1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* - 3 * net/sched/act_ct.c Connection Tracking action 4 * 5 * Authors: Paul Blakey <paulb@mellanox.com> 6 * Yossi Kuperman <yossiku@mellanox.com> 7 * Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/skbuff.h> 14 #include <linux/rtnetlink.h> 15 #include <linux/pkt_cls.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/rhashtable.h> 19 #include <net/netlink.h> 20 #include <net/pkt_sched.h> 21 #include <net/pkt_cls.h> 22 #include <net/act_api.h> 23 #include <net/ip.h> 24 #include <net/ipv6_frag.h> 25 #include <uapi/linux/tc_act/tc_ct.h> 26 #include <net/tc_act/tc_ct.h> 27 28 #include <net/netfilter/nf_flow_table.h> 29 #include <net/netfilter/nf_conntrack.h> 30 #include <net/netfilter/nf_conntrack_core.h> 31 #include <net/netfilter/nf_conntrack_zones.h> 32 #include <net/netfilter/nf_conntrack_helper.h> 33 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 34 #include <uapi/linux/netfilter/nf_nat.h> 35 36 static struct workqueue_struct *act_ct_wq; 37 static struct rhashtable zones_ht; 38 static DEFINE_MUTEX(zones_mutex); 39 40 struct tcf_ct_flow_table { 41 struct rhash_head node; /* In zones tables */ 42 43 struct rcu_work rwork; 44 struct nf_flowtable nf_ft; 45 refcount_t ref; 46 u16 zone; 47 48 bool dying; 49 }; 50 51 static const struct rhashtable_params zones_params = { 52 .head_offset = offsetof(struct tcf_ct_flow_table, node), 53 .key_offset = offsetof(struct tcf_ct_flow_table, zone), 54 .key_len = sizeof_field(struct tcf_ct_flow_table, zone), 55 .automatic_shrinking = true, 56 }; 57 58 static struct flow_action_entry * 59 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action) 60 { 61 int i = flow_action->num_entries++; 62 63 return &flow_action->entries[i]; 64 } 65 66 static void tcf_ct_add_mangle_action(struct flow_action *action, 67 enum flow_action_mangle_base htype, 68 u32 offset, 69 u32 mask, 70 u32 val) 71 { 72 struct flow_action_entry *entry; 73 74 entry = tcf_ct_flow_table_flow_action_get_next(action); 75 entry->id = FLOW_ACTION_MANGLE; 76 entry->mangle.htype = htype; 77 entry->mangle.mask = ~mask; 78 entry->mangle.offset = offset; 79 entry->mangle.val = val; 80 } 81 82 /* The following nat helper functions check if the inverted reverse tuple 83 * (target) is different then the current dir tuple - meaning nat for ports 84 * and/or ip is needed, and add the relevant mangle actions. 85 */ 86 static void 87 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple, 88 struct nf_conntrack_tuple target, 89 struct flow_action *action) 90 { 91 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 92 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 93 offsetof(struct iphdr, saddr), 94 0xFFFFFFFF, 95 be32_to_cpu(target.src.u3.ip)); 96 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 97 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 98 offsetof(struct iphdr, daddr), 99 0xFFFFFFFF, 100 be32_to_cpu(target.dst.u3.ip)); 101 } 102 103 static void 104 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action, 105 union nf_inet_addr *addr, 106 u32 offset) 107 { 108 int i; 109 110 for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++) 111 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6, 112 i * sizeof(u32) + offset, 113 0xFFFFFFFF, be32_to_cpu(addr->ip6[i])); 114 } 115 116 static void 117 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple, 118 struct nf_conntrack_tuple target, 119 struct flow_action *action) 120 { 121 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 122 tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3, 123 offsetof(struct ipv6hdr, 124 saddr)); 125 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 126 tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3, 127 offsetof(struct ipv6hdr, 128 daddr)); 129 } 130 131 static void 132 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple, 133 struct nf_conntrack_tuple target, 134 struct flow_action *action) 135 { 136 __be16 target_src = target.src.u.tcp.port; 137 __be16 target_dst = target.dst.u.tcp.port; 138 139 if (target_src != tuple->src.u.tcp.port) 140 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 141 offsetof(struct tcphdr, source), 142 0xFFFF, be16_to_cpu(target_src)); 143 if (target_dst != tuple->dst.u.tcp.port) 144 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 145 offsetof(struct tcphdr, dest), 146 0xFFFF, be16_to_cpu(target_dst)); 147 } 148 149 static void 150 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple, 151 struct nf_conntrack_tuple target, 152 struct flow_action *action) 153 { 154 __be16 target_src = target.src.u.udp.port; 155 __be16 target_dst = target.dst.u.udp.port; 156 157 if (target_src != tuple->src.u.udp.port) 158 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 159 offsetof(struct udphdr, source), 160 0xFFFF, be16_to_cpu(target_src)); 161 if (target_dst != tuple->dst.u.udp.port) 162 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 163 offsetof(struct udphdr, dest), 164 0xFFFF, be16_to_cpu(target_dst)); 165 } 166 167 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct, 168 enum ip_conntrack_dir dir, 169 struct flow_action *action) 170 { 171 struct nf_conn_labels *ct_labels; 172 struct flow_action_entry *entry; 173 enum ip_conntrack_info ctinfo; 174 u32 *act_ct_labels; 175 176 entry = tcf_ct_flow_table_flow_action_get_next(action); 177 entry->id = FLOW_ACTION_CT_METADATA; 178 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 179 entry->ct_metadata.mark = ct->mark; 180 #endif 181 ctinfo = dir == IP_CT_DIR_ORIGINAL ? IP_CT_ESTABLISHED : 182 IP_CT_ESTABLISHED_REPLY; 183 /* aligns with the CT reference on the SKB nf_ct_set */ 184 entry->ct_metadata.cookie = (unsigned long)ct | ctinfo; 185 186 act_ct_labels = entry->ct_metadata.labels; 187 ct_labels = nf_ct_labels_find(ct); 188 if (ct_labels) 189 memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE); 190 else 191 memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE); 192 } 193 194 static int tcf_ct_flow_table_add_action_nat(struct net *net, 195 struct nf_conn *ct, 196 enum ip_conntrack_dir dir, 197 struct flow_action *action) 198 { 199 const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple; 200 struct nf_conntrack_tuple target; 201 202 if (!(ct->status & IPS_NAT_MASK)) 203 return 0; 204 205 nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple); 206 207 switch (tuple->src.l3num) { 208 case NFPROTO_IPV4: 209 tcf_ct_flow_table_add_action_nat_ipv4(tuple, target, 210 action); 211 break; 212 case NFPROTO_IPV6: 213 tcf_ct_flow_table_add_action_nat_ipv6(tuple, target, 214 action); 215 break; 216 default: 217 return -EOPNOTSUPP; 218 } 219 220 switch (nf_ct_protonum(ct)) { 221 case IPPROTO_TCP: 222 tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action); 223 break; 224 case IPPROTO_UDP: 225 tcf_ct_flow_table_add_action_nat_udp(tuple, target, action); 226 break; 227 default: 228 return -EOPNOTSUPP; 229 } 230 231 return 0; 232 } 233 234 static int tcf_ct_flow_table_fill_actions(struct net *net, 235 const struct flow_offload *flow, 236 enum flow_offload_tuple_dir tdir, 237 struct nf_flow_rule *flow_rule) 238 { 239 struct flow_action *action = &flow_rule->rule->action; 240 int num_entries = action->num_entries; 241 struct nf_conn *ct = flow->ct; 242 enum ip_conntrack_dir dir; 243 int i, err; 244 245 switch (tdir) { 246 case FLOW_OFFLOAD_DIR_ORIGINAL: 247 dir = IP_CT_DIR_ORIGINAL; 248 break; 249 case FLOW_OFFLOAD_DIR_REPLY: 250 dir = IP_CT_DIR_REPLY; 251 break; 252 default: 253 return -EOPNOTSUPP; 254 } 255 256 err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action); 257 if (err) 258 goto err_nat; 259 260 tcf_ct_flow_table_add_action_meta(ct, dir, action); 261 return 0; 262 263 err_nat: 264 /* Clear filled actions */ 265 for (i = num_entries; i < action->num_entries; i++) 266 memset(&action->entries[i], 0, sizeof(action->entries[i])); 267 action->num_entries = num_entries; 268 269 return err; 270 } 271 272 static struct nf_flowtable_type flowtable_ct = { 273 .action = tcf_ct_flow_table_fill_actions, 274 .owner = THIS_MODULE, 275 }; 276 277 static int tcf_ct_flow_table_get(struct tcf_ct_params *params) 278 { 279 struct tcf_ct_flow_table *ct_ft; 280 int err = -ENOMEM; 281 282 mutex_lock(&zones_mutex); 283 ct_ft = rhashtable_lookup_fast(&zones_ht, ¶ms->zone, zones_params); 284 if (ct_ft && refcount_inc_not_zero(&ct_ft->ref)) 285 goto out_unlock; 286 287 ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL); 288 if (!ct_ft) 289 goto err_alloc; 290 refcount_set(&ct_ft->ref, 1); 291 292 ct_ft->zone = params->zone; 293 err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params); 294 if (err) 295 goto err_insert; 296 297 ct_ft->nf_ft.type = &flowtable_ct; 298 ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD; 299 err = nf_flow_table_init(&ct_ft->nf_ft); 300 if (err) 301 goto err_init; 302 303 __module_get(THIS_MODULE); 304 out_unlock: 305 params->ct_ft = ct_ft; 306 params->nf_ft = &ct_ft->nf_ft; 307 mutex_unlock(&zones_mutex); 308 309 return 0; 310 311 err_init: 312 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 313 err_insert: 314 kfree(ct_ft); 315 err_alloc: 316 mutex_unlock(&zones_mutex); 317 return err; 318 } 319 320 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work) 321 { 322 struct tcf_ct_flow_table *ct_ft; 323 324 ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table, 325 rwork); 326 nf_flow_table_free(&ct_ft->nf_ft); 327 kfree(ct_ft); 328 329 module_put(THIS_MODULE); 330 } 331 332 static void tcf_ct_flow_table_put(struct tcf_ct_params *params) 333 { 334 struct tcf_ct_flow_table *ct_ft = params->ct_ft; 335 336 if (refcount_dec_and_test(¶ms->ct_ft->ref)) { 337 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 338 INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work); 339 queue_rcu_work(act_ct_wq, &ct_ft->rwork); 340 } 341 } 342 343 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft, 344 struct nf_conn *ct, 345 bool tcp) 346 { 347 struct flow_offload *entry; 348 int err; 349 350 if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status)) 351 return; 352 353 entry = flow_offload_alloc(ct); 354 if (!entry) { 355 WARN_ON_ONCE(1); 356 goto err_alloc; 357 } 358 359 if (tcp) { 360 ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 361 ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 362 } 363 364 err = flow_offload_add(&ct_ft->nf_ft, entry); 365 if (err) 366 goto err_add; 367 368 return; 369 370 err_add: 371 flow_offload_free(entry); 372 err_alloc: 373 clear_bit(IPS_OFFLOAD_BIT, &ct->status); 374 } 375 376 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft, 377 struct nf_conn *ct, 378 enum ip_conntrack_info ctinfo) 379 { 380 bool tcp = false; 381 382 if (ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY) 383 return; 384 385 switch (nf_ct_protonum(ct)) { 386 case IPPROTO_TCP: 387 tcp = true; 388 if (ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) 389 return; 390 break; 391 case IPPROTO_UDP: 392 break; 393 default: 394 return; 395 } 396 397 if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) || 398 ct->status & IPS_SEQ_ADJUST) 399 return; 400 401 tcf_ct_flow_table_add(ct_ft, ct, tcp); 402 } 403 404 static bool 405 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb, 406 struct flow_offload_tuple *tuple, 407 struct tcphdr **tcph) 408 { 409 struct flow_ports *ports; 410 unsigned int thoff; 411 struct iphdr *iph; 412 413 if (!pskb_network_may_pull(skb, sizeof(*iph))) 414 return false; 415 416 iph = ip_hdr(skb); 417 thoff = iph->ihl * 4; 418 419 if (ip_is_fragment(iph) || 420 unlikely(thoff != sizeof(struct iphdr))) 421 return false; 422 423 if (iph->protocol != IPPROTO_TCP && 424 iph->protocol != IPPROTO_UDP) 425 return false; 426 427 if (iph->ttl <= 1) 428 return false; 429 430 if (!pskb_network_may_pull(skb, iph->protocol == IPPROTO_TCP ? 431 thoff + sizeof(struct tcphdr) : 432 thoff + sizeof(*ports))) 433 return false; 434 435 iph = ip_hdr(skb); 436 if (iph->protocol == IPPROTO_TCP) 437 *tcph = (void *)(skb_network_header(skb) + thoff); 438 439 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 440 tuple->src_v4.s_addr = iph->saddr; 441 tuple->dst_v4.s_addr = iph->daddr; 442 tuple->src_port = ports->source; 443 tuple->dst_port = ports->dest; 444 tuple->l3proto = AF_INET; 445 tuple->l4proto = iph->protocol; 446 447 return true; 448 } 449 450 static bool 451 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb, 452 struct flow_offload_tuple *tuple, 453 struct tcphdr **tcph) 454 { 455 struct flow_ports *ports; 456 struct ipv6hdr *ip6h; 457 unsigned int thoff; 458 459 if (!pskb_network_may_pull(skb, sizeof(*ip6h))) 460 return false; 461 462 ip6h = ipv6_hdr(skb); 463 464 if (ip6h->nexthdr != IPPROTO_TCP && 465 ip6h->nexthdr != IPPROTO_UDP) 466 return false; 467 468 if (ip6h->hop_limit <= 1) 469 return false; 470 471 thoff = sizeof(*ip6h); 472 if (!pskb_network_may_pull(skb, ip6h->nexthdr == IPPROTO_TCP ? 473 thoff + sizeof(struct tcphdr) : 474 thoff + sizeof(*ports))) 475 return false; 476 477 ip6h = ipv6_hdr(skb); 478 if (ip6h->nexthdr == IPPROTO_TCP) 479 *tcph = (void *)(skb_network_header(skb) + thoff); 480 481 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 482 tuple->src_v6 = ip6h->saddr; 483 tuple->dst_v6 = ip6h->daddr; 484 tuple->src_port = ports->source; 485 tuple->dst_port = ports->dest; 486 tuple->l3proto = AF_INET6; 487 tuple->l4proto = ip6h->nexthdr; 488 489 return true; 490 } 491 492 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p, 493 struct sk_buff *skb, 494 u8 family) 495 { 496 struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft; 497 struct flow_offload_tuple_rhash *tuplehash; 498 struct flow_offload_tuple tuple = {}; 499 enum ip_conntrack_info ctinfo; 500 struct tcphdr *tcph = NULL; 501 struct flow_offload *flow; 502 struct nf_conn *ct; 503 u8 dir; 504 505 /* Previously seen or loopback */ 506 ct = nf_ct_get(skb, &ctinfo); 507 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 508 return false; 509 510 switch (family) { 511 case NFPROTO_IPV4: 512 if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph)) 513 return false; 514 break; 515 case NFPROTO_IPV6: 516 if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph)) 517 return false; 518 break; 519 default: 520 return false; 521 } 522 523 tuplehash = flow_offload_lookup(nf_ft, &tuple); 524 if (!tuplehash) 525 return false; 526 527 dir = tuplehash->tuple.dir; 528 flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]); 529 ct = flow->ct; 530 531 if (tcph && (unlikely(tcph->fin || tcph->rst))) { 532 flow_offload_teardown(flow); 533 return false; 534 } 535 536 ctinfo = dir == FLOW_OFFLOAD_DIR_ORIGINAL ? IP_CT_ESTABLISHED : 537 IP_CT_ESTABLISHED_REPLY; 538 539 flow_offload_refresh(nf_ft, flow); 540 nf_conntrack_get(&ct->ct_general); 541 nf_ct_set(skb, ct, ctinfo); 542 543 return true; 544 } 545 546 static int tcf_ct_flow_tables_init(void) 547 { 548 return rhashtable_init(&zones_ht, &zones_params); 549 } 550 551 static void tcf_ct_flow_tables_uninit(void) 552 { 553 rhashtable_destroy(&zones_ht); 554 } 555 556 static struct tc_action_ops act_ct_ops; 557 static unsigned int ct_net_id; 558 559 struct tc_ct_action_net { 560 struct tc_action_net tn; /* Must be first */ 561 bool labels; 562 }; 563 564 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 565 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb, 566 u16 zone_id, bool force) 567 { 568 enum ip_conntrack_info ctinfo; 569 struct nf_conn *ct; 570 571 ct = nf_ct_get(skb, &ctinfo); 572 if (!ct) 573 return false; 574 if (!net_eq(net, read_pnet(&ct->ct_net))) 575 return false; 576 if (nf_ct_zone(ct)->id != zone_id) 577 return false; 578 579 /* Force conntrack entry direction. */ 580 if (force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 581 if (nf_ct_is_confirmed(ct)) 582 nf_ct_kill(ct); 583 584 nf_conntrack_put(&ct->ct_general); 585 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 586 587 return false; 588 } 589 590 return true; 591 } 592 593 /* Trim the skb to the length specified by the IP/IPv6 header, 594 * removing any trailing lower-layer padding. This prepares the skb 595 * for higher-layer processing that assumes skb->len excludes padding 596 * (such as nf_ip_checksum). The caller needs to pull the skb to the 597 * network header, and ensure ip_hdr/ipv6_hdr points to valid data. 598 */ 599 static int tcf_ct_skb_network_trim(struct sk_buff *skb, int family) 600 { 601 unsigned int len; 602 int err; 603 604 switch (family) { 605 case NFPROTO_IPV4: 606 len = ntohs(ip_hdr(skb)->tot_len); 607 break; 608 case NFPROTO_IPV6: 609 len = sizeof(struct ipv6hdr) 610 + ntohs(ipv6_hdr(skb)->payload_len); 611 break; 612 default: 613 len = skb->len; 614 } 615 616 err = pskb_trim_rcsum(skb, len); 617 618 return err; 619 } 620 621 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb) 622 { 623 u8 family = NFPROTO_UNSPEC; 624 625 switch (skb->protocol) { 626 case htons(ETH_P_IP): 627 family = NFPROTO_IPV4; 628 break; 629 case htons(ETH_P_IPV6): 630 family = NFPROTO_IPV6; 631 break; 632 default: 633 break; 634 } 635 636 return family; 637 } 638 639 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag) 640 { 641 unsigned int len; 642 643 len = skb_network_offset(skb) + sizeof(struct iphdr); 644 if (unlikely(skb->len < len)) 645 return -EINVAL; 646 if (unlikely(!pskb_may_pull(skb, len))) 647 return -ENOMEM; 648 649 *frag = ip_is_fragment(ip_hdr(skb)); 650 return 0; 651 } 652 653 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag) 654 { 655 unsigned int flags = 0, len, payload_ofs = 0; 656 unsigned short frag_off; 657 int nexthdr; 658 659 len = skb_network_offset(skb) + sizeof(struct ipv6hdr); 660 if (unlikely(skb->len < len)) 661 return -EINVAL; 662 if (unlikely(!pskb_may_pull(skb, len))) 663 return -ENOMEM; 664 665 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); 666 if (unlikely(nexthdr < 0)) 667 return -EPROTO; 668 669 *frag = flags & IP6_FH_F_FRAG; 670 return 0; 671 } 672 673 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb, 674 u8 family, u16 zone) 675 { 676 enum ip_conntrack_info ctinfo; 677 struct nf_conn *ct; 678 int err = 0; 679 bool frag; 680 681 /* Previously seen (loopback)? Ignore. */ 682 ct = nf_ct_get(skb, &ctinfo); 683 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 684 return 0; 685 686 if (family == NFPROTO_IPV4) 687 err = tcf_ct_ipv4_is_fragment(skb, &frag); 688 else 689 err = tcf_ct_ipv6_is_fragment(skb, &frag); 690 if (err || !frag) 691 return err; 692 693 skb_get(skb); 694 695 if (family == NFPROTO_IPV4) { 696 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 697 698 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 699 local_bh_disable(); 700 err = ip_defrag(net, skb, user); 701 local_bh_enable(); 702 if (err && err != -EINPROGRESS) 703 goto out_free; 704 } else { /* NFPROTO_IPV6 */ 705 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 706 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 707 708 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 709 err = nf_ct_frag6_gather(net, skb, user); 710 if (err && err != -EINPROGRESS) 711 goto out_free; 712 #else 713 err = -EOPNOTSUPP; 714 goto out_free; 715 #endif 716 } 717 718 skb_clear_hash(skb); 719 skb->ignore_df = 1; 720 return err; 721 722 out_free: 723 kfree_skb(skb); 724 return err; 725 } 726 727 static void tcf_ct_params_free(struct rcu_head *head) 728 { 729 struct tcf_ct_params *params = container_of(head, 730 struct tcf_ct_params, rcu); 731 732 tcf_ct_flow_table_put(params); 733 734 if (params->tmpl) 735 nf_conntrack_put(¶ms->tmpl->ct_general); 736 kfree(params); 737 } 738 739 #if IS_ENABLED(CONFIG_NF_NAT) 740 /* Modelled after nf_nat_ipv[46]_fn(). 741 * range is only used for new, uninitialized NAT state. 742 * Returns either NF_ACCEPT or NF_DROP. 743 */ 744 static int ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 745 enum ip_conntrack_info ctinfo, 746 const struct nf_nat_range2 *range, 747 enum nf_nat_manip_type maniptype) 748 { 749 int hooknum, err = NF_ACCEPT; 750 751 /* See HOOK2MANIP(). */ 752 if (maniptype == NF_NAT_MANIP_SRC) 753 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 754 else 755 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 756 757 switch (ctinfo) { 758 case IP_CT_RELATED: 759 case IP_CT_RELATED_REPLY: 760 if (skb->protocol == htons(ETH_P_IP) && 761 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 762 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 763 hooknum)) 764 err = NF_DROP; 765 goto out; 766 } else if (IS_ENABLED(CONFIG_IPV6) && 767 skb->protocol == htons(ETH_P_IPV6)) { 768 __be16 frag_off; 769 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 770 int hdrlen = ipv6_skip_exthdr(skb, 771 sizeof(struct ipv6hdr), 772 &nexthdr, &frag_off); 773 774 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 775 if (!nf_nat_icmpv6_reply_translation(skb, ct, 776 ctinfo, 777 hooknum, 778 hdrlen)) 779 err = NF_DROP; 780 goto out; 781 } 782 } 783 /* Non-ICMP, fall thru to initialize if needed. */ 784 /* fall through */ 785 case IP_CT_NEW: 786 /* Seen it before? This can happen for loopback, retrans, 787 * or local packets. 788 */ 789 if (!nf_nat_initialized(ct, maniptype)) { 790 /* Initialize according to the NAT action. */ 791 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 792 /* Action is set up to establish a new 793 * mapping. 794 */ 795 ? nf_nat_setup_info(ct, range, maniptype) 796 : nf_nat_alloc_null_binding(ct, hooknum); 797 if (err != NF_ACCEPT) 798 goto out; 799 } 800 break; 801 802 case IP_CT_ESTABLISHED: 803 case IP_CT_ESTABLISHED_REPLY: 804 break; 805 806 default: 807 err = NF_DROP; 808 goto out; 809 } 810 811 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 812 out: 813 return err; 814 } 815 #endif /* CONFIG_NF_NAT */ 816 817 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask) 818 { 819 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 820 u32 new_mark; 821 822 if (!mask) 823 return; 824 825 new_mark = mark | (ct->mark & ~(mask)); 826 if (ct->mark != new_mark) { 827 ct->mark = new_mark; 828 if (nf_ct_is_confirmed(ct)) 829 nf_conntrack_event_cache(IPCT_MARK, ct); 830 } 831 #endif 832 } 833 834 static void tcf_ct_act_set_labels(struct nf_conn *ct, 835 u32 *labels, 836 u32 *labels_m) 837 { 838 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) 839 size_t labels_sz = sizeof_field(struct tcf_ct_params, labels); 840 841 if (!memchr_inv(labels_m, 0, labels_sz)) 842 return; 843 844 nf_connlabels_replace(ct, labels, labels_m, 4); 845 #endif 846 } 847 848 static int tcf_ct_act_nat(struct sk_buff *skb, 849 struct nf_conn *ct, 850 enum ip_conntrack_info ctinfo, 851 int ct_action, 852 struct nf_nat_range2 *range, 853 bool commit) 854 { 855 #if IS_ENABLED(CONFIG_NF_NAT) 856 int err; 857 enum nf_nat_manip_type maniptype; 858 859 if (!(ct_action & TCA_CT_ACT_NAT)) 860 return NF_ACCEPT; 861 862 /* Add NAT extension if not confirmed yet. */ 863 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 864 return NF_DROP; /* Can't NAT. */ 865 866 if (ctinfo != IP_CT_NEW && (ct->status & IPS_NAT_MASK) && 867 (ctinfo != IP_CT_RELATED || commit)) { 868 /* NAT an established or related connection like before. */ 869 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 870 /* This is the REPLY direction for a connection 871 * for which NAT was applied in the forward 872 * direction. Do the reverse NAT. 873 */ 874 maniptype = ct->status & IPS_SRC_NAT 875 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 876 else 877 maniptype = ct->status & IPS_SRC_NAT 878 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 879 } else if (ct_action & TCA_CT_ACT_NAT_SRC) { 880 maniptype = NF_NAT_MANIP_SRC; 881 } else if (ct_action & TCA_CT_ACT_NAT_DST) { 882 maniptype = NF_NAT_MANIP_DST; 883 } else { 884 return NF_ACCEPT; 885 } 886 887 err = ct_nat_execute(skb, ct, ctinfo, range, maniptype); 888 if (err == NF_ACCEPT && 889 ct->status & IPS_SRC_NAT && ct->status & IPS_DST_NAT) { 890 if (maniptype == NF_NAT_MANIP_SRC) 891 maniptype = NF_NAT_MANIP_DST; 892 else 893 maniptype = NF_NAT_MANIP_SRC; 894 895 err = ct_nat_execute(skb, ct, ctinfo, range, maniptype); 896 } 897 return err; 898 #else 899 return NF_ACCEPT; 900 #endif 901 } 902 903 static int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a, 904 struct tcf_result *res) 905 { 906 struct net *net = dev_net(skb->dev); 907 bool cached, commit, clear, force; 908 enum ip_conntrack_info ctinfo; 909 struct tcf_ct *c = to_ct(a); 910 struct nf_conn *tmpl = NULL; 911 struct nf_hook_state state; 912 int nh_ofs, err, retval; 913 struct tcf_ct_params *p; 914 bool skip_add = false; 915 struct nf_conn *ct; 916 u8 family; 917 918 p = rcu_dereference_bh(c->params); 919 920 retval = READ_ONCE(c->tcf_action); 921 commit = p->ct_action & TCA_CT_ACT_COMMIT; 922 clear = p->ct_action & TCA_CT_ACT_CLEAR; 923 force = p->ct_action & TCA_CT_ACT_FORCE; 924 tmpl = p->tmpl; 925 926 if (clear) { 927 ct = nf_ct_get(skb, &ctinfo); 928 if (ct) { 929 nf_conntrack_put(&ct->ct_general); 930 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 931 } 932 933 goto out; 934 } 935 936 family = tcf_ct_skb_nf_family(skb); 937 if (family == NFPROTO_UNSPEC) 938 goto drop; 939 940 /* The conntrack module expects to be working at L3. 941 * We also try to pull the IPv4/6 header to linear area 942 */ 943 nh_ofs = skb_network_offset(skb); 944 skb_pull_rcsum(skb, nh_ofs); 945 err = tcf_ct_handle_fragments(net, skb, family, p->zone); 946 if (err == -EINPROGRESS) { 947 retval = TC_ACT_STOLEN; 948 goto out; 949 } 950 if (err) 951 goto drop; 952 953 err = tcf_ct_skb_network_trim(skb, family); 954 if (err) 955 goto drop; 956 957 /* If we are recirculating packets to match on ct fields and 958 * committing with a separate ct action, then we don't need to 959 * actually run the packet through conntrack twice unless it's for a 960 * different zone. 961 */ 962 cached = tcf_ct_skb_nfct_cached(net, skb, p->zone, force); 963 if (!cached) { 964 if (!commit && tcf_ct_flow_table_lookup(p, skb, family)) { 965 skip_add = true; 966 goto do_nat; 967 } 968 969 /* Associate skb with specified zone. */ 970 if (tmpl) { 971 ct = nf_ct_get(skb, &ctinfo); 972 if (skb_nfct(skb)) 973 nf_conntrack_put(skb_nfct(skb)); 974 nf_conntrack_get(&tmpl->ct_general); 975 nf_ct_set(skb, tmpl, IP_CT_NEW); 976 } 977 978 state.hook = NF_INET_PRE_ROUTING; 979 state.net = net; 980 state.pf = family; 981 err = nf_conntrack_in(skb, &state); 982 if (err != NF_ACCEPT) 983 goto out_push; 984 } 985 986 do_nat: 987 ct = nf_ct_get(skb, &ctinfo); 988 if (!ct) 989 goto out_push; 990 nf_ct_deliver_cached_events(ct); 991 992 err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit); 993 if (err != NF_ACCEPT) 994 goto drop; 995 996 if (commit) { 997 tcf_ct_act_set_mark(ct, p->mark, p->mark_mask); 998 tcf_ct_act_set_labels(ct, p->labels, p->labels_mask); 999 1000 /* This will take care of sending queued events 1001 * even if the connection is already confirmed. 1002 */ 1003 nf_conntrack_confirm(skb); 1004 } else if (!skip_add) { 1005 tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo); 1006 } 1007 1008 out_push: 1009 skb_push_rcsum(skb, nh_ofs); 1010 1011 out: 1012 tcf_action_update_bstats(&c->common, skb); 1013 return retval; 1014 1015 drop: 1016 tcf_action_inc_drop_qstats(&c->common); 1017 return TC_ACT_SHOT; 1018 } 1019 1020 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = { 1021 [TCA_CT_ACTION] = { .type = NLA_U16 }, 1022 [TCA_CT_PARMS] = { .type = NLA_EXACT_LEN, .len = sizeof(struct tc_ct) }, 1023 [TCA_CT_ZONE] = { .type = NLA_U16 }, 1024 [TCA_CT_MARK] = { .type = NLA_U32 }, 1025 [TCA_CT_MARK_MASK] = { .type = NLA_U32 }, 1026 [TCA_CT_LABELS] = { .type = NLA_BINARY, 1027 .len = 128 / BITS_PER_BYTE }, 1028 [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY, 1029 .len = 128 / BITS_PER_BYTE }, 1030 [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 }, 1031 [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 }, 1032 [TCA_CT_NAT_IPV6_MIN] = { .type = NLA_EXACT_LEN, 1033 .len = sizeof(struct in6_addr) }, 1034 [TCA_CT_NAT_IPV6_MAX] = { .type = NLA_EXACT_LEN, 1035 .len = sizeof(struct in6_addr) }, 1036 [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 }, 1037 [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 }, 1038 }; 1039 1040 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p, 1041 struct tc_ct *parm, 1042 struct nlattr **tb, 1043 struct netlink_ext_ack *extack) 1044 { 1045 struct nf_nat_range2 *range; 1046 1047 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1048 return 0; 1049 1050 if (!IS_ENABLED(CONFIG_NF_NAT)) { 1051 NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel"); 1052 return -EOPNOTSUPP; 1053 } 1054 1055 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1056 return 0; 1057 1058 if ((p->ct_action & TCA_CT_ACT_NAT_SRC) && 1059 (p->ct_action & TCA_CT_ACT_NAT_DST)) { 1060 NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time"); 1061 return -EOPNOTSUPP; 1062 } 1063 1064 range = &p->range; 1065 if (tb[TCA_CT_NAT_IPV4_MIN]) { 1066 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX]; 1067 1068 p->ipv4_range = true; 1069 range->flags |= NF_NAT_RANGE_MAP_IPS; 1070 range->min_addr.ip = 1071 nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]); 1072 1073 range->max_addr.ip = max_attr ? 1074 nla_get_in_addr(max_attr) : 1075 range->min_addr.ip; 1076 } else if (tb[TCA_CT_NAT_IPV6_MIN]) { 1077 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX]; 1078 1079 p->ipv4_range = false; 1080 range->flags |= NF_NAT_RANGE_MAP_IPS; 1081 range->min_addr.in6 = 1082 nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]); 1083 1084 range->max_addr.in6 = max_attr ? 1085 nla_get_in6_addr(max_attr) : 1086 range->min_addr.in6; 1087 } 1088 1089 if (tb[TCA_CT_NAT_PORT_MIN]) { 1090 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1091 range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]); 1092 1093 range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ? 1094 nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) : 1095 range->min_proto.all; 1096 } 1097 1098 return 0; 1099 } 1100 1101 static void tcf_ct_set_key_val(struct nlattr **tb, 1102 void *val, int val_type, 1103 void *mask, int mask_type, 1104 int len) 1105 { 1106 if (!tb[val_type]) 1107 return; 1108 nla_memcpy(val, tb[val_type], len); 1109 1110 if (!mask) 1111 return; 1112 1113 if (mask_type == TCA_CT_UNSPEC || !tb[mask_type]) 1114 memset(mask, 0xff, len); 1115 else 1116 nla_memcpy(mask, tb[mask_type], len); 1117 } 1118 1119 static int tcf_ct_fill_params(struct net *net, 1120 struct tcf_ct_params *p, 1121 struct tc_ct *parm, 1122 struct nlattr **tb, 1123 struct netlink_ext_ack *extack) 1124 { 1125 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1126 struct nf_conntrack_zone zone; 1127 struct nf_conn *tmpl; 1128 int err; 1129 1130 p->zone = NF_CT_DEFAULT_ZONE_ID; 1131 1132 tcf_ct_set_key_val(tb, 1133 &p->ct_action, TCA_CT_ACTION, 1134 NULL, TCA_CT_UNSPEC, 1135 sizeof(p->ct_action)); 1136 1137 if (p->ct_action & TCA_CT_ACT_CLEAR) 1138 return 0; 1139 1140 err = tcf_ct_fill_params_nat(p, parm, tb, extack); 1141 if (err) 1142 return err; 1143 1144 if (tb[TCA_CT_MARK]) { 1145 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) { 1146 NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled."); 1147 return -EOPNOTSUPP; 1148 } 1149 tcf_ct_set_key_val(tb, 1150 &p->mark, TCA_CT_MARK, 1151 &p->mark_mask, TCA_CT_MARK_MASK, 1152 sizeof(p->mark)); 1153 } 1154 1155 if (tb[TCA_CT_LABELS]) { 1156 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) { 1157 NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled."); 1158 return -EOPNOTSUPP; 1159 } 1160 1161 if (!tn->labels) { 1162 NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length"); 1163 return -EOPNOTSUPP; 1164 } 1165 tcf_ct_set_key_val(tb, 1166 p->labels, TCA_CT_LABELS, 1167 p->labels_mask, TCA_CT_LABELS_MASK, 1168 sizeof(p->labels)); 1169 } 1170 1171 if (tb[TCA_CT_ZONE]) { 1172 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) { 1173 NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled."); 1174 return -EOPNOTSUPP; 1175 } 1176 1177 tcf_ct_set_key_val(tb, 1178 &p->zone, TCA_CT_ZONE, 1179 NULL, TCA_CT_UNSPEC, 1180 sizeof(p->zone)); 1181 } 1182 1183 if (p->zone == NF_CT_DEFAULT_ZONE_ID) 1184 return 0; 1185 1186 nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0); 1187 tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL); 1188 if (!tmpl) { 1189 NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template"); 1190 return -ENOMEM; 1191 } 1192 __set_bit(IPS_CONFIRMED_BIT, &tmpl->status); 1193 nf_conntrack_get(&tmpl->ct_general); 1194 p->tmpl = tmpl; 1195 1196 return 0; 1197 } 1198 1199 static int tcf_ct_init(struct net *net, struct nlattr *nla, 1200 struct nlattr *est, struct tc_action **a, 1201 int replace, int bind, bool rtnl_held, 1202 struct tcf_proto *tp, u32 flags, 1203 struct netlink_ext_ack *extack) 1204 { 1205 struct tc_action_net *tn = net_generic(net, ct_net_id); 1206 struct tcf_ct_params *params = NULL; 1207 struct nlattr *tb[TCA_CT_MAX + 1]; 1208 struct tcf_chain *goto_ch = NULL; 1209 struct tc_ct *parm; 1210 struct tcf_ct *c; 1211 int err, res = 0; 1212 u32 index; 1213 1214 if (!nla) { 1215 NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed"); 1216 return -EINVAL; 1217 } 1218 1219 err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack); 1220 if (err < 0) 1221 return err; 1222 1223 if (!tb[TCA_CT_PARMS]) { 1224 NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters"); 1225 return -EINVAL; 1226 } 1227 parm = nla_data(tb[TCA_CT_PARMS]); 1228 index = parm->index; 1229 err = tcf_idr_check_alloc(tn, &index, a, bind); 1230 if (err < 0) 1231 return err; 1232 1233 if (!err) { 1234 err = tcf_idr_create_from_flags(tn, index, est, a, 1235 &act_ct_ops, bind, flags); 1236 if (err) { 1237 tcf_idr_cleanup(tn, index); 1238 return err; 1239 } 1240 res = ACT_P_CREATED; 1241 } else { 1242 if (bind) 1243 return 0; 1244 1245 if (!replace) { 1246 tcf_idr_release(*a, bind); 1247 return -EEXIST; 1248 } 1249 } 1250 err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); 1251 if (err < 0) 1252 goto cleanup; 1253 1254 c = to_ct(*a); 1255 1256 params = kzalloc(sizeof(*params), GFP_KERNEL); 1257 if (unlikely(!params)) { 1258 err = -ENOMEM; 1259 goto cleanup; 1260 } 1261 1262 err = tcf_ct_fill_params(net, params, parm, tb, extack); 1263 if (err) 1264 goto cleanup; 1265 1266 err = tcf_ct_flow_table_get(params); 1267 if (err) 1268 goto cleanup; 1269 1270 spin_lock_bh(&c->tcf_lock); 1271 goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); 1272 params = rcu_replace_pointer(c->params, params, 1273 lockdep_is_held(&c->tcf_lock)); 1274 spin_unlock_bh(&c->tcf_lock); 1275 1276 if (goto_ch) 1277 tcf_chain_put_by_act(goto_ch); 1278 if (params) 1279 call_rcu(¶ms->rcu, tcf_ct_params_free); 1280 if (res == ACT_P_CREATED) 1281 tcf_idr_insert(tn, *a); 1282 1283 return res; 1284 1285 cleanup: 1286 if (goto_ch) 1287 tcf_chain_put_by_act(goto_ch); 1288 kfree(params); 1289 tcf_idr_release(*a, bind); 1290 return err; 1291 } 1292 1293 static void tcf_ct_cleanup(struct tc_action *a) 1294 { 1295 struct tcf_ct_params *params; 1296 struct tcf_ct *c = to_ct(a); 1297 1298 params = rcu_dereference_protected(c->params, 1); 1299 if (params) 1300 call_rcu(¶ms->rcu, tcf_ct_params_free); 1301 } 1302 1303 static int tcf_ct_dump_key_val(struct sk_buff *skb, 1304 void *val, int val_type, 1305 void *mask, int mask_type, 1306 int len) 1307 { 1308 int err; 1309 1310 if (mask && !memchr_inv(mask, 0, len)) 1311 return 0; 1312 1313 err = nla_put(skb, val_type, len, val); 1314 if (err) 1315 return err; 1316 1317 if (mask_type != TCA_CT_UNSPEC) { 1318 err = nla_put(skb, mask_type, len, mask); 1319 if (err) 1320 return err; 1321 } 1322 1323 return 0; 1324 } 1325 1326 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p) 1327 { 1328 struct nf_nat_range2 *range = &p->range; 1329 1330 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1331 return 0; 1332 1333 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1334 return 0; 1335 1336 if (range->flags & NF_NAT_RANGE_MAP_IPS) { 1337 if (p->ipv4_range) { 1338 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN, 1339 range->min_addr.ip)) 1340 return -1; 1341 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX, 1342 range->max_addr.ip)) 1343 return -1; 1344 } else { 1345 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN, 1346 &range->min_addr.in6)) 1347 return -1; 1348 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX, 1349 &range->max_addr.in6)) 1350 return -1; 1351 } 1352 } 1353 1354 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) { 1355 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN, 1356 range->min_proto.all)) 1357 return -1; 1358 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX, 1359 range->max_proto.all)) 1360 return -1; 1361 } 1362 1363 return 0; 1364 } 1365 1366 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a, 1367 int bind, int ref) 1368 { 1369 unsigned char *b = skb_tail_pointer(skb); 1370 struct tcf_ct *c = to_ct(a); 1371 struct tcf_ct_params *p; 1372 1373 struct tc_ct opt = { 1374 .index = c->tcf_index, 1375 .refcnt = refcount_read(&c->tcf_refcnt) - ref, 1376 .bindcnt = atomic_read(&c->tcf_bindcnt) - bind, 1377 }; 1378 struct tcf_t t; 1379 1380 spin_lock_bh(&c->tcf_lock); 1381 p = rcu_dereference_protected(c->params, 1382 lockdep_is_held(&c->tcf_lock)); 1383 opt.action = c->tcf_action; 1384 1385 if (tcf_ct_dump_key_val(skb, 1386 &p->ct_action, TCA_CT_ACTION, 1387 NULL, TCA_CT_UNSPEC, 1388 sizeof(p->ct_action))) 1389 goto nla_put_failure; 1390 1391 if (p->ct_action & TCA_CT_ACT_CLEAR) 1392 goto skip_dump; 1393 1394 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1395 tcf_ct_dump_key_val(skb, 1396 &p->mark, TCA_CT_MARK, 1397 &p->mark_mask, TCA_CT_MARK_MASK, 1398 sizeof(p->mark))) 1399 goto nla_put_failure; 1400 1401 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1402 tcf_ct_dump_key_val(skb, 1403 p->labels, TCA_CT_LABELS, 1404 p->labels_mask, TCA_CT_LABELS_MASK, 1405 sizeof(p->labels))) 1406 goto nla_put_failure; 1407 1408 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1409 tcf_ct_dump_key_val(skb, 1410 &p->zone, TCA_CT_ZONE, 1411 NULL, TCA_CT_UNSPEC, 1412 sizeof(p->zone))) 1413 goto nla_put_failure; 1414 1415 if (tcf_ct_dump_nat(skb, p)) 1416 goto nla_put_failure; 1417 1418 skip_dump: 1419 if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt)) 1420 goto nla_put_failure; 1421 1422 tcf_tm_dump(&t, &c->tcf_tm); 1423 if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD)) 1424 goto nla_put_failure; 1425 spin_unlock_bh(&c->tcf_lock); 1426 1427 return skb->len; 1428 nla_put_failure: 1429 spin_unlock_bh(&c->tcf_lock); 1430 nlmsg_trim(skb, b); 1431 return -1; 1432 } 1433 1434 static int tcf_ct_walker(struct net *net, struct sk_buff *skb, 1435 struct netlink_callback *cb, int type, 1436 const struct tc_action_ops *ops, 1437 struct netlink_ext_ack *extack) 1438 { 1439 struct tc_action_net *tn = net_generic(net, ct_net_id); 1440 1441 return tcf_generic_walker(tn, skb, cb, type, ops, extack); 1442 } 1443 1444 static int tcf_ct_search(struct net *net, struct tc_action **a, u32 index) 1445 { 1446 struct tc_action_net *tn = net_generic(net, ct_net_id); 1447 1448 return tcf_idr_search(tn, a, index); 1449 } 1450 1451 static void tcf_stats_update(struct tc_action *a, u64 bytes, u32 packets, 1452 u64 lastuse, bool hw) 1453 { 1454 struct tcf_ct *c = to_ct(a); 1455 1456 tcf_action_update_stats(a, bytes, packets, false, hw); 1457 c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse); 1458 } 1459 1460 static struct tc_action_ops act_ct_ops = { 1461 .kind = "ct", 1462 .id = TCA_ID_CT, 1463 .owner = THIS_MODULE, 1464 .act = tcf_ct_act, 1465 .dump = tcf_ct_dump, 1466 .init = tcf_ct_init, 1467 .cleanup = tcf_ct_cleanup, 1468 .walk = tcf_ct_walker, 1469 .lookup = tcf_ct_search, 1470 .stats_update = tcf_stats_update, 1471 .size = sizeof(struct tcf_ct), 1472 }; 1473 1474 static __net_init int ct_init_net(struct net *net) 1475 { 1476 unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8; 1477 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1478 1479 if (nf_connlabels_get(net, n_bits - 1)) { 1480 tn->labels = false; 1481 pr_err("act_ct: Failed to set connlabels length"); 1482 } else { 1483 tn->labels = true; 1484 } 1485 1486 return tc_action_net_init(net, &tn->tn, &act_ct_ops); 1487 } 1488 1489 static void __net_exit ct_exit_net(struct list_head *net_list) 1490 { 1491 struct net *net; 1492 1493 rtnl_lock(); 1494 list_for_each_entry(net, net_list, exit_list) { 1495 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1496 1497 if (tn->labels) 1498 nf_connlabels_put(net); 1499 } 1500 rtnl_unlock(); 1501 1502 tc_action_net_exit(net_list, ct_net_id); 1503 } 1504 1505 static struct pernet_operations ct_net_ops = { 1506 .init = ct_init_net, 1507 .exit_batch = ct_exit_net, 1508 .id = &ct_net_id, 1509 .size = sizeof(struct tc_ct_action_net), 1510 }; 1511 1512 static int __init ct_init_module(void) 1513 { 1514 int err; 1515 1516 act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0); 1517 if (!act_ct_wq) 1518 return -ENOMEM; 1519 1520 err = tcf_ct_flow_tables_init(); 1521 if (err) 1522 goto err_tbl_init; 1523 1524 err = tcf_register_action(&act_ct_ops, &ct_net_ops); 1525 if (err) 1526 goto err_register; 1527 1528 return 0; 1529 1530 err_tbl_init: 1531 destroy_workqueue(act_ct_wq); 1532 err_register: 1533 tcf_ct_flow_tables_uninit(); 1534 return err; 1535 } 1536 1537 static void __exit ct_cleanup_module(void) 1538 { 1539 tcf_unregister_action(&act_ct_ops, &ct_net_ops); 1540 tcf_ct_flow_tables_uninit(); 1541 destroy_workqueue(act_ct_wq); 1542 } 1543 1544 void tcf_ct_flow_table_restore_skb(struct sk_buff *skb, unsigned long cookie) 1545 { 1546 enum ip_conntrack_info ctinfo = cookie & NFCT_INFOMASK; 1547 struct nf_conn *ct; 1548 1549 ct = (struct nf_conn *)(cookie & NFCT_PTRMASK); 1550 nf_conntrack_get(&ct->ct_general); 1551 nf_ct_set(skb, ct, ctinfo); 1552 } 1553 EXPORT_SYMBOL_GPL(tcf_ct_flow_table_restore_skb); 1554 1555 module_init(ct_init_module); 1556 module_exit(ct_cleanup_module); 1557 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>"); 1558 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>"); 1559 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>"); 1560 MODULE_DESCRIPTION("Connection tracking action"); 1561 MODULE_LICENSE("GPL v2"); 1562 1563