xref: /linux/net/sched/act_ct.c (revision ea23fbd2a8f7dadfa9cd9b9d73f3b8a69eec0671)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /* -
3  * net/sched/act_ct.c  Connection Tracking action
4  *
5  * Authors:   Paul Blakey <paulb@mellanox.com>
6  *            Yossi Kuperman <yossiku@mellanox.com>
7  *            Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/skbuff.h>
14 #include <linux/rtnetlink.h>
15 #include <linux/pkt_cls.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/rhashtable.h>
19 #include <net/netlink.h>
20 #include <net/pkt_sched.h>
21 #include <net/pkt_cls.h>
22 #include <net/act_api.h>
23 #include <net/ip.h>
24 #include <net/ipv6_frag.h>
25 #include <uapi/linux/tc_act/tc_ct.h>
26 #include <net/tc_act/tc_ct.h>
27 #include <net/tc_wrapper.h>
28 
29 #include <net/netfilter/nf_flow_table.h>
30 #include <net/netfilter/nf_conntrack.h>
31 #include <net/netfilter/nf_conntrack_core.h>
32 #include <net/netfilter/nf_conntrack_zones.h>
33 #include <net/netfilter/nf_conntrack_helper.h>
34 #include <net/netfilter/nf_conntrack_acct.h>
35 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
36 #include <net/netfilter/nf_conntrack_act_ct.h>
37 #include <net/netfilter/nf_conntrack_seqadj.h>
38 #include <uapi/linux/netfilter/nf_nat.h>
39 
40 static struct workqueue_struct *act_ct_wq;
41 static struct rhashtable zones_ht;
42 static DEFINE_MUTEX(zones_mutex);
43 
44 struct tcf_ct_flow_table {
45 	struct rhash_head node; /* In zones tables */
46 
47 	struct rcu_work rwork;
48 	struct nf_flowtable nf_ft;
49 	refcount_t ref;
50 	u16 zone;
51 
52 	bool dying;
53 };
54 
55 static const struct rhashtable_params zones_params = {
56 	.head_offset = offsetof(struct tcf_ct_flow_table, node),
57 	.key_offset = offsetof(struct tcf_ct_flow_table, zone),
58 	.key_len = sizeof_field(struct tcf_ct_flow_table, zone),
59 	.automatic_shrinking = true,
60 };
61 
62 static struct flow_action_entry *
63 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action)
64 {
65 	int i = flow_action->num_entries++;
66 
67 	return &flow_action->entries[i];
68 }
69 
70 static void tcf_ct_add_mangle_action(struct flow_action *action,
71 				     enum flow_action_mangle_base htype,
72 				     u32 offset,
73 				     u32 mask,
74 				     u32 val)
75 {
76 	struct flow_action_entry *entry;
77 
78 	entry = tcf_ct_flow_table_flow_action_get_next(action);
79 	entry->id = FLOW_ACTION_MANGLE;
80 	entry->mangle.htype = htype;
81 	entry->mangle.mask = ~mask;
82 	entry->mangle.offset = offset;
83 	entry->mangle.val = val;
84 }
85 
86 /* The following nat helper functions check if the inverted reverse tuple
87  * (target) is different then the current dir tuple - meaning nat for ports
88  * and/or ip is needed, and add the relevant mangle actions.
89  */
90 static void
91 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple,
92 				      struct nf_conntrack_tuple target,
93 				      struct flow_action *action)
94 {
95 	if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
96 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
97 					 offsetof(struct iphdr, saddr),
98 					 0xFFFFFFFF,
99 					 be32_to_cpu(target.src.u3.ip));
100 	if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
101 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
102 					 offsetof(struct iphdr, daddr),
103 					 0xFFFFFFFF,
104 					 be32_to_cpu(target.dst.u3.ip));
105 }
106 
107 static void
108 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action,
109 				   union nf_inet_addr *addr,
110 				   u32 offset)
111 {
112 	int i;
113 
114 	for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++)
115 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6,
116 					 i * sizeof(u32) + offset,
117 					 0xFFFFFFFF, be32_to_cpu(addr->ip6[i]));
118 }
119 
120 static void
121 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple,
122 				      struct nf_conntrack_tuple target,
123 				      struct flow_action *action)
124 {
125 	if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
126 		tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3,
127 						   offsetof(struct ipv6hdr,
128 							    saddr));
129 	if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
130 		tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3,
131 						   offsetof(struct ipv6hdr,
132 							    daddr));
133 }
134 
135 static void
136 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple,
137 				     struct nf_conntrack_tuple target,
138 				     struct flow_action *action)
139 {
140 	__be16 target_src = target.src.u.tcp.port;
141 	__be16 target_dst = target.dst.u.tcp.port;
142 
143 	if (target_src != tuple->src.u.tcp.port)
144 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
145 					 offsetof(struct tcphdr, source),
146 					 0xFFFF, be16_to_cpu(target_src));
147 	if (target_dst != tuple->dst.u.tcp.port)
148 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
149 					 offsetof(struct tcphdr, dest),
150 					 0xFFFF, be16_to_cpu(target_dst));
151 }
152 
153 static void
154 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple,
155 				     struct nf_conntrack_tuple target,
156 				     struct flow_action *action)
157 {
158 	__be16 target_src = target.src.u.udp.port;
159 	__be16 target_dst = target.dst.u.udp.port;
160 
161 	if (target_src != tuple->src.u.udp.port)
162 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
163 					 offsetof(struct udphdr, source),
164 					 0xFFFF, be16_to_cpu(target_src));
165 	if (target_dst != tuple->dst.u.udp.port)
166 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
167 					 offsetof(struct udphdr, dest),
168 					 0xFFFF, be16_to_cpu(target_dst));
169 }
170 
171 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct,
172 					      enum ip_conntrack_dir dir,
173 					      enum ip_conntrack_info ctinfo,
174 					      struct flow_action *action)
175 {
176 	struct nf_conn_labels *ct_labels;
177 	struct flow_action_entry *entry;
178 	u32 *act_ct_labels;
179 
180 	entry = tcf_ct_flow_table_flow_action_get_next(action);
181 	entry->id = FLOW_ACTION_CT_METADATA;
182 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
183 	entry->ct_metadata.mark = READ_ONCE(ct->mark);
184 #endif
185 	/* aligns with the CT reference on the SKB nf_ct_set */
186 	entry->ct_metadata.cookie = (unsigned long)ct | ctinfo;
187 	entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL;
188 
189 	act_ct_labels = entry->ct_metadata.labels;
190 	ct_labels = nf_ct_labels_find(ct);
191 	if (ct_labels)
192 		memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE);
193 	else
194 		memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE);
195 }
196 
197 static int tcf_ct_flow_table_add_action_nat(struct net *net,
198 					    struct nf_conn *ct,
199 					    enum ip_conntrack_dir dir,
200 					    struct flow_action *action)
201 {
202 	const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple;
203 	struct nf_conntrack_tuple target;
204 
205 	if (!(ct->status & IPS_NAT_MASK))
206 		return 0;
207 
208 	nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple);
209 
210 	switch (tuple->src.l3num) {
211 	case NFPROTO_IPV4:
212 		tcf_ct_flow_table_add_action_nat_ipv4(tuple, target,
213 						      action);
214 		break;
215 	case NFPROTO_IPV6:
216 		tcf_ct_flow_table_add_action_nat_ipv6(tuple, target,
217 						      action);
218 		break;
219 	default:
220 		return -EOPNOTSUPP;
221 	}
222 
223 	switch (nf_ct_protonum(ct)) {
224 	case IPPROTO_TCP:
225 		tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action);
226 		break;
227 	case IPPROTO_UDP:
228 		tcf_ct_flow_table_add_action_nat_udp(tuple, target, action);
229 		break;
230 	default:
231 		return -EOPNOTSUPP;
232 	}
233 
234 	return 0;
235 }
236 
237 static int tcf_ct_flow_table_fill_actions(struct net *net,
238 					  struct flow_offload *flow,
239 					  enum flow_offload_tuple_dir tdir,
240 					  struct nf_flow_rule *flow_rule)
241 {
242 	struct flow_action *action = &flow_rule->rule->action;
243 	int num_entries = action->num_entries;
244 	struct nf_conn *ct = flow->ct;
245 	enum ip_conntrack_info ctinfo;
246 	enum ip_conntrack_dir dir;
247 	int i, err;
248 
249 	switch (tdir) {
250 	case FLOW_OFFLOAD_DIR_ORIGINAL:
251 		dir = IP_CT_DIR_ORIGINAL;
252 		ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ?
253 			IP_CT_ESTABLISHED : IP_CT_NEW;
254 		if (ctinfo == IP_CT_ESTABLISHED)
255 			set_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags);
256 		break;
257 	case FLOW_OFFLOAD_DIR_REPLY:
258 		dir = IP_CT_DIR_REPLY;
259 		ctinfo = IP_CT_ESTABLISHED_REPLY;
260 		break;
261 	default:
262 		return -EOPNOTSUPP;
263 	}
264 
265 	err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action);
266 	if (err)
267 		goto err_nat;
268 
269 	tcf_ct_flow_table_add_action_meta(ct, dir, ctinfo, action);
270 	return 0;
271 
272 err_nat:
273 	/* Clear filled actions */
274 	for (i = num_entries; i < action->num_entries; i++)
275 		memset(&action->entries[i], 0, sizeof(action->entries[i]));
276 	action->num_entries = num_entries;
277 
278 	return err;
279 }
280 
281 static bool tcf_ct_flow_is_outdated(const struct flow_offload *flow)
282 {
283 	return test_bit(IPS_SEEN_REPLY_BIT, &flow->ct->status) &&
284 	       test_bit(IPS_HW_OFFLOAD_BIT, &flow->ct->status) &&
285 	       !test_bit(NF_FLOW_HW_PENDING, &flow->flags) &&
286 	       !test_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags);
287 }
288 
289 static struct nf_flowtable_type flowtable_ct = {
290 	.gc		= tcf_ct_flow_is_outdated,
291 	.action		= tcf_ct_flow_table_fill_actions,
292 	.owner		= THIS_MODULE,
293 };
294 
295 static int tcf_ct_flow_table_get(struct net *net, struct tcf_ct_params *params)
296 {
297 	struct tcf_ct_flow_table *ct_ft;
298 	int err = -ENOMEM;
299 
300 	mutex_lock(&zones_mutex);
301 	ct_ft = rhashtable_lookup_fast(&zones_ht, &params->zone, zones_params);
302 	if (ct_ft && refcount_inc_not_zero(&ct_ft->ref))
303 		goto out_unlock;
304 
305 	ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL);
306 	if (!ct_ft)
307 		goto err_alloc;
308 	refcount_set(&ct_ft->ref, 1);
309 
310 	ct_ft->zone = params->zone;
311 	err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params);
312 	if (err)
313 		goto err_insert;
314 
315 	ct_ft->nf_ft.type = &flowtable_ct;
316 	ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD |
317 			      NF_FLOWTABLE_COUNTER;
318 	err = nf_flow_table_init(&ct_ft->nf_ft);
319 	if (err)
320 		goto err_init;
321 	write_pnet(&ct_ft->nf_ft.net, net);
322 
323 	__module_get(THIS_MODULE);
324 out_unlock:
325 	params->ct_ft = ct_ft;
326 	params->nf_ft = &ct_ft->nf_ft;
327 	mutex_unlock(&zones_mutex);
328 
329 	return 0;
330 
331 err_init:
332 	rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
333 err_insert:
334 	kfree(ct_ft);
335 err_alloc:
336 	mutex_unlock(&zones_mutex);
337 	return err;
338 }
339 
340 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work)
341 {
342 	struct flow_block_cb *block_cb, *tmp_cb;
343 	struct tcf_ct_flow_table *ct_ft;
344 	struct flow_block *block;
345 
346 	ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table,
347 			     rwork);
348 	nf_flow_table_free(&ct_ft->nf_ft);
349 
350 	/* Remove any remaining callbacks before cleanup */
351 	block = &ct_ft->nf_ft.flow_block;
352 	down_write(&ct_ft->nf_ft.flow_block_lock);
353 	list_for_each_entry_safe(block_cb, tmp_cb, &block->cb_list, list) {
354 		list_del(&block_cb->list);
355 		flow_block_cb_free(block_cb);
356 	}
357 	up_write(&ct_ft->nf_ft.flow_block_lock);
358 	kfree(ct_ft);
359 
360 	module_put(THIS_MODULE);
361 }
362 
363 static void tcf_ct_flow_table_put(struct tcf_ct_flow_table *ct_ft)
364 {
365 	if (refcount_dec_and_test(&ct_ft->ref)) {
366 		rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
367 		INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work);
368 		queue_rcu_work(act_ct_wq, &ct_ft->rwork);
369 	}
370 }
371 
372 static void tcf_ct_flow_tc_ifidx(struct flow_offload *entry,
373 				 struct nf_conn_act_ct_ext *act_ct_ext, u8 dir)
374 {
375 	entry->tuplehash[dir].tuple.xmit_type = FLOW_OFFLOAD_XMIT_TC;
376 	entry->tuplehash[dir].tuple.tc.iifidx = act_ct_ext->ifindex[dir];
377 }
378 
379 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft,
380 				  struct nf_conn *ct,
381 				  bool tcp, bool bidirectional)
382 {
383 	struct nf_conn_act_ct_ext *act_ct_ext;
384 	struct flow_offload *entry;
385 	int err;
386 
387 	if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status))
388 		return;
389 
390 	entry = flow_offload_alloc(ct);
391 	if (!entry) {
392 		WARN_ON_ONCE(1);
393 		goto err_alloc;
394 	}
395 
396 	if (tcp) {
397 		ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
398 		ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
399 	}
400 	if (bidirectional)
401 		__set_bit(NF_FLOW_HW_BIDIRECTIONAL, &entry->flags);
402 
403 	act_ct_ext = nf_conn_act_ct_ext_find(ct);
404 	if (act_ct_ext) {
405 		tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL);
406 		tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY);
407 	}
408 
409 	err = flow_offload_add(&ct_ft->nf_ft, entry);
410 	if (err)
411 		goto err_add;
412 
413 	return;
414 
415 err_add:
416 	flow_offload_free(entry);
417 err_alloc:
418 	clear_bit(IPS_OFFLOAD_BIT, &ct->status);
419 }
420 
421 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft,
422 					   struct nf_conn *ct,
423 					   enum ip_conntrack_info ctinfo)
424 {
425 	bool tcp = false, bidirectional = true;
426 
427 	switch (nf_ct_protonum(ct)) {
428 	case IPPROTO_TCP:
429 		if ((ctinfo != IP_CT_ESTABLISHED &&
430 		     ctinfo != IP_CT_ESTABLISHED_REPLY) ||
431 		    !test_bit(IPS_ASSURED_BIT, &ct->status) ||
432 		    ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED)
433 			return;
434 
435 		tcp = true;
436 		break;
437 	case IPPROTO_UDP:
438 		if (!nf_ct_is_confirmed(ct))
439 			return;
440 		if (!test_bit(IPS_ASSURED_BIT, &ct->status))
441 			bidirectional = false;
442 		break;
443 #ifdef CONFIG_NF_CT_PROTO_GRE
444 	case IPPROTO_GRE: {
445 		struct nf_conntrack_tuple *tuple;
446 
447 		if ((ctinfo != IP_CT_ESTABLISHED &&
448 		     ctinfo != IP_CT_ESTABLISHED_REPLY) ||
449 		    !test_bit(IPS_ASSURED_BIT, &ct->status) ||
450 		    ct->status & IPS_NAT_MASK)
451 			return;
452 
453 		tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
454 		/* No support for GRE v1 */
455 		if (tuple->src.u.gre.key || tuple->dst.u.gre.key)
456 			return;
457 		break;
458 	}
459 #endif
460 	default:
461 		return;
462 	}
463 
464 	if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) ||
465 	    ct->status & IPS_SEQ_ADJUST)
466 		return;
467 
468 	tcf_ct_flow_table_add(ct_ft, ct, tcp, bidirectional);
469 }
470 
471 static bool
472 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb,
473 				  struct flow_offload_tuple *tuple,
474 				  struct tcphdr **tcph)
475 {
476 	struct flow_ports *ports;
477 	unsigned int thoff;
478 	struct iphdr *iph;
479 	size_t hdrsize;
480 	u8 ipproto;
481 
482 	if (!pskb_network_may_pull(skb, sizeof(*iph)))
483 		return false;
484 
485 	iph = ip_hdr(skb);
486 	thoff = iph->ihl * 4;
487 
488 	if (ip_is_fragment(iph) ||
489 	    unlikely(thoff != sizeof(struct iphdr)))
490 		return false;
491 
492 	ipproto = iph->protocol;
493 	switch (ipproto) {
494 	case IPPROTO_TCP:
495 		hdrsize = sizeof(struct tcphdr);
496 		break;
497 	case IPPROTO_UDP:
498 		hdrsize = sizeof(*ports);
499 		break;
500 #ifdef CONFIG_NF_CT_PROTO_GRE
501 	case IPPROTO_GRE:
502 		hdrsize = sizeof(struct gre_base_hdr);
503 		break;
504 #endif
505 	default:
506 		return false;
507 	}
508 
509 	if (iph->ttl <= 1)
510 		return false;
511 
512 	if (!pskb_network_may_pull(skb, thoff + hdrsize))
513 		return false;
514 
515 	switch (ipproto) {
516 	case IPPROTO_TCP:
517 		*tcph = (void *)(skb_network_header(skb) + thoff);
518 		fallthrough;
519 	case IPPROTO_UDP:
520 		ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
521 		tuple->src_port = ports->source;
522 		tuple->dst_port = ports->dest;
523 		break;
524 	case IPPROTO_GRE: {
525 		struct gre_base_hdr *greh;
526 
527 		greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff);
528 		if ((greh->flags & GRE_VERSION) != GRE_VERSION_0)
529 			return false;
530 		break;
531 	}
532 	}
533 
534 	iph = ip_hdr(skb);
535 
536 	tuple->src_v4.s_addr = iph->saddr;
537 	tuple->dst_v4.s_addr = iph->daddr;
538 	tuple->l3proto = AF_INET;
539 	tuple->l4proto = ipproto;
540 
541 	return true;
542 }
543 
544 static bool
545 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb,
546 				  struct flow_offload_tuple *tuple,
547 				  struct tcphdr **tcph)
548 {
549 	struct flow_ports *ports;
550 	struct ipv6hdr *ip6h;
551 	unsigned int thoff;
552 	size_t hdrsize;
553 	u8 nexthdr;
554 
555 	if (!pskb_network_may_pull(skb, sizeof(*ip6h)))
556 		return false;
557 
558 	ip6h = ipv6_hdr(skb);
559 	thoff = sizeof(*ip6h);
560 
561 	nexthdr = ip6h->nexthdr;
562 	switch (nexthdr) {
563 	case IPPROTO_TCP:
564 		hdrsize = sizeof(struct tcphdr);
565 		break;
566 	case IPPROTO_UDP:
567 		hdrsize = sizeof(*ports);
568 		break;
569 #ifdef CONFIG_NF_CT_PROTO_GRE
570 	case IPPROTO_GRE:
571 		hdrsize = sizeof(struct gre_base_hdr);
572 		break;
573 #endif
574 	default:
575 		return false;
576 	}
577 
578 	if (ip6h->hop_limit <= 1)
579 		return false;
580 
581 	if (!pskb_network_may_pull(skb, thoff + hdrsize))
582 		return false;
583 
584 	switch (nexthdr) {
585 	case IPPROTO_TCP:
586 		*tcph = (void *)(skb_network_header(skb) + thoff);
587 		fallthrough;
588 	case IPPROTO_UDP:
589 		ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
590 		tuple->src_port = ports->source;
591 		tuple->dst_port = ports->dest;
592 		break;
593 	case IPPROTO_GRE: {
594 		struct gre_base_hdr *greh;
595 
596 		greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff);
597 		if ((greh->flags & GRE_VERSION) != GRE_VERSION_0)
598 			return false;
599 		break;
600 	}
601 	}
602 
603 	ip6h = ipv6_hdr(skb);
604 
605 	tuple->src_v6 = ip6h->saddr;
606 	tuple->dst_v6 = ip6h->daddr;
607 	tuple->l3proto = AF_INET6;
608 	tuple->l4proto = nexthdr;
609 
610 	return true;
611 }
612 
613 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p,
614 				     struct sk_buff *skb,
615 				     u8 family)
616 {
617 	struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft;
618 	struct flow_offload_tuple_rhash *tuplehash;
619 	struct flow_offload_tuple tuple = {};
620 	enum ip_conntrack_info ctinfo;
621 	struct tcphdr *tcph = NULL;
622 	bool force_refresh = false;
623 	struct flow_offload *flow;
624 	struct nf_conn *ct;
625 	u8 dir;
626 
627 	switch (family) {
628 	case NFPROTO_IPV4:
629 		if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph))
630 			return false;
631 		break;
632 	case NFPROTO_IPV6:
633 		if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph))
634 			return false;
635 		break;
636 	default:
637 		return false;
638 	}
639 
640 	tuplehash = flow_offload_lookup(nf_ft, &tuple);
641 	if (!tuplehash)
642 		return false;
643 
644 	dir = tuplehash->tuple.dir;
645 	flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]);
646 	ct = flow->ct;
647 
648 	if (dir == FLOW_OFFLOAD_DIR_REPLY &&
649 	    !test_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags)) {
650 		/* Only offload reply direction after connection became
651 		 * assured.
652 		 */
653 		if (test_bit(IPS_ASSURED_BIT, &ct->status))
654 			set_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags);
655 		else if (test_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags))
656 			/* If flow_table flow has already been updated to the
657 			 * established state, then don't refresh.
658 			 */
659 			return false;
660 		force_refresh = true;
661 	}
662 
663 	if (tcph && (unlikely(tcph->fin || tcph->rst))) {
664 		flow_offload_teardown(flow);
665 		return false;
666 	}
667 
668 	if (dir == FLOW_OFFLOAD_DIR_ORIGINAL)
669 		ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ?
670 			IP_CT_ESTABLISHED : IP_CT_NEW;
671 	else
672 		ctinfo = IP_CT_ESTABLISHED_REPLY;
673 
674 	flow_offload_refresh(nf_ft, flow, force_refresh);
675 	if (!test_bit(IPS_ASSURED_BIT, &ct->status)) {
676 		/* Process this flow in SW to allow promoting to ASSURED */
677 		return false;
678 	}
679 
680 	nf_conntrack_get(&ct->ct_general);
681 	nf_ct_set(skb, ct, ctinfo);
682 	if (nf_ft->flags & NF_FLOWTABLE_COUNTER)
683 		nf_ct_acct_update(ct, dir, skb->len);
684 
685 	return true;
686 }
687 
688 static int tcf_ct_flow_tables_init(void)
689 {
690 	return rhashtable_init(&zones_ht, &zones_params);
691 }
692 
693 static void tcf_ct_flow_tables_uninit(void)
694 {
695 	rhashtable_destroy(&zones_ht);
696 }
697 
698 static struct tc_action_ops act_ct_ops;
699 
700 struct tc_ct_action_net {
701 	struct tc_action_net tn; /* Must be first */
702 };
703 
704 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
705 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb,
706 				   struct tcf_ct_params *p)
707 {
708 	enum ip_conntrack_info ctinfo;
709 	struct nf_conn *ct;
710 
711 	ct = nf_ct_get(skb, &ctinfo);
712 	if (!ct)
713 		return false;
714 	if (!net_eq(net, read_pnet(&ct->ct_net)))
715 		goto drop_ct;
716 	if (nf_ct_zone(ct)->id != p->zone)
717 		goto drop_ct;
718 	if (p->helper) {
719 		struct nf_conn_help *help;
720 
721 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
722 		if (help && rcu_access_pointer(help->helper) != p->helper)
723 			goto drop_ct;
724 	}
725 
726 	/* Force conntrack entry direction. */
727 	if ((p->ct_action & TCA_CT_ACT_FORCE) &&
728 	    CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
729 		if (nf_ct_is_confirmed(ct))
730 			nf_ct_kill(ct);
731 
732 		goto drop_ct;
733 	}
734 
735 	return true;
736 
737 drop_ct:
738 	nf_ct_put(ct);
739 	nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
740 
741 	return false;
742 }
743 
744 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb)
745 {
746 	u8 family = NFPROTO_UNSPEC;
747 
748 	switch (skb_protocol(skb, true)) {
749 	case htons(ETH_P_IP):
750 		family = NFPROTO_IPV4;
751 		break;
752 	case htons(ETH_P_IPV6):
753 		family = NFPROTO_IPV6;
754 		break;
755 	default:
756 		break;
757 	}
758 
759 	return family;
760 }
761 
762 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag)
763 {
764 	unsigned int len;
765 
766 	len =  skb_network_offset(skb) + sizeof(struct iphdr);
767 	if (unlikely(skb->len < len))
768 		return -EINVAL;
769 	if (unlikely(!pskb_may_pull(skb, len)))
770 		return -ENOMEM;
771 
772 	*frag = ip_is_fragment(ip_hdr(skb));
773 	return 0;
774 }
775 
776 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag)
777 {
778 	unsigned int flags = 0, len, payload_ofs = 0;
779 	unsigned short frag_off;
780 	int nexthdr;
781 
782 	len =  skb_network_offset(skb) + sizeof(struct ipv6hdr);
783 	if (unlikely(skb->len < len))
784 		return -EINVAL;
785 	if (unlikely(!pskb_may_pull(skb, len)))
786 		return -ENOMEM;
787 
788 	nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
789 	if (unlikely(nexthdr < 0))
790 		return -EPROTO;
791 
792 	*frag = flags & IP6_FH_F_FRAG;
793 	return 0;
794 }
795 
796 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb,
797 				   u8 family, u16 zone, bool *defrag)
798 {
799 	enum ip_conntrack_info ctinfo;
800 	struct nf_conn *ct;
801 	int err = 0;
802 	bool frag;
803 	u8 proto;
804 	u16 mru;
805 
806 	/* Previously seen (loopback)? Ignore. */
807 	ct = nf_ct_get(skb, &ctinfo);
808 	if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED)
809 		return 0;
810 
811 	if (family == NFPROTO_IPV4)
812 		err = tcf_ct_ipv4_is_fragment(skb, &frag);
813 	else
814 		err = tcf_ct_ipv6_is_fragment(skb, &frag);
815 	if (err || !frag)
816 		return err;
817 
818 	skb_get(skb);
819 	err = nf_ct_handle_fragments(net, skb, zone, family, &proto, &mru);
820 	if (err)
821 		return err;
822 
823 	*defrag = true;
824 	tc_skb_cb(skb)->mru = mru;
825 
826 	return 0;
827 }
828 
829 static void tcf_ct_params_free(struct tcf_ct_params *params)
830 {
831 	if (params->helper) {
832 #if IS_ENABLED(CONFIG_NF_NAT)
833 		if (params->ct_action & TCA_CT_ACT_NAT)
834 			nf_nat_helper_put(params->helper);
835 #endif
836 		nf_conntrack_helper_put(params->helper);
837 	}
838 	if (params->ct_ft)
839 		tcf_ct_flow_table_put(params->ct_ft);
840 	if (params->tmpl) {
841 		if (params->put_labels)
842 			nf_connlabels_put(nf_ct_net(params->tmpl));
843 
844 		nf_ct_put(params->tmpl);
845 	}
846 
847 	kfree(params);
848 }
849 
850 static void tcf_ct_params_free_rcu(struct rcu_head *head)
851 {
852 	struct tcf_ct_params *params;
853 
854 	params = container_of(head, struct tcf_ct_params, rcu);
855 	tcf_ct_params_free(params);
856 }
857 
858 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask)
859 {
860 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
861 	u32 new_mark;
862 
863 	if (!mask)
864 		return;
865 
866 	new_mark = mark | (READ_ONCE(ct->mark) & ~(mask));
867 	if (READ_ONCE(ct->mark) != new_mark) {
868 		WRITE_ONCE(ct->mark, new_mark);
869 		if (nf_ct_is_confirmed(ct))
870 			nf_conntrack_event_cache(IPCT_MARK, ct);
871 	}
872 #endif
873 }
874 
875 static void tcf_ct_act_set_labels(struct nf_conn *ct,
876 				  u32 *labels,
877 				  u32 *labels_m)
878 {
879 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)
880 	size_t labels_sz = sizeof_field(struct tcf_ct_params, labels);
881 
882 	if (!memchr_inv(labels_m, 0, labels_sz))
883 		return;
884 
885 	nf_connlabels_replace(ct, labels, labels_m, 4);
886 #endif
887 }
888 
889 static int tcf_ct_act_nat(struct sk_buff *skb,
890 			  struct nf_conn *ct,
891 			  enum ip_conntrack_info ctinfo,
892 			  int ct_action,
893 			  struct nf_nat_range2 *range,
894 			  bool commit)
895 {
896 #if IS_ENABLED(CONFIG_NF_NAT)
897 	int err, action = 0;
898 
899 	if (!(ct_action & TCA_CT_ACT_NAT))
900 		return NF_ACCEPT;
901 	if (ct_action & TCA_CT_ACT_NAT_SRC)
902 		action |= BIT(NF_NAT_MANIP_SRC);
903 	if (ct_action & TCA_CT_ACT_NAT_DST)
904 		action |= BIT(NF_NAT_MANIP_DST);
905 
906 	err = nf_ct_nat(skb, ct, ctinfo, &action, range, commit);
907 
908 	if (action & BIT(NF_NAT_MANIP_SRC))
909 		tc_skb_cb(skb)->post_ct_snat = 1;
910 	if (action & BIT(NF_NAT_MANIP_DST))
911 		tc_skb_cb(skb)->post_ct_dnat = 1;
912 
913 	return err;
914 #else
915 	return NF_ACCEPT;
916 #endif
917 }
918 
919 TC_INDIRECT_SCOPE int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a,
920 				 struct tcf_result *res)
921 {
922 	struct net *net = dev_net(skb->dev);
923 	enum ip_conntrack_info ctinfo;
924 	struct tcf_ct *c = to_ct(a);
925 	struct nf_conn *tmpl = NULL;
926 	struct nf_hook_state state;
927 	bool cached, commit, clear;
928 	int nh_ofs, err, retval;
929 	struct tcf_ct_params *p;
930 	bool add_helper = false;
931 	bool skip_add = false;
932 	bool defrag = false;
933 	struct nf_conn *ct;
934 	u8 family;
935 
936 	p = rcu_dereference_bh(c->params);
937 
938 	retval = READ_ONCE(c->tcf_action);
939 	commit = p->ct_action & TCA_CT_ACT_COMMIT;
940 	clear = p->ct_action & TCA_CT_ACT_CLEAR;
941 	tmpl = p->tmpl;
942 
943 	tcf_lastuse_update(&c->tcf_tm);
944 	tcf_action_update_bstats(&c->common, skb);
945 
946 	if (clear) {
947 		tc_skb_cb(skb)->post_ct = false;
948 		ct = nf_ct_get(skb, &ctinfo);
949 		if (ct) {
950 			nf_ct_put(ct);
951 			nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
952 		}
953 
954 		goto out_clear;
955 	}
956 
957 	family = tcf_ct_skb_nf_family(skb);
958 	if (family == NFPROTO_UNSPEC)
959 		goto drop;
960 
961 	/* The conntrack module expects to be working at L3.
962 	 * We also try to pull the IPv4/6 header to linear area
963 	 */
964 	nh_ofs = skb_network_offset(skb);
965 	skb_pull_rcsum(skb, nh_ofs);
966 	err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag);
967 	if (err == -EINPROGRESS) {
968 		retval = TC_ACT_STOLEN;
969 		goto out_clear;
970 	}
971 	if (err)
972 		goto drop;
973 
974 	err = nf_ct_skb_network_trim(skb, family);
975 	if (err)
976 		goto drop;
977 
978 	/* If we are recirculating packets to match on ct fields and
979 	 * committing with a separate ct action, then we don't need to
980 	 * actually run the packet through conntrack twice unless it's for a
981 	 * different zone.
982 	 */
983 	cached = tcf_ct_skb_nfct_cached(net, skb, p);
984 	if (!cached) {
985 		if (tcf_ct_flow_table_lookup(p, skb, family)) {
986 			skip_add = true;
987 			goto do_nat;
988 		}
989 
990 		/* Associate skb with specified zone. */
991 		if (tmpl) {
992 			nf_conntrack_put(skb_nfct(skb));
993 			nf_conntrack_get(&tmpl->ct_general);
994 			nf_ct_set(skb, tmpl, IP_CT_NEW);
995 		}
996 
997 		state.hook = NF_INET_PRE_ROUTING;
998 		state.net = net;
999 		state.pf = family;
1000 		err = nf_conntrack_in(skb, &state);
1001 		if (err != NF_ACCEPT)
1002 			goto out_push;
1003 	}
1004 
1005 do_nat:
1006 	ct = nf_ct_get(skb, &ctinfo);
1007 	if (!ct)
1008 		goto out_push;
1009 	nf_ct_deliver_cached_events(ct);
1010 	nf_conn_act_ct_ext_fill(skb, ct, ctinfo);
1011 
1012 	err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit);
1013 	if (err != NF_ACCEPT)
1014 		goto drop;
1015 
1016 	if (!nf_ct_is_confirmed(ct) && commit && p->helper && !nfct_help(ct)) {
1017 		err = __nf_ct_try_assign_helper(ct, p->tmpl, GFP_ATOMIC);
1018 		if (err)
1019 			goto drop;
1020 		add_helper = true;
1021 		if (p->ct_action & TCA_CT_ACT_NAT && !nfct_seqadj(ct)) {
1022 			if (!nfct_seqadj_ext_add(ct))
1023 				goto drop;
1024 		}
1025 	}
1026 
1027 	if (nf_ct_is_confirmed(ct) ? ((!cached && !skip_add) || add_helper) : commit) {
1028 		if (nf_ct_helper(skb, ct, ctinfo, family) != NF_ACCEPT)
1029 			goto drop;
1030 	}
1031 
1032 	if (commit) {
1033 		tcf_ct_act_set_mark(ct, p->mark, p->mark_mask);
1034 		tcf_ct_act_set_labels(ct, p->labels, p->labels_mask);
1035 
1036 		if (!nf_ct_is_confirmed(ct))
1037 			nf_conn_act_ct_ext_add(ct);
1038 
1039 		/* This will take care of sending queued events
1040 		 * even if the connection is already confirmed.
1041 		 */
1042 		if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1043 			goto drop;
1044 	}
1045 
1046 	if (!skip_add)
1047 		tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo);
1048 
1049 out_push:
1050 	skb_push_rcsum(skb, nh_ofs);
1051 
1052 	tc_skb_cb(skb)->post_ct = true;
1053 	tc_skb_cb(skb)->zone = p->zone;
1054 out_clear:
1055 	if (defrag)
1056 		qdisc_skb_cb(skb)->pkt_len = skb->len;
1057 	return retval;
1058 
1059 drop:
1060 	tcf_action_inc_drop_qstats(&c->common);
1061 	return TC_ACT_SHOT;
1062 }
1063 
1064 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = {
1065 	[TCA_CT_ACTION] = { .type = NLA_U16 },
1066 	[TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)),
1067 	[TCA_CT_ZONE] = { .type = NLA_U16 },
1068 	[TCA_CT_MARK] = { .type = NLA_U32 },
1069 	[TCA_CT_MARK_MASK] = { .type = NLA_U32 },
1070 	[TCA_CT_LABELS] = { .type = NLA_BINARY,
1071 			    .len = 128 / BITS_PER_BYTE },
1072 	[TCA_CT_LABELS_MASK] = { .type = NLA_BINARY,
1073 				 .len = 128 / BITS_PER_BYTE },
1074 	[TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 },
1075 	[TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 },
1076 	[TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
1077 	[TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
1078 	[TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 },
1079 	[TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 },
1080 	[TCA_CT_HELPER_NAME] = { .type = NLA_STRING, .len = NF_CT_HELPER_NAME_LEN },
1081 	[TCA_CT_HELPER_FAMILY] = { .type = NLA_U8 },
1082 	[TCA_CT_HELPER_PROTO] = { .type = NLA_U8 },
1083 };
1084 
1085 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p,
1086 				  struct tc_ct *parm,
1087 				  struct nlattr **tb,
1088 				  struct netlink_ext_ack *extack)
1089 {
1090 	struct nf_nat_range2 *range;
1091 
1092 	if (!(p->ct_action & TCA_CT_ACT_NAT))
1093 		return 0;
1094 
1095 	if (!IS_ENABLED(CONFIG_NF_NAT)) {
1096 		NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel");
1097 		return -EOPNOTSUPP;
1098 	}
1099 
1100 	if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
1101 		return 0;
1102 
1103 	if ((p->ct_action & TCA_CT_ACT_NAT_SRC) &&
1104 	    (p->ct_action & TCA_CT_ACT_NAT_DST)) {
1105 		NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time");
1106 		return -EOPNOTSUPP;
1107 	}
1108 
1109 	range = &p->range;
1110 	if (tb[TCA_CT_NAT_IPV4_MIN]) {
1111 		struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX];
1112 
1113 		p->ipv4_range = true;
1114 		range->flags |= NF_NAT_RANGE_MAP_IPS;
1115 		range->min_addr.ip =
1116 			nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]);
1117 
1118 		range->max_addr.ip = max_attr ?
1119 				     nla_get_in_addr(max_attr) :
1120 				     range->min_addr.ip;
1121 	} else if (tb[TCA_CT_NAT_IPV6_MIN]) {
1122 		struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX];
1123 
1124 		p->ipv4_range = false;
1125 		range->flags |= NF_NAT_RANGE_MAP_IPS;
1126 		range->min_addr.in6 =
1127 			nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]);
1128 
1129 		range->max_addr.in6 = max_attr ?
1130 				      nla_get_in6_addr(max_attr) :
1131 				      range->min_addr.in6;
1132 	}
1133 
1134 	if (tb[TCA_CT_NAT_PORT_MIN]) {
1135 		range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1136 		range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]);
1137 
1138 		range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ?
1139 				       nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) :
1140 				       range->min_proto.all;
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 static void tcf_ct_set_key_val(struct nlattr **tb,
1147 			       void *val, int val_type,
1148 			       void *mask, int mask_type,
1149 			       int len)
1150 {
1151 	if (!tb[val_type])
1152 		return;
1153 	nla_memcpy(val, tb[val_type], len);
1154 
1155 	if (!mask)
1156 		return;
1157 
1158 	if (mask_type == TCA_CT_UNSPEC || !tb[mask_type])
1159 		memset(mask, 0xff, len);
1160 	else
1161 		nla_memcpy(mask, tb[mask_type], len);
1162 }
1163 
1164 static int tcf_ct_fill_params(struct net *net,
1165 			      struct tcf_ct_params *p,
1166 			      struct tc_ct *parm,
1167 			      struct nlattr **tb,
1168 			      struct netlink_ext_ack *extack)
1169 {
1170 	struct nf_conntrack_zone zone;
1171 	int err, family, proto, len;
1172 	bool put_labels = false;
1173 	struct nf_conn *tmpl;
1174 	char *name;
1175 
1176 	p->zone = NF_CT_DEFAULT_ZONE_ID;
1177 
1178 	tcf_ct_set_key_val(tb,
1179 			   &p->ct_action, TCA_CT_ACTION,
1180 			   NULL, TCA_CT_UNSPEC,
1181 			   sizeof(p->ct_action));
1182 
1183 	if (p->ct_action & TCA_CT_ACT_CLEAR)
1184 		return 0;
1185 
1186 	err = tcf_ct_fill_params_nat(p, parm, tb, extack);
1187 	if (err)
1188 		return err;
1189 
1190 	if (tb[TCA_CT_MARK]) {
1191 		if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) {
1192 			NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled.");
1193 			return -EOPNOTSUPP;
1194 		}
1195 		tcf_ct_set_key_val(tb,
1196 				   &p->mark, TCA_CT_MARK,
1197 				   &p->mark_mask, TCA_CT_MARK_MASK,
1198 				   sizeof(p->mark));
1199 	}
1200 
1201 	if (tb[TCA_CT_LABELS]) {
1202 		unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8;
1203 
1204 		if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) {
1205 			NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled.");
1206 			return -EOPNOTSUPP;
1207 		}
1208 
1209 		if (nf_connlabels_get(net, n_bits - 1)) {
1210 			NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length");
1211 			return -EOPNOTSUPP;
1212 		} else {
1213 			put_labels = true;
1214 		}
1215 
1216 		tcf_ct_set_key_val(tb,
1217 				   p->labels, TCA_CT_LABELS,
1218 				   p->labels_mask, TCA_CT_LABELS_MASK,
1219 				   sizeof(p->labels));
1220 	}
1221 
1222 	if (tb[TCA_CT_ZONE]) {
1223 		if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) {
1224 			NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled.");
1225 			return -EOPNOTSUPP;
1226 		}
1227 
1228 		tcf_ct_set_key_val(tb,
1229 				   &p->zone, TCA_CT_ZONE,
1230 				   NULL, TCA_CT_UNSPEC,
1231 				   sizeof(p->zone));
1232 	}
1233 
1234 	nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0);
1235 	tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL);
1236 	if (!tmpl) {
1237 		NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template");
1238 		return -ENOMEM;
1239 	}
1240 	p->tmpl = tmpl;
1241 	if (tb[TCA_CT_HELPER_NAME]) {
1242 		name = nla_data(tb[TCA_CT_HELPER_NAME]);
1243 		len = nla_len(tb[TCA_CT_HELPER_NAME]);
1244 		if (len > 16 || name[len - 1] != '\0') {
1245 			NL_SET_ERR_MSG_MOD(extack, "Failed to parse helper name.");
1246 			err = -EINVAL;
1247 			goto err;
1248 		}
1249 		family = tb[TCA_CT_HELPER_FAMILY] ? nla_get_u8(tb[TCA_CT_HELPER_FAMILY]) : AF_INET;
1250 		proto = tb[TCA_CT_HELPER_PROTO] ? nla_get_u8(tb[TCA_CT_HELPER_PROTO]) : IPPROTO_TCP;
1251 		err = nf_ct_add_helper(tmpl, name, family, proto,
1252 				       p->ct_action & TCA_CT_ACT_NAT, &p->helper);
1253 		if (err) {
1254 			NL_SET_ERR_MSG_MOD(extack, "Failed to add helper");
1255 			goto err;
1256 		}
1257 	}
1258 
1259 	p->put_labels = put_labels;
1260 
1261 	if (p->ct_action & TCA_CT_ACT_COMMIT)
1262 		__set_bit(IPS_CONFIRMED_BIT, &tmpl->status);
1263 	return 0;
1264 err:
1265 	if (put_labels)
1266 		nf_connlabels_put(net);
1267 
1268 	nf_ct_put(p->tmpl);
1269 	p->tmpl = NULL;
1270 	return err;
1271 }
1272 
1273 static int tcf_ct_init(struct net *net, struct nlattr *nla,
1274 		       struct nlattr *est, struct tc_action **a,
1275 		       struct tcf_proto *tp, u32 flags,
1276 		       struct netlink_ext_ack *extack)
1277 {
1278 	struct tc_action_net *tn = net_generic(net, act_ct_ops.net_id);
1279 	bool bind = flags & TCA_ACT_FLAGS_BIND;
1280 	struct tcf_ct_params *params = NULL;
1281 	struct nlattr *tb[TCA_CT_MAX + 1];
1282 	struct tcf_chain *goto_ch = NULL;
1283 	struct tc_ct *parm;
1284 	struct tcf_ct *c;
1285 	int err, res = 0;
1286 	u32 index;
1287 
1288 	if (!nla) {
1289 		NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed");
1290 		return -EINVAL;
1291 	}
1292 
1293 	err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack);
1294 	if (err < 0)
1295 		return err;
1296 
1297 	if (!tb[TCA_CT_PARMS]) {
1298 		NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters");
1299 		return -EINVAL;
1300 	}
1301 	parm = nla_data(tb[TCA_CT_PARMS]);
1302 	index = parm->index;
1303 	err = tcf_idr_check_alloc(tn, &index, a, bind);
1304 	if (err < 0)
1305 		return err;
1306 
1307 	if (!err) {
1308 		err = tcf_idr_create_from_flags(tn, index, est, a,
1309 						&act_ct_ops, bind, flags);
1310 		if (err) {
1311 			tcf_idr_cleanup(tn, index);
1312 			return err;
1313 		}
1314 		res = ACT_P_CREATED;
1315 	} else {
1316 		if (bind)
1317 			return 0;
1318 
1319 		if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
1320 			tcf_idr_release(*a, bind);
1321 			return -EEXIST;
1322 		}
1323 	}
1324 	err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
1325 	if (err < 0)
1326 		goto cleanup;
1327 
1328 	c = to_ct(*a);
1329 
1330 	params = kzalloc(sizeof(*params), GFP_KERNEL);
1331 	if (unlikely(!params)) {
1332 		err = -ENOMEM;
1333 		goto cleanup;
1334 	}
1335 
1336 	err = tcf_ct_fill_params(net, params, parm, tb, extack);
1337 	if (err)
1338 		goto cleanup;
1339 
1340 	err = tcf_ct_flow_table_get(net, params);
1341 	if (err)
1342 		goto cleanup;
1343 
1344 	spin_lock_bh(&c->tcf_lock);
1345 	goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
1346 	params = rcu_replace_pointer(c->params, params,
1347 				     lockdep_is_held(&c->tcf_lock));
1348 	spin_unlock_bh(&c->tcf_lock);
1349 
1350 	if (goto_ch)
1351 		tcf_chain_put_by_act(goto_ch);
1352 	if (params)
1353 		call_rcu(&params->rcu, tcf_ct_params_free_rcu);
1354 
1355 	return res;
1356 
1357 cleanup:
1358 	if (goto_ch)
1359 		tcf_chain_put_by_act(goto_ch);
1360 	if (params)
1361 		tcf_ct_params_free(params);
1362 	tcf_idr_release(*a, bind);
1363 	return err;
1364 }
1365 
1366 static void tcf_ct_cleanup(struct tc_action *a)
1367 {
1368 	struct tcf_ct_params *params;
1369 	struct tcf_ct *c = to_ct(a);
1370 
1371 	params = rcu_dereference_protected(c->params, 1);
1372 	if (params)
1373 		call_rcu(&params->rcu, tcf_ct_params_free_rcu);
1374 }
1375 
1376 static int tcf_ct_dump_key_val(struct sk_buff *skb,
1377 			       void *val, int val_type,
1378 			       void *mask, int mask_type,
1379 			       int len)
1380 {
1381 	int err;
1382 
1383 	if (mask && !memchr_inv(mask, 0, len))
1384 		return 0;
1385 
1386 	err = nla_put(skb, val_type, len, val);
1387 	if (err)
1388 		return err;
1389 
1390 	if (mask_type != TCA_CT_UNSPEC) {
1391 		err = nla_put(skb, mask_type, len, mask);
1392 		if (err)
1393 			return err;
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p)
1400 {
1401 	struct nf_nat_range2 *range = &p->range;
1402 
1403 	if (!(p->ct_action & TCA_CT_ACT_NAT))
1404 		return 0;
1405 
1406 	if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
1407 		return 0;
1408 
1409 	if (range->flags & NF_NAT_RANGE_MAP_IPS) {
1410 		if (p->ipv4_range) {
1411 			if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN,
1412 					    range->min_addr.ip))
1413 				return -1;
1414 			if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX,
1415 					    range->max_addr.ip))
1416 				return -1;
1417 		} else {
1418 			if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN,
1419 					     &range->min_addr.in6))
1420 				return -1;
1421 			if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX,
1422 					     &range->max_addr.in6))
1423 				return -1;
1424 		}
1425 	}
1426 
1427 	if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
1428 		if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN,
1429 				 range->min_proto.all))
1430 			return -1;
1431 		if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX,
1432 				 range->max_proto.all))
1433 			return -1;
1434 	}
1435 
1436 	return 0;
1437 }
1438 
1439 static int tcf_ct_dump_helper(struct sk_buff *skb, struct nf_conntrack_helper *helper)
1440 {
1441 	if (!helper)
1442 		return 0;
1443 
1444 	if (nla_put_string(skb, TCA_CT_HELPER_NAME, helper->name) ||
1445 	    nla_put_u8(skb, TCA_CT_HELPER_FAMILY, helper->tuple.src.l3num) ||
1446 	    nla_put_u8(skb, TCA_CT_HELPER_PROTO, helper->tuple.dst.protonum))
1447 		return -1;
1448 
1449 	return 0;
1450 }
1451 
1452 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a,
1453 			      int bind, int ref)
1454 {
1455 	unsigned char *b = skb_tail_pointer(skb);
1456 	struct tcf_ct *c = to_ct(a);
1457 	struct tcf_ct_params *p;
1458 
1459 	struct tc_ct opt = {
1460 		.index   = c->tcf_index,
1461 		.refcnt  = refcount_read(&c->tcf_refcnt) - ref,
1462 		.bindcnt = atomic_read(&c->tcf_bindcnt) - bind,
1463 	};
1464 	struct tcf_t t;
1465 
1466 	spin_lock_bh(&c->tcf_lock);
1467 	p = rcu_dereference_protected(c->params,
1468 				      lockdep_is_held(&c->tcf_lock));
1469 	opt.action = c->tcf_action;
1470 
1471 	if (tcf_ct_dump_key_val(skb,
1472 				&p->ct_action, TCA_CT_ACTION,
1473 				NULL, TCA_CT_UNSPEC,
1474 				sizeof(p->ct_action)))
1475 		goto nla_put_failure;
1476 
1477 	if (p->ct_action & TCA_CT_ACT_CLEAR)
1478 		goto skip_dump;
1479 
1480 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1481 	    tcf_ct_dump_key_val(skb,
1482 				&p->mark, TCA_CT_MARK,
1483 				&p->mark_mask, TCA_CT_MARK_MASK,
1484 				sizeof(p->mark)))
1485 		goto nla_put_failure;
1486 
1487 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1488 	    tcf_ct_dump_key_val(skb,
1489 				p->labels, TCA_CT_LABELS,
1490 				p->labels_mask, TCA_CT_LABELS_MASK,
1491 				sizeof(p->labels)))
1492 		goto nla_put_failure;
1493 
1494 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1495 	    tcf_ct_dump_key_val(skb,
1496 				&p->zone, TCA_CT_ZONE,
1497 				NULL, TCA_CT_UNSPEC,
1498 				sizeof(p->zone)))
1499 		goto nla_put_failure;
1500 
1501 	if (tcf_ct_dump_nat(skb, p))
1502 		goto nla_put_failure;
1503 
1504 	if (tcf_ct_dump_helper(skb, p->helper))
1505 		goto nla_put_failure;
1506 
1507 skip_dump:
1508 	if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt))
1509 		goto nla_put_failure;
1510 
1511 	tcf_tm_dump(&t, &c->tcf_tm);
1512 	if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD))
1513 		goto nla_put_failure;
1514 	spin_unlock_bh(&c->tcf_lock);
1515 
1516 	return skb->len;
1517 nla_put_failure:
1518 	spin_unlock_bh(&c->tcf_lock);
1519 	nlmsg_trim(skb, b);
1520 	return -1;
1521 }
1522 
1523 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets,
1524 			     u64 drops, u64 lastuse, bool hw)
1525 {
1526 	struct tcf_ct *c = to_ct(a);
1527 
1528 	tcf_action_update_stats(a, bytes, packets, drops, hw);
1529 	c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse);
1530 }
1531 
1532 static int tcf_ct_offload_act_setup(struct tc_action *act, void *entry_data,
1533 				    u32 *index_inc, bool bind,
1534 				    struct netlink_ext_ack *extack)
1535 {
1536 	if (bind) {
1537 		struct flow_action_entry *entry = entry_data;
1538 
1539 		entry->id = FLOW_ACTION_CT;
1540 		entry->ct.action = tcf_ct_action(act);
1541 		entry->ct.zone = tcf_ct_zone(act);
1542 		entry->ct.flow_table = tcf_ct_ft(act);
1543 		*index_inc = 1;
1544 	} else {
1545 		struct flow_offload_action *fl_action = entry_data;
1546 
1547 		fl_action->id = FLOW_ACTION_CT;
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 static struct tc_action_ops act_ct_ops = {
1554 	.kind		=	"ct",
1555 	.id		=	TCA_ID_CT,
1556 	.owner		=	THIS_MODULE,
1557 	.act		=	tcf_ct_act,
1558 	.dump		=	tcf_ct_dump,
1559 	.init		=	tcf_ct_init,
1560 	.cleanup	=	tcf_ct_cleanup,
1561 	.stats_update	=	tcf_stats_update,
1562 	.offload_act_setup =	tcf_ct_offload_act_setup,
1563 	.size		=	sizeof(struct tcf_ct),
1564 };
1565 
1566 static __net_init int ct_init_net(struct net *net)
1567 {
1568 	struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id);
1569 
1570 	return tc_action_net_init(net, &tn->tn, &act_ct_ops);
1571 }
1572 
1573 static void __net_exit ct_exit_net(struct list_head *net_list)
1574 {
1575 	tc_action_net_exit(net_list, act_ct_ops.net_id);
1576 }
1577 
1578 static struct pernet_operations ct_net_ops = {
1579 	.init = ct_init_net,
1580 	.exit_batch = ct_exit_net,
1581 	.id   = &act_ct_ops.net_id,
1582 	.size = sizeof(struct tc_ct_action_net),
1583 };
1584 
1585 static int __init ct_init_module(void)
1586 {
1587 	int err;
1588 
1589 	act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0);
1590 	if (!act_ct_wq)
1591 		return -ENOMEM;
1592 
1593 	err = tcf_ct_flow_tables_init();
1594 	if (err)
1595 		goto err_tbl_init;
1596 
1597 	err = tcf_register_action(&act_ct_ops, &ct_net_ops);
1598 	if (err)
1599 		goto err_register;
1600 
1601 	static_branch_inc(&tcf_frag_xmit_count);
1602 
1603 	return 0;
1604 
1605 err_register:
1606 	tcf_ct_flow_tables_uninit();
1607 err_tbl_init:
1608 	destroy_workqueue(act_ct_wq);
1609 	return err;
1610 }
1611 
1612 static void __exit ct_cleanup_module(void)
1613 {
1614 	static_branch_dec(&tcf_frag_xmit_count);
1615 	tcf_unregister_action(&act_ct_ops, &ct_net_ops);
1616 	tcf_ct_flow_tables_uninit();
1617 	destroy_workqueue(act_ct_wq);
1618 }
1619 
1620 module_init(ct_init_module);
1621 module_exit(ct_cleanup_module);
1622 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>");
1623 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>");
1624 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>");
1625 MODULE_DESCRIPTION("Connection tracking action");
1626 MODULE_LICENSE("GPL v2");
1627