 76 static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow) 77 { 78 if (flow->dst) 79 return ntohl(flow->dst); 80 return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb); 81 } 82 83 static u32 flow_get_proto(const struct sk_buff *skb, const struct flow_keys *flow) 84 { 85 return flow->ip_proto; 86 } 87 88 static u32 flow_get_proto_src(const struct sk_buff *skb, const struct flow_keys *flow) 89 { 90 if (flow->ports) 91 return ntohs(flow->port16[0]); 92 93 return addr_fold(skb->sk); 94 } 95 96 static u32 flow_get_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow) 97 { 98 if (flow->ports) 99 return ntohs(flow->port16[1]); 100 101 return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb); 102 } 103 104 static u32 flow_get_iif(const struct sk_buff *skb) 105 { 106 return skb->skb_iif; 107 } 108 109 static u32 flow_get_priority(const struct sk_buff *skb) 110 { 111 return skb->priority; 112 } 113 114 static u32 flow_get_mark(const struct sk_buff *skb) 115 { 116 return skb->mark; 117 } 118 119 static u32 flow_get_nfct(const struct sk_buff *skb) 120 { 121 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 122 return addr_fold(skb->nfct); 123 #else 124 return 0; 125 #endif 126 } 127 128 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 129 #define CTTUPLE(skb, member) \ 130 ({ \ 131 enum ip_conntrack_info ctinfo; \ 132 const struct nf_conn *ct = nf_ct_get(skb, &ctinfo); \ 133 if (ct == NULL) \ 134 goto fallback; \ 135 ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member; \ 136 }) 137 #else 138 #define CTTUPLE(skb, member) \ 139 ({ \ 140 goto fallback; \ 141 0; \ 142 }) 143 #endif 144 145 static u32 flow_get_nfct_src(const struct sk_buff *skb, const struct flow_keys *flow) 146 { 147 switch (tc_skb_protocol(skb)) { 148 case htons(ETH_P_IP): 149 return ntohl(CTTUPLE(skb, src.u3.ip)); 150 case htons(ETH_P_IPV6): 151 return ntohl(CTTUPLE(skb, src.u3.ip6[3])); 152 } 153 fallback: 154 return flow_get_src(skb, flow); 155 } 156 157 static u32 flow_get_nfct_dst(const struct sk_buff *skb, const struct flow_keys *flow) 158 { 159 switch (tc_skb_protocol(skb)) { 160 case htons(ETH_P_IP): 161 return ntohl(CTTUPLE(skb, dst.u3.ip)); 162 case htons(ETH_P_IPV6): 163 return ntohl(CTTUPLE(skb, dst.u3.ip6[3])); 164 } 165 fallback: 166 return flow_get_dst(skb, flow); 167 } 168 169 static u32 flow_get_nfct_proto_src(const struct sk_buff *skb, const struct flow_keys *flow) 170 { 171 return ntohs(CTTUPLE(skb, src.u.all)); 172 fallback: 173 return flow_get_proto_src(skb, flow); 174 } 175 176 static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow) 177 { 178 return ntohs(CTTUPLE(skb, dst.u.all)); 179 fallback: 180 return flow_get_proto_dst(skb, flow); 181 } 182 183 static u32 flow_get_rtclassid(const struct sk_buff *skb) 184 { 185 #ifdef CONFIG_IP_ROUTE_CLASSID 186 if (skb_dst(skb)) 187 return skb_dst(skb)->tclassid; 188 #endif 189 return 0; 190 } 191 192 static u32 flow_get_skuid(const struct sk_buff *skb) 193 { 194 if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file) { 195 kuid_t skuid = skb->sk->sk_socket->file->f_cred->fsuid; 196 return from_kuid(&init_user_ns, skuid); 197 } 198 return 0; 199 } 200 201 static u32 flow_get_skgid(const struct sk_buff *skb) 202 { 203 if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file) { 204 kgid_t skgid = skb->sk->sk_socket->file->f_cred->fsgid; 205 return from_kgid(&init_user_ns, skgid); 206 } 207 return 0; 208 } 209 210 static u32 flow_get_vlan_tag(const struct sk_buff *skb) 211 { 212 u16 uninitialized_var(tag); 213 214 if (vlan_get_tag(skb, &tag) < 0) 215 return 0; 216 return tag & VLAN_VID_MASK; 217 } 218 219 static u32 flow_get_rxhash(struct sk_buff *skb) 220 { 221 return skb_get_hash(skb); 222 } 223 224 static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow) 225 { 226 switch (key) { 227 case FLOW_KEY_SRC: 228 return flow_get_src(skb, flow); 229 case FLOW_KEY_DST: 230 return flow_get_dst(skb, flow); 231 case FLOW_KEY_PROTO: 232 return flow_get_proto(skb, flow); 233 case FLOW_KEY_PROTO_SRC: 234 return flow_get_proto_src(skb, flow); 235 case FLOW_KEY_PROTO_DST: 236 return flow_get_proto_dst(skb, flow); 237 case FLOW_KEY_IIF: 238 return flow_get_iif(skb); 239 case FLOW_KEY_PRIORITY: 240 return flow_get_priority(skb); 241 case FLOW_KEY_MARK: 242 return flow_get_mark(skb); 243 case FLOW_KEY_NFCT: 244 return flow_get_nfct(skb); 245 case FLOW_KEY_NFCT_SRC: 246 return flow_get_nfct_src(skb, flow); 247 case FLOW_KEY_NFCT_DST: 248 return flow_get_nfct_dst(skb, flow); 249 case FLOW_KEY_NFCT_PROTO_SRC: 250 return flow_get_nfct_proto_src(skb, flow); 251 case FLOW_KEY_NFCT_PROTO_DST: 252 return flow_get_nfct_proto_dst(skb, flow); 253 case FLOW_KEY_RTCLASSID: 254 return flow_get_rtclassid(skb); 255 case FLOW_KEY_SKUID: 256 return flow_get_skuid(skb); 257 case FLOW_KEY_SKGID: 258 return flow_get_skgid(skb); 259 case FLOW_KEY_VLAN_TAG: 260 return flow_get_vlan_tag(skb); 261 case FLOW_KEY_RXHASH: 262 return flow_get_rxhash(skb); 263 default: 264 WARN_ON(1); 265 return 0; 266 } 267 } 268 269 #define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) | \ 270 (1 << FLOW_KEY_DST) | \ 271 (1 << FLOW_KEY_PROTO) | \ 272 (1 << FLOW_KEY_PROTO_SRC) | \ 273 (1 << FLOW_KEY_PROTO_DST) | \ 274 (1 << FLOW_KEY_NFCT_SRC) | \ 275 (1 << FLOW_KEY_NFCT_DST) | \ 276 (1 << FLOW_KEY_NFCT_PROTO_SRC) | \ 277 (1 << FLOW_KEY_NFCT_PROTO_DST)) 278 279 static int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp, 280 struct tcf_result *res) 281 { 282 struct flow_head *head = rcu_dereference_bh(tp->root); 283 struct flow_filter *f; 284 u32 keymask; 285 u32 classid; 286 unsigned int n, key; 287 int r; 288 289 list_for_each_entry_rcu(f, &head->filters, list) { 290 u32 keys[FLOW_KEY_MAX + 1]; 291 struct flow_keys flow_keys; 292 293 if (!tcf_em_tree_match(skb, &f->ematches, NULL)) 294 continue; 295 296 keymask = f->keymask; 297 if (keymask & FLOW_KEYS_NEEDED) 298 skb_flow_dissect(skb, &flow_keys); 299 300 for (n = 0; n < f->nkeys; n++) { 301 key = ffs(keymask) - 1; 302 keymask &= ~(1 << key); 303 keys[n] = flow_key_get(skb, key, &flow_keys); 304 } 305 306 if (f->mode == FLOW_MODE_HASH) 307 classid = jhash2(keys, f->nkeys, f->hashrnd); 308 else { 309 classid = keys[0]; 310 classid = (classid & f->mask) ^ f->xor; 311 classid = (classid >> f->rshift) + f->addend; 312 } 313 314 if (f->divisor) 315 classid %= f->divisor; 316 317 res->class = 0; 318 res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid); 319 320 r = tcf_exts_exec(skb, &f->exts, res); 321 if (r < 0) 322 continue; 323 return r; 324 } 325 return -1; 326 } 327 328 static void flow_perturbation(unsigned long arg) 329 { 330 struct flow_filter *f = (struct flow_filter *)arg; 331 332 get_random_bytes(&f->hashrnd, 4); 333 if (f->perturb_period) 334 mod_timer(&f->perturb_timer, jiffies + f->perturb_period); 335 } 336 337 static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = { 338 [TCA_FLOW_KEYS] = { .type = NLA_U32 }, 339 [TCA_FLOW_MODE] = { .type = NLA_U32 }, 340 [TCA_FLOW_BASECLASS] = { .type = NLA_U32 }, 341 [TCA_FLOW_RSHIFT] = { .type = NLA_U32 }, 342 [TCA_FLOW_ADDEND] = { .type = NLA_U32 }, 343 [TCA_FLOW_MASK] = { .type = NLA_U32 }, 344 [TCA_FLOW_XOR] = { .type = NLA_U32 }, 345 [TCA_FLOW_DIVISOR] = { .type = NLA_U32 }, 346 [TCA_FLOW_ACT] = { .type = NLA_NESTED }, 347 [TCA_FLOW_POLICE] = { .type = NLA_NESTED }, 348 [TCA_FLOW_EMATCHES] = { .type = NLA_NESTED }, 349 [TCA_FLOW_PERTURB] = { .type = NLA_U32 }, 350 }; 351 352 static void flow_destroy_filter(struct rcu_head *head) 353 { 354 struct flow_filter *f = container_of(head, struct flow_filter, rcu); 355 356 del_timer_sync(&f->perturb_timer); 357 tcf_exts_destroy(&f->exts); 358 tcf_em_tree_destroy(&f->ematches); 359 kfree(f); 360 } 361 362 static int flow_change(struct net *net, struct sk_buff *in_skb, 363 struct tcf_proto *tp, unsigned long base, 364 u32 handle, struct nlattr **tca, 365 unsigned long *arg, bool ovr) 366 { 367 struct flow_head *head = rtnl_dereference(tp->root); 368 struct flow_filter *fold, *fnew; 369 struct nlattr *opt = tca[TCA_OPTIONS]; 370 struct nlattr *tb[TCA_FLOW_MAX + 1]; 371 struct tcf_exts e; 372 struct tcf_ematch_tree t; 373 unsigned int nkeys = 0; 374 unsigned int perturb_period = 0; 375 u32 baseclass = 0; 376 u32 keymask = 0; 377 u32 mode; 378 int err; 379 380 if (opt == NULL) 381 return -EINVAL; 382 383 err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy); 384 if (err < 0) 385 return err; 386 387 if (tb[TCA_FLOW_BASECLASS]) { 388 baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]); 389 if (TC_H_MIN(baseclass) == 0) 390 return -EINVAL; 391 } 392 393 if (tb[TCA_FLOW_KEYS]) { 394 keymask = nla_get_u32(tb[TCA_FLOW_KEYS]); 395 396 nkeys = hweight32(keymask); 397 if (nkeys == 0) 398 return -EINVAL; 399 400 if (fls(keymask) - 1 > FLOW_KEY_MAX) 401 return -EOPNOTSUPP; 402 403 if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) && 404 sk_user_ns(NETLINK_CB(in_skb).sk) != &init_user_ns) 405 return -EOPNOTSUPP; 406 } 407 408 tcf_exts_init(&e, TCA_FLOW_ACT, TCA_FLOW_POLICE); 409 err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &e, ovr); 410 if (err < 0) 411 return err; 412 413 err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t); 414 if (err < 0) 415 goto err1; 416 417 err = -ENOBUFS; 418 fnew = kzalloc(sizeof(*fnew), GFP_KERNEL); 419 if (!fnew) 420 goto err2; 421 422 fold = (struct flow_filter *)*arg; 423 if (fold) { 424 err = -EINVAL; 425 if (fold->handle != handle && handle) 426 goto err2; 427 428 /* Copy fold into fnew */ 429 fnew->tp = fold->tp; 430 fnew->handle = fold->handle; 431 fnew->nkeys = fold->nkeys; 432 fnew->keymask = fold->keymask; 433 fnew->mode = fold->mode; 434 fnew->mask = fold->mask; 435 fnew->xor = fold->xor; 436 fnew->rshift = fold->rshift; 437 fnew->addend = fold->addend; 438 fnew->divisor = fold->divisor; 439 fnew->baseclass = fold->baseclass; 440 fnew->hashrnd = fold->hashrnd; 441 442 mode = fold->mode; 443 if (tb[TCA_FLOW_MODE]) 444 mode = nla_get_u32(tb[TCA_FLOW_MODE]); 445 if (mode != FLOW_MODE_HASH && nkeys > 1) 446 goto err2; 447 448 if (mode == FLOW_MODE_HASH) 449 perturb_period = fold->perturb_period; 450 if (tb[TCA_FLOW_PERTURB]) { 451 if (mode != FLOW_MODE_HASH) 452 goto err2; 453 perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ; 454 } 455 } else { 456 err = -EINVAL; 457 if (!handle) 458 goto err2; 459 if (!tb[TCA_FLOW_KEYS]) 460 goto err2; 461 462 mode = FLOW_MODE_MAP; 463 if (tb[TCA_FLOW_MODE]) 464 mode = nla_get_u32(tb[TCA_FLOW_MODE]); 465 if (mode != FLOW_MODE_HASH && nkeys > 1) 466 goto err2; 467 468 if (tb[TCA_FLOW_PERTURB]) { 469 if (mode != FLOW_MODE_HASH) 470 goto err2; 471 perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ; 472 } 473 474 if (TC_H_MAJ(baseclass) == 0) 475 baseclass = TC_H_MAKE(tp->q->handle, baseclass); 476 if (TC_H_MIN(baseclass) == 0) 477 baseclass = TC_H_MAKE(baseclass, 1); 478 479 fnew->handle = handle; 480 fnew->mask = ~0U; 481 fnew->tp = tp; 482 get_random_bytes(&fnew->hashrnd, 4); 483 tcf_exts_init(&fnew->exts, TCA_FLOW_ACT, TCA_FLOW_POLICE); 484 } 485 486 fnew->perturb_timer.function = flow_perturbation; 487 fnew->perturb_timer.data = (unsigned long)fnew; 488 init_timer_deferrable(&fnew->perturb_timer); 489 490 tcf_exts_change(tp, &fnew->exts, &e); 491 tcf_em_tree_change(tp, &fnew->ematches, &t); 492 493 netif_keep_dst(qdisc_dev(tp->q)); 494 495 if (tb[TCA_FLOW_KEYS]) { 496 fnew->keymask = keymask; 497 fnew->nkeys = nkeys; 498 } 499 500 fnew->mode = mode; 501 502 if (tb[TCA_FLOW_MASK]) 503 fnew->mask = nla_get_u32(tb[TCA_FLOW_MASK]); 504 if (tb[TCA_FLOW_XOR]) 505 fnew->xor = nla_get_u32(tb[TCA_FLOW_XOR]); 506 if (tb[TCA_FLOW_RSHIFT]) 507 fnew->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]); 508 if (tb[TCA_FLOW_ADDEND]) 509 fnew->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]); 510 511 if (tb[TCA_FLOW_DIVISOR]) 512 fnew->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]); 513 if (baseclass) 514 fnew->baseclass = baseclass; 515 516 fnew->perturb_period = perturb_period; 517 if (perturb_period) 518 mod_timer(&fnew->perturb_timer, jiffies + perturb_period); 519 520 if (*arg == 0) 521 list_add_tail_rcu(&fnew->list, &head->filters); 522 else 523 list_replace_rcu(&fnew->list, &fold->list); 524 525 *arg = (unsigned long)fnew; 526 527 if (fold) 528 call_rcu(&fold->rcu, flow_destroy_filter); 529 return 0; 530 531 err2: 532 tcf_em_tree_destroy(&t); 533 kfree(fnew); 534 err1: 535 tcf_exts_destroy(&e); 536 return err; 537 } 538 539 static int flow_delete(struct tcf_proto *tp, unsigned long arg) 540 { 541 struct flow_filter *f = (struct flow_filter *)arg; 542 543 list_del_rcu(&f->list); 544 call_rcu(&f->rcu, flow_destroy_filter); 545 return 0; 546 } 547 548 static int flow_init(struct tcf_proto *tp) 549 { 550 struct flow_head *head; 551 552 head = kzalloc(sizeof(*head), GFP_KERNEL); 553 if (head == NULL) 554 return -ENOBUFS; 555 INIT_LIST_HEAD(&head->filters); 556 rcu_assign_pointer(tp->root, head); 557 return 0; 558 } 559 560 static void flow_destroy(struct tcf_proto *tp) 561 { 562 struct flow_head *head = rtnl_dereference(tp->root); 563 struct flow_filter *f, *next; 564 565 list_for_each_entry_safe(f, next, &head->filters, list) { 566 list_del_rcu(&f->list); 567 call_rcu(&f->rcu, flow_destroy_filter); 568 } 569 RCU_INIT_POINTER(tp->root, NULL); 570 kfree_rcu(head, rcu); 571 } 572 573 static unsigned long flow_get(struct tcf_proto *tp, u32 handle) 574 { 575 struct flow_head *head = rtnl_dereference(tp->root); 576 struct flow_filter *f; 577 578 list_for_each_entry(f, &head->filters, list) 579 if (f->handle == handle) 580 return (unsigned long)f; 581 return 0; 582 } 583 584 static int flow_dump(struct net *net, struct tcf_proto *tp, unsigned long fh, 585 struct sk_buff *skb, struct tcmsg *t) 586 { 587 struct flow_filter *f = (struct flow_filter *)fh; 588 struct nlattr *nest; 589 590 if (f == NULL) 591 return skb->len; 592 593 t->tcm_handle = f->handle; 594 595 nest = nla_nest_start(skb, TCA_OPTIONS); 596 if (nest == NULL) 597 goto nla_put_failure; 598 599 if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) || 600 nla_put_u32(skb, TCA_FLOW_MODE, f->mode)) 601 goto nla_put_failure; 602 603 if (f->mask != ~0 || f->xor != 0) { 604 if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) || 605 nla_put_u32(skb, TCA_FLOW_XOR, f->xor)) 606 goto nla_put_failure; 607 } 608 if (f->rshift && 609 nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift)) 610 goto nla_put_failure; 611 if (f->addend && 612 nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend)) 613 goto nla_put_failure; 614 615 if (f->divisor && 616 nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor)) 617 goto nla_put_failure; 618 if (f->baseclass && 619 nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass)) 620 goto nla_put_failure; 621 622 if (f->perturb_period && 623 nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ)) 624 goto nla_put_failure; 625 626 if (tcf_exts_dump(skb, &f->exts) < 0) 627 goto nla_put_failure; 628 #ifdef CONFIG_NET_EMATCH 629 if (f->ematches.hdr.nmatches && 630 tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0) 631 goto nla_put_failure; 632 #endif 633 nla_nest_end(skb, nest); 634 635 if (tcf_exts_dump_stats(skb, &f->exts) < 0) 636 goto nla_put_failure; 637 638 return skb->len; 639 640 nla_put_failure: 641 nla_nest_cancel(skb, nest); 642 return -1; 643 } 644 645 static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg) 646 { 647 struct flow_head *head = rtnl_dereference(tp->root); 648 struct flow_filter *f; 649 650 list_for_each_entry(f, &head->filters, list) { 651 if (arg->count < arg->skip) 652 goto skip; 653 if (arg->fn(tp, (unsigned long)f, arg) < 0) { 654 arg->stop = 1; 655 break; 656 } 657 skip: 658 arg->count++; 659 } 660 } 661 662 static struct tcf_proto_ops cls_flow_ops __read_mostly = { 663 .kind = "flow", 664 .classify = flow_classify, 665 .init = flow_init, 666 .destroy = flow_destroy, 667 .change = flow_change, 668 .delete = flow_delete, 669 .get = flow_get, 670 .dump = flow_dump, 671 .walk = flow_walk, 672 .owner = THIS_MODULE, 673 }; 674 675 static int __init cls_flow_init(void) 676 { 677 return register_tcf_proto_ops(&cls_flow_ops); 678 } 679 680 static void __exit cls_flow_exit(void) 681 { 682 unregister_tcf_proto_ops(&cls_flow_ops); 683 } 684 685 module_init(cls_flow_init); 686 module_exit(cls_flow_exit); 687 688 MODULE_LICENSE("GPL"); 689 MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>"); 690 MODULE_DESCRIPTION("TC flow classifier"); 691