1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* - 3 * net/sched/act_ct.c Connection Tracking action 4 * 5 * Authors: Paul Blakey <paulb@mellanox.com> 6 * Yossi Kuperman <yossiku@mellanox.com> 7 * Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/skbuff.h> 14 #include <linux/rtnetlink.h> 15 #include <linux/pkt_cls.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/rhashtable.h> 19 #include <net/netlink.h> 20 #include <net/pkt_sched.h> 21 #include <net/pkt_cls.h> 22 #include <net/act_api.h> 23 #include <net/ip.h> 24 #include <net/ipv6_frag.h> 25 #include <uapi/linux/tc_act/tc_ct.h> 26 #include <net/tc_act/tc_ct.h> 27 #include <net/tc_wrapper.h> 28 29 #include <net/netfilter/nf_flow_table.h> 30 #include <net/netfilter/nf_conntrack.h> 31 #include <net/netfilter/nf_conntrack_core.h> 32 #include <net/netfilter/nf_conntrack_zones.h> 33 #include <net/netfilter/nf_conntrack_helper.h> 34 #include <net/netfilter/nf_conntrack_acct.h> 35 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 36 #include <net/netfilter/nf_conntrack_act_ct.h> 37 #include <net/netfilter/nf_conntrack_seqadj.h> 38 #include <uapi/linux/netfilter/nf_nat.h> 39 40 static struct workqueue_struct *act_ct_wq; 41 static struct rhashtable zones_ht; 42 static DEFINE_MUTEX(zones_mutex); 43 44 struct zones_ht_key { 45 struct net *net; 46 u16 zone; 47 }; 48 49 struct tcf_ct_flow_table { 50 struct rhash_head node; /* In zones tables */ 51 52 struct rcu_work rwork; 53 struct nf_flowtable nf_ft; 54 refcount_t ref; 55 struct zones_ht_key key; 56 57 bool dying; 58 }; 59 60 static const struct rhashtable_params zones_params = { 61 .head_offset = offsetof(struct tcf_ct_flow_table, node), 62 .key_offset = offsetof(struct tcf_ct_flow_table, key), 63 .key_len = sizeof_field(struct tcf_ct_flow_table, key), 64 .automatic_shrinking = true, 65 }; 66 67 static struct flow_action_entry * 68 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action) 69 { 70 int i = flow_action->num_entries++; 71 72 return &flow_action->entries[i]; 73 } 74 75 static void tcf_ct_add_mangle_action(struct flow_action *action, 76 enum flow_action_mangle_base htype, 77 u32 offset, 78 u32 mask, 79 u32 val) 80 { 81 struct flow_action_entry *entry; 82 83 entry = tcf_ct_flow_table_flow_action_get_next(action); 84 entry->id = FLOW_ACTION_MANGLE; 85 entry->mangle.htype = htype; 86 entry->mangle.mask = ~mask; 87 entry->mangle.offset = offset; 88 entry->mangle.val = val; 89 } 90 91 /* The following nat helper functions check if the inverted reverse tuple 92 * (target) is different then the current dir tuple - meaning nat for ports 93 * and/or ip is needed, and add the relevant mangle actions. 94 */ 95 static void 96 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple, 97 struct nf_conntrack_tuple target, 98 struct flow_action *action) 99 { 100 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 101 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 102 offsetof(struct iphdr, saddr), 103 0xFFFFFFFF, 104 be32_to_cpu(target.src.u3.ip)); 105 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 106 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 107 offsetof(struct iphdr, daddr), 108 0xFFFFFFFF, 109 be32_to_cpu(target.dst.u3.ip)); 110 } 111 112 static void 113 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action, 114 union nf_inet_addr *addr, 115 u32 offset) 116 { 117 int i; 118 119 for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++) 120 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6, 121 i * sizeof(u32) + offset, 122 0xFFFFFFFF, be32_to_cpu(addr->ip6[i])); 123 } 124 125 static void 126 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple, 127 struct nf_conntrack_tuple target, 128 struct flow_action *action) 129 { 130 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 131 tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3, 132 offsetof(struct ipv6hdr, 133 saddr)); 134 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 135 tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3, 136 offsetof(struct ipv6hdr, 137 daddr)); 138 } 139 140 static void 141 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple, 142 struct nf_conntrack_tuple target, 143 struct flow_action *action) 144 { 145 __be16 target_src = target.src.u.tcp.port; 146 __be16 target_dst = target.dst.u.tcp.port; 147 148 if (target_src != tuple->src.u.tcp.port) 149 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 150 offsetof(struct tcphdr, source), 151 0xFFFF, be16_to_cpu(target_src)); 152 if (target_dst != tuple->dst.u.tcp.port) 153 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 154 offsetof(struct tcphdr, dest), 155 0xFFFF, be16_to_cpu(target_dst)); 156 } 157 158 static void 159 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple, 160 struct nf_conntrack_tuple target, 161 struct flow_action *action) 162 { 163 __be16 target_src = target.src.u.udp.port; 164 __be16 target_dst = target.dst.u.udp.port; 165 166 if (target_src != tuple->src.u.udp.port) 167 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 168 offsetof(struct udphdr, source), 169 0xFFFF, be16_to_cpu(target_src)); 170 if (target_dst != tuple->dst.u.udp.port) 171 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 172 offsetof(struct udphdr, dest), 173 0xFFFF, be16_to_cpu(target_dst)); 174 } 175 176 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct, 177 enum ip_conntrack_dir dir, 178 enum ip_conntrack_info ctinfo, 179 struct flow_action *action) 180 { 181 struct nf_conn_labels *ct_labels; 182 struct flow_action_entry *entry; 183 u32 *act_ct_labels; 184 185 entry = tcf_ct_flow_table_flow_action_get_next(action); 186 entry->id = FLOW_ACTION_CT_METADATA; 187 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 188 entry->ct_metadata.mark = READ_ONCE(ct->mark); 189 #endif 190 /* aligns with the CT reference on the SKB nf_ct_set */ 191 entry->ct_metadata.cookie = (unsigned long)ct | ctinfo; 192 entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL; 193 194 act_ct_labels = entry->ct_metadata.labels; 195 ct_labels = nf_ct_labels_find(ct); 196 if (ct_labels) 197 memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE); 198 else 199 memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE); 200 } 201 202 static int tcf_ct_flow_table_add_action_nat(struct net *net, 203 struct nf_conn *ct, 204 enum ip_conntrack_dir dir, 205 struct flow_action *action) 206 { 207 const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple; 208 struct nf_conntrack_tuple target; 209 210 if (!(ct->status & IPS_NAT_MASK)) 211 return 0; 212 213 nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple); 214 215 switch (tuple->src.l3num) { 216 case NFPROTO_IPV4: 217 tcf_ct_flow_table_add_action_nat_ipv4(tuple, target, 218 action); 219 break; 220 case NFPROTO_IPV6: 221 tcf_ct_flow_table_add_action_nat_ipv6(tuple, target, 222 action); 223 break; 224 default: 225 return -EOPNOTSUPP; 226 } 227 228 switch (nf_ct_protonum(ct)) { 229 case IPPROTO_TCP: 230 tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action); 231 break; 232 case IPPROTO_UDP: 233 tcf_ct_flow_table_add_action_nat_udp(tuple, target, action); 234 break; 235 default: 236 return -EOPNOTSUPP; 237 } 238 239 return 0; 240 } 241 242 static int tcf_ct_flow_table_fill_actions(struct net *net, 243 struct flow_offload *flow, 244 enum flow_offload_tuple_dir tdir, 245 struct nf_flow_rule *flow_rule) 246 { 247 struct flow_action *action = &flow_rule->rule->action; 248 int num_entries = action->num_entries; 249 struct nf_conn *ct = flow->ct; 250 enum ip_conntrack_info ctinfo; 251 enum ip_conntrack_dir dir; 252 int i, err; 253 254 switch (tdir) { 255 case FLOW_OFFLOAD_DIR_ORIGINAL: 256 dir = IP_CT_DIR_ORIGINAL; 257 ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ? 258 IP_CT_ESTABLISHED : IP_CT_NEW; 259 if (ctinfo == IP_CT_ESTABLISHED) 260 set_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags); 261 break; 262 case FLOW_OFFLOAD_DIR_REPLY: 263 dir = IP_CT_DIR_REPLY; 264 ctinfo = IP_CT_ESTABLISHED_REPLY; 265 break; 266 default: 267 return -EOPNOTSUPP; 268 } 269 270 err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action); 271 if (err) 272 goto err_nat; 273 274 tcf_ct_flow_table_add_action_meta(ct, dir, ctinfo, action); 275 return 0; 276 277 err_nat: 278 /* Clear filled actions */ 279 for (i = num_entries; i < action->num_entries; i++) 280 memset(&action->entries[i], 0, sizeof(action->entries[i])); 281 action->num_entries = num_entries; 282 283 return err; 284 } 285 286 static bool tcf_ct_flow_is_outdated(const struct flow_offload *flow) 287 { 288 return test_bit(IPS_SEEN_REPLY_BIT, &flow->ct->status) && 289 test_bit(IPS_HW_OFFLOAD_BIT, &flow->ct->status) && 290 !test_bit(NF_FLOW_HW_PENDING, &flow->flags) && 291 !test_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags); 292 } 293 294 static void tcf_ct_flow_table_get_ref(struct tcf_ct_flow_table *ct_ft); 295 296 static void tcf_ct_nf_get(struct nf_flowtable *ft) 297 { 298 struct tcf_ct_flow_table *ct_ft = 299 container_of(ft, struct tcf_ct_flow_table, nf_ft); 300 301 tcf_ct_flow_table_get_ref(ct_ft); 302 } 303 304 static void tcf_ct_flow_table_put(struct tcf_ct_flow_table *ct_ft); 305 306 static void tcf_ct_nf_put(struct nf_flowtable *ft) 307 { 308 struct tcf_ct_flow_table *ct_ft = 309 container_of(ft, struct tcf_ct_flow_table, nf_ft); 310 311 tcf_ct_flow_table_put(ct_ft); 312 } 313 314 static struct nf_flowtable_type flowtable_ct = { 315 .gc = tcf_ct_flow_is_outdated, 316 .action = tcf_ct_flow_table_fill_actions, 317 .get = tcf_ct_nf_get, 318 .put = tcf_ct_nf_put, 319 .owner = THIS_MODULE, 320 }; 321 322 static int tcf_ct_flow_table_get(struct net *net, struct tcf_ct_params *params) 323 { 324 struct zones_ht_key key = { .net = net, .zone = params->zone }; 325 struct tcf_ct_flow_table *ct_ft; 326 int err = -ENOMEM; 327 328 mutex_lock(&zones_mutex); 329 ct_ft = rhashtable_lookup_fast(&zones_ht, &key, zones_params); 330 if (ct_ft && refcount_inc_not_zero(&ct_ft->ref)) 331 goto out_unlock; 332 333 ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL); 334 if (!ct_ft) 335 goto err_alloc; 336 refcount_set(&ct_ft->ref, 1); 337 338 ct_ft->key = key; 339 err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params); 340 if (err) 341 goto err_insert; 342 343 ct_ft->nf_ft.type = &flowtable_ct; 344 ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD | 345 NF_FLOWTABLE_COUNTER; 346 err = nf_flow_table_init(&ct_ft->nf_ft); 347 if (err) 348 goto err_init; 349 write_pnet(&ct_ft->nf_ft.net, net); 350 351 __module_get(THIS_MODULE); 352 out_unlock: 353 params->ct_ft = ct_ft; 354 params->nf_ft = &ct_ft->nf_ft; 355 mutex_unlock(&zones_mutex); 356 357 return 0; 358 359 err_init: 360 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 361 err_insert: 362 kfree(ct_ft); 363 err_alloc: 364 mutex_unlock(&zones_mutex); 365 return err; 366 } 367 368 static void tcf_ct_flow_table_get_ref(struct tcf_ct_flow_table *ct_ft) 369 { 370 refcount_inc(&ct_ft->ref); 371 } 372 373 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work) 374 { 375 struct tcf_ct_flow_table *ct_ft; 376 struct flow_block *block; 377 378 ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table, 379 rwork); 380 nf_flow_table_free(&ct_ft->nf_ft); 381 382 block = &ct_ft->nf_ft.flow_block; 383 down_write(&ct_ft->nf_ft.flow_block_lock); 384 WARN_ON(!list_empty(&block->cb_list)); 385 up_write(&ct_ft->nf_ft.flow_block_lock); 386 kfree(ct_ft); 387 388 module_put(THIS_MODULE); 389 } 390 391 static void tcf_ct_flow_table_put(struct tcf_ct_flow_table *ct_ft) 392 { 393 if (refcount_dec_and_test(&ct_ft->ref)) { 394 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 395 INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work); 396 queue_rcu_work(act_ct_wq, &ct_ft->rwork); 397 } 398 } 399 400 static void tcf_ct_flow_tc_ifidx(struct flow_offload *entry, 401 struct nf_conn_act_ct_ext *act_ct_ext, u8 dir) 402 { 403 entry->tuplehash[dir].tuple.xmit_type = FLOW_OFFLOAD_XMIT_TC; 404 entry->tuplehash[dir].tuple.tc.iifidx = act_ct_ext->ifindex[dir]; 405 } 406 407 static void tcf_ct_flow_ct_ext_ifidx_update(struct flow_offload *entry) 408 { 409 struct nf_conn_act_ct_ext *act_ct_ext; 410 411 act_ct_ext = nf_conn_act_ct_ext_find(entry->ct); 412 if (act_ct_ext) { 413 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL); 414 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY); 415 } 416 } 417 418 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft, 419 struct nf_conn *ct, 420 bool tcp, bool bidirectional) 421 { 422 struct nf_conn_act_ct_ext *act_ct_ext; 423 struct flow_offload *entry; 424 int err; 425 426 if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status)) 427 return; 428 429 entry = flow_offload_alloc(ct); 430 if (!entry) { 431 WARN_ON_ONCE(1); 432 goto err_alloc; 433 } 434 435 if (tcp) { 436 ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 437 ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 438 } 439 if (bidirectional) 440 __set_bit(NF_FLOW_HW_BIDIRECTIONAL, &entry->flags); 441 442 act_ct_ext = nf_conn_act_ct_ext_find(ct); 443 if (act_ct_ext) { 444 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL); 445 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY); 446 } 447 448 err = flow_offload_add(&ct_ft->nf_ft, entry); 449 if (err) 450 goto err_add; 451 452 return; 453 454 err_add: 455 flow_offload_free(entry); 456 err_alloc: 457 clear_bit(IPS_OFFLOAD_BIT, &ct->status); 458 } 459 460 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft, 461 struct nf_conn *ct, 462 enum ip_conntrack_info ctinfo) 463 { 464 bool tcp = false, bidirectional = true; 465 466 switch (nf_ct_protonum(ct)) { 467 case IPPROTO_TCP: 468 if ((ctinfo != IP_CT_ESTABLISHED && 469 ctinfo != IP_CT_ESTABLISHED_REPLY) || 470 !test_bit(IPS_ASSURED_BIT, &ct->status) || 471 ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) 472 return; 473 474 tcp = true; 475 break; 476 case IPPROTO_UDP: 477 if (!nf_ct_is_confirmed(ct)) 478 return; 479 if (!test_bit(IPS_ASSURED_BIT, &ct->status)) 480 bidirectional = false; 481 break; 482 #ifdef CONFIG_NF_CT_PROTO_GRE 483 case IPPROTO_GRE: { 484 struct nf_conntrack_tuple *tuple; 485 486 if ((ctinfo != IP_CT_ESTABLISHED && 487 ctinfo != IP_CT_ESTABLISHED_REPLY) || 488 !test_bit(IPS_ASSURED_BIT, &ct->status) || 489 ct->status & IPS_NAT_MASK) 490 return; 491 492 tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; 493 /* No support for GRE v1 */ 494 if (tuple->src.u.gre.key || tuple->dst.u.gre.key) 495 return; 496 break; 497 } 498 #endif 499 default: 500 return; 501 } 502 503 if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) || 504 ct->status & IPS_SEQ_ADJUST) 505 return; 506 507 tcf_ct_flow_table_add(ct_ft, ct, tcp, bidirectional); 508 } 509 510 static bool 511 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb, 512 struct flow_offload_tuple *tuple, 513 struct tcphdr **tcph) 514 { 515 struct flow_ports *ports; 516 unsigned int thoff; 517 struct iphdr *iph; 518 size_t hdrsize; 519 u8 ipproto; 520 521 if (!pskb_network_may_pull(skb, sizeof(*iph))) 522 return false; 523 524 iph = ip_hdr(skb); 525 thoff = iph->ihl * 4; 526 527 if (ip_is_fragment(iph) || 528 unlikely(thoff != sizeof(struct iphdr))) 529 return false; 530 531 ipproto = iph->protocol; 532 switch (ipproto) { 533 case IPPROTO_TCP: 534 hdrsize = sizeof(struct tcphdr); 535 break; 536 case IPPROTO_UDP: 537 hdrsize = sizeof(*ports); 538 break; 539 #ifdef CONFIG_NF_CT_PROTO_GRE 540 case IPPROTO_GRE: 541 hdrsize = sizeof(struct gre_base_hdr); 542 break; 543 #endif 544 default: 545 return false; 546 } 547 548 if (iph->ttl <= 1) 549 return false; 550 551 if (!pskb_network_may_pull(skb, thoff + hdrsize)) 552 return false; 553 554 switch (ipproto) { 555 case IPPROTO_TCP: 556 *tcph = (void *)(skb_network_header(skb) + thoff); 557 fallthrough; 558 case IPPROTO_UDP: 559 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 560 tuple->src_port = ports->source; 561 tuple->dst_port = ports->dest; 562 break; 563 case IPPROTO_GRE: { 564 struct gre_base_hdr *greh; 565 566 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff); 567 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0) 568 return false; 569 break; 570 } 571 } 572 573 iph = ip_hdr(skb); 574 575 tuple->src_v4.s_addr = iph->saddr; 576 tuple->dst_v4.s_addr = iph->daddr; 577 tuple->l3proto = AF_INET; 578 tuple->l4proto = ipproto; 579 580 return true; 581 } 582 583 static bool 584 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb, 585 struct flow_offload_tuple *tuple, 586 struct tcphdr **tcph) 587 { 588 struct flow_ports *ports; 589 struct ipv6hdr *ip6h; 590 unsigned int thoff; 591 size_t hdrsize; 592 u8 nexthdr; 593 594 if (!pskb_network_may_pull(skb, sizeof(*ip6h))) 595 return false; 596 597 ip6h = ipv6_hdr(skb); 598 thoff = sizeof(*ip6h); 599 600 nexthdr = ip6h->nexthdr; 601 switch (nexthdr) { 602 case IPPROTO_TCP: 603 hdrsize = sizeof(struct tcphdr); 604 break; 605 case IPPROTO_UDP: 606 hdrsize = sizeof(*ports); 607 break; 608 #ifdef CONFIG_NF_CT_PROTO_GRE 609 case IPPROTO_GRE: 610 hdrsize = sizeof(struct gre_base_hdr); 611 break; 612 #endif 613 default: 614 return false; 615 } 616 617 if (ip6h->hop_limit <= 1) 618 return false; 619 620 if (!pskb_network_may_pull(skb, thoff + hdrsize)) 621 return false; 622 623 switch (nexthdr) { 624 case IPPROTO_TCP: 625 *tcph = (void *)(skb_network_header(skb) + thoff); 626 fallthrough; 627 case IPPROTO_UDP: 628 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 629 tuple->src_port = ports->source; 630 tuple->dst_port = ports->dest; 631 break; 632 case IPPROTO_GRE: { 633 struct gre_base_hdr *greh; 634 635 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff); 636 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0) 637 return false; 638 break; 639 } 640 } 641 642 ip6h = ipv6_hdr(skb); 643 644 tuple->src_v6 = ip6h->saddr; 645 tuple->dst_v6 = ip6h->daddr; 646 tuple->l3proto = AF_INET6; 647 tuple->l4proto = nexthdr; 648 649 return true; 650 } 651 652 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p, 653 struct sk_buff *skb, 654 u8 family) 655 { 656 struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft; 657 struct flow_offload_tuple_rhash *tuplehash; 658 struct flow_offload_tuple tuple = {}; 659 enum ip_conntrack_info ctinfo; 660 struct tcphdr *tcph = NULL; 661 bool force_refresh = false; 662 struct flow_offload *flow; 663 struct nf_conn *ct; 664 u8 dir; 665 666 switch (family) { 667 case NFPROTO_IPV4: 668 if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph)) 669 return false; 670 break; 671 case NFPROTO_IPV6: 672 if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph)) 673 return false; 674 break; 675 default: 676 return false; 677 } 678 679 tuplehash = flow_offload_lookup(nf_ft, &tuple); 680 if (!tuplehash) 681 return false; 682 683 dir = tuplehash->tuple.dir; 684 flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]); 685 ct = flow->ct; 686 687 if (dir == FLOW_OFFLOAD_DIR_REPLY && 688 !test_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags)) { 689 /* Only offload reply direction after connection became 690 * assured. 691 */ 692 if (test_bit(IPS_ASSURED_BIT, &ct->status)) 693 set_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags); 694 else if (test_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags)) 695 /* If flow_table flow has already been updated to the 696 * established state, then don't refresh. 697 */ 698 return false; 699 force_refresh = true; 700 } 701 702 if (tcph && (unlikely(tcph->fin || tcph->rst))) { 703 flow_offload_teardown(flow); 704 return false; 705 } 706 707 if (dir == FLOW_OFFLOAD_DIR_ORIGINAL) 708 ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ? 709 IP_CT_ESTABLISHED : IP_CT_NEW; 710 else 711 ctinfo = IP_CT_ESTABLISHED_REPLY; 712 713 nf_conn_act_ct_ext_fill(skb, ct, ctinfo); 714 tcf_ct_flow_ct_ext_ifidx_update(flow); 715 flow_offload_refresh(nf_ft, flow, force_refresh); 716 if (!test_bit(IPS_ASSURED_BIT, &ct->status)) { 717 /* Process this flow in SW to allow promoting to ASSURED */ 718 return false; 719 } 720 721 nf_conntrack_get(&ct->ct_general); 722 nf_ct_set(skb, ct, ctinfo); 723 if (nf_ft->flags & NF_FLOWTABLE_COUNTER) 724 nf_ct_acct_update(ct, dir, skb->len); 725 726 return true; 727 } 728 729 static int tcf_ct_flow_tables_init(void) 730 { 731 return rhashtable_init(&zones_ht, &zones_params); 732 } 733 734 static void tcf_ct_flow_tables_uninit(void) 735 { 736 rhashtable_destroy(&zones_ht); 737 } 738 739 static struct tc_action_ops act_ct_ops; 740 741 struct tc_ct_action_net { 742 struct tc_action_net tn; /* Must be first */ 743 }; 744 745 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 746 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb, 747 struct tcf_ct_params *p) 748 { 749 enum ip_conntrack_info ctinfo; 750 struct nf_conn *ct; 751 752 ct = nf_ct_get(skb, &ctinfo); 753 if (!ct) 754 return false; 755 if (!net_eq(net, read_pnet(&ct->ct_net))) 756 goto drop_ct; 757 if (nf_ct_zone(ct)->id != p->zone) 758 goto drop_ct; 759 if (p->helper) { 760 struct nf_conn_help *help; 761 762 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 763 if (help && rcu_access_pointer(help->helper) != p->helper) 764 goto drop_ct; 765 } 766 767 /* Force conntrack entry direction. */ 768 if ((p->ct_action & TCA_CT_ACT_FORCE) && 769 CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 770 if (nf_ct_is_confirmed(ct)) 771 nf_ct_kill(ct); 772 773 goto drop_ct; 774 } 775 776 return true; 777 778 drop_ct: 779 nf_ct_put(ct); 780 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 781 782 return false; 783 } 784 785 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb) 786 { 787 u8 family = NFPROTO_UNSPEC; 788 789 switch (skb_protocol(skb, true)) { 790 case htons(ETH_P_IP): 791 family = NFPROTO_IPV4; 792 break; 793 case htons(ETH_P_IPV6): 794 family = NFPROTO_IPV6; 795 break; 796 default: 797 break; 798 } 799 800 return family; 801 } 802 803 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag) 804 { 805 unsigned int len; 806 807 len = skb_network_offset(skb) + sizeof(struct iphdr); 808 if (unlikely(skb->len < len)) 809 return -EINVAL; 810 if (unlikely(!pskb_may_pull(skb, len))) 811 return -ENOMEM; 812 813 *frag = ip_is_fragment(ip_hdr(skb)); 814 return 0; 815 } 816 817 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag) 818 { 819 unsigned int flags = 0, len, payload_ofs = 0; 820 unsigned short frag_off; 821 int nexthdr; 822 823 len = skb_network_offset(skb) + sizeof(struct ipv6hdr); 824 if (unlikely(skb->len < len)) 825 return -EINVAL; 826 if (unlikely(!pskb_may_pull(skb, len))) 827 return -ENOMEM; 828 829 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); 830 if (unlikely(nexthdr < 0)) 831 return -EPROTO; 832 833 *frag = flags & IP6_FH_F_FRAG; 834 return 0; 835 } 836 837 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb, 838 u8 family, u16 zone, bool *defrag) 839 { 840 enum ip_conntrack_info ctinfo; 841 struct nf_conn *ct; 842 int err = 0; 843 bool frag; 844 u8 proto; 845 u16 mru; 846 847 /* Previously seen (loopback)? Ignore. */ 848 ct = nf_ct_get(skb, &ctinfo); 849 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 850 return 0; 851 852 if (family == NFPROTO_IPV4) 853 err = tcf_ct_ipv4_is_fragment(skb, &frag); 854 else 855 err = tcf_ct_ipv6_is_fragment(skb, &frag); 856 if (err || !frag) 857 return err; 858 859 err = nf_ct_handle_fragments(net, skb, zone, family, &proto, &mru); 860 if (err) 861 return err; 862 863 *defrag = true; 864 tc_skb_cb(skb)->mru = mru; 865 866 return 0; 867 } 868 869 static void tcf_ct_params_free(struct tcf_ct_params *params) 870 { 871 if (params->helper) { 872 #if IS_ENABLED(CONFIG_NF_NAT) 873 if (params->ct_action & TCA_CT_ACT_NAT) 874 nf_nat_helper_put(params->helper); 875 #endif 876 nf_conntrack_helper_put(params->helper); 877 } 878 if (params->ct_ft) 879 tcf_ct_flow_table_put(params->ct_ft); 880 if (params->tmpl) { 881 if (params->put_labels) 882 nf_connlabels_put(nf_ct_net(params->tmpl)); 883 884 nf_ct_put(params->tmpl); 885 } 886 887 kfree(params); 888 } 889 890 static void tcf_ct_params_free_rcu(struct rcu_head *head) 891 { 892 struct tcf_ct_params *params; 893 894 params = container_of(head, struct tcf_ct_params, rcu); 895 tcf_ct_params_free(params); 896 } 897 898 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask) 899 { 900 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 901 u32 new_mark; 902 903 if (!mask) 904 return; 905 906 new_mark = mark | (READ_ONCE(ct->mark) & ~(mask)); 907 if (READ_ONCE(ct->mark) != new_mark) { 908 WRITE_ONCE(ct->mark, new_mark); 909 if (nf_ct_is_confirmed(ct)) 910 nf_conntrack_event_cache(IPCT_MARK, ct); 911 } 912 #endif 913 } 914 915 static void tcf_ct_act_set_labels(struct nf_conn *ct, 916 u32 *labels, 917 u32 *labels_m) 918 { 919 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) 920 size_t labels_sz = sizeof_field(struct tcf_ct_params, labels); 921 922 if (!memchr_inv(labels_m, 0, labels_sz)) 923 return; 924 925 nf_connlabels_replace(ct, labels, labels_m, 4); 926 #endif 927 } 928 929 static int tcf_ct_act_nat(struct sk_buff *skb, 930 struct nf_conn *ct, 931 enum ip_conntrack_info ctinfo, 932 int ct_action, 933 struct nf_nat_range2 *range, 934 bool commit) 935 { 936 #if IS_ENABLED(CONFIG_NF_NAT) 937 int err, action = 0; 938 939 if (!(ct_action & TCA_CT_ACT_NAT)) 940 return NF_ACCEPT; 941 if (ct_action & TCA_CT_ACT_NAT_SRC) 942 action |= BIT(NF_NAT_MANIP_SRC); 943 if (ct_action & TCA_CT_ACT_NAT_DST) 944 action |= BIT(NF_NAT_MANIP_DST); 945 946 err = nf_ct_nat(skb, ct, ctinfo, &action, range, commit); 947 if (err != NF_ACCEPT) 948 return err & NF_VERDICT_MASK; 949 950 if (action & BIT(NF_NAT_MANIP_SRC)) 951 tc_skb_cb(skb)->post_ct_snat = 1; 952 if (action & BIT(NF_NAT_MANIP_DST)) 953 tc_skb_cb(skb)->post_ct_dnat = 1; 954 955 return err; 956 #else 957 return NF_ACCEPT; 958 #endif 959 } 960 961 TC_INDIRECT_SCOPE int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a, 962 struct tcf_result *res) 963 { 964 struct net *net = dev_net(skb->dev); 965 enum ip_conntrack_info ctinfo; 966 struct tcf_ct *c = to_ct(a); 967 struct nf_conn *tmpl = NULL; 968 struct nf_hook_state state; 969 bool cached, commit, clear; 970 int nh_ofs, err, retval; 971 struct tcf_ct_params *p; 972 bool add_helper = false; 973 bool skip_add = false; 974 bool defrag = false; 975 struct nf_conn *ct; 976 u8 family; 977 978 p = rcu_dereference_bh(c->params); 979 980 retval = READ_ONCE(c->tcf_action); 981 commit = p->ct_action & TCA_CT_ACT_COMMIT; 982 clear = p->ct_action & TCA_CT_ACT_CLEAR; 983 tmpl = p->tmpl; 984 985 tcf_lastuse_update(&c->tcf_tm); 986 tcf_action_update_bstats(&c->common, skb); 987 988 if (clear) { 989 tc_skb_cb(skb)->post_ct = false; 990 ct = nf_ct_get(skb, &ctinfo); 991 if (ct) { 992 nf_ct_put(ct); 993 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 994 } 995 996 goto out_clear; 997 } 998 999 family = tcf_ct_skb_nf_family(skb); 1000 if (family == NFPROTO_UNSPEC) 1001 goto drop; 1002 1003 /* The conntrack module expects to be working at L3. 1004 * We also try to pull the IPv4/6 header to linear area 1005 */ 1006 nh_ofs = skb_network_offset(skb); 1007 skb_pull_rcsum(skb, nh_ofs); 1008 err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag); 1009 if (err) 1010 goto out_frag; 1011 1012 err = nf_ct_skb_network_trim(skb, family); 1013 if (err) 1014 goto drop; 1015 1016 /* If we are recirculating packets to match on ct fields and 1017 * committing with a separate ct action, then we don't need to 1018 * actually run the packet through conntrack twice unless it's for a 1019 * different zone. 1020 */ 1021 cached = tcf_ct_skb_nfct_cached(net, skb, p); 1022 if (!cached) { 1023 if (tcf_ct_flow_table_lookup(p, skb, family)) { 1024 skip_add = true; 1025 goto do_nat; 1026 } 1027 1028 /* Associate skb with specified zone. */ 1029 if (tmpl) { 1030 nf_conntrack_put(skb_nfct(skb)); 1031 nf_conntrack_get(&tmpl->ct_general); 1032 nf_ct_set(skb, tmpl, IP_CT_NEW); 1033 } 1034 1035 state.hook = NF_INET_PRE_ROUTING; 1036 state.net = net; 1037 state.pf = family; 1038 err = nf_conntrack_in(skb, &state); 1039 if (err != NF_ACCEPT) 1040 goto nf_error; 1041 } 1042 1043 do_nat: 1044 ct = nf_ct_get(skb, &ctinfo); 1045 if (!ct) 1046 goto out_push; 1047 nf_ct_deliver_cached_events(ct); 1048 nf_conn_act_ct_ext_fill(skb, ct, ctinfo); 1049 1050 err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit); 1051 if (err != NF_ACCEPT) 1052 goto nf_error; 1053 1054 if (!nf_ct_is_confirmed(ct) && commit && p->helper && !nfct_help(ct)) { 1055 err = __nf_ct_try_assign_helper(ct, p->tmpl, GFP_ATOMIC); 1056 if (err) 1057 goto drop; 1058 add_helper = true; 1059 if (p->ct_action & TCA_CT_ACT_NAT && !nfct_seqadj(ct)) { 1060 if (!nfct_seqadj_ext_add(ct)) 1061 goto drop; 1062 } 1063 } 1064 1065 if (nf_ct_is_confirmed(ct) ? ((!cached && !skip_add) || add_helper) : commit) { 1066 err = nf_ct_helper(skb, ct, ctinfo, family); 1067 if (err != NF_ACCEPT) 1068 goto nf_error; 1069 } 1070 1071 if (commit) { 1072 tcf_ct_act_set_mark(ct, p->mark, p->mark_mask); 1073 tcf_ct_act_set_labels(ct, p->labels, p->labels_mask); 1074 1075 if (!nf_ct_is_confirmed(ct)) 1076 nf_conn_act_ct_ext_add(skb, ct, ctinfo); 1077 1078 /* This will take care of sending queued events 1079 * even if the connection is already confirmed. 1080 */ 1081 err = nf_conntrack_confirm(skb); 1082 if (err != NF_ACCEPT) 1083 goto nf_error; 1084 1085 /* The ct may be dropped if a clash has been resolved, 1086 * so it's necessary to retrieve it from skb again to 1087 * prevent UAF. 1088 */ 1089 ct = nf_ct_get(skb, &ctinfo); 1090 if (!ct) 1091 skip_add = true; 1092 } 1093 1094 if (!skip_add) 1095 tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo); 1096 1097 out_push: 1098 skb_push_rcsum(skb, nh_ofs); 1099 1100 tc_skb_cb(skb)->post_ct = true; 1101 tc_skb_cb(skb)->zone = p->zone; 1102 out_clear: 1103 if (defrag) 1104 qdisc_skb_cb(skb)->pkt_len = skb->len; 1105 return retval; 1106 1107 out_frag: 1108 if (err != -EINPROGRESS) 1109 tcf_action_inc_drop_qstats(&c->common); 1110 return TC_ACT_CONSUMED; 1111 1112 drop: 1113 tcf_action_inc_drop_qstats(&c->common); 1114 return TC_ACT_SHOT; 1115 1116 nf_error: 1117 /* some verdicts store extra data in upper bits, such 1118 * as errno or queue number. 1119 */ 1120 switch (err & NF_VERDICT_MASK) { 1121 case NF_DROP: 1122 goto drop; 1123 case NF_STOLEN: 1124 tcf_action_inc_drop_qstats(&c->common); 1125 return TC_ACT_CONSUMED; 1126 default: 1127 DEBUG_NET_WARN_ON_ONCE(1); 1128 goto drop; 1129 } 1130 } 1131 1132 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = { 1133 [TCA_CT_ACTION] = { .type = NLA_U16 }, 1134 [TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)), 1135 [TCA_CT_ZONE] = { .type = NLA_U16 }, 1136 [TCA_CT_MARK] = { .type = NLA_U32 }, 1137 [TCA_CT_MARK_MASK] = { .type = NLA_U32 }, 1138 [TCA_CT_LABELS] = { .type = NLA_BINARY, 1139 .len = 128 / BITS_PER_BYTE }, 1140 [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY, 1141 .len = 128 / BITS_PER_BYTE }, 1142 [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 }, 1143 [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 }, 1144 [TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1145 [TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1146 [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 }, 1147 [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 }, 1148 [TCA_CT_HELPER_NAME] = { .type = NLA_STRING, .len = NF_CT_HELPER_NAME_LEN }, 1149 [TCA_CT_HELPER_FAMILY] = { .type = NLA_U8 }, 1150 [TCA_CT_HELPER_PROTO] = { .type = NLA_U8 }, 1151 }; 1152 1153 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p, 1154 struct tc_ct *parm, 1155 struct nlattr **tb, 1156 struct netlink_ext_ack *extack) 1157 { 1158 struct nf_nat_range2 *range; 1159 1160 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1161 return 0; 1162 1163 if (!IS_ENABLED(CONFIG_NF_NAT)) { 1164 NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel"); 1165 return -EOPNOTSUPP; 1166 } 1167 1168 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1169 return 0; 1170 1171 if ((p->ct_action & TCA_CT_ACT_NAT_SRC) && 1172 (p->ct_action & TCA_CT_ACT_NAT_DST)) { 1173 NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time"); 1174 return -EOPNOTSUPP; 1175 } 1176 1177 range = &p->range; 1178 if (tb[TCA_CT_NAT_IPV4_MIN]) { 1179 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX]; 1180 1181 p->ipv4_range = true; 1182 range->flags |= NF_NAT_RANGE_MAP_IPS; 1183 range->min_addr.ip = 1184 nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]); 1185 1186 range->max_addr.ip = max_attr ? 1187 nla_get_in_addr(max_attr) : 1188 range->min_addr.ip; 1189 } else if (tb[TCA_CT_NAT_IPV6_MIN]) { 1190 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX]; 1191 1192 p->ipv4_range = false; 1193 range->flags |= NF_NAT_RANGE_MAP_IPS; 1194 range->min_addr.in6 = 1195 nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]); 1196 1197 range->max_addr.in6 = max_attr ? 1198 nla_get_in6_addr(max_attr) : 1199 range->min_addr.in6; 1200 } 1201 1202 if (tb[TCA_CT_NAT_PORT_MIN]) { 1203 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1204 range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]); 1205 1206 range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ? 1207 nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) : 1208 range->min_proto.all; 1209 } 1210 1211 return 0; 1212 } 1213 1214 static void tcf_ct_set_key_val(struct nlattr **tb, 1215 void *val, int val_type, 1216 void *mask, int mask_type, 1217 int len) 1218 { 1219 if (!tb[val_type]) 1220 return; 1221 nla_memcpy(val, tb[val_type], len); 1222 1223 if (!mask) 1224 return; 1225 1226 if (mask_type == TCA_CT_UNSPEC || !tb[mask_type]) 1227 memset(mask, 0xff, len); 1228 else 1229 nla_memcpy(mask, tb[mask_type], len); 1230 } 1231 1232 static int tcf_ct_fill_params(struct net *net, 1233 struct tcf_ct_params *p, 1234 struct tc_ct *parm, 1235 struct nlattr **tb, 1236 struct netlink_ext_ack *extack) 1237 { 1238 struct nf_conntrack_zone zone; 1239 int err, family, proto, len; 1240 bool put_labels = false; 1241 struct nf_conn *tmpl; 1242 char *name; 1243 1244 p->zone = NF_CT_DEFAULT_ZONE_ID; 1245 1246 tcf_ct_set_key_val(tb, 1247 &p->ct_action, TCA_CT_ACTION, 1248 NULL, TCA_CT_UNSPEC, 1249 sizeof(p->ct_action)); 1250 1251 if (p->ct_action & TCA_CT_ACT_CLEAR) 1252 return 0; 1253 1254 err = tcf_ct_fill_params_nat(p, parm, tb, extack); 1255 if (err) 1256 return err; 1257 1258 if (tb[TCA_CT_MARK]) { 1259 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) { 1260 NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled."); 1261 return -EOPNOTSUPP; 1262 } 1263 tcf_ct_set_key_val(tb, 1264 &p->mark, TCA_CT_MARK, 1265 &p->mark_mask, TCA_CT_MARK_MASK, 1266 sizeof(p->mark)); 1267 } 1268 1269 if (tb[TCA_CT_LABELS]) { 1270 unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8; 1271 1272 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) { 1273 NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled."); 1274 return -EOPNOTSUPP; 1275 } 1276 1277 if (nf_connlabels_get(net, n_bits - 1)) { 1278 NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length"); 1279 return -EOPNOTSUPP; 1280 } else { 1281 put_labels = true; 1282 } 1283 1284 tcf_ct_set_key_val(tb, 1285 p->labels, TCA_CT_LABELS, 1286 p->labels_mask, TCA_CT_LABELS_MASK, 1287 sizeof(p->labels)); 1288 } 1289 1290 if (tb[TCA_CT_ZONE]) { 1291 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) { 1292 NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled."); 1293 return -EOPNOTSUPP; 1294 } 1295 1296 tcf_ct_set_key_val(tb, 1297 &p->zone, TCA_CT_ZONE, 1298 NULL, TCA_CT_UNSPEC, 1299 sizeof(p->zone)); 1300 } 1301 1302 nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0); 1303 tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL); 1304 if (!tmpl) { 1305 NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template"); 1306 return -ENOMEM; 1307 } 1308 p->tmpl = tmpl; 1309 if (tb[TCA_CT_HELPER_NAME]) { 1310 name = nla_data(tb[TCA_CT_HELPER_NAME]); 1311 len = nla_len(tb[TCA_CT_HELPER_NAME]); 1312 if (len > 16 || name[len - 1] != '\0') { 1313 NL_SET_ERR_MSG_MOD(extack, "Failed to parse helper name."); 1314 err = -EINVAL; 1315 goto err; 1316 } 1317 family = tb[TCA_CT_HELPER_FAMILY] ? nla_get_u8(tb[TCA_CT_HELPER_FAMILY]) : AF_INET; 1318 proto = tb[TCA_CT_HELPER_PROTO] ? nla_get_u8(tb[TCA_CT_HELPER_PROTO]) : IPPROTO_TCP; 1319 err = nf_ct_add_helper(tmpl, name, family, proto, 1320 p->ct_action & TCA_CT_ACT_NAT, &p->helper); 1321 if (err) { 1322 NL_SET_ERR_MSG_MOD(extack, "Failed to add helper"); 1323 goto err; 1324 } 1325 } 1326 1327 p->put_labels = put_labels; 1328 1329 if (p->ct_action & TCA_CT_ACT_COMMIT) 1330 __set_bit(IPS_CONFIRMED_BIT, &tmpl->status); 1331 return 0; 1332 err: 1333 if (put_labels) 1334 nf_connlabels_put(net); 1335 1336 nf_ct_put(p->tmpl); 1337 p->tmpl = NULL; 1338 return err; 1339 } 1340 1341 static int tcf_ct_init(struct net *net, struct nlattr *nla, 1342 struct nlattr *est, struct tc_action **a, 1343 struct tcf_proto *tp, u32 flags, 1344 struct netlink_ext_ack *extack) 1345 { 1346 struct tc_action_net *tn = net_generic(net, act_ct_ops.net_id); 1347 bool bind = flags & TCA_ACT_FLAGS_BIND; 1348 struct tcf_ct_params *params = NULL; 1349 struct nlattr *tb[TCA_CT_MAX + 1]; 1350 struct tcf_chain *goto_ch = NULL; 1351 struct tc_ct *parm; 1352 struct tcf_ct *c; 1353 int err, res = 0; 1354 u32 index; 1355 1356 if (!nla) { 1357 NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed"); 1358 return -EINVAL; 1359 } 1360 1361 err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack); 1362 if (err < 0) 1363 return err; 1364 1365 if (!tb[TCA_CT_PARMS]) { 1366 NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters"); 1367 return -EINVAL; 1368 } 1369 parm = nla_data(tb[TCA_CT_PARMS]); 1370 index = parm->index; 1371 err = tcf_idr_check_alloc(tn, &index, a, bind); 1372 if (err < 0) 1373 return err; 1374 1375 if (!err) { 1376 err = tcf_idr_create_from_flags(tn, index, est, a, 1377 &act_ct_ops, bind, flags); 1378 if (err) { 1379 tcf_idr_cleanup(tn, index); 1380 return err; 1381 } 1382 res = ACT_P_CREATED; 1383 } else { 1384 if (bind) 1385 return ACT_P_BOUND; 1386 1387 if (!(flags & TCA_ACT_FLAGS_REPLACE)) { 1388 tcf_idr_release(*a, bind); 1389 return -EEXIST; 1390 } 1391 } 1392 err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); 1393 if (err < 0) 1394 goto cleanup; 1395 1396 c = to_ct(*a); 1397 1398 params = kzalloc(sizeof(*params), GFP_KERNEL); 1399 if (unlikely(!params)) { 1400 err = -ENOMEM; 1401 goto cleanup; 1402 } 1403 1404 err = tcf_ct_fill_params(net, params, parm, tb, extack); 1405 if (err) 1406 goto cleanup; 1407 1408 err = tcf_ct_flow_table_get(net, params); 1409 if (err) 1410 goto cleanup; 1411 1412 spin_lock_bh(&c->tcf_lock); 1413 goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); 1414 params = rcu_replace_pointer(c->params, params, 1415 lockdep_is_held(&c->tcf_lock)); 1416 spin_unlock_bh(&c->tcf_lock); 1417 1418 if (goto_ch) 1419 tcf_chain_put_by_act(goto_ch); 1420 if (params) 1421 call_rcu(¶ms->rcu, tcf_ct_params_free_rcu); 1422 1423 return res; 1424 1425 cleanup: 1426 if (goto_ch) 1427 tcf_chain_put_by_act(goto_ch); 1428 if (params) 1429 tcf_ct_params_free(params); 1430 tcf_idr_release(*a, bind); 1431 return err; 1432 } 1433 1434 static void tcf_ct_cleanup(struct tc_action *a) 1435 { 1436 struct tcf_ct_params *params; 1437 struct tcf_ct *c = to_ct(a); 1438 1439 params = rcu_dereference_protected(c->params, 1); 1440 if (params) 1441 call_rcu(¶ms->rcu, tcf_ct_params_free_rcu); 1442 } 1443 1444 static int tcf_ct_dump_key_val(struct sk_buff *skb, 1445 void *val, int val_type, 1446 void *mask, int mask_type, 1447 int len) 1448 { 1449 int err; 1450 1451 if (mask && !memchr_inv(mask, 0, len)) 1452 return 0; 1453 1454 err = nla_put(skb, val_type, len, val); 1455 if (err) 1456 return err; 1457 1458 if (mask_type != TCA_CT_UNSPEC) { 1459 err = nla_put(skb, mask_type, len, mask); 1460 if (err) 1461 return err; 1462 } 1463 1464 return 0; 1465 } 1466 1467 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p) 1468 { 1469 struct nf_nat_range2 *range = &p->range; 1470 1471 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1472 return 0; 1473 1474 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1475 return 0; 1476 1477 if (range->flags & NF_NAT_RANGE_MAP_IPS) { 1478 if (p->ipv4_range) { 1479 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN, 1480 range->min_addr.ip)) 1481 return -1; 1482 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX, 1483 range->max_addr.ip)) 1484 return -1; 1485 } else { 1486 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN, 1487 &range->min_addr.in6)) 1488 return -1; 1489 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX, 1490 &range->max_addr.in6)) 1491 return -1; 1492 } 1493 } 1494 1495 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) { 1496 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN, 1497 range->min_proto.all)) 1498 return -1; 1499 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX, 1500 range->max_proto.all)) 1501 return -1; 1502 } 1503 1504 return 0; 1505 } 1506 1507 static int tcf_ct_dump_helper(struct sk_buff *skb, struct nf_conntrack_helper *helper) 1508 { 1509 if (!helper) 1510 return 0; 1511 1512 if (nla_put_string(skb, TCA_CT_HELPER_NAME, helper->name) || 1513 nla_put_u8(skb, TCA_CT_HELPER_FAMILY, helper->tuple.src.l3num) || 1514 nla_put_u8(skb, TCA_CT_HELPER_PROTO, helper->tuple.dst.protonum)) 1515 return -1; 1516 1517 return 0; 1518 } 1519 1520 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a, 1521 int bind, int ref) 1522 { 1523 unsigned char *b = skb_tail_pointer(skb); 1524 struct tcf_ct *c = to_ct(a); 1525 struct tcf_ct_params *p; 1526 1527 struct tc_ct opt = { 1528 .index = c->tcf_index, 1529 .refcnt = refcount_read(&c->tcf_refcnt) - ref, 1530 .bindcnt = atomic_read(&c->tcf_bindcnt) - bind, 1531 }; 1532 struct tcf_t t; 1533 1534 spin_lock_bh(&c->tcf_lock); 1535 p = rcu_dereference_protected(c->params, 1536 lockdep_is_held(&c->tcf_lock)); 1537 opt.action = c->tcf_action; 1538 1539 if (tcf_ct_dump_key_val(skb, 1540 &p->ct_action, TCA_CT_ACTION, 1541 NULL, TCA_CT_UNSPEC, 1542 sizeof(p->ct_action))) 1543 goto nla_put_failure; 1544 1545 if (p->ct_action & TCA_CT_ACT_CLEAR) 1546 goto skip_dump; 1547 1548 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1549 tcf_ct_dump_key_val(skb, 1550 &p->mark, TCA_CT_MARK, 1551 &p->mark_mask, TCA_CT_MARK_MASK, 1552 sizeof(p->mark))) 1553 goto nla_put_failure; 1554 1555 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1556 tcf_ct_dump_key_val(skb, 1557 p->labels, TCA_CT_LABELS, 1558 p->labels_mask, TCA_CT_LABELS_MASK, 1559 sizeof(p->labels))) 1560 goto nla_put_failure; 1561 1562 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1563 tcf_ct_dump_key_val(skb, 1564 &p->zone, TCA_CT_ZONE, 1565 NULL, TCA_CT_UNSPEC, 1566 sizeof(p->zone))) 1567 goto nla_put_failure; 1568 1569 if (tcf_ct_dump_nat(skb, p)) 1570 goto nla_put_failure; 1571 1572 if (tcf_ct_dump_helper(skb, p->helper)) 1573 goto nla_put_failure; 1574 1575 skip_dump: 1576 if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt)) 1577 goto nla_put_failure; 1578 1579 tcf_tm_dump(&t, &c->tcf_tm); 1580 if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD)) 1581 goto nla_put_failure; 1582 spin_unlock_bh(&c->tcf_lock); 1583 1584 return skb->len; 1585 nla_put_failure: 1586 spin_unlock_bh(&c->tcf_lock); 1587 nlmsg_trim(skb, b); 1588 return -1; 1589 } 1590 1591 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets, 1592 u64 drops, u64 lastuse, bool hw) 1593 { 1594 struct tcf_ct *c = to_ct(a); 1595 1596 tcf_action_update_stats(a, bytes, packets, drops, hw); 1597 c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse); 1598 } 1599 1600 static int tcf_ct_offload_act_setup(struct tc_action *act, void *entry_data, 1601 u32 *index_inc, bool bind, 1602 struct netlink_ext_ack *extack) 1603 { 1604 if (bind) { 1605 struct flow_action_entry *entry = entry_data; 1606 1607 if (tcf_ct_helper(act)) 1608 return -EOPNOTSUPP; 1609 1610 entry->id = FLOW_ACTION_CT; 1611 entry->ct.action = tcf_ct_action(act); 1612 entry->ct.zone = tcf_ct_zone(act); 1613 entry->ct.flow_table = tcf_ct_ft(act); 1614 *index_inc = 1; 1615 } else { 1616 struct flow_offload_action *fl_action = entry_data; 1617 1618 fl_action->id = FLOW_ACTION_CT; 1619 } 1620 1621 return 0; 1622 } 1623 1624 static struct tc_action_ops act_ct_ops = { 1625 .kind = "ct", 1626 .id = TCA_ID_CT, 1627 .owner = THIS_MODULE, 1628 .act = tcf_ct_act, 1629 .dump = tcf_ct_dump, 1630 .init = tcf_ct_init, 1631 .cleanup = tcf_ct_cleanup, 1632 .stats_update = tcf_stats_update, 1633 .offload_act_setup = tcf_ct_offload_act_setup, 1634 .size = sizeof(struct tcf_ct), 1635 }; 1636 MODULE_ALIAS_NET_ACT("ct"); 1637 1638 static __net_init int ct_init_net(struct net *net) 1639 { 1640 struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id); 1641 1642 return tc_action_net_init(net, &tn->tn, &act_ct_ops); 1643 } 1644 1645 static void __net_exit ct_exit_net(struct list_head *net_list) 1646 { 1647 tc_action_net_exit(net_list, act_ct_ops.net_id); 1648 } 1649 1650 static struct pernet_operations ct_net_ops = { 1651 .init = ct_init_net, 1652 .exit_batch = ct_exit_net, 1653 .id = &act_ct_ops.net_id, 1654 .size = sizeof(struct tc_ct_action_net), 1655 }; 1656 1657 static int __init ct_init_module(void) 1658 { 1659 int err; 1660 1661 act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0); 1662 if (!act_ct_wq) 1663 return -ENOMEM; 1664 1665 err = tcf_ct_flow_tables_init(); 1666 if (err) 1667 goto err_tbl_init; 1668 1669 err = tcf_register_action(&act_ct_ops, &ct_net_ops); 1670 if (err) 1671 goto err_register; 1672 1673 static_branch_inc(&tcf_frag_xmit_count); 1674 1675 return 0; 1676 1677 err_register: 1678 tcf_ct_flow_tables_uninit(); 1679 err_tbl_init: 1680 destroy_workqueue(act_ct_wq); 1681 return err; 1682 } 1683 1684 static void __exit ct_cleanup_module(void) 1685 { 1686 static_branch_dec(&tcf_frag_xmit_count); 1687 tcf_unregister_action(&act_ct_ops, &ct_net_ops); 1688 tcf_ct_flow_tables_uninit(); 1689 destroy_workqueue(act_ct_wq); 1690 } 1691 1692 module_init(ct_init_module); 1693 module_exit(ct_cleanup_module); 1694 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>"); 1695 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>"); 1696 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>"); 1697 MODULE_DESCRIPTION("Connection tracking action"); 1698 MODULE_LICENSE("GPL v2"); 1699