1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* - 3 * net/sched/act_ct.c Connection Tracking action 4 * 5 * Authors: Paul Blakey <paulb@mellanox.com> 6 * Yossi Kuperman <yossiku@mellanox.com> 7 * Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/skbuff.h> 14 #include <linux/rtnetlink.h> 15 #include <linux/pkt_cls.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/rhashtable.h> 19 #include <net/netlink.h> 20 #include <net/pkt_sched.h> 21 #include <net/pkt_cls.h> 22 #include <net/act_api.h> 23 #include <net/ip.h> 24 #include <net/ipv6_frag.h> 25 #include <uapi/linux/tc_act/tc_ct.h> 26 #include <net/tc_act/tc_ct.h> 27 28 #include <net/netfilter/nf_flow_table.h> 29 #include <net/netfilter/nf_conntrack.h> 30 #include <net/netfilter/nf_conntrack_core.h> 31 #include <net/netfilter/nf_conntrack_zones.h> 32 #include <net/netfilter/nf_conntrack_helper.h> 33 #include <net/netfilter/nf_conntrack_acct.h> 34 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 35 #include <uapi/linux/netfilter/nf_nat.h> 36 37 static struct workqueue_struct *act_ct_wq; 38 static struct rhashtable zones_ht; 39 static DEFINE_MUTEX(zones_mutex); 40 41 struct tcf_ct_flow_table { 42 struct rhash_head node; /* In zones tables */ 43 44 struct rcu_work rwork; 45 struct nf_flowtable nf_ft; 46 refcount_t ref; 47 u16 zone; 48 49 bool dying; 50 }; 51 52 static const struct rhashtable_params zones_params = { 53 .head_offset = offsetof(struct tcf_ct_flow_table, node), 54 .key_offset = offsetof(struct tcf_ct_flow_table, zone), 55 .key_len = sizeof_field(struct tcf_ct_flow_table, zone), 56 .automatic_shrinking = true, 57 }; 58 59 static struct flow_action_entry * 60 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action) 61 { 62 int i = flow_action->num_entries++; 63 64 return &flow_action->entries[i]; 65 } 66 67 static void tcf_ct_add_mangle_action(struct flow_action *action, 68 enum flow_action_mangle_base htype, 69 u32 offset, 70 u32 mask, 71 u32 val) 72 { 73 struct flow_action_entry *entry; 74 75 entry = tcf_ct_flow_table_flow_action_get_next(action); 76 entry->id = FLOW_ACTION_MANGLE; 77 entry->mangle.htype = htype; 78 entry->mangle.mask = ~mask; 79 entry->mangle.offset = offset; 80 entry->mangle.val = val; 81 } 82 83 /* The following nat helper functions check if the inverted reverse tuple 84 * (target) is different then the current dir tuple - meaning nat for ports 85 * and/or ip is needed, and add the relevant mangle actions. 86 */ 87 static void 88 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple, 89 struct nf_conntrack_tuple target, 90 struct flow_action *action) 91 { 92 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 93 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 94 offsetof(struct iphdr, saddr), 95 0xFFFFFFFF, 96 be32_to_cpu(target.src.u3.ip)); 97 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 98 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 99 offsetof(struct iphdr, daddr), 100 0xFFFFFFFF, 101 be32_to_cpu(target.dst.u3.ip)); 102 } 103 104 static void 105 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action, 106 union nf_inet_addr *addr, 107 u32 offset) 108 { 109 int i; 110 111 for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++) 112 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6, 113 i * sizeof(u32) + offset, 114 0xFFFFFFFF, be32_to_cpu(addr->ip6[i])); 115 } 116 117 static void 118 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple, 119 struct nf_conntrack_tuple target, 120 struct flow_action *action) 121 { 122 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 123 tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3, 124 offsetof(struct ipv6hdr, 125 saddr)); 126 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 127 tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3, 128 offsetof(struct ipv6hdr, 129 daddr)); 130 } 131 132 static void 133 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple, 134 struct nf_conntrack_tuple target, 135 struct flow_action *action) 136 { 137 __be16 target_src = target.src.u.tcp.port; 138 __be16 target_dst = target.dst.u.tcp.port; 139 140 if (target_src != tuple->src.u.tcp.port) 141 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 142 offsetof(struct tcphdr, source), 143 0xFFFF, be16_to_cpu(target_src)); 144 if (target_dst != tuple->dst.u.tcp.port) 145 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 146 offsetof(struct tcphdr, dest), 147 0xFFFF, be16_to_cpu(target_dst)); 148 } 149 150 static void 151 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple, 152 struct nf_conntrack_tuple target, 153 struct flow_action *action) 154 { 155 __be16 target_src = target.src.u.udp.port; 156 __be16 target_dst = target.dst.u.udp.port; 157 158 if (target_src != tuple->src.u.udp.port) 159 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 160 offsetof(struct udphdr, source), 161 0xFFFF, be16_to_cpu(target_src)); 162 if (target_dst != tuple->dst.u.udp.port) 163 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 164 offsetof(struct udphdr, dest), 165 0xFFFF, be16_to_cpu(target_dst)); 166 } 167 168 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct, 169 enum ip_conntrack_dir dir, 170 struct flow_action *action) 171 { 172 struct nf_conn_labels *ct_labels; 173 struct flow_action_entry *entry; 174 enum ip_conntrack_info ctinfo; 175 u32 *act_ct_labels; 176 177 entry = tcf_ct_flow_table_flow_action_get_next(action); 178 entry->id = FLOW_ACTION_CT_METADATA; 179 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 180 entry->ct_metadata.mark = ct->mark; 181 #endif 182 ctinfo = dir == IP_CT_DIR_ORIGINAL ? IP_CT_ESTABLISHED : 183 IP_CT_ESTABLISHED_REPLY; 184 /* aligns with the CT reference on the SKB nf_ct_set */ 185 entry->ct_metadata.cookie = (unsigned long)ct | ctinfo; 186 187 act_ct_labels = entry->ct_metadata.labels; 188 ct_labels = nf_ct_labels_find(ct); 189 if (ct_labels) 190 memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE); 191 else 192 memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE); 193 } 194 195 static int tcf_ct_flow_table_add_action_nat(struct net *net, 196 struct nf_conn *ct, 197 enum ip_conntrack_dir dir, 198 struct flow_action *action) 199 { 200 const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple; 201 struct nf_conntrack_tuple target; 202 203 nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple); 204 205 switch (tuple->src.l3num) { 206 case NFPROTO_IPV4: 207 tcf_ct_flow_table_add_action_nat_ipv4(tuple, target, 208 action); 209 break; 210 case NFPROTO_IPV6: 211 tcf_ct_flow_table_add_action_nat_ipv6(tuple, target, 212 action); 213 break; 214 default: 215 return -EOPNOTSUPP; 216 } 217 218 switch (nf_ct_protonum(ct)) { 219 case IPPROTO_TCP: 220 tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action); 221 break; 222 case IPPROTO_UDP: 223 tcf_ct_flow_table_add_action_nat_udp(tuple, target, action); 224 break; 225 default: 226 return -EOPNOTSUPP; 227 } 228 229 return 0; 230 } 231 232 static int tcf_ct_flow_table_fill_actions(struct net *net, 233 const struct flow_offload *flow, 234 enum flow_offload_tuple_dir tdir, 235 struct nf_flow_rule *flow_rule) 236 { 237 struct flow_action *action = &flow_rule->rule->action; 238 int num_entries = action->num_entries; 239 struct nf_conn *ct = flow->ct; 240 enum ip_conntrack_dir dir; 241 int i, err; 242 243 switch (tdir) { 244 case FLOW_OFFLOAD_DIR_ORIGINAL: 245 dir = IP_CT_DIR_ORIGINAL; 246 break; 247 case FLOW_OFFLOAD_DIR_REPLY: 248 dir = IP_CT_DIR_REPLY; 249 break; 250 default: 251 return -EOPNOTSUPP; 252 } 253 254 err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action); 255 if (err) 256 goto err_nat; 257 258 tcf_ct_flow_table_add_action_meta(ct, dir, action); 259 return 0; 260 261 err_nat: 262 /* Clear filled actions */ 263 for (i = num_entries; i < action->num_entries; i++) 264 memset(&action->entries[i], 0, sizeof(action->entries[i])); 265 action->num_entries = num_entries; 266 267 return err; 268 } 269 270 static struct nf_flowtable_type flowtable_ct = { 271 .action = tcf_ct_flow_table_fill_actions, 272 .owner = THIS_MODULE, 273 }; 274 275 static int tcf_ct_flow_table_get(struct tcf_ct_params *params) 276 { 277 struct tcf_ct_flow_table *ct_ft; 278 int err = -ENOMEM; 279 280 mutex_lock(&zones_mutex); 281 ct_ft = rhashtable_lookup_fast(&zones_ht, ¶ms->zone, zones_params); 282 if (ct_ft && refcount_inc_not_zero(&ct_ft->ref)) 283 goto out_unlock; 284 285 ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL); 286 if (!ct_ft) 287 goto err_alloc; 288 refcount_set(&ct_ft->ref, 1); 289 290 ct_ft->zone = params->zone; 291 err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params); 292 if (err) 293 goto err_insert; 294 295 ct_ft->nf_ft.type = &flowtable_ct; 296 ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD; 297 err = nf_flow_table_init(&ct_ft->nf_ft); 298 if (err) 299 goto err_init; 300 301 __module_get(THIS_MODULE); 302 out_unlock: 303 params->ct_ft = ct_ft; 304 params->nf_ft = &ct_ft->nf_ft; 305 mutex_unlock(&zones_mutex); 306 307 return 0; 308 309 err_init: 310 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 311 err_insert: 312 kfree(ct_ft); 313 err_alloc: 314 mutex_unlock(&zones_mutex); 315 return err; 316 } 317 318 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work) 319 { 320 struct tcf_ct_flow_table *ct_ft; 321 322 ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table, 323 rwork); 324 nf_flow_table_free(&ct_ft->nf_ft); 325 kfree(ct_ft); 326 327 module_put(THIS_MODULE); 328 } 329 330 static void tcf_ct_flow_table_put(struct tcf_ct_params *params) 331 { 332 struct tcf_ct_flow_table *ct_ft = params->ct_ft; 333 334 if (refcount_dec_and_test(¶ms->ct_ft->ref)) { 335 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 336 INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work); 337 queue_rcu_work(act_ct_wq, &ct_ft->rwork); 338 } 339 } 340 341 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft, 342 struct nf_conn *ct, 343 bool tcp) 344 { 345 struct flow_offload *entry; 346 int err; 347 348 if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status)) 349 return; 350 351 entry = flow_offload_alloc(ct); 352 if (!entry) { 353 WARN_ON_ONCE(1); 354 goto err_alloc; 355 } 356 357 if (tcp) { 358 ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 359 ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 360 } 361 362 err = flow_offload_add(&ct_ft->nf_ft, entry); 363 if (err) 364 goto err_add; 365 366 return; 367 368 err_add: 369 flow_offload_free(entry); 370 err_alloc: 371 clear_bit(IPS_OFFLOAD_BIT, &ct->status); 372 } 373 374 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft, 375 struct nf_conn *ct, 376 enum ip_conntrack_info ctinfo) 377 { 378 bool tcp = false; 379 380 if (ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY) 381 return; 382 383 switch (nf_ct_protonum(ct)) { 384 case IPPROTO_TCP: 385 tcp = true; 386 if (ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) 387 return; 388 break; 389 case IPPROTO_UDP: 390 break; 391 default: 392 return; 393 } 394 395 if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) || 396 ct->status & IPS_SEQ_ADJUST) 397 return; 398 399 tcf_ct_flow_table_add(ct_ft, ct, tcp); 400 } 401 402 static bool 403 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb, 404 struct flow_offload_tuple *tuple, 405 struct tcphdr **tcph) 406 { 407 struct flow_ports *ports; 408 unsigned int thoff; 409 struct iphdr *iph; 410 411 if (!pskb_network_may_pull(skb, sizeof(*iph))) 412 return false; 413 414 iph = ip_hdr(skb); 415 thoff = iph->ihl * 4; 416 417 if (ip_is_fragment(iph) || 418 unlikely(thoff != sizeof(struct iphdr))) 419 return false; 420 421 if (iph->protocol != IPPROTO_TCP && 422 iph->protocol != IPPROTO_UDP) 423 return false; 424 425 if (iph->ttl <= 1) 426 return false; 427 428 if (!pskb_network_may_pull(skb, iph->protocol == IPPROTO_TCP ? 429 thoff + sizeof(struct tcphdr) : 430 thoff + sizeof(*ports))) 431 return false; 432 433 iph = ip_hdr(skb); 434 if (iph->protocol == IPPROTO_TCP) 435 *tcph = (void *)(skb_network_header(skb) + thoff); 436 437 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 438 tuple->src_v4.s_addr = iph->saddr; 439 tuple->dst_v4.s_addr = iph->daddr; 440 tuple->src_port = ports->source; 441 tuple->dst_port = ports->dest; 442 tuple->l3proto = AF_INET; 443 tuple->l4proto = iph->protocol; 444 445 return true; 446 } 447 448 static bool 449 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb, 450 struct flow_offload_tuple *tuple, 451 struct tcphdr **tcph) 452 { 453 struct flow_ports *ports; 454 struct ipv6hdr *ip6h; 455 unsigned int thoff; 456 457 if (!pskb_network_may_pull(skb, sizeof(*ip6h))) 458 return false; 459 460 ip6h = ipv6_hdr(skb); 461 462 if (ip6h->nexthdr != IPPROTO_TCP && 463 ip6h->nexthdr != IPPROTO_UDP) 464 return false; 465 466 if (ip6h->hop_limit <= 1) 467 return false; 468 469 thoff = sizeof(*ip6h); 470 if (!pskb_network_may_pull(skb, ip6h->nexthdr == IPPROTO_TCP ? 471 thoff + sizeof(struct tcphdr) : 472 thoff + sizeof(*ports))) 473 return false; 474 475 ip6h = ipv6_hdr(skb); 476 if (ip6h->nexthdr == IPPROTO_TCP) 477 *tcph = (void *)(skb_network_header(skb) + thoff); 478 479 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 480 tuple->src_v6 = ip6h->saddr; 481 tuple->dst_v6 = ip6h->daddr; 482 tuple->src_port = ports->source; 483 tuple->dst_port = ports->dest; 484 tuple->l3proto = AF_INET6; 485 tuple->l4proto = ip6h->nexthdr; 486 487 return true; 488 } 489 490 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p, 491 struct sk_buff *skb, 492 u8 family) 493 { 494 struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft; 495 struct flow_offload_tuple_rhash *tuplehash; 496 struct flow_offload_tuple tuple = {}; 497 enum ip_conntrack_info ctinfo; 498 struct tcphdr *tcph = NULL; 499 struct flow_offload *flow; 500 struct nf_conn *ct; 501 u8 dir; 502 503 /* Previously seen or loopback */ 504 ct = nf_ct_get(skb, &ctinfo); 505 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 506 return false; 507 508 switch (family) { 509 case NFPROTO_IPV4: 510 if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph)) 511 return false; 512 break; 513 case NFPROTO_IPV6: 514 if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph)) 515 return false; 516 break; 517 default: 518 return false; 519 } 520 521 tuplehash = flow_offload_lookup(nf_ft, &tuple); 522 if (!tuplehash) 523 return false; 524 525 dir = tuplehash->tuple.dir; 526 flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]); 527 ct = flow->ct; 528 529 if (tcph && (unlikely(tcph->fin || tcph->rst))) { 530 flow_offload_teardown(flow); 531 return false; 532 } 533 534 ctinfo = dir == FLOW_OFFLOAD_DIR_ORIGINAL ? IP_CT_ESTABLISHED : 535 IP_CT_ESTABLISHED_REPLY; 536 537 flow_offload_refresh(nf_ft, flow); 538 nf_conntrack_get(&ct->ct_general); 539 nf_ct_set(skb, ct, ctinfo); 540 nf_ct_acct_update(ct, dir, skb->len); 541 542 return true; 543 } 544 545 static int tcf_ct_flow_tables_init(void) 546 { 547 return rhashtable_init(&zones_ht, &zones_params); 548 } 549 550 static void tcf_ct_flow_tables_uninit(void) 551 { 552 rhashtable_destroy(&zones_ht); 553 } 554 555 static struct tc_action_ops act_ct_ops; 556 static unsigned int ct_net_id; 557 558 struct tc_ct_action_net { 559 struct tc_action_net tn; /* Must be first */ 560 bool labels; 561 }; 562 563 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 564 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb, 565 u16 zone_id, bool force) 566 { 567 enum ip_conntrack_info ctinfo; 568 struct nf_conn *ct; 569 570 ct = nf_ct_get(skb, &ctinfo); 571 if (!ct) 572 return false; 573 if (!net_eq(net, read_pnet(&ct->ct_net))) 574 return false; 575 if (nf_ct_zone(ct)->id != zone_id) 576 return false; 577 578 /* Force conntrack entry direction. */ 579 if (force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 580 if (nf_ct_is_confirmed(ct)) 581 nf_ct_kill(ct); 582 583 nf_conntrack_put(&ct->ct_general); 584 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 585 586 return false; 587 } 588 589 return true; 590 } 591 592 /* Trim the skb to the length specified by the IP/IPv6 header, 593 * removing any trailing lower-layer padding. This prepares the skb 594 * for higher-layer processing that assumes skb->len excludes padding 595 * (such as nf_ip_checksum). The caller needs to pull the skb to the 596 * network header, and ensure ip_hdr/ipv6_hdr points to valid data. 597 */ 598 static int tcf_ct_skb_network_trim(struct sk_buff *skb, int family) 599 { 600 unsigned int len; 601 int err; 602 603 switch (family) { 604 case NFPROTO_IPV4: 605 len = ntohs(ip_hdr(skb)->tot_len); 606 break; 607 case NFPROTO_IPV6: 608 len = sizeof(struct ipv6hdr) 609 + ntohs(ipv6_hdr(skb)->payload_len); 610 break; 611 default: 612 len = skb->len; 613 } 614 615 err = pskb_trim_rcsum(skb, len); 616 617 return err; 618 } 619 620 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb) 621 { 622 u8 family = NFPROTO_UNSPEC; 623 624 switch (skb->protocol) { 625 case htons(ETH_P_IP): 626 family = NFPROTO_IPV4; 627 break; 628 case htons(ETH_P_IPV6): 629 family = NFPROTO_IPV6; 630 break; 631 default: 632 break; 633 } 634 635 return family; 636 } 637 638 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag) 639 { 640 unsigned int len; 641 642 len = skb_network_offset(skb) + sizeof(struct iphdr); 643 if (unlikely(skb->len < len)) 644 return -EINVAL; 645 if (unlikely(!pskb_may_pull(skb, len))) 646 return -ENOMEM; 647 648 *frag = ip_is_fragment(ip_hdr(skb)); 649 return 0; 650 } 651 652 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag) 653 { 654 unsigned int flags = 0, len, payload_ofs = 0; 655 unsigned short frag_off; 656 int nexthdr; 657 658 len = skb_network_offset(skb) + sizeof(struct ipv6hdr); 659 if (unlikely(skb->len < len)) 660 return -EINVAL; 661 if (unlikely(!pskb_may_pull(skb, len))) 662 return -ENOMEM; 663 664 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); 665 if (unlikely(nexthdr < 0)) 666 return -EPROTO; 667 668 *frag = flags & IP6_FH_F_FRAG; 669 return 0; 670 } 671 672 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb, 673 u8 family, u16 zone) 674 { 675 enum ip_conntrack_info ctinfo; 676 struct nf_conn *ct; 677 int err = 0; 678 bool frag; 679 680 /* Previously seen (loopback)? Ignore. */ 681 ct = nf_ct_get(skb, &ctinfo); 682 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 683 return 0; 684 685 if (family == NFPROTO_IPV4) 686 err = tcf_ct_ipv4_is_fragment(skb, &frag); 687 else 688 err = tcf_ct_ipv6_is_fragment(skb, &frag); 689 if (err || !frag) 690 return err; 691 692 skb_get(skb); 693 694 if (family == NFPROTO_IPV4) { 695 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 696 697 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 698 local_bh_disable(); 699 err = ip_defrag(net, skb, user); 700 local_bh_enable(); 701 if (err && err != -EINPROGRESS) 702 goto out_free; 703 } else { /* NFPROTO_IPV6 */ 704 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 705 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 706 707 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 708 err = nf_ct_frag6_gather(net, skb, user); 709 if (err && err != -EINPROGRESS) 710 goto out_free; 711 #else 712 err = -EOPNOTSUPP; 713 goto out_free; 714 #endif 715 } 716 717 skb_clear_hash(skb); 718 skb->ignore_df = 1; 719 return err; 720 721 out_free: 722 kfree_skb(skb); 723 return err; 724 } 725 726 static void tcf_ct_params_free(struct rcu_head *head) 727 { 728 struct tcf_ct_params *params = container_of(head, 729 struct tcf_ct_params, rcu); 730 731 tcf_ct_flow_table_put(params); 732 733 if (params->tmpl) 734 nf_conntrack_put(¶ms->tmpl->ct_general); 735 kfree(params); 736 } 737 738 #if IS_ENABLED(CONFIG_NF_NAT) 739 /* Modelled after nf_nat_ipv[46]_fn(). 740 * range is only used for new, uninitialized NAT state. 741 * Returns either NF_ACCEPT or NF_DROP. 742 */ 743 static int ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 744 enum ip_conntrack_info ctinfo, 745 const struct nf_nat_range2 *range, 746 enum nf_nat_manip_type maniptype) 747 { 748 int hooknum, err = NF_ACCEPT; 749 750 /* See HOOK2MANIP(). */ 751 if (maniptype == NF_NAT_MANIP_SRC) 752 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 753 else 754 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 755 756 switch (ctinfo) { 757 case IP_CT_RELATED: 758 case IP_CT_RELATED_REPLY: 759 if (skb->protocol == htons(ETH_P_IP) && 760 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 761 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 762 hooknum)) 763 err = NF_DROP; 764 goto out; 765 } else if (IS_ENABLED(CONFIG_IPV6) && 766 skb->protocol == htons(ETH_P_IPV6)) { 767 __be16 frag_off; 768 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 769 int hdrlen = ipv6_skip_exthdr(skb, 770 sizeof(struct ipv6hdr), 771 &nexthdr, &frag_off); 772 773 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 774 if (!nf_nat_icmpv6_reply_translation(skb, ct, 775 ctinfo, 776 hooknum, 777 hdrlen)) 778 err = NF_DROP; 779 goto out; 780 } 781 } 782 /* Non-ICMP, fall thru to initialize if needed. */ 783 /* fall through */ 784 case IP_CT_NEW: 785 /* Seen it before? This can happen for loopback, retrans, 786 * or local packets. 787 */ 788 if (!nf_nat_initialized(ct, maniptype)) { 789 /* Initialize according to the NAT action. */ 790 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 791 /* Action is set up to establish a new 792 * mapping. 793 */ 794 ? nf_nat_setup_info(ct, range, maniptype) 795 : nf_nat_alloc_null_binding(ct, hooknum); 796 if (err != NF_ACCEPT) 797 goto out; 798 } 799 break; 800 801 case IP_CT_ESTABLISHED: 802 case IP_CT_ESTABLISHED_REPLY: 803 break; 804 805 default: 806 err = NF_DROP; 807 goto out; 808 } 809 810 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 811 out: 812 return err; 813 } 814 #endif /* CONFIG_NF_NAT */ 815 816 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask) 817 { 818 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 819 u32 new_mark; 820 821 if (!mask) 822 return; 823 824 new_mark = mark | (ct->mark & ~(mask)); 825 if (ct->mark != new_mark) { 826 ct->mark = new_mark; 827 if (nf_ct_is_confirmed(ct)) 828 nf_conntrack_event_cache(IPCT_MARK, ct); 829 } 830 #endif 831 } 832 833 static void tcf_ct_act_set_labels(struct nf_conn *ct, 834 u32 *labels, 835 u32 *labels_m) 836 { 837 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) 838 size_t labels_sz = sizeof_field(struct tcf_ct_params, labels); 839 840 if (!memchr_inv(labels_m, 0, labels_sz)) 841 return; 842 843 nf_connlabels_replace(ct, labels, labels_m, 4); 844 #endif 845 } 846 847 static int tcf_ct_act_nat(struct sk_buff *skb, 848 struct nf_conn *ct, 849 enum ip_conntrack_info ctinfo, 850 int ct_action, 851 struct nf_nat_range2 *range, 852 bool commit) 853 { 854 #if IS_ENABLED(CONFIG_NF_NAT) 855 int err; 856 enum nf_nat_manip_type maniptype; 857 858 if (!(ct_action & TCA_CT_ACT_NAT)) 859 return NF_ACCEPT; 860 861 /* Add NAT extension if not confirmed yet. */ 862 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 863 return NF_DROP; /* Can't NAT. */ 864 865 if (ctinfo != IP_CT_NEW && (ct->status & IPS_NAT_MASK) && 866 (ctinfo != IP_CT_RELATED || commit)) { 867 /* NAT an established or related connection like before. */ 868 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 869 /* This is the REPLY direction for a connection 870 * for which NAT was applied in the forward 871 * direction. Do the reverse NAT. 872 */ 873 maniptype = ct->status & IPS_SRC_NAT 874 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 875 else 876 maniptype = ct->status & IPS_SRC_NAT 877 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 878 } else if (ct_action & TCA_CT_ACT_NAT_SRC) { 879 maniptype = NF_NAT_MANIP_SRC; 880 } else if (ct_action & TCA_CT_ACT_NAT_DST) { 881 maniptype = NF_NAT_MANIP_DST; 882 } else { 883 return NF_ACCEPT; 884 } 885 886 err = ct_nat_execute(skb, ct, ctinfo, range, maniptype); 887 if (err == NF_ACCEPT && 888 ct->status & IPS_SRC_NAT && ct->status & IPS_DST_NAT) { 889 if (maniptype == NF_NAT_MANIP_SRC) 890 maniptype = NF_NAT_MANIP_DST; 891 else 892 maniptype = NF_NAT_MANIP_SRC; 893 894 err = ct_nat_execute(skb, ct, ctinfo, range, maniptype); 895 } 896 return err; 897 #else 898 return NF_ACCEPT; 899 #endif 900 } 901 902 static int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a, 903 struct tcf_result *res) 904 { 905 struct net *net = dev_net(skb->dev); 906 bool cached, commit, clear, force; 907 enum ip_conntrack_info ctinfo; 908 struct tcf_ct *c = to_ct(a); 909 struct nf_conn *tmpl = NULL; 910 struct nf_hook_state state; 911 int nh_ofs, err, retval; 912 struct tcf_ct_params *p; 913 bool skip_add = false; 914 struct nf_conn *ct; 915 u8 family; 916 917 p = rcu_dereference_bh(c->params); 918 919 retval = READ_ONCE(c->tcf_action); 920 commit = p->ct_action & TCA_CT_ACT_COMMIT; 921 clear = p->ct_action & TCA_CT_ACT_CLEAR; 922 force = p->ct_action & TCA_CT_ACT_FORCE; 923 tmpl = p->tmpl; 924 925 if (clear) { 926 ct = nf_ct_get(skb, &ctinfo); 927 if (ct) { 928 nf_conntrack_put(&ct->ct_general); 929 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 930 } 931 932 goto out; 933 } 934 935 family = tcf_ct_skb_nf_family(skb); 936 if (family == NFPROTO_UNSPEC) 937 goto drop; 938 939 /* The conntrack module expects to be working at L3. 940 * We also try to pull the IPv4/6 header to linear area 941 */ 942 nh_ofs = skb_network_offset(skb); 943 skb_pull_rcsum(skb, nh_ofs); 944 err = tcf_ct_handle_fragments(net, skb, family, p->zone); 945 if (err == -EINPROGRESS) { 946 retval = TC_ACT_STOLEN; 947 goto out; 948 } 949 if (err) 950 goto drop; 951 952 err = tcf_ct_skb_network_trim(skb, family); 953 if (err) 954 goto drop; 955 956 /* If we are recirculating packets to match on ct fields and 957 * committing with a separate ct action, then we don't need to 958 * actually run the packet through conntrack twice unless it's for a 959 * different zone. 960 */ 961 cached = tcf_ct_skb_nfct_cached(net, skb, p->zone, force); 962 if (!cached) { 963 if (!commit && tcf_ct_flow_table_lookup(p, skb, family)) { 964 skip_add = true; 965 goto do_nat; 966 } 967 968 /* Associate skb with specified zone. */ 969 if (tmpl) { 970 ct = nf_ct_get(skb, &ctinfo); 971 if (skb_nfct(skb)) 972 nf_conntrack_put(skb_nfct(skb)); 973 nf_conntrack_get(&tmpl->ct_general); 974 nf_ct_set(skb, tmpl, IP_CT_NEW); 975 } 976 977 state.hook = NF_INET_PRE_ROUTING; 978 state.net = net; 979 state.pf = family; 980 err = nf_conntrack_in(skb, &state); 981 if (err != NF_ACCEPT) 982 goto out_push; 983 } 984 985 do_nat: 986 ct = nf_ct_get(skb, &ctinfo); 987 if (!ct) 988 goto out_push; 989 nf_ct_deliver_cached_events(ct); 990 991 err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit); 992 if (err != NF_ACCEPT) 993 goto drop; 994 995 if (commit) { 996 tcf_ct_act_set_mark(ct, p->mark, p->mark_mask); 997 tcf_ct_act_set_labels(ct, p->labels, p->labels_mask); 998 999 /* This will take care of sending queued events 1000 * even if the connection is already confirmed. 1001 */ 1002 nf_conntrack_confirm(skb); 1003 } else if (!skip_add) { 1004 tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo); 1005 } 1006 1007 out_push: 1008 skb_push_rcsum(skb, nh_ofs); 1009 1010 out: 1011 tcf_action_update_bstats(&c->common, skb); 1012 return retval; 1013 1014 drop: 1015 tcf_action_inc_drop_qstats(&c->common); 1016 return TC_ACT_SHOT; 1017 } 1018 1019 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = { 1020 [TCA_CT_ACTION] = { .type = NLA_U16 }, 1021 [TCA_CT_PARMS] = { .type = NLA_EXACT_LEN, .len = sizeof(struct tc_ct) }, 1022 [TCA_CT_ZONE] = { .type = NLA_U16 }, 1023 [TCA_CT_MARK] = { .type = NLA_U32 }, 1024 [TCA_CT_MARK_MASK] = { .type = NLA_U32 }, 1025 [TCA_CT_LABELS] = { .type = NLA_BINARY, 1026 .len = 128 / BITS_PER_BYTE }, 1027 [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY, 1028 .len = 128 / BITS_PER_BYTE }, 1029 [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 }, 1030 [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 }, 1031 [TCA_CT_NAT_IPV6_MIN] = { .type = NLA_EXACT_LEN, 1032 .len = sizeof(struct in6_addr) }, 1033 [TCA_CT_NAT_IPV6_MAX] = { .type = NLA_EXACT_LEN, 1034 .len = sizeof(struct in6_addr) }, 1035 [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 }, 1036 [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 }, 1037 }; 1038 1039 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p, 1040 struct tc_ct *parm, 1041 struct nlattr **tb, 1042 struct netlink_ext_ack *extack) 1043 { 1044 struct nf_nat_range2 *range; 1045 1046 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1047 return 0; 1048 1049 if (!IS_ENABLED(CONFIG_NF_NAT)) { 1050 NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel"); 1051 return -EOPNOTSUPP; 1052 } 1053 1054 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1055 return 0; 1056 1057 if ((p->ct_action & TCA_CT_ACT_NAT_SRC) && 1058 (p->ct_action & TCA_CT_ACT_NAT_DST)) { 1059 NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time"); 1060 return -EOPNOTSUPP; 1061 } 1062 1063 range = &p->range; 1064 if (tb[TCA_CT_NAT_IPV4_MIN]) { 1065 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX]; 1066 1067 p->ipv4_range = true; 1068 range->flags |= NF_NAT_RANGE_MAP_IPS; 1069 range->min_addr.ip = 1070 nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]); 1071 1072 range->max_addr.ip = max_attr ? 1073 nla_get_in_addr(max_attr) : 1074 range->min_addr.ip; 1075 } else if (tb[TCA_CT_NAT_IPV6_MIN]) { 1076 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX]; 1077 1078 p->ipv4_range = false; 1079 range->flags |= NF_NAT_RANGE_MAP_IPS; 1080 range->min_addr.in6 = 1081 nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]); 1082 1083 range->max_addr.in6 = max_attr ? 1084 nla_get_in6_addr(max_attr) : 1085 range->min_addr.in6; 1086 } 1087 1088 if (tb[TCA_CT_NAT_PORT_MIN]) { 1089 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1090 range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]); 1091 1092 range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ? 1093 nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) : 1094 range->min_proto.all; 1095 } 1096 1097 return 0; 1098 } 1099 1100 static void tcf_ct_set_key_val(struct nlattr **tb, 1101 void *val, int val_type, 1102 void *mask, int mask_type, 1103 int len) 1104 { 1105 if (!tb[val_type]) 1106 return; 1107 nla_memcpy(val, tb[val_type], len); 1108 1109 if (!mask) 1110 return; 1111 1112 if (mask_type == TCA_CT_UNSPEC || !tb[mask_type]) 1113 memset(mask, 0xff, len); 1114 else 1115 nla_memcpy(mask, tb[mask_type], len); 1116 } 1117 1118 static int tcf_ct_fill_params(struct net *net, 1119 struct tcf_ct_params *p, 1120 struct tc_ct *parm, 1121 struct nlattr **tb, 1122 struct netlink_ext_ack *extack) 1123 { 1124 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1125 struct nf_conntrack_zone zone; 1126 struct nf_conn *tmpl; 1127 int err; 1128 1129 p->zone = NF_CT_DEFAULT_ZONE_ID; 1130 1131 tcf_ct_set_key_val(tb, 1132 &p->ct_action, TCA_CT_ACTION, 1133 NULL, TCA_CT_UNSPEC, 1134 sizeof(p->ct_action)); 1135 1136 if (p->ct_action & TCA_CT_ACT_CLEAR) 1137 return 0; 1138 1139 err = tcf_ct_fill_params_nat(p, parm, tb, extack); 1140 if (err) 1141 return err; 1142 1143 if (tb[TCA_CT_MARK]) { 1144 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) { 1145 NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled."); 1146 return -EOPNOTSUPP; 1147 } 1148 tcf_ct_set_key_val(tb, 1149 &p->mark, TCA_CT_MARK, 1150 &p->mark_mask, TCA_CT_MARK_MASK, 1151 sizeof(p->mark)); 1152 } 1153 1154 if (tb[TCA_CT_LABELS]) { 1155 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) { 1156 NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled."); 1157 return -EOPNOTSUPP; 1158 } 1159 1160 if (!tn->labels) { 1161 NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length"); 1162 return -EOPNOTSUPP; 1163 } 1164 tcf_ct_set_key_val(tb, 1165 p->labels, TCA_CT_LABELS, 1166 p->labels_mask, TCA_CT_LABELS_MASK, 1167 sizeof(p->labels)); 1168 } 1169 1170 if (tb[TCA_CT_ZONE]) { 1171 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) { 1172 NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled."); 1173 return -EOPNOTSUPP; 1174 } 1175 1176 tcf_ct_set_key_val(tb, 1177 &p->zone, TCA_CT_ZONE, 1178 NULL, TCA_CT_UNSPEC, 1179 sizeof(p->zone)); 1180 } 1181 1182 if (p->zone == NF_CT_DEFAULT_ZONE_ID) 1183 return 0; 1184 1185 nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0); 1186 tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL); 1187 if (!tmpl) { 1188 NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template"); 1189 return -ENOMEM; 1190 } 1191 __set_bit(IPS_CONFIRMED_BIT, &tmpl->status); 1192 nf_conntrack_get(&tmpl->ct_general); 1193 p->tmpl = tmpl; 1194 1195 return 0; 1196 } 1197 1198 static int tcf_ct_init(struct net *net, struct nlattr *nla, 1199 struct nlattr *est, struct tc_action **a, 1200 int replace, int bind, bool rtnl_held, 1201 struct tcf_proto *tp, u32 flags, 1202 struct netlink_ext_ack *extack) 1203 { 1204 struct tc_action_net *tn = net_generic(net, ct_net_id); 1205 struct tcf_ct_params *params = NULL; 1206 struct nlattr *tb[TCA_CT_MAX + 1]; 1207 struct tcf_chain *goto_ch = NULL; 1208 struct tc_ct *parm; 1209 struct tcf_ct *c; 1210 int err, res = 0; 1211 u32 index; 1212 1213 if (!nla) { 1214 NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed"); 1215 return -EINVAL; 1216 } 1217 1218 err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack); 1219 if (err < 0) 1220 return err; 1221 1222 if (!tb[TCA_CT_PARMS]) { 1223 NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters"); 1224 return -EINVAL; 1225 } 1226 parm = nla_data(tb[TCA_CT_PARMS]); 1227 index = parm->index; 1228 err = tcf_idr_check_alloc(tn, &index, a, bind); 1229 if (err < 0) 1230 return err; 1231 1232 if (!err) { 1233 err = tcf_idr_create_from_flags(tn, index, est, a, 1234 &act_ct_ops, bind, flags); 1235 if (err) { 1236 tcf_idr_cleanup(tn, index); 1237 return err; 1238 } 1239 res = ACT_P_CREATED; 1240 } else { 1241 if (bind) 1242 return 0; 1243 1244 if (!replace) { 1245 tcf_idr_release(*a, bind); 1246 return -EEXIST; 1247 } 1248 } 1249 err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); 1250 if (err < 0) 1251 goto cleanup; 1252 1253 c = to_ct(*a); 1254 1255 params = kzalloc(sizeof(*params), GFP_KERNEL); 1256 if (unlikely(!params)) { 1257 err = -ENOMEM; 1258 goto cleanup; 1259 } 1260 1261 err = tcf_ct_fill_params(net, params, parm, tb, extack); 1262 if (err) 1263 goto cleanup; 1264 1265 err = tcf_ct_flow_table_get(params); 1266 if (err) 1267 goto cleanup; 1268 1269 spin_lock_bh(&c->tcf_lock); 1270 goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); 1271 params = rcu_replace_pointer(c->params, params, 1272 lockdep_is_held(&c->tcf_lock)); 1273 spin_unlock_bh(&c->tcf_lock); 1274 1275 if (goto_ch) 1276 tcf_chain_put_by_act(goto_ch); 1277 if (params) 1278 call_rcu(¶ms->rcu, tcf_ct_params_free); 1279 if (res == ACT_P_CREATED) 1280 tcf_idr_insert(tn, *a); 1281 1282 return res; 1283 1284 cleanup: 1285 if (goto_ch) 1286 tcf_chain_put_by_act(goto_ch); 1287 kfree(params); 1288 tcf_idr_release(*a, bind); 1289 return err; 1290 } 1291 1292 static void tcf_ct_cleanup(struct tc_action *a) 1293 { 1294 struct tcf_ct_params *params; 1295 struct tcf_ct *c = to_ct(a); 1296 1297 params = rcu_dereference_protected(c->params, 1); 1298 if (params) 1299 call_rcu(¶ms->rcu, tcf_ct_params_free); 1300 } 1301 1302 static int tcf_ct_dump_key_val(struct sk_buff *skb, 1303 void *val, int val_type, 1304 void *mask, int mask_type, 1305 int len) 1306 { 1307 int err; 1308 1309 if (mask && !memchr_inv(mask, 0, len)) 1310 return 0; 1311 1312 err = nla_put(skb, val_type, len, val); 1313 if (err) 1314 return err; 1315 1316 if (mask_type != TCA_CT_UNSPEC) { 1317 err = nla_put(skb, mask_type, len, mask); 1318 if (err) 1319 return err; 1320 } 1321 1322 return 0; 1323 } 1324 1325 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p) 1326 { 1327 struct nf_nat_range2 *range = &p->range; 1328 1329 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1330 return 0; 1331 1332 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1333 return 0; 1334 1335 if (range->flags & NF_NAT_RANGE_MAP_IPS) { 1336 if (p->ipv4_range) { 1337 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN, 1338 range->min_addr.ip)) 1339 return -1; 1340 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX, 1341 range->max_addr.ip)) 1342 return -1; 1343 } else { 1344 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN, 1345 &range->min_addr.in6)) 1346 return -1; 1347 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX, 1348 &range->max_addr.in6)) 1349 return -1; 1350 } 1351 } 1352 1353 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) { 1354 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN, 1355 range->min_proto.all)) 1356 return -1; 1357 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX, 1358 range->max_proto.all)) 1359 return -1; 1360 } 1361 1362 return 0; 1363 } 1364 1365 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a, 1366 int bind, int ref) 1367 { 1368 unsigned char *b = skb_tail_pointer(skb); 1369 struct tcf_ct *c = to_ct(a); 1370 struct tcf_ct_params *p; 1371 1372 struct tc_ct opt = { 1373 .index = c->tcf_index, 1374 .refcnt = refcount_read(&c->tcf_refcnt) - ref, 1375 .bindcnt = atomic_read(&c->tcf_bindcnt) - bind, 1376 }; 1377 struct tcf_t t; 1378 1379 spin_lock_bh(&c->tcf_lock); 1380 p = rcu_dereference_protected(c->params, 1381 lockdep_is_held(&c->tcf_lock)); 1382 opt.action = c->tcf_action; 1383 1384 if (tcf_ct_dump_key_val(skb, 1385 &p->ct_action, TCA_CT_ACTION, 1386 NULL, TCA_CT_UNSPEC, 1387 sizeof(p->ct_action))) 1388 goto nla_put_failure; 1389 1390 if (p->ct_action & TCA_CT_ACT_CLEAR) 1391 goto skip_dump; 1392 1393 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1394 tcf_ct_dump_key_val(skb, 1395 &p->mark, TCA_CT_MARK, 1396 &p->mark_mask, TCA_CT_MARK_MASK, 1397 sizeof(p->mark))) 1398 goto nla_put_failure; 1399 1400 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1401 tcf_ct_dump_key_val(skb, 1402 p->labels, TCA_CT_LABELS, 1403 p->labels_mask, TCA_CT_LABELS_MASK, 1404 sizeof(p->labels))) 1405 goto nla_put_failure; 1406 1407 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1408 tcf_ct_dump_key_val(skb, 1409 &p->zone, TCA_CT_ZONE, 1410 NULL, TCA_CT_UNSPEC, 1411 sizeof(p->zone))) 1412 goto nla_put_failure; 1413 1414 if (tcf_ct_dump_nat(skb, p)) 1415 goto nla_put_failure; 1416 1417 skip_dump: 1418 if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt)) 1419 goto nla_put_failure; 1420 1421 tcf_tm_dump(&t, &c->tcf_tm); 1422 if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD)) 1423 goto nla_put_failure; 1424 spin_unlock_bh(&c->tcf_lock); 1425 1426 return skb->len; 1427 nla_put_failure: 1428 spin_unlock_bh(&c->tcf_lock); 1429 nlmsg_trim(skb, b); 1430 return -1; 1431 } 1432 1433 static int tcf_ct_walker(struct net *net, struct sk_buff *skb, 1434 struct netlink_callback *cb, int type, 1435 const struct tc_action_ops *ops, 1436 struct netlink_ext_ack *extack) 1437 { 1438 struct tc_action_net *tn = net_generic(net, ct_net_id); 1439 1440 return tcf_generic_walker(tn, skb, cb, type, ops, extack); 1441 } 1442 1443 static int tcf_ct_search(struct net *net, struct tc_action **a, u32 index) 1444 { 1445 struct tc_action_net *tn = net_generic(net, ct_net_id); 1446 1447 return tcf_idr_search(tn, a, index); 1448 } 1449 1450 static void tcf_stats_update(struct tc_action *a, u64 bytes, u32 packets, 1451 u64 lastuse, bool hw) 1452 { 1453 struct tcf_ct *c = to_ct(a); 1454 1455 tcf_action_update_stats(a, bytes, packets, false, hw); 1456 c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse); 1457 } 1458 1459 static struct tc_action_ops act_ct_ops = { 1460 .kind = "ct", 1461 .id = TCA_ID_CT, 1462 .owner = THIS_MODULE, 1463 .act = tcf_ct_act, 1464 .dump = tcf_ct_dump, 1465 .init = tcf_ct_init, 1466 .cleanup = tcf_ct_cleanup, 1467 .walk = tcf_ct_walker, 1468 .lookup = tcf_ct_search, 1469 .stats_update = tcf_stats_update, 1470 .size = sizeof(struct tcf_ct), 1471 }; 1472 1473 static __net_init int ct_init_net(struct net *net) 1474 { 1475 unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8; 1476 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1477 1478 if (nf_connlabels_get(net, n_bits - 1)) { 1479 tn->labels = false; 1480 pr_err("act_ct: Failed to set connlabels length"); 1481 } else { 1482 tn->labels = true; 1483 } 1484 1485 return tc_action_net_init(net, &tn->tn, &act_ct_ops); 1486 } 1487 1488 static void __net_exit ct_exit_net(struct list_head *net_list) 1489 { 1490 struct net *net; 1491 1492 rtnl_lock(); 1493 list_for_each_entry(net, net_list, exit_list) { 1494 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1495 1496 if (tn->labels) 1497 nf_connlabels_put(net); 1498 } 1499 rtnl_unlock(); 1500 1501 tc_action_net_exit(net_list, ct_net_id); 1502 } 1503 1504 static struct pernet_operations ct_net_ops = { 1505 .init = ct_init_net, 1506 .exit_batch = ct_exit_net, 1507 .id = &ct_net_id, 1508 .size = sizeof(struct tc_ct_action_net), 1509 }; 1510 1511 static int __init ct_init_module(void) 1512 { 1513 int err; 1514 1515 act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0); 1516 if (!act_ct_wq) 1517 return -ENOMEM; 1518 1519 err = tcf_ct_flow_tables_init(); 1520 if (err) 1521 goto err_tbl_init; 1522 1523 err = tcf_register_action(&act_ct_ops, &ct_net_ops); 1524 if (err) 1525 goto err_register; 1526 1527 return 0; 1528 1529 err_tbl_init: 1530 destroy_workqueue(act_ct_wq); 1531 err_register: 1532 tcf_ct_flow_tables_uninit(); 1533 return err; 1534 } 1535 1536 static void __exit ct_cleanup_module(void) 1537 { 1538 tcf_unregister_action(&act_ct_ops, &ct_net_ops); 1539 tcf_ct_flow_tables_uninit(); 1540 destroy_workqueue(act_ct_wq); 1541 } 1542 1543 void tcf_ct_flow_table_restore_skb(struct sk_buff *skb, unsigned long cookie) 1544 { 1545 enum ip_conntrack_info ctinfo = cookie & NFCT_INFOMASK; 1546 struct nf_conn *ct; 1547 1548 ct = (struct nf_conn *)(cookie & NFCT_PTRMASK); 1549 nf_conntrack_get(&ct->ct_general); 1550 nf_ct_set(skb, ct, ctinfo); 1551 } 1552 EXPORT_SYMBOL_GPL(tcf_ct_flow_table_restore_skb); 1553 1554 module_init(ct_init_module); 1555 module_exit(ct_cleanup_module); 1556 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>"); 1557 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>"); 1558 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>"); 1559 MODULE_DESCRIPTION("Connection tracking action"); 1560 MODULE_LICENSE("GPL v2"); 1561 1562