1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* - 3 * net/sched/act_ct.c Connection Tracking action 4 * 5 * Authors: Paul Blakey <paulb@mellanox.com> 6 * Yossi Kuperman <yossiku@mellanox.com> 7 * Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/skbuff.h> 14 #include <linux/rtnetlink.h> 15 #include <linux/pkt_cls.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/rhashtable.h> 19 #include <net/netlink.h> 20 #include <net/pkt_sched.h> 21 #include <net/pkt_cls.h> 22 #include <net/act_api.h> 23 #include <net/ip.h> 24 #include <net/ipv6_frag.h> 25 #include <uapi/linux/tc_act/tc_ct.h> 26 #include <net/tc_act/tc_ct.h> 27 28 #include <net/netfilter/nf_flow_table.h> 29 #include <net/netfilter/nf_conntrack.h> 30 #include <net/netfilter/nf_conntrack_core.h> 31 #include <net/netfilter/nf_conntrack_zones.h> 32 #include <net/netfilter/nf_conntrack_helper.h> 33 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 34 #include <uapi/linux/netfilter/nf_nat.h> 35 36 static struct workqueue_struct *act_ct_wq; 37 static struct rhashtable zones_ht; 38 static DEFINE_MUTEX(zones_mutex); 39 40 struct tcf_ct_flow_table { 41 struct rhash_head node; /* In zones tables */ 42 43 struct rcu_work rwork; 44 struct nf_flowtable nf_ft; 45 refcount_t ref; 46 u16 zone; 47 48 bool dying; 49 }; 50 51 static const struct rhashtable_params zones_params = { 52 .head_offset = offsetof(struct tcf_ct_flow_table, node), 53 .key_offset = offsetof(struct tcf_ct_flow_table, zone), 54 .key_len = sizeof_field(struct tcf_ct_flow_table, zone), 55 .automatic_shrinking = true, 56 }; 57 58 static struct flow_action_entry * 59 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action) 60 { 61 int i = flow_action->num_entries++; 62 63 return &flow_action->entries[i]; 64 } 65 66 static void tcf_ct_add_mangle_action(struct flow_action *action, 67 enum flow_action_mangle_base htype, 68 u32 offset, 69 u32 mask, 70 u32 val) 71 { 72 struct flow_action_entry *entry; 73 74 entry = tcf_ct_flow_table_flow_action_get_next(action); 75 entry->id = FLOW_ACTION_MANGLE; 76 entry->mangle.htype = htype; 77 entry->mangle.mask = ~mask; 78 entry->mangle.offset = offset; 79 entry->mangle.val = val; 80 } 81 82 /* The following nat helper functions check if the inverted reverse tuple 83 * (target) is different then the current dir tuple - meaning nat for ports 84 * and/or ip is needed, and add the relevant mangle actions. 85 */ 86 static void 87 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple, 88 struct nf_conntrack_tuple target, 89 struct flow_action *action) 90 { 91 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 92 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 93 offsetof(struct iphdr, saddr), 94 0xFFFFFFFF, 95 be32_to_cpu(target.src.u3.ip)); 96 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 97 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 98 offsetof(struct iphdr, daddr), 99 0xFFFFFFFF, 100 be32_to_cpu(target.dst.u3.ip)); 101 } 102 103 static void 104 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action, 105 union nf_inet_addr *addr, 106 u32 offset) 107 { 108 int i; 109 110 for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++) 111 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6, 112 i * sizeof(u32) + offset, 113 0xFFFFFFFF, be32_to_cpu(addr->ip6[i])); 114 } 115 116 static void 117 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple, 118 struct nf_conntrack_tuple target, 119 struct flow_action *action) 120 { 121 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 122 tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3, 123 offsetof(struct ipv6hdr, 124 saddr)); 125 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 126 tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3, 127 offsetof(struct ipv6hdr, 128 daddr)); 129 } 130 131 static void 132 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple, 133 struct nf_conntrack_tuple target, 134 struct flow_action *action) 135 { 136 __be16 target_src = target.src.u.tcp.port; 137 __be16 target_dst = target.dst.u.tcp.port; 138 139 if (target_src != tuple->src.u.tcp.port) 140 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 141 offsetof(struct tcphdr, source), 142 0xFFFF, be16_to_cpu(target_src)); 143 if (target_dst != tuple->dst.u.tcp.port) 144 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 145 offsetof(struct tcphdr, dest), 146 0xFFFF, be16_to_cpu(target_dst)); 147 } 148 149 static void 150 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple, 151 struct nf_conntrack_tuple target, 152 struct flow_action *action) 153 { 154 __be16 target_src = target.src.u.udp.port; 155 __be16 target_dst = target.dst.u.udp.port; 156 157 if (target_src != tuple->src.u.udp.port) 158 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 159 offsetof(struct udphdr, source), 160 0xFFFF, be16_to_cpu(target_src)); 161 if (target_dst != tuple->dst.u.udp.port) 162 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 163 offsetof(struct udphdr, dest), 164 0xFFFF, be16_to_cpu(target_dst)); 165 } 166 167 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct, 168 enum ip_conntrack_dir dir, 169 struct flow_action *action) 170 { 171 struct nf_conn_labels *ct_labels; 172 struct flow_action_entry *entry; 173 enum ip_conntrack_info ctinfo; 174 u32 *act_ct_labels; 175 176 entry = tcf_ct_flow_table_flow_action_get_next(action); 177 entry->id = FLOW_ACTION_CT_METADATA; 178 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 179 entry->ct_metadata.mark = ct->mark; 180 #endif 181 ctinfo = dir == IP_CT_DIR_ORIGINAL ? IP_CT_ESTABLISHED : 182 IP_CT_ESTABLISHED_REPLY; 183 /* aligns with the CT reference on the SKB nf_ct_set */ 184 entry->ct_metadata.cookie = (unsigned long)ct | ctinfo; 185 186 act_ct_labels = entry->ct_metadata.labels; 187 ct_labels = nf_ct_labels_find(ct); 188 if (ct_labels) 189 memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE); 190 else 191 memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE); 192 } 193 194 static int tcf_ct_flow_table_add_action_nat(struct net *net, 195 struct nf_conn *ct, 196 enum ip_conntrack_dir dir, 197 struct flow_action *action) 198 { 199 const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple; 200 struct nf_conntrack_tuple target; 201 202 nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple); 203 204 switch (tuple->src.l3num) { 205 case NFPROTO_IPV4: 206 tcf_ct_flow_table_add_action_nat_ipv4(tuple, target, 207 action); 208 break; 209 case NFPROTO_IPV6: 210 tcf_ct_flow_table_add_action_nat_ipv6(tuple, target, 211 action); 212 break; 213 default: 214 return -EOPNOTSUPP; 215 } 216 217 switch (nf_ct_protonum(ct)) { 218 case IPPROTO_TCP: 219 tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action); 220 break; 221 case IPPROTO_UDP: 222 tcf_ct_flow_table_add_action_nat_udp(tuple, target, action); 223 break; 224 default: 225 return -EOPNOTSUPP; 226 } 227 228 return 0; 229 } 230 231 static int tcf_ct_flow_table_fill_actions(struct net *net, 232 const struct flow_offload *flow, 233 enum flow_offload_tuple_dir tdir, 234 struct nf_flow_rule *flow_rule) 235 { 236 struct flow_action *action = &flow_rule->rule->action; 237 int num_entries = action->num_entries; 238 struct nf_conn *ct = flow->ct; 239 enum ip_conntrack_dir dir; 240 int i, err; 241 242 switch (tdir) { 243 case FLOW_OFFLOAD_DIR_ORIGINAL: 244 dir = IP_CT_DIR_ORIGINAL; 245 break; 246 case FLOW_OFFLOAD_DIR_REPLY: 247 dir = IP_CT_DIR_REPLY; 248 break; 249 default: 250 return -EOPNOTSUPP; 251 } 252 253 err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action); 254 if (err) 255 goto err_nat; 256 257 tcf_ct_flow_table_add_action_meta(ct, dir, action); 258 return 0; 259 260 err_nat: 261 /* Clear filled actions */ 262 for (i = num_entries; i < action->num_entries; i++) 263 memset(&action->entries[i], 0, sizeof(action->entries[i])); 264 action->num_entries = num_entries; 265 266 return err; 267 } 268 269 static struct nf_flowtable_type flowtable_ct = { 270 .action = tcf_ct_flow_table_fill_actions, 271 .owner = THIS_MODULE, 272 }; 273 274 static int tcf_ct_flow_table_get(struct tcf_ct_params *params) 275 { 276 struct tcf_ct_flow_table *ct_ft; 277 int err = -ENOMEM; 278 279 mutex_lock(&zones_mutex); 280 ct_ft = rhashtable_lookup_fast(&zones_ht, ¶ms->zone, zones_params); 281 if (ct_ft && refcount_inc_not_zero(&ct_ft->ref)) 282 goto out_unlock; 283 284 ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL); 285 if (!ct_ft) 286 goto err_alloc; 287 refcount_set(&ct_ft->ref, 1); 288 289 ct_ft->zone = params->zone; 290 err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params); 291 if (err) 292 goto err_insert; 293 294 ct_ft->nf_ft.type = &flowtable_ct; 295 ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD; 296 err = nf_flow_table_init(&ct_ft->nf_ft); 297 if (err) 298 goto err_init; 299 300 __module_get(THIS_MODULE); 301 out_unlock: 302 params->ct_ft = ct_ft; 303 params->nf_ft = &ct_ft->nf_ft; 304 mutex_unlock(&zones_mutex); 305 306 return 0; 307 308 err_init: 309 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 310 err_insert: 311 kfree(ct_ft); 312 err_alloc: 313 mutex_unlock(&zones_mutex); 314 return err; 315 } 316 317 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work) 318 { 319 struct tcf_ct_flow_table *ct_ft; 320 321 ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table, 322 rwork); 323 nf_flow_table_free(&ct_ft->nf_ft); 324 kfree(ct_ft); 325 326 module_put(THIS_MODULE); 327 } 328 329 static void tcf_ct_flow_table_put(struct tcf_ct_params *params) 330 { 331 struct tcf_ct_flow_table *ct_ft = params->ct_ft; 332 333 if (refcount_dec_and_test(¶ms->ct_ft->ref)) { 334 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 335 INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work); 336 queue_rcu_work(act_ct_wq, &ct_ft->rwork); 337 } 338 } 339 340 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft, 341 struct nf_conn *ct, 342 bool tcp) 343 { 344 struct flow_offload *entry; 345 int err; 346 347 if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status)) 348 return; 349 350 entry = flow_offload_alloc(ct); 351 if (!entry) { 352 WARN_ON_ONCE(1); 353 goto err_alloc; 354 } 355 356 if (tcp) { 357 ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 358 ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 359 } 360 361 err = flow_offload_add(&ct_ft->nf_ft, entry); 362 if (err) 363 goto err_add; 364 365 return; 366 367 err_add: 368 flow_offload_free(entry); 369 err_alloc: 370 clear_bit(IPS_OFFLOAD_BIT, &ct->status); 371 } 372 373 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft, 374 struct nf_conn *ct, 375 enum ip_conntrack_info ctinfo) 376 { 377 bool tcp = false; 378 379 if (ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY) 380 return; 381 382 switch (nf_ct_protonum(ct)) { 383 case IPPROTO_TCP: 384 tcp = true; 385 if (ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) 386 return; 387 break; 388 case IPPROTO_UDP: 389 break; 390 default: 391 return; 392 } 393 394 if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) || 395 ct->status & IPS_SEQ_ADJUST) 396 return; 397 398 tcf_ct_flow_table_add(ct_ft, ct, tcp); 399 } 400 401 static bool 402 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb, 403 struct flow_offload_tuple *tuple, 404 struct tcphdr **tcph) 405 { 406 struct flow_ports *ports; 407 unsigned int thoff; 408 struct iphdr *iph; 409 410 if (!pskb_network_may_pull(skb, sizeof(*iph))) 411 return false; 412 413 iph = ip_hdr(skb); 414 thoff = iph->ihl * 4; 415 416 if (ip_is_fragment(iph) || 417 unlikely(thoff != sizeof(struct iphdr))) 418 return false; 419 420 if (iph->protocol != IPPROTO_TCP && 421 iph->protocol != IPPROTO_UDP) 422 return false; 423 424 if (iph->ttl <= 1) 425 return false; 426 427 if (!pskb_network_may_pull(skb, iph->protocol == IPPROTO_TCP ? 428 thoff + sizeof(struct tcphdr) : 429 thoff + sizeof(*ports))) 430 return false; 431 432 iph = ip_hdr(skb); 433 if (iph->protocol == IPPROTO_TCP) 434 *tcph = (void *)(skb_network_header(skb) + thoff); 435 436 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 437 tuple->src_v4.s_addr = iph->saddr; 438 tuple->dst_v4.s_addr = iph->daddr; 439 tuple->src_port = ports->source; 440 tuple->dst_port = ports->dest; 441 tuple->l3proto = AF_INET; 442 tuple->l4proto = iph->protocol; 443 444 return true; 445 } 446 447 static bool 448 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb, 449 struct flow_offload_tuple *tuple, 450 struct tcphdr **tcph) 451 { 452 struct flow_ports *ports; 453 struct ipv6hdr *ip6h; 454 unsigned int thoff; 455 456 if (!pskb_network_may_pull(skb, sizeof(*ip6h))) 457 return false; 458 459 ip6h = ipv6_hdr(skb); 460 461 if (ip6h->nexthdr != IPPROTO_TCP && 462 ip6h->nexthdr != IPPROTO_UDP) 463 return false; 464 465 if (ip6h->hop_limit <= 1) 466 return false; 467 468 thoff = sizeof(*ip6h); 469 if (!pskb_network_may_pull(skb, ip6h->nexthdr == IPPROTO_TCP ? 470 thoff + sizeof(struct tcphdr) : 471 thoff + sizeof(*ports))) 472 return false; 473 474 ip6h = ipv6_hdr(skb); 475 if (ip6h->nexthdr == IPPROTO_TCP) 476 *tcph = (void *)(skb_network_header(skb) + thoff); 477 478 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 479 tuple->src_v6 = ip6h->saddr; 480 tuple->dst_v6 = ip6h->daddr; 481 tuple->src_port = ports->source; 482 tuple->dst_port = ports->dest; 483 tuple->l3proto = AF_INET6; 484 tuple->l4proto = ip6h->nexthdr; 485 486 return true; 487 } 488 489 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p, 490 struct sk_buff *skb, 491 u8 family) 492 { 493 struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft; 494 struct flow_offload_tuple_rhash *tuplehash; 495 struct flow_offload_tuple tuple = {}; 496 enum ip_conntrack_info ctinfo; 497 struct tcphdr *tcph = NULL; 498 struct flow_offload *flow; 499 struct nf_conn *ct; 500 u8 dir; 501 502 /* Previously seen or loopback */ 503 ct = nf_ct_get(skb, &ctinfo); 504 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 505 return false; 506 507 switch (family) { 508 case NFPROTO_IPV4: 509 if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph)) 510 return false; 511 break; 512 case NFPROTO_IPV6: 513 if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph)) 514 return false; 515 break; 516 default: 517 return false; 518 } 519 520 tuplehash = flow_offload_lookup(nf_ft, &tuple); 521 if (!tuplehash) 522 return false; 523 524 dir = tuplehash->tuple.dir; 525 flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]); 526 ct = flow->ct; 527 528 if (tcph && (unlikely(tcph->fin || tcph->rst))) { 529 flow_offload_teardown(flow); 530 return false; 531 } 532 533 ctinfo = dir == FLOW_OFFLOAD_DIR_ORIGINAL ? IP_CT_ESTABLISHED : 534 IP_CT_ESTABLISHED_REPLY; 535 536 flow_offload_refresh(nf_ft, flow); 537 nf_conntrack_get(&ct->ct_general); 538 nf_ct_set(skb, ct, ctinfo); 539 540 return true; 541 } 542 543 static int tcf_ct_flow_tables_init(void) 544 { 545 return rhashtable_init(&zones_ht, &zones_params); 546 } 547 548 static void tcf_ct_flow_tables_uninit(void) 549 { 550 rhashtable_destroy(&zones_ht); 551 } 552 553 static struct tc_action_ops act_ct_ops; 554 static unsigned int ct_net_id; 555 556 struct tc_ct_action_net { 557 struct tc_action_net tn; /* Must be first */ 558 bool labels; 559 }; 560 561 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 562 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb, 563 u16 zone_id, bool force) 564 { 565 enum ip_conntrack_info ctinfo; 566 struct nf_conn *ct; 567 568 ct = nf_ct_get(skb, &ctinfo); 569 if (!ct) 570 return false; 571 if (!net_eq(net, read_pnet(&ct->ct_net))) 572 return false; 573 if (nf_ct_zone(ct)->id != zone_id) 574 return false; 575 576 /* Force conntrack entry direction. */ 577 if (force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 578 if (nf_ct_is_confirmed(ct)) 579 nf_ct_kill(ct); 580 581 nf_conntrack_put(&ct->ct_general); 582 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 583 584 return false; 585 } 586 587 return true; 588 } 589 590 /* Trim the skb to the length specified by the IP/IPv6 header, 591 * removing any trailing lower-layer padding. This prepares the skb 592 * for higher-layer processing that assumes skb->len excludes padding 593 * (such as nf_ip_checksum). The caller needs to pull the skb to the 594 * network header, and ensure ip_hdr/ipv6_hdr points to valid data. 595 */ 596 static int tcf_ct_skb_network_trim(struct sk_buff *skb, int family) 597 { 598 unsigned int len; 599 int err; 600 601 switch (family) { 602 case NFPROTO_IPV4: 603 len = ntohs(ip_hdr(skb)->tot_len); 604 break; 605 case NFPROTO_IPV6: 606 len = sizeof(struct ipv6hdr) 607 + ntohs(ipv6_hdr(skb)->payload_len); 608 break; 609 default: 610 len = skb->len; 611 } 612 613 err = pskb_trim_rcsum(skb, len); 614 615 return err; 616 } 617 618 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb) 619 { 620 u8 family = NFPROTO_UNSPEC; 621 622 switch (skb->protocol) { 623 case htons(ETH_P_IP): 624 family = NFPROTO_IPV4; 625 break; 626 case htons(ETH_P_IPV6): 627 family = NFPROTO_IPV6; 628 break; 629 default: 630 break; 631 } 632 633 return family; 634 } 635 636 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag) 637 { 638 unsigned int len; 639 640 len = skb_network_offset(skb) + sizeof(struct iphdr); 641 if (unlikely(skb->len < len)) 642 return -EINVAL; 643 if (unlikely(!pskb_may_pull(skb, len))) 644 return -ENOMEM; 645 646 *frag = ip_is_fragment(ip_hdr(skb)); 647 return 0; 648 } 649 650 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag) 651 { 652 unsigned int flags = 0, len, payload_ofs = 0; 653 unsigned short frag_off; 654 int nexthdr; 655 656 len = skb_network_offset(skb) + sizeof(struct ipv6hdr); 657 if (unlikely(skb->len < len)) 658 return -EINVAL; 659 if (unlikely(!pskb_may_pull(skb, len))) 660 return -ENOMEM; 661 662 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); 663 if (unlikely(nexthdr < 0)) 664 return -EPROTO; 665 666 *frag = flags & IP6_FH_F_FRAG; 667 return 0; 668 } 669 670 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb, 671 u8 family, u16 zone) 672 { 673 enum ip_conntrack_info ctinfo; 674 struct nf_conn *ct; 675 int err = 0; 676 bool frag; 677 678 /* Previously seen (loopback)? Ignore. */ 679 ct = nf_ct_get(skb, &ctinfo); 680 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 681 return 0; 682 683 if (family == NFPROTO_IPV4) 684 err = tcf_ct_ipv4_is_fragment(skb, &frag); 685 else 686 err = tcf_ct_ipv6_is_fragment(skb, &frag); 687 if (err || !frag) 688 return err; 689 690 skb_get(skb); 691 692 if (family == NFPROTO_IPV4) { 693 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 694 695 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 696 local_bh_disable(); 697 err = ip_defrag(net, skb, user); 698 local_bh_enable(); 699 if (err && err != -EINPROGRESS) 700 goto out_free; 701 } else { /* NFPROTO_IPV6 */ 702 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 703 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 704 705 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 706 err = nf_ct_frag6_gather(net, skb, user); 707 if (err && err != -EINPROGRESS) 708 goto out_free; 709 #else 710 err = -EOPNOTSUPP; 711 goto out_free; 712 #endif 713 } 714 715 skb_clear_hash(skb); 716 skb->ignore_df = 1; 717 return err; 718 719 out_free: 720 kfree_skb(skb); 721 return err; 722 } 723 724 static void tcf_ct_params_free(struct rcu_head *head) 725 { 726 struct tcf_ct_params *params = container_of(head, 727 struct tcf_ct_params, rcu); 728 729 tcf_ct_flow_table_put(params); 730 731 if (params->tmpl) 732 nf_conntrack_put(¶ms->tmpl->ct_general); 733 kfree(params); 734 } 735 736 #if IS_ENABLED(CONFIG_NF_NAT) 737 /* Modelled after nf_nat_ipv[46]_fn(). 738 * range is only used for new, uninitialized NAT state. 739 * Returns either NF_ACCEPT or NF_DROP. 740 */ 741 static int ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 742 enum ip_conntrack_info ctinfo, 743 const struct nf_nat_range2 *range, 744 enum nf_nat_manip_type maniptype) 745 { 746 int hooknum, err = NF_ACCEPT; 747 748 /* See HOOK2MANIP(). */ 749 if (maniptype == NF_NAT_MANIP_SRC) 750 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 751 else 752 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 753 754 switch (ctinfo) { 755 case IP_CT_RELATED: 756 case IP_CT_RELATED_REPLY: 757 if (skb->protocol == htons(ETH_P_IP) && 758 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 759 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 760 hooknum)) 761 err = NF_DROP; 762 goto out; 763 } else if (IS_ENABLED(CONFIG_IPV6) && 764 skb->protocol == htons(ETH_P_IPV6)) { 765 __be16 frag_off; 766 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 767 int hdrlen = ipv6_skip_exthdr(skb, 768 sizeof(struct ipv6hdr), 769 &nexthdr, &frag_off); 770 771 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 772 if (!nf_nat_icmpv6_reply_translation(skb, ct, 773 ctinfo, 774 hooknum, 775 hdrlen)) 776 err = NF_DROP; 777 goto out; 778 } 779 } 780 /* Non-ICMP, fall thru to initialize if needed. */ 781 /* fall through */ 782 case IP_CT_NEW: 783 /* Seen it before? This can happen for loopback, retrans, 784 * or local packets. 785 */ 786 if (!nf_nat_initialized(ct, maniptype)) { 787 /* Initialize according to the NAT action. */ 788 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 789 /* Action is set up to establish a new 790 * mapping. 791 */ 792 ? nf_nat_setup_info(ct, range, maniptype) 793 : nf_nat_alloc_null_binding(ct, hooknum); 794 if (err != NF_ACCEPT) 795 goto out; 796 } 797 break; 798 799 case IP_CT_ESTABLISHED: 800 case IP_CT_ESTABLISHED_REPLY: 801 break; 802 803 default: 804 err = NF_DROP; 805 goto out; 806 } 807 808 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 809 out: 810 return err; 811 } 812 #endif /* CONFIG_NF_NAT */ 813 814 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask) 815 { 816 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 817 u32 new_mark; 818 819 if (!mask) 820 return; 821 822 new_mark = mark | (ct->mark & ~(mask)); 823 if (ct->mark != new_mark) { 824 ct->mark = new_mark; 825 if (nf_ct_is_confirmed(ct)) 826 nf_conntrack_event_cache(IPCT_MARK, ct); 827 } 828 #endif 829 } 830 831 static void tcf_ct_act_set_labels(struct nf_conn *ct, 832 u32 *labels, 833 u32 *labels_m) 834 { 835 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) 836 size_t labels_sz = sizeof_field(struct tcf_ct_params, labels); 837 838 if (!memchr_inv(labels_m, 0, labels_sz)) 839 return; 840 841 nf_connlabels_replace(ct, labels, labels_m, 4); 842 #endif 843 } 844 845 static int tcf_ct_act_nat(struct sk_buff *skb, 846 struct nf_conn *ct, 847 enum ip_conntrack_info ctinfo, 848 int ct_action, 849 struct nf_nat_range2 *range, 850 bool commit) 851 { 852 #if IS_ENABLED(CONFIG_NF_NAT) 853 int err; 854 enum nf_nat_manip_type maniptype; 855 856 if (!(ct_action & TCA_CT_ACT_NAT)) 857 return NF_ACCEPT; 858 859 /* Add NAT extension if not confirmed yet. */ 860 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 861 return NF_DROP; /* Can't NAT. */ 862 863 if (ctinfo != IP_CT_NEW && (ct->status & IPS_NAT_MASK) && 864 (ctinfo != IP_CT_RELATED || commit)) { 865 /* NAT an established or related connection like before. */ 866 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 867 /* This is the REPLY direction for a connection 868 * for which NAT was applied in the forward 869 * direction. Do the reverse NAT. 870 */ 871 maniptype = ct->status & IPS_SRC_NAT 872 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 873 else 874 maniptype = ct->status & IPS_SRC_NAT 875 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 876 } else if (ct_action & TCA_CT_ACT_NAT_SRC) { 877 maniptype = NF_NAT_MANIP_SRC; 878 } else if (ct_action & TCA_CT_ACT_NAT_DST) { 879 maniptype = NF_NAT_MANIP_DST; 880 } else { 881 return NF_ACCEPT; 882 } 883 884 err = ct_nat_execute(skb, ct, ctinfo, range, maniptype); 885 if (err == NF_ACCEPT && 886 ct->status & IPS_SRC_NAT && ct->status & IPS_DST_NAT) { 887 if (maniptype == NF_NAT_MANIP_SRC) 888 maniptype = NF_NAT_MANIP_DST; 889 else 890 maniptype = NF_NAT_MANIP_SRC; 891 892 err = ct_nat_execute(skb, ct, ctinfo, range, maniptype); 893 } 894 return err; 895 #else 896 return NF_ACCEPT; 897 #endif 898 } 899 900 static int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a, 901 struct tcf_result *res) 902 { 903 struct net *net = dev_net(skb->dev); 904 bool cached, commit, clear, force; 905 enum ip_conntrack_info ctinfo; 906 struct tcf_ct *c = to_ct(a); 907 struct nf_conn *tmpl = NULL; 908 struct nf_hook_state state; 909 int nh_ofs, err, retval; 910 struct tcf_ct_params *p; 911 bool skip_add = false; 912 struct nf_conn *ct; 913 u8 family; 914 915 p = rcu_dereference_bh(c->params); 916 917 retval = READ_ONCE(c->tcf_action); 918 commit = p->ct_action & TCA_CT_ACT_COMMIT; 919 clear = p->ct_action & TCA_CT_ACT_CLEAR; 920 force = p->ct_action & TCA_CT_ACT_FORCE; 921 tmpl = p->tmpl; 922 923 if (clear) { 924 ct = nf_ct_get(skb, &ctinfo); 925 if (ct) { 926 nf_conntrack_put(&ct->ct_general); 927 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 928 } 929 930 goto out; 931 } 932 933 family = tcf_ct_skb_nf_family(skb); 934 if (family == NFPROTO_UNSPEC) 935 goto drop; 936 937 /* The conntrack module expects to be working at L3. 938 * We also try to pull the IPv4/6 header to linear area 939 */ 940 nh_ofs = skb_network_offset(skb); 941 skb_pull_rcsum(skb, nh_ofs); 942 err = tcf_ct_handle_fragments(net, skb, family, p->zone); 943 if (err == -EINPROGRESS) { 944 retval = TC_ACT_STOLEN; 945 goto out; 946 } 947 if (err) 948 goto drop; 949 950 err = tcf_ct_skb_network_trim(skb, family); 951 if (err) 952 goto drop; 953 954 /* If we are recirculating packets to match on ct fields and 955 * committing with a separate ct action, then we don't need to 956 * actually run the packet through conntrack twice unless it's for a 957 * different zone. 958 */ 959 cached = tcf_ct_skb_nfct_cached(net, skb, p->zone, force); 960 if (!cached) { 961 if (!commit && tcf_ct_flow_table_lookup(p, skb, family)) { 962 skip_add = true; 963 goto do_nat; 964 } 965 966 /* Associate skb with specified zone. */ 967 if (tmpl) { 968 ct = nf_ct_get(skb, &ctinfo); 969 if (skb_nfct(skb)) 970 nf_conntrack_put(skb_nfct(skb)); 971 nf_conntrack_get(&tmpl->ct_general); 972 nf_ct_set(skb, tmpl, IP_CT_NEW); 973 } 974 975 state.hook = NF_INET_PRE_ROUTING; 976 state.net = net; 977 state.pf = family; 978 err = nf_conntrack_in(skb, &state); 979 if (err != NF_ACCEPT) 980 goto out_push; 981 } 982 983 do_nat: 984 ct = nf_ct_get(skb, &ctinfo); 985 if (!ct) 986 goto out_push; 987 nf_ct_deliver_cached_events(ct); 988 989 err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit); 990 if (err != NF_ACCEPT) 991 goto drop; 992 993 if (commit) { 994 tcf_ct_act_set_mark(ct, p->mark, p->mark_mask); 995 tcf_ct_act_set_labels(ct, p->labels, p->labels_mask); 996 997 /* This will take care of sending queued events 998 * even if the connection is already confirmed. 999 */ 1000 nf_conntrack_confirm(skb); 1001 } else if (!skip_add) { 1002 tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo); 1003 } 1004 1005 out_push: 1006 skb_push_rcsum(skb, nh_ofs); 1007 1008 out: 1009 tcf_action_update_bstats(&c->common, skb); 1010 return retval; 1011 1012 drop: 1013 tcf_action_inc_drop_qstats(&c->common); 1014 return TC_ACT_SHOT; 1015 } 1016 1017 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = { 1018 [TCA_CT_ACTION] = { .type = NLA_U16 }, 1019 [TCA_CT_PARMS] = { .type = NLA_EXACT_LEN, .len = sizeof(struct tc_ct) }, 1020 [TCA_CT_ZONE] = { .type = NLA_U16 }, 1021 [TCA_CT_MARK] = { .type = NLA_U32 }, 1022 [TCA_CT_MARK_MASK] = { .type = NLA_U32 }, 1023 [TCA_CT_LABELS] = { .type = NLA_BINARY, 1024 .len = 128 / BITS_PER_BYTE }, 1025 [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY, 1026 .len = 128 / BITS_PER_BYTE }, 1027 [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 }, 1028 [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 }, 1029 [TCA_CT_NAT_IPV6_MIN] = { .type = NLA_EXACT_LEN, 1030 .len = sizeof(struct in6_addr) }, 1031 [TCA_CT_NAT_IPV6_MAX] = { .type = NLA_EXACT_LEN, 1032 .len = sizeof(struct in6_addr) }, 1033 [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 }, 1034 [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 }, 1035 }; 1036 1037 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p, 1038 struct tc_ct *parm, 1039 struct nlattr **tb, 1040 struct netlink_ext_ack *extack) 1041 { 1042 struct nf_nat_range2 *range; 1043 1044 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1045 return 0; 1046 1047 if (!IS_ENABLED(CONFIG_NF_NAT)) { 1048 NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel"); 1049 return -EOPNOTSUPP; 1050 } 1051 1052 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1053 return 0; 1054 1055 if ((p->ct_action & TCA_CT_ACT_NAT_SRC) && 1056 (p->ct_action & TCA_CT_ACT_NAT_DST)) { 1057 NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time"); 1058 return -EOPNOTSUPP; 1059 } 1060 1061 range = &p->range; 1062 if (tb[TCA_CT_NAT_IPV4_MIN]) { 1063 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX]; 1064 1065 p->ipv4_range = true; 1066 range->flags |= NF_NAT_RANGE_MAP_IPS; 1067 range->min_addr.ip = 1068 nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]); 1069 1070 range->max_addr.ip = max_attr ? 1071 nla_get_in_addr(max_attr) : 1072 range->min_addr.ip; 1073 } else if (tb[TCA_CT_NAT_IPV6_MIN]) { 1074 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX]; 1075 1076 p->ipv4_range = false; 1077 range->flags |= NF_NAT_RANGE_MAP_IPS; 1078 range->min_addr.in6 = 1079 nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]); 1080 1081 range->max_addr.in6 = max_attr ? 1082 nla_get_in6_addr(max_attr) : 1083 range->min_addr.in6; 1084 } 1085 1086 if (tb[TCA_CT_NAT_PORT_MIN]) { 1087 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1088 range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]); 1089 1090 range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ? 1091 nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) : 1092 range->min_proto.all; 1093 } 1094 1095 return 0; 1096 } 1097 1098 static void tcf_ct_set_key_val(struct nlattr **tb, 1099 void *val, int val_type, 1100 void *mask, int mask_type, 1101 int len) 1102 { 1103 if (!tb[val_type]) 1104 return; 1105 nla_memcpy(val, tb[val_type], len); 1106 1107 if (!mask) 1108 return; 1109 1110 if (mask_type == TCA_CT_UNSPEC || !tb[mask_type]) 1111 memset(mask, 0xff, len); 1112 else 1113 nla_memcpy(mask, tb[mask_type], len); 1114 } 1115 1116 static int tcf_ct_fill_params(struct net *net, 1117 struct tcf_ct_params *p, 1118 struct tc_ct *parm, 1119 struct nlattr **tb, 1120 struct netlink_ext_ack *extack) 1121 { 1122 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1123 struct nf_conntrack_zone zone; 1124 struct nf_conn *tmpl; 1125 int err; 1126 1127 p->zone = NF_CT_DEFAULT_ZONE_ID; 1128 1129 tcf_ct_set_key_val(tb, 1130 &p->ct_action, TCA_CT_ACTION, 1131 NULL, TCA_CT_UNSPEC, 1132 sizeof(p->ct_action)); 1133 1134 if (p->ct_action & TCA_CT_ACT_CLEAR) 1135 return 0; 1136 1137 err = tcf_ct_fill_params_nat(p, parm, tb, extack); 1138 if (err) 1139 return err; 1140 1141 if (tb[TCA_CT_MARK]) { 1142 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) { 1143 NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled."); 1144 return -EOPNOTSUPP; 1145 } 1146 tcf_ct_set_key_val(tb, 1147 &p->mark, TCA_CT_MARK, 1148 &p->mark_mask, TCA_CT_MARK_MASK, 1149 sizeof(p->mark)); 1150 } 1151 1152 if (tb[TCA_CT_LABELS]) { 1153 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) { 1154 NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled."); 1155 return -EOPNOTSUPP; 1156 } 1157 1158 if (!tn->labels) { 1159 NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length"); 1160 return -EOPNOTSUPP; 1161 } 1162 tcf_ct_set_key_val(tb, 1163 p->labels, TCA_CT_LABELS, 1164 p->labels_mask, TCA_CT_LABELS_MASK, 1165 sizeof(p->labels)); 1166 } 1167 1168 if (tb[TCA_CT_ZONE]) { 1169 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) { 1170 NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled."); 1171 return -EOPNOTSUPP; 1172 } 1173 1174 tcf_ct_set_key_val(tb, 1175 &p->zone, TCA_CT_ZONE, 1176 NULL, TCA_CT_UNSPEC, 1177 sizeof(p->zone)); 1178 } 1179 1180 if (p->zone == NF_CT_DEFAULT_ZONE_ID) 1181 return 0; 1182 1183 nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0); 1184 tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL); 1185 if (!tmpl) { 1186 NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template"); 1187 return -ENOMEM; 1188 } 1189 __set_bit(IPS_CONFIRMED_BIT, &tmpl->status); 1190 nf_conntrack_get(&tmpl->ct_general); 1191 p->tmpl = tmpl; 1192 1193 return 0; 1194 } 1195 1196 static int tcf_ct_init(struct net *net, struct nlattr *nla, 1197 struct nlattr *est, struct tc_action **a, 1198 int replace, int bind, bool rtnl_held, 1199 struct tcf_proto *tp, u32 flags, 1200 struct netlink_ext_ack *extack) 1201 { 1202 struct tc_action_net *tn = net_generic(net, ct_net_id); 1203 struct tcf_ct_params *params = NULL; 1204 struct nlattr *tb[TCA_CT_MAX + 1]; 1205 struct tcf_chain *goto_ch = NULL; 1206 struct tc_ct *parm; 1207 struct tcf_ct *c; 1208 int err, res = 0; 1209 u32 index; 1210 1211 if (!nla) { 1212 NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed"); 1213 return -EINVAL; 1214 } 1215 1216 err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack); 1217 if (err < 0) 1218 return err; 1219 1220 if (!tb[TCA_CT_PARMS]) { 1221 NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters"); 1222 return -EINVAL; 1223 } 1224 parm = nla_data(tb[TCA_CT_PARMS]); 1225 index = parm->index; 1226 err = tcf_idr_check_alloc(tn, &index, a, bind); 1227 if (err < 0) 1228 return err; 1229 1230 if (!err) { 1231 err = tcf_idr_create_from_flags(tn, index, est, a, 1232 &act_ct_ops, bind, flags); 1233 if (err) { 1234 tcf_idr_cleanup(tn, index); 1235 return err; 1236 } 1237 res = ACT_P_CREATED; 1238 } else { 1239 if (bind) 1240 return 0; 1241 1242 if (!replace) { 1243 tcf_idr_release(*a, bind); 1244 return -EEXIST; 1245 } 1246 } 1247 err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); 1248 if (err < 0) 1249 goto cleanup; 1250 1251 c = to_ct(*a); 1252 1253 params = kzalloc(sizeof(*params), GFP_KERNEL); 1254 if (unlikely(!params)) { 1255 err = -ENOMEM; 1256 goto cleanup; 1257 } 1258 1259 err = tcf_ct_fill_params(net, params, parm, tb, extack); 1260 if (err) 1261 goto cleanup; 1262 1263 err = tcf_ct_flow_table_get(params); 1264 if (err) 1265 goto cleanup; 1266 1267 spin_lock_bh(&c->tcf_lock); 1268 goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); 1269 params = rcu_replace_pointer(c->params, params, 1270 lockdep_is_held(&c->tcf_lock)); 1271 spin_unlock_bh(&c->tcf_lock); 1272 1273 if (goto_ch) 1274 tcf_chain_put_by_act(goto_ch); 1275 if (params) 1276 call_rcu(¶ms->rcu, tcf_ct_params_free); 1277 if (res == ACT_P_CREATED) 1278 tcf_idr_insert(tn, *a); 1279 1280 return res; 1281 1282 cleanup: 1283 if (goto_ch) 1284 tcf_chain_put_by_act(goto_ch); 1285 kfree(params); 1286 tcf_idr_release(*a, bind); 1287 return err; 1288 } 1289 1290 static void tcf_ct_cleanup(struct tc_action *a) 1291 { 1292 struct tcf_ct_params *params; 1293 struct tcf_ct *c = to_ct(a); 1294 1295 params = rcu_dereference_protected(c->params, 1); 1296 if (params) 1297 call_rcu(¶ms->rcu, tcf_ct_params_free); 1298 } 1299 1300 static int tcf_ct_dump_key_val(struct sk_buff *skb, 1301 void *val, int val_type, 1302 void *mask, int mask_type, 1303 int len) 1304 { 1305 int err; 1306 1307 if (mask && !memchr_inv(mask, 0, len)) 1308 return 0; 1309 1310 err = nla_put(skb, val_type, len, val); 1311 if (err) 1312 return err; 1313 1314 if (mask_type != TCA_CT_UNSPEC) { 1315 err = nla_put(skb, mask_type, len, mask); 1316 if (err) 1317 return err; 1318 } 1319 1320 return 0; 1321 } 1322 1323 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p) 1324 { 1325 struct nf_nat_range2 *range = &p->range; 1326 1327 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1328 return 0; 1329 1330 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1331 return 0; 1332 1333 if (range->flags & NF_NAT_RANGE_MAP_IPS) { 1334 if (p->ipv4_range) { 1335 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN, 1336 range->min_addr.ip)) 1337 return -1; 1338 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX, 1339 range->max_addr.ip)) 1340 return -1; 1341 } else { 1342 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN, 1343 &range->min_addr.in6)) 1344 return -1; 1345 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX, 1346 &range->max_addr.in6)) 1347 return -1; 1348 } 1349 } 1350 1351 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) { 1352 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN, 1353 range->min_proto.all)) 1354 return -1; 1355 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX, 1356 range->max_proto.all)) 1357 return -1; 1358 } 1359 1360 return 0; 1361 } 1362 1363 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a, 1364 int bind, int ref) 1365 { 1366 unsigned char *b = skb_tail_pointer(skb); 1367 struct tcf_ct *c = to_ct(a); 1368 struct tcf_ct_params *p; 1369 1370 struct tc_ct opt = { 1371 .index = c->tcf_index, 1372 .refcnt = refcount_read(&c->tcf_refcnt) - ref, 1373 .bindcnt = atomic_read(&c->tcf_bindcnt) - bind, 1374 }; 1375 struct tcf_t t; 1376 1377 spin_lock_bh(&c->tcf_lock); 1378 p = rcu_dereference_protected(c->params, 1379 lockdep_is_held(&c->tcf_lock)); 1380 opt.action = c->tcf_action; 1381 1382 if (tcf_ct_dump_key_val(skb, 1383 &p->ct_action, TCA_CT_ACTION, 1384 NULL, TCA_CT_UNSPEC, 1385 sizeof(p->ct_action))) 1386 goto nla_put_failure; 1387 1388 if (p->ct_action & TCA_CT_ACT_CLEAR) 1389 goto skip_dump; 1390 1391 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1392 tcf_ct_dump_key_val(skb, 1393 &p->mark, TCA_CT_MARK, 1394 &p->mark_mask, TCA_CT_MARK_MASK, 1395 sizeof(p->mark))) 1396 goto nla_put_failure; 1397 1398 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1399 tcf_ct_dump_key_val(skb, 1400 p->labels, TCA_CT_LABELS, 1401 p->labels_mask, TCA_CT_LABELS_MASK, 1402 sizeof(p->labels))) 1403 goto nla_put_failure; 1404 1405 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1406 tcf_ct_dump_key_val(skb, 1407 &p->zone, TCA_CT_ZONE, 1408 NULL, TCA_CT_UNSPEC, 1409 sizeof(p->zone))) 1410 goto nla_put_failure; 1411 1412 if (tcf_ct_dump_nat(skb, p)) 1413 goto nla_put_failure; 1414 1415 skip_dump: 1416 if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt)) 1417 goto nla_put_failure; 1418 1419 tcf_tm_dump(&t, &c->tcf_tm); 1420 if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD)) 1421 goto nla_put_failure; 1422 spin_unlock_bh(&c->tcf_lock); 1423 1424 return skb->len; 1425 nla_put_failure: 1426 spin_unlock_bh(&c->tcf_lock); 1427 nlmsg_trim(skb, b); 1428 return -1; 1429 } 1430 1431 static int tcf_ct_walker(struct net *net, struct sk_buff *skb, 1432 struct netlink_callback *cb, int type, 1433 const struct tc_action_ops *ops, 1434 struct netlink_ext_ack *extack) 1435 { 1436 struct tc_action_net *tn = net_generic(net, ct_net_id); 1437 1438 return tcf_generic_walker(tn, skb, cb, type, ops, extack); 1439 } 1440 1441 static int tcf_ct_search(struct net *net, struct tc_action **a, u32 index) 1442 { 1443 struct tc_action_net *tn = net_generic(net, ct_net_id); 1444 1445 return tcf_idr_search(tn, a, index); 1446 } 1447 1448 static void tcf_stats_update(struct tc_action *a, u64 bytes, u32 packets, 1449 u64 lastuse, bool hw) 1450 { 1451 struct tcf_ct *c = to_ct(a); 1452 1453 tcf_action_update_stats(a, bytes, packets, false, hw); 1454 c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse); 1455 } 1456 1457 static struct tc_action_ops act_ct_ops = { 1458 .kind = "ct", 1459 .id = TCA_ID_CT, 1460 .owner = THIS_MODULE, 1461 .act = tcf_ct_act, 1462 .dump = tcf_ct_dump, 1463 .init = tcf_ct_init, 1464 .cleanup = tcf_ct_cleanup, 1465 .walk = tcf_ct_walker, 1466 .lookup = tcf_ct_search, 1467 .stats_update = tcf_stats_update, 1468 .size = sizeof(struct tcf_ct), 1469 }; 1470 1471 static __net_init int ct_init_net(struct net *net) 1472 { 1473 unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8; 1474 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1475 1476 if (nf_connlabels_get(net, n_bits - 1)) { 1477 tn->labels = false; 1478 pr_err("act_ct: Failed to set connlabels length"); 1479 } else { 1480 tn->labels = true; 1481 } 1482 1483 return tc_action_net_init(net, &tn->tn, &act_ct_ops); 1484 } 1485 1486 static void __net_exit ct_exit_net(struct list_head *net_list) 1487 { 1488 struct net *net; 1489 1490 rtnl_lock(); 1491 list_for_each_entry(net, net_list, exit_list) { 1492 struct tc_ct_action_net *tn = net_generic(net, ct_net_id); 1493 1494 if (tn->labels) 1495 nf_connlabels_put(net); 1496 } 1497 rtnl_unlock(); 1498 1499 tc_action_net_exit(net_list, ct_net_id); 1500 } 1501 1502 static struct pernet_operations ct_net_ops = { 1503 .init = ct_init_net, 1504 .exit_batch = ct_exit_net, 1505 .id = &ct_net_id, 1506 .size = sizeof(struct tc_ct_action_net), 1507 }; 1508 1509 static int __init ct_init_module(void) 1510 { 1511 int err; 1512 1513 act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0); 1514 if (!act_ct_wq) 1515 return -ENOMEM; 1516 1517 err = tcf_ct_flow_tables_init(); 1518 if (err) 1519 goto err_tbl_init; 1520 1521 err = tcf_register_action(&act_ct_ops, &ct_net_ops); 1522 if (err) 1523 goto err_register; 1524 1525 return 0; 1526 1527 err_tbl_init: 1528 destroy_workqueue(act_ct_wq); 1529 err_register: 1530 tcf_ct_flow_tables_uninit(); 1531 return err; 1532 } 1533 1534 static void __exit ct_cleanup_module(void) 1535 { 1536 tcf_unregister_action(&act_ct_ops, &ct_net_ops); 1537 tcf_ct_flow_tables_uninit(); 1538 destroy_workqueue(act_ct_wq); 1539 } 1540 1541 void tcf_ct_flow_table_restore_skb(struct sk_buff *skb, unsigned long cookie) 1542 { 1543 enum ip_conntrack_info ctinfo = cookie & NFCT_INFOMASK; 1544 struct nf_conn *ct; 1545 1546 ct = (struct nf_conn *)(cookie & NFCT_PTRMASK); 1547 nf_conntrack_get(&ct->ct_general); 1548 nf_ct_set(skb, ct, ctinfo); 1549 } 1550 EXPORT_SYMBOL_GPL(tcf_ct_flow_table_restore_skb); 1551 1552 module_init(ct_init_module); 1553 module_exit(ct_cleanup_module); 1554 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>"); 1555 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>"); 1556 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>"); 1557 MODULE_DESCRIPTION("Connection tracking action"); 1558 MODULE_LICENSE("GPL v2"); 1559 1560