1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* - 3 * net/sched/act_ct.c Connection Tracking action 4 * 5 * Authors: Paul Blakey <paulb@mellanox.com> 6 * Yossi Kuperman <yossiku@mellanox.com> 7 * Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/skbuff.h> 14 #include <linux/rtnetlink.h> 15 #include <linux/pkt_cls.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/rhashtable.h> 19 #include <net/netlink.h> 20 #include <net/pkt_sched.h> 21 #include <net/pkt_cls.h> 22 #include <net/act_api.h> 23 #include <net/ip.h> 24 #include <net/ipv6_frag.h> 25 #include <uapi/linux/tc_act/tc_ct.h> 26 #include <net/tc_act/tc_ct.h> 27 #include <net/tc_wrapper.h> 28 29 #include <net/netfilter/nf_flow_table.h> 30 #include <net/netfilter/nf_conntrack.h> 31 #include <net/netfilter/nf_conntrack_core.h> 32 #include <net/netfilter/nf_conntrack_zones.h> 33 #include <net/netfilter/nf_conntrack_helper.h> 34 #include <net/netfilter/nf_conntrack_acct.h> 35 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 36 #include <net/netfilter/nf_conntrack_act_ct.h> 37 #include <net/netfilter/nf_conntrack_seqadj.h> 38 #include <uapi/linux/netfilter/nf_nat.h> 39 40 static struct workqueue_struct *act_ct_wq; 41 static struct rhashtable zones_ht; 42 static DEFINE_MUTEX(zones_mutex); 43 44 struct tcf_ct_flow_table { 45 struct rhash_head node; /* In zones tables */ 46 47 struct rcu_work rwork; 48 struct nf_flowtable nf_ft; 49 refcount_t ref; 50 u16 zone; 51 52 bool dying; 53 }; 54 55 static const struct rhashtable_params zones_params = { 56 .head_offset = offsetof(struct tcf_ct_flow_table, node), 57 .key_offset = offsetof(struct tcf_ct_flow_table, zone), 58 .key_len = sizeof_field(struct tcf_ct_flow_table, zone), 59 .automatic_shrinking = true, 60 }; 61 62 static struct flow_action_entry * 63 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action) 64 { 65 int i = flow_action->num_entries++; 66 67 return &flow_action->entries[i]; 68 } 69 70 static void tcf_ct_add_mangle_action(struct flow_action *action, 71 enum flow_action_mangle_base htype, 72 u32 offset, 73 u32 mask, 74 u32 val) 75 { 76 struct flow_action_entry *entry; 77 78 entry = tcf_ct_flow_table_flow_action_get_next(action); 79 entry->id = FLOW_ACTION_MANGLE; 80 entry->mangle.htype = htype; 81 entry->mangle.mask = ~mask; 82 entry->mangle.offset = offset; 83 entry->mangle.val = val; 84 } 85 86 /* The following nat helper functions check if the inverted reverse tuple 87 * (target) is different then the current dir tuple - meaning nat for ports 88 * and/or ip is needed, and add the relevant mangle actions. 89 */ 90 static void 91 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple, 92 struct nf_conntrack_tuple target, 93 struct flow_action *action) 94 { 95 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 96 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 97 offsetof(struct iphdr, saddr), 98 0xFFFFFFFF, 99 be32_to_cpu(target.src.u3.ip)); 100 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 101 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 102 offsetof(struct iphdr, daddr), 103 0xFFFFFFFF, 104 be32_to_cpu(target.dst.u3.ip)); 105 } 106 107 static void 108 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action, 109 union nf_inet_addr *addr, 110 u32 offset) 111 { 112 int i; 113 114 for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++) 115 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6, 116 i * sizeof(u32) + offset, 117 0xFFFFFFFF, be32_to_cpu(addr->ip6[i])); 118 } 119 120 static void 121 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple, 122 struct nf_conntrack_tuple target, 123 struct flow_action *action) 124 { 125 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 126 tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3, 127 offsetof(struct ipv6hdr, 128 saddr)); 129 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 130 tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3, 131 offsetof(struct ipv6hdr, 132 daddr)); 133 } 134 135 static void 136 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple, 137 struct nf_conntrack_tuple target, 138 struct flow_action *action) 139 { 140 __be16 target_src = target.src.u.tcp.port; 141 __be16 target_dst = target.dst.u.tcp.port; 142 143 if (target_src != tuple->src.u.tcp.port) 144 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 145 offsetof(struct tcphdr, source), 146 0xFFFF, be16_to_cpu(target_src)); 147 if (target_dst != tuple->dst.u.tcp.port) 148 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 149 offsetof(struct tcphdr, dest), 150 0xFFFF, be16_to_cpu(target_dst)); 151 } 152 153 static void 154 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple, 155 struct nf_conntrack_tuple target, 156 struct flow_action *action) 157 { 158 __be16 target_src = target.src.u.udp.port; 159 __be16 target_dst = target.dst.u.udp.port; 160 161 if (target_src != tuple->src.u.udp.port) 162 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 163 offsetof(struct udphdr, source), 164 0xFFFF, be16_to_cpu(target_src)); 165 if (target_dst != tuple->dst.u.udp.port) 166 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 167 offsetof(struct udphdr, dest), 168 0xFFFF, be16_to_cpu(target_dst)); 169 } 170 171 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct, 172 enum ip_conntrack_dir dir, 173 enum ip_conntrack_info ctinfo, 174 struct flow_action *action) 175 { 176 struct nf_conn_labels *ct_labels; 177 struct flow_action_entry *entry; 178 u32 *act_ct_labels; 179 180 entry = tcf_ct_flow_table_flow_action_get_next(action); 181 entry->id = FLOW_ACTION_CT_METADATA; 182 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 183 entry->ct_metadata.mark = READ_ONCE(ct->mark); 184 #endif 185 /* aligns with the CT reference on the SKB nf_ct_set */ 186 entry->ct_metadata.cookie = (unsigned long)ct | ctinfo; 187 entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL; 188 189 act_ct_labels = entry->ct_metadata.labels; 190 ct_labels = nf_ct_labels_find(ct); 191 if (ct_labels) 192 memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE); 193 else 194 memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE); 195 } 196 197 static int tcf_ct_flow_table_add_action_nat(struct net *net, 198 struct nf_conn *ct, 199 enum ip_conntrack_dir dir, 200 struct flow_action *action) 201 { 202 const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple; 203 struct nf_conntrack_tuple target; 204 205 if (!(ct->status & IPS_NAT_MASK)) 206 return 0; 207 208 nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple); 209 210 switch (tuple->src.l3num) { 211 case NFPROTO_IPV4: 212 tcf_ct_flow_table_add_action_nat_ipv4(tuple, target, 213 action); 214 break; 215 case NFPROTO_IPV6: 216 tcf_ct_flow_table_add_action_nat_ipv6(tuple, target, 217 action); 218 break; 219 default: 220 return -EOPNOTSUPP; 221 } 222 223 switch (nf_ct_protonum(ct)) { 224 case IPPROTO_TCP: 225 tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action); 226 break; 227 case IPPROTO_UDP: 228 tcf_ct_flow_table_add_action_nat_udp(tuple, target, action); 229 break; 230 default: 231 return -EOPNOTSUPP; 232 } 233 234 return 0; 235 } 236 237 static int tcf_ct_flow_table_fill_actions(struct net *net, 238 struct flow_offload *flow, 239 enum flow_offload_tuple_dir tdir, 240 struct nf_flow_rule *flow_rule) 241 { 242 struct flow_action *action = &flow_rule->rule->action; 243 int num_entries = action->num_entries; 244 struct nf_conn *ct = flow->ct; 245 enum ip_conntrack_info ctinfo; 246 enum ip_conntrack_dir dir; 247 int i, err; 248 249 switch (tdir) { 250 case FLOW_OFFLOAD_DIR_ORIGINAL: 251 dir = IP_CT_DIR_ORIGINAL; 252 ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ? 253 IP_CT_ESTABLISHED : IP_CT_NEW; 254 if (ctinfo == IP_CT_ESTABLISHED) 255 set_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags); 256 break; 257 case FLOW_OFFLOAD_DIR_REPLY: 258 dir = IP_CT_DIR_REPLY; 259 ctinfo = IP_CT_ESTABLISHED_REPLY; 260 break; 261 default: 262 return -EOPNOTSUPP; 263 } 264 265 err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action); 266 if (err) 267 goto err_nat; 268 269 tcf_ct_flow_table_add_action_meta(ct, dir, ctinfo, action); 270 return 0; 271 272 err_nat: 273 /* Clear filled actions */ 274 for (i = num_entries; i < action->num_entries; i++) 275 memset(&action->entries[i], 0, sizeof(action->entries[i])); 276 action->num_entries = num_entries; 277 278 return err; 279 } 280 281 static struct nf_flowtable_type flowtable_ct = { 282 .action = tcf_ct_flow_table_fill_actions, 283 .owner = THIS_MODULE, 284 }; 285 286 static int tcf_ct_flow_table_get(struct net *net, struct tcf_ct_params *params) 287 { 288 struct tcf_ct_flow_table *ct_ft; 289 int err = -ENOMEM; 290 291 mutex_lock(&zones_mutex); 292 ct_ft = rhashtable_lookup_fast(&zones_ht, ¶ms->zone, zones_params); 293 if (ct_ft && refcount_inc_not_zero(&ct_ft->ref)) 294 goto out_unlock; 295 296 ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL); 297 if (!ct_ft) 298 goto err_alloc; 299 refcount_set(&ct_ft->ref, 1); 300 301 ct_ft->zone = params->zone; 302 err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params); 303 if (err) 304 goto err_insert; 305 306 ct_ft->nf_ft.type = &flowtable_ct; 307 ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD | 308 NF_FLOWTABLE_COUNTER; 309 err = nf_flow_table_init(&ct_ft->nf_ft); 310 if (err) 311 goto err_init; 312 write_pnet(&ct_ft->nf_ft.net, net); 313 314 __module_get(THIS_MODULE); 315 out_unlock: 316 params->ct_ft = ct_ft; 317 params->nf_ft = &ct_ft->nf_ft; 318 mutex_unlock(&zones_mutex); 319 320 return 0; 321 322 err_init: 323 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 324 err_insert: 325 kfree(ct_ft); 326 err_alloc: 327 mutex_unlock(&zones_mutex); 328 return err; 329 } 330 331 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work) 332 { 333 struct flow_block_cb *block_cb, *tmp_cb; 334 struct tcf_ct_flow_table *ct_ft; 335 struct flow_block *block; 336 337 ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table, 338 rwork); 339 nf_flow_table_free(&ct_ft->nf_ft); 340 341 /* Remove any remaining callbacks before cleanup */ 342 block = &ct_ft->nf_ft.flow_block; 343 down_write(&ct_ft->nf_ft.flow_block_lock); 344 list_for_each_entry_safe(block_cb, tmp_cb, &block->cb_list, list) { 345 list_del(&block_cb->list); 346 flow_block_cb_free(block_cb); 347 } 348 up_write(&ct_ft->nf_ft.flow_block_lock); 349 kfree(ct_ft); 350 351 module_put(THIS_MODULE); 352 } 353 354 static void tcf_ct_flow_table_put(struct tcf_ct_flow_table *ct_ft) 355 { 356 if (refcount_dec_and_test(&ct_ft->ref)) { 357 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 358 INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work); 359 queue_rcu_work(act_ct_wq, &ct_ft->rwork); 360 } 361 } 362 363 static void tcf_ct_flow_tc_ifidx(struct flow_offload *entry, 364 struct nf_conn_act_ct_ext *act_ct_ext, u8 dir) 365 { 366 entry->tuplehash[dir].tuple.xmit_type = FLOW_OFFLOAD_XMIT_TC; 367 entry->tuplehash[dir].tuple.tc.iifidx = act_ct_ext->ifindex[dir]; 368 } 369 370 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft, 371 struct nf_conn *ct, 372 bool tcp, bool bidirectional) 373 { 374 struct nf_conn_act_ct_ext *act_ct_ext; 375 struct flow_offload *entry; 376 int err; 377 378 if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status)) 379 return; 380 381 entry = flow_offload_alloc(ct); 382 if (!entry) { 383 WARN_ON_ONCE(1); 384 goto err_alloc; 385 } 386 387 if (tcp) { 388 ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 389 ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 390 } 391 if (bidirectional) 392 __set_bit(NF_FLOW_HW_BIDIRECTIONAL, &entry->flags); 393 394 act_ct_ext = nf_conn_act_ct_ext_find(ct); 395 if (act_ct_ext) { 396 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL); 397 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY); 398 } 399 400 err = flow_offload_add(&ct_ft->nf_ft, entry); 401 if (err) 402 goto err_add; 403 404 return; 405 406 err_add: 407 flow_offload_free(entry); 408 err_alloc: 409 clear_bit(IPS_OFFLOAD_BIT, &ct->status); 410 } 411 412 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft, 413 struct nf_conn *ct, 414 enum ip_conntrack_info ctinfo) 415 { 416 bool tcp = false, bidirectional = true; 417 418 switch (nf_ct_protonum(ct)) { 419 case IPPROTO_TCP: 420 if ((ctinfo != IP_CT_ESTABLISHED && 421 ctinfo != IP_CT_ESTABLISHED_REPLY) || 422 !test_bit(IPS_ASSURED_BIT, &ct->status) || 423 ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) 424 return; 425 426 tcp = true; 427 break; 428 case IPPROTO_UDP: 429 if (!nf_ct_is_confirmed(ct)) 430 return; 431 if (!test_bit(IPS_ASSURED_BIT, &ct->status)) 432 bidirectional = false; 433 break; 434 #ifdef CONFIG_NF_CT_PROTO_GRE 435 case IPPROTO_GRE: { 436 struct nf_conntrack_tuple *tuple; 437 438 if ((ctinfo != IP_CT_ESTABLISHED && 439 ctinfo != IP_CT_ESTABLISHED_REPLY) || 440 !test_bit(IPS_ASSURED_BIT, &ct->status) || 441 ct->status & IPS_NAT_MASK) 442 return; 443 444 tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; 445 /* No support for GRE v1 */ 446 if (tuple->src.u.gre.key || tuple->dst.u.gre.key) 447 return; 448 break; 449 } 450 #endif 451 default: 452 return; 453 } 454 455 if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) || 456 ct->status & IPS_SEQ_ADJUST) 457 return; 458 459 tcf_ct_flow_table_add(ct_ft, ct, tcp, bidirectional); 460 } 461 462 static bool 463 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb, 464 struct flow_offload_tuple *tuple, 465 struct tcphdr **tcph) 466 { 467 struct flow_ports *ports; 468 unsigned int thoff; 469 struct iphdr *iph; 470 size_t hdrsize; 471 u8 ipproto; 472 473 if (!pskb_network_may_pull(skb, sizeof(*iph))) 474 return false; 475 476 iph = ip_hdr(skb); 477 thoff = iph->ihl * 4; 478 479 if (ip_is_fragment(iph) || 480 unlikely(thoff != sizeof(struct iphdr))) 481 return false; 482 483 ipproto = iph->protocol; 484 switch (ipproto) { 485 case IPPROTO_TCP: 486 hdrsize = sizeof(struct tcphdr); 487 break; 488 case IPPROTO_UDP: 489 hdrsize = sizeof(*ports); 490 break; 491 #ifdef CONFIG_NF_CT_PROTO_GRE 492 case IPPROTO_GRE: 493 hdrsize = sizeof(struct gre_base_hdr); 494 break; 495 #endif 496 default: 497 return false; 498 } 499 500 if (iph->ttl <= 1) 501 return false; 502 503 if (!pskb_network_may_pull(skb, thoff + hdrsize)) 504 return false; 505 506 switch (ipproto) { 507 case IPPROTO_TCP: 508 *tcph = (void *)(skb_network_header(skb) + thoff); 509 fallthrough; 510 case IPPROTO_UDP: 511 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 512 tuple->src_port = ports->source; 513 tuple->dst_port = ports->dest; 514 break; 515 case IPPROTO_GRE: { 516 struct gre_base_hdr *greh; 517 518 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff); 519 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0) 520 return false; 521 break; 522 } 523 } 524 525 iph = ip_hdr(skb); 526 527 tuple->src_v4.s_addr = iph->saddr; 528 tuple->dst_v4.s_addr = iph->daddr; 529 tuple->l3proto = AF_INET; 530 tuple->l4proto = ipproto; 531 532 return true; 533 } 534 535 static bool 536 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb, 537 struct flow_offload_tuple *tuple, 538 struct tcphdr **tcph) 539 { 540 struct flow_ports *ports; 541 struct ipv6hdr *ip6h; 542 unsigned int thoff; 543 size_t hdrsize; 544 u8 nexthdr; 545 546 if (!pskb_network_may_pull(skb, sizeof(*ip6h))) 547 return false; 548 549 ip6h = ipv6_hdr(skb); 550 thoff = sizeof(*ip6h); 551 552 nexthdr = ip6h->nexthdr; 553 switch (nexthdr) { 554 case IPPROTO_TCP: 555 hdrsize = sizeof(struct tcphdr); 556 break; 557 case IPPROTO_UDP: 558 hdrsize = sizeof(*ports); 559 break; 560 #ifdef CONFIG_NF_CT_PROTO_GRE 561 case IPPROTO_GRE: 562 hdrsize = sizeof(struct gre_base_hdr); 563 break; 564 #endif 565 default: 566 return false; 567 } 568 569 if (ip6h->hop_limit <= 1) 570 return false; 571 572 if (!pskb_network_may_pull(skb, thoff + hdrsize)) 573 return false; 574 575 switch (nexthdr) { 576 case IPPROTO_TCP: 577 *tcph = (void *)(skb_network_header(skb) + thoff); 578 fallthrough; 579 case IPPROTO_UDP: 580 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 581 tuple->src_port = ports->source; 582 tuple->dst_port = ports->dest; 583 break; 584 case IPPROTO_GRE: { 585 struct gre_base_hdr *greh; 586 587 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff); 588 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0) 589 return false; 590 break; 591 } 592 } 593 594 ip6h = ipv6_hdr(skb); 595 596 tuple->src_v6 = ip6h->saddr; 597 tuple->dst_v6 = ip6h->daddr; 598 tuple->l3proto = AF_INET6; 599 tuple->l4proto = nexthdr; 600 601 return true; 602 } 603 604 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p, 605 struct sk_buff *skb, 606 u8 family) 607 { 608 struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft; 609 struct flow_offload_tuple_rhash *tuplehash; 610 struct flow_offload_tuple tuple = {}; 611 enum ip_conntrack_info ctinfo; 612 struct tcphdr *tcph = NULL; 613 struct flow_offload *flow; 614 struct nf_conn *ct; 615 u8 dir; 616 617 switch (family) { 618 case NFPROTO_IPV4: 619 if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph)) 620 return false; 621 break; 622 case NFPROTO_IPV6: 623 if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph)) 624 return false; 625 break; 626 default: 627 return false; 628 } 629 630 tuplehash = flow_offload_lookup(nf_ft, &tuple); 631 if (!tuplehash) 632 return false; 633 634 dir = tuplehash->tuple.dir; 635 flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]); 636 ct = flow->ct; 637 638 if (dir == FLOW_OFFLOAD_DIR_REPLY && 639 !test_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags)) { 640 /* Only offload reply direction after connection became 641 * assured. 642 */ 643 if (test_bit(IPS_ASSURED_BIT, &ct->status)) 644 set_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags); 645 else if (test_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags)) 646 /* If flow_table flow has already been updated to the 647 * established state, then don't refresh. 648 */ 649 return false; 650 } 651 652 if (tcph && (unlikely(tcph->fin || tcph->rst))) { 653 flow_offload_teardown(flow); 654 return false; 655 } 656 657 if (dir == FLOW_OFFLOAD_DIR_ORIGINAL) 658 ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ? 659 IP_CT_ESTABLISHED : IP_CT_NEW; 660 else 661 ctinfo = IP_CT_ESTABLISHED_REPLY; 662 663 flow_offload_refresh(nf_ft, flow); 664 nf_conntrack_get(&ct->ct_general); 665 nf_ct_set(skb, ct, ctinfo); 666 if (nf_ft->flags & NF_FLOWTABLE_COUNTER) 667 nf_ct_acct_update(ct, dir, skb->len); 668 669 return true; 670 } 671 672 static int tcf_ct_flow_tables_init(void) 673 { 674 return rhashtable_init(&zones_ht, &zones_params); 675 } 676 677 static void tcf_ct_flow_tables_uninit(void) 678 { 679 rhashtable_destroy(&zones_ht); 680 } 681 682 static struct tc_action_ops act_ct_ops; 683 684 struct tc_ct_action_net { 685 struct tc_action_net tn; /* Must be first */ 686 bool labels; 687 }; 688 689 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 690 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb, 691 struct tcf_ct_params *p) 692 { 693 enum ip_conntrack_info ctinfo; 694 struct nf_conn *ct; 695 696 ct = nf_ct_get(skb, &ctinfo); 697 if (!ct) 698 return false; 699 if (!net_eq(net, read_pnet(&ct->ct_net))) 700 goto drop_ct; 701 if (nf_ct_zone(ct)->id != p->zone) 702 goto drop_ct; 703 if (p->helper) { 704 struct nf_conn_help *help; 705 706 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 707 if (help && rcu_access_pointer(help->helper) != p->helper) 708 goto drop_ct; 709 } 710 711 /* Force conntrack entry direction. */ 712 if ((p->ct_action & TCA_CT_ACT_FORCE) && 713 CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 714 if (nf_ct_is_confirmed(ct)) 715 nf_ct_kill(ct); 716 717 goto drop_ct; 718 } 719 720 return true; 721 722 drop_ct: 723 nf_ct_put(ct); 724 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 725 726 return false; 727 } 728 729 /* Trim the skb to the length specified by the IP/IPv6 header, 730 * removing any trailing lower-layer padding. This prepares the skb 731 * for higher-layer processing that assumes skb->len excludes padding 732 * (such as nf_ip_checksum). The caller needs to pull the skb to the 733 * network header, and ensure ip_hdr/ipv6_hdr points to valid data. 734 */ 735 static int tcf_ct_skb_network_trim(struct sk_buff *skb, int family) 736 { 737 unsigned int len; 738 739 switch (family) { 740 case NFPROTO_IPV4: 741 len = skb_ip_totlen(skb); 742 break; 743 case NFPROTO_IPV6: 744 len = sizeof(struct ipv6hdr) 745 + ntohs(ipv6_hdr(skb)->payload_len); 746 break; 747 default: 748 len = skb->len; 749 } 750 751 return pskb_trim_rcsum(skb, len); 752 } 753 754 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb) 755 { 756 u8 family = NFPROTO_UNSPEC; 757 758 switch (skb_protocol(skb, true)) { 759 case htons(ETH_P_IP): 760 family = NFPROTO_IPV4; 761 break; 762 case htons(ETH_P_IPV6): 763 family = NFPROTO_IPV6; 764 break; 765 default: 766 break; 767 } 768 769 return family; 770 } 771 772 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag) 773 { 774 unsigned int len; 775 776 len = skb_network_offset(skb) + sizeof(struct iphdr); 777 if (unlikely(skb->len < len)) 778 return -EINVAL; 779 if (unlikely(!pskb_may_pull(skb, len))) 780 return -ENOMEM; 781 782 *frag = ip_is_fragment(ip_hdr(skb)); 783 return 0; 784 } 785 786 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag) 787 { 788 unsigned int flags = 0, len, payload_ofs = 0; 789 unsigned short frag_off; 790 int nexthdr; 791 792 len = skb_network_offset(skb) + sizeof(struct ipv6hdr); 793 if (unlikely(skb->len < len)) 794 return -EINVAL; 795 if (unlikely(!pskb_may_pull(skb, len))) 796 return -ENOMEM; 797 798 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); 799 if (unlikely(nexthdr < 0)) 800 return -EPROTO; 801 802 *frag = flags & IP6_FH_F_FRAG; 803 return 0; 804 } 805 806 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb, 807 u8 family, u16 zone, bool *defrag) 808 { 809 enum ip_conntrack_info ctinfo; 810 struct nf_conn *ct; 811 int err = 0; 812 bool frag; 813 u16 mru; 814 815 /* Previously seen (loopback)? Ignore. */ 816 ct = nf_ct_get(skb, &ctinfo); 817 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 818 return 0; 819 820 if (family == NFPROTO_IPV4) 821 err = tcf_ct_ipv4_is_fragment(skb, &frag); 822 else 823 err = tcf_ct_ipv6_is_fragment(skb, &frag); 824 if (err || !frag) 825 return err; 826 827 skb_get(skb); 828 mru = tc_skb_cb(skb)->mru; 829 830 if (family == NFPROTO_IPV4) { 831 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 832 833 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 834 local_bh_disable(); 835 err = ip_defrag(net, skb, user); 836 local_bh_enable(); 837 if (err && err != -EINPROGRESS) 838 return err; 839 840 if (!err) { 841 *defrag = true; 842 mru = IPCB(skb)->frag_max_size; 843 } 844 } else { /* NFPROTO_IPV6 */ 845 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 846 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 847 848 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 849 err = nf_ct_frag6_gather(net, skb, user); 850 if (err && err != -EINPROGRESS) 851 goto out_free; 852 853 if (!err) { 854 *defrag = true; 855 mru = IP6CB(skb)->frag_max_size; 856 } 857 #else 858 err = -EOPNOTSUPP; 859 goto out_free; 860 #endif 861 } 862 863 if (err != -EINPROGRESS) 864 tc_skb_cb(skb)->mru = mru; 865 skb_clear_hash(skb); 866 skb->ignore_df = 1; 867 return err; 868 869 out_free: 870 kfree_skb(skb); 871 return err; 872 } 873 874 static void tcf_ct_params_free(struct tcf_ct_params *params) 875 { 876 if (params->helper) { 877 #if IS_ENABLED(CONFIG_NF_NAT) 878 if (params->ct_action & TCA_CT_ACT_NAT) 879 nf_nat_helper_put(params->helper); 880 #endif 881 nf_conntrack_helper_put(params->helper); 882 } 883 if (params->ct_ft) 884 tcf_ct_flow_table_put(params->ct_ft); 885 if (params->tmpl) 886 nf_ct_put(params->tmpl); 887 kfree(params); 888 } 889 890 static void tcf_ct_params_free_rcu(struct rcu_head *head) 891 { 892 struct tcf_ct_params *params; 893 894 params = container_of(head, struct tcf_ct_params, rcu); 895 tcf_ct_params_free(params); 896 } 897 898 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask) 899 { 900 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 901 u32 new_mark; 902 903 if (!mask) 904 return; 905 906 new_mark = mark | (READ_ONCE(ct->mark) & ~(mask)); 907 if (READ_ONCE(ct->mark) != new_mark) { 908 WRITE_ONCE(ct->mark, new_mark); 909 if (nf_ct_is_confirmed(ct)) 910 nf_conntrack_event_cache(IPCT_MARK, ct); 911 } 912 #endif 913 } 914 915 static void tcf_ct_act_set_labels(struct nf_conn *ct, 916 u32 *labels, 917 u32 *labels_m) 918 { 919 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) 920 size_t labels_sz = sizeof_field(struct tcf_ct_params, labels); 921 922 if (!memchr_inv(labels_m, 0, labels_sz)) 923 return; 924 925 nf_connlabels_replace(ct, labels, labels_m, 4); 926 #endif 927 } 928 929 static int tcf_ct_act_nat(struct sk_buff *skb, 930 struct nf_conn *ct, 931 enum ip_conntrack_info ctinfo, 932 int ct_action, 933 struct nf_nat_range2 *range, 934 bool commit) 935 { 936 #if IS_ENABLED(CONFIG_NF_NAT) 937 int err, action = 0; 938 939 if (!(ct_action & TCA_CT_ACT_NAT)) 940 return NF_ACCEPT; 941 if (ct_action & TCA_CT_ACT_NAT_SRC) 942 action |= BIT(NF_NAT_MANIP_SRC); 943 if (ct_action & TCA_CT_ACT_NAT_DST) 944 action |= BIT(NF_NAT_MANIP_DST); 945 946 err = nf_ct_nat(skb, ct, ctinfo, &action, range, commit); 947 948 if (action & BIT(NF_NAT_MANIP_SRC)) 949 tc_skb_cb(skb)->post_ct_snat = 1; 950 if (action & BIT(NF_NAT_MANIP_DST)) 951 tc_skb_cb(skb)->post_ct_dnat = 1; 952 953 return err; 954 #else 955 return NF_ACCEPT; 956 #endif 957 } 958 959 TC_INDIRECT_SCOPE int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a, 960 struct tcf_result *res) 961 { 962 struct net *net = dev_net(skb->dev); 963 enum ip_conntrack_info ctinfo; 964 struct tcf_ct *c = to_ct(a); 965 struct nf_conn *tmpl = NULL; 966 struct nf_hook_state state; 967 bool cached, commit, clear; 968 int nh_ofs, err, retval; 969 struct tcf_ct_params *p; 970 bool add_helper = false; 971 bool skip_add = false; 972 bool defrag = false; 973 struct nf_conn *ct; 974 u8 family; 975 976 p = rcu_dereference_bh(c->params); 977 978 retval = READ_ONCE(c->tcf_action); 979 commit = p->ct_action & TCA_CT_ACT_COMMIT; 980 clear = p->ct_action & TCA_CT_ACT_CLEAR; 981 tmpl = p->tmpl; 982 983 tcf_lastuse_update(&c->tcf_tm); 984 tcf_action_update_bstats(&c->common, skb); 985 986 if (clear) { 987 tc_skb_cb(skb)->post_ct = false; 988 ct = nf_ct_get(skb, &ctinfo); 989 if (ct) { 990 nf_ct_put(ct); 991 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 992 } 993 994 goto out_clear; 995 } 996 997 family = tcf_ct_skb_nf_family(skb); 998 if (family == NFPROTO_UNSPEC) 999 goto drop; 1000 1001 /* The conntrack module expects to be working at L3. 1002 * We also try to pull the IPv4/6 header to linear area 1003 */ 1004 nh_ofs = skb_network_offset(skb); 1005 skb_pull_rcsum(skb, nh_ofs); 1006 err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag); 1007 if (err == -EINPROGRESS) { 1008 retval = TC_ACT_STOLEN; 1009 goto out_clear; 1010 } 1011 if (err) 1012 goto drop; 1013 1014 err = tcf_ct_skb_network_trim(skb, family); 1015 if (err) 1016 goto drop; 1017 1018 /* If we are recirculating packets to match on ct fields and 1019 * committing with a separate ct action, then we don't need to 1020 * actually run the packet through conntrack twice unless it's for a 1021 * different zone. 1022 */ 1023 cached = tcf_ct_skb_nfct_cached(net, skb, p); 1024 if (!cached) { 1025 if (tcf_ct_flow_table_lookup(p, skb, family)) { 1026 skip_add = true; 1027 goto do_nat; 1028 } 1029 1030 /* Associate skb with specified zone. */ 1031 if (tmpl) { 1032 nf_conntrack_put(skb_nfct(skb)); 1033 nf_conntrack_get(&tmpl->ct_general); 1034 nf_ct_set(skb, tmpl, IP_CT_NEW); 1035 } 1036 1037 state.hook = NF_INET_PRE_ROUTING; 1038 state.net = net; 1039 state.pf = family; 1040 err = nf_conntrack_in(skb, &state); 1041 if (err != NF_ACCEPT) 1042 goto out_push; 1043 } 1044 1045 do_nat: 1046 ct = nf_ct_get(skb, &ctinfo); 1047 if (!ct) 1048 goto out_push; 1049 nf_ct_deliver_cached_events(ct); 1050 nf_conn_act_ct_ext_fill(skb, ct, ctinfo); 1051 1052 err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit); 1053 if (err != NF_ACCEPT) 1054 goto drop; 1055 1056 if (!nf_ct_is_confirmed(ct) && commit && p->helper && !nfct_help(ct)) { 1057 err = __nf_ct_try_assign_helper(ct, p->tmpl, GFP_ATOMIC); 1058 if (err) 1059 goto drop; 1060 add_helper = true; 1061 if (p->ct_action & TCA_CT_ACT_NAT && !nfct_seqadj(ct)) { 1062 if (!nfct_seqadj_ext_add(ct)) 1063 goto drop; 1064 } 1065 } 1066 1067 if (nf_ct_is_confirmed(ct) ? ((!cached && !skip_add) || add_helper) : commit) { 1068 if (nf_ct_helper(skb, ct, ctinfo, family) != NF_ACCEPT) 1069 goto drop; 1070 } 1071 1072 if (commit) { 1073 tcf_ct_act_set_mark(ct, p->mark, p->mark_mask); 1074 tcf_ct_act_set_labels(ct, p->labels, p->labels_mask); 1075 1076 if (!nf_ct_is_confirmed(ct)) 1077 nf_conn_act_ct_ext_add(ct); 1078 1079 /* This will take care of sending queued events 1080 * even if the connection is already confirmed. 1081 */ 1082 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 1083 goto drop; 1084 } 1085 1086 if (!skip_add) 1087 tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo); 1088 1089 out_push: 1090 skb_push_rcsum(skb, nh_ofs); 1091 1092 tc_skb_cb(skb)->post_ct = true; 1093 tc_skb_cb(skb)->zone = p->zone; 1094 out_clear: 1095 if (defrag) 1096 qdisc_skb_cb(skb)->pkt_len = skb->len; 1097 return retval; 1098 1099 drop: 1100 tcf_action_inc_drop_qstats(&c->common); 1101 return TC_ACT_SHOT; 1102 } 1103 1104 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = { 1105 [TCA_CT_ACTION] = { .type = NLA_U16 }, 1106 [TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)), 1107 [TCA_CT_ZONE] = { .type = NLA_U16 }, 1108 [TCA_CT_MARK] = { .type = NLA_U32 }, 1109 [TCA_CT_MARK_MASK] = { .type = NLA_U32 }, 1110 [TCA_CT_LABELS] = { .type = NLA_BINARY, 1111 .len = 128 / BITS_PER_BYTE }, 1112 [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY, 1113 .len = 128 / BITS_PER_BYTE }, 1114 [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 }, 1115 [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 }, 1116 [TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1117 [TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1118 [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 }, 1119 [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 }, 1120 [TCA_CT_HELPER_NAME] = { .type = NLA_STRING, .len = NF_CT_HELPER_NAME_LEN }, 1121 [TCA_CT_HELPER_FAMILY] = { .type = NLA_U8 }, 1122 [TCA_CT_HELPER_PROTO] = { .type = NLA_U8 }, 1123 }; 1124 1125 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p, 1126 struct tc_ct *parm, 1127 struct nlattr **tb, 1128 struct netlink_ext_ack *extack) 1129 { 1130 struct nf_nat_range2 *range; 1131 1132 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1133 return 0; 1134 1135 if (!IS_ENABLED(CONFIG_NF_NAT)) { 1136 NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel"); 1137 return -EOPNOTSUPP; 1138 } 1139 1140 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1141 return 0; 1142 1143 if ((p->ct_action & TCA_CT_ACT_NAT_SRC) && 1144 (p->ct_action & TCA_CT_ACT_NAT_DST)) { 1145 NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time"); 1146 return -EOPNOTSUPP; 1147 } 1148 1149 range = &p->range; 1150 if (tb[TCA_CT_NAT_IPV4_MIN]) { 1151 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX]; 1152 1153 p->ipv4_range = true; 1154 range->flags |= NF_NAT_RANGE_MAP_IPS; 1155 range->min_addr.ip = 1156 nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]); 1157 1158 range->max_addr.ip = max_attr ? 1159 nla_get_in_addr(max_attr) : 1160 range->min_addr.ip; 1161 } else if (tb[TCA_CT_NAT_IPV6_MIN]) { 1162 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX]; 1163 1164 p->ipv4_range = false; 1165 range->flags |= NF_NAT_RANGE_MAP_IPS; 1166 range->min_addr.in6 = 1167 nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]); 1168 1169 range->max_addr.in6 = max_attr ? 1170 nla_get_in6_addr(max_attr) : 1171 range->min_addr.in6; 1172 } 1173 1174 if (tb[TCA_CT_NAT_PORT_MIN]) { 1175 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1176 range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]); 1177 1178 range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ? 1179 nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) : 1180 range->min_proto.all; 1181 } 1182 1183 return 0; 1184 } 1185 1186 static void tcf_ct_set_key_val(struct nlattr **tb, 1187 void *val, int val_type, 1188 void *mask, int mask_type, 1189 int len) 1190 { 1191 if (!tb[val_type]) 1192 return; 1193 nla_memcpy(val, tb[val_type], len); 1194 1195 if (!mask) 1196 return; 1197 1198 if (mask_type == TCA_CT_UNSPEC || !tb[mask_type]) 1199 memset(mask, 0xff, len); 1200 else 1201 nla_memcpy(mask, tb[mask_type], len); 1202 } 1203 1204 static int tcf_ct_fill_params(struct net *net, 1205 struct tcf_ct_params *p, 1206 struct tc_ct *parm, 1207 struct nlattr **tb, 1208 struct netlink_ext_ack *extack) 1209 { 1210 struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id); 1211 struct nf_conntrack_zone zone; 1212 int err, family, proto, len; 1213 struct nf_conn *tmpl; 1214 char *name; 1215 1216 p->zone = NF_CT_DEFAULT_ZONE_ID; 1217 1218 tcf_ct_set_key_val(tb, 1219 &p->ct_action, TCA_CT_ACTION, 1220 NULL, TCA_CT_UNSPEC, 1221 sizeof(p->ct_action)); 1222 1223 if (p->ct_action & TCA_CT_ACT_CLEAR) 1224 return 0; 1225 1226 err = tcf_ct_fill_params_nat(p, parm, tb, extack); 1227 if (err) 1228 return err; 1229 1230 if (tb[TCA_CT_MARK]) { 1231 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) { 1232 NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled."); 1233 return -EOPNOTSUPP; 1234 } 1235 tcf_ct_set_key_val(tb, 1236 &p->mark, TCA_CT_MARK, 1237 &p->mark_mask, TCA_CT_MARK_MASK, 1238 sizeof(p->mark)); 1239 } 1240 1241 if (tb[TCA_CT_LABELS]) { 1242 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) { 1243 NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled."); 1244 return -EOPNOTSUPP; 1245 } 1246 1247 if (!tn->labels) { 1248 NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length"); 1249 return -EOPNOTSUPP; 1250 } 1251 tcf_ct_set_key_val(tb, 1252 p->labels, TCA_CT_LABELS, 1253 p->labels_mask, TCA_CT_LABELS_MASK, 1254 sizeof(p->labels)); 1255 } 1256 1257 if (tb[TCA_CT_ZONE]) { 1258 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) { 1259 NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled."); 1260 return -EOPNOTSUPP; 1261 } 1262 1263 tcf_ct_set_key_val(tb, 1264 &p->zone, TCA_CT_ZONE, 1265 NULL, TCA_CT_UNSPEC, 1266 sizeof(p->zone)); 1267 } 1268 1269 nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0); 1270 tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL); 1271 if (!tmpl) { 1272 NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template"); 1273 return -ENOMEM; 1274 } 1275 p->tmpl = tmpl; 1276 if (tb[TCA_CT_HELPER_NAME]) { 1277 name = nla_data(tb[TCA_CT_HELPER_NAME]); 1278 len = nla_len(tb[TCA_CT_HELPER_NAME]); 1279 if (len > 16 || name[len - 1] != '\0') { 1280 NL_SET_ERR_MSG_MOD(extack, "Failed to parse helper name."); 1281 err = -EINVAL; 1282 goto err; 1283 } 1284 family = tb[TCA_CT_HELPER_FAMILY] ? nla_get_u8(tb[TCA_CT_HELPER_FAMILY]) : AF_INET; 1285 proto = tb[TCA_CT_HELPER_PROTO] ? nla_get_u8(tb[TCA_CT_HELPER_PROTO]) : IPPROTO_TCP; 1286 err = nf_ct_add_helper(tmpl, name, family, proto, 1287 p->ct_action & TCA_CT_ACT_NAT, &p->helper); 1288 if (err) { 1289 NL_SET_ERR_MSG_MOD(extack, "Failed to add helper"); 1290 goto err; 1291 } 1292 } 1293 1294 __set_bit(IPS_CONFIRMED_BIT, &tmpl->status); 1295 return 0; 1296 err: 1297 nf_ct_put(p->tmpl); 1298 p->tmpl = NULL; 1299 return err; 1300 } 1301 1302 static int tcf_ct_init(struct net *net, struct nlattr *nla, 1303 struct nlattr *est, struct tc_action **a, 1304 struct tcf_proto *tp, u32 flags, 1305 struct netlink_ext_ack *extack) 1306 { 1307 struct tc_action_net *tn = net_generic(net, act_ct_ops.net_id); 1308 bool bind = flags & TCA_ACT_FLAGS_BIND; 1309 struct tcf_ct_params *params = NULL; 1310 struct nlattr *tb[TCA_CT_MAX + 1]; 1311 struct tcf_chain *goto_ch = NULL; 1312 struct tc_ct *parm; 1313 struct tcf_ct *c; 1314 int err, res = 0; 1315 u32 index; 1316 1317 if (!nla) { 1318 NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed"); 1319 return -EINVAL; 1320 } 1321 1322 err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack); 1323 if (err < 0) 1324 return err; 1325 1326 if (!tb[TCA_CT_PARMS]) { 1327 NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters"); 1328 return -EINVAL; 1329 } 1330 parm = nla_data(tb[TCA_CT_PARMS]); 1331 index = parm->index; 1332 err = tcf_idr_check_alloc(tn, &index, a, bind); 1333 if (err < 0) 1334 return err; 1335 1336 if (!err) { 1337 err = tcf_idr_create_from_flags(tn, index, est, a, 1338 &act_ct_ops, bind, flags); 1339 if (err) { 1340 tcf_idr_cleanup(tn, index); 1341 return err; 1342 } 1343 res = ACT_P_CREATED; 1344 } else { 1345 if (bind) 1346 return 0; 1347 1348 if (!(flags & TCA_ACT_FLAGS_REPLACE)) { 1349 tcf_idr_release(*a, bind); 1350 return -EEXIST; 1351 } 1352 } 1353 err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); 1354 if (err < 0) 1355 goto cleanup; 1356 1357 c = to_ct(*a); 1358 1359 params = kzalloc(sizeof(*params), GFP_KERNEL); 1360 if (unlikely(!params)) { 1361 err = -ENOMEM; 1362 goto cleanup; 1363 } 1364 1365 err = tcf_ct_fill_params(net, params, parm, tb, extack); 1366 if (err) 1367 goto cleanup; 1368 1369 err = tcf_ct_flow_table_get(net, params); 1370 if (err) 1371 goto cleanup; 1372 1373 spin_lock_bh(&c->tcf_lock); 1374 goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); 1375 params = rcu_replace_pointer(c->params, params, 1376 lockdep_is_held(&c->tcf_lock)); 1377 spin_unlock_bh(&c->tcf_lock); 1378 1379 if (goto_ch) 1380 tcf_chain_put_by_act(goto_ch); 1381 if (params) 1382 call_rcu(¶ms->rcu, tcf_ct_params_free_rcu); 1383 1384 return res; 1385 1386 cleanup: 1387 if (goto_ch) 1388 tcf_chain_put_by_act(goto_ch); 1389 if (params) 1390 tcf_ct_params_free(params); 1391 tcf_idr_release(*a, bind); 1392 return err; 1393 } 1394 1395 static void tcf_ct_cleanup(struct tc_action *a) 1396 { 1397 struct tcf_ct_params *params; 1398 struct tcf_ct *c = to_ct(a); 1399 1400 params = rcu_dereference_protected(c->params, 1); 1401 if (params) 1402 call_rcu(¶ms->rcu, tcf_ct_params_free_rcu); 1403 } 1404 1405 static int tcf_ct_dump_key_val(struct sk_buff *skb, 1406 void *val, int val_type, 1407 void *mask, int mask_type, 1408 int len) 1409 { 1410 int err; 1411 1412 if (mask && !memchr_inv(mask, 0, len)) 1413 return 0; 1414 1415 err = nla_put(skb, val_type, len, val); 1416 if (err) 1417 return err; 1418 1419 if (mask_type != TCA_CT_UNSPEC) { 1420 err = nla_put(skb, mask_type, len, mask); 1421 if (err) 1422 return err; 1423 } 1424 1425 return 0; 1426 } 1427 1428 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p) 1429 { 1430 struct nf_nat_range2 *range = &p->range; 1431 1432 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1433 return 0; 1434 1435 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1436 return 0; 1437 1438 if (range->flags & NF_NAT_RANGE_MAP_IPS) { 1439 if (p->ipv4_range) { 1440 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN, 1441 range->min_addr.ip)) 1442 return -1; 1443 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX, 1444 range->max_addr.ip)) 1445 return -1; 1446 } else { 1447 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN, 1448 &range->min_addr.in6)) 1449 return -1; 1450 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX, 1451 &range->max_addr.in6)) 1452 return -1; 1453 } 1454 } 1455 1456 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) { 1457 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN, 1458 range->min_proto.all)) 1459 return -1; 1460 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX, 1461 range->max_proto.all)) 1462 return -1; 1463 } 1464 1465 return 0; 1466 } 1467 1468 static int tcf_ct_dump_helper(struct sk_buff *skb, struct nf_conntrack_helper *helper) 1469 { 1470 if (!helper) 1471 return 0; 1472 1473 if (nla_put_string(skb, TCA_CT_HELPER_NAME, helper->name) || 1474 nla_put_u8(skb, TCA_CT_HELPER_FAMILY, helper->tuple.src.l3num) || 1475 nla_put_u8(skb, TCA_CT_HELPER_PROTO, helper->tuple.dst.protonum)) 1476 return -1; 1477 1478 return 0; 1479 } 1480 1481 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a, 1482 int bind, int ref) 1483 { 1484 unsigned char *b = skb_tail_pointer(skb); 1485 struct tcf_ct *c = to_ct(a); 1486 struct tcf_ct_params *p; 1487 1488 struct tc_ct opt = { 1489 .index = c->tcf_index, 1490 .refcnt = refcount_read(&c->tcf_refcnt) - ref, 1491 .bindcnt = atomic_read(&c->tcf_bindcnt) - bind, 1492 }; 1493 struct tcf_t t; 1494 1495 spin_lock_bh(&c->tcf_lock); 1496 p = rcu_dereference_protected(c->params, 1497 lockdep_is_held(&c->tcf_lock)); 1498 opt.action = c->tcf_action; 1499 1500 if (tcf_ct_dump_key_val(skb, 1501 &p->ct_action, TCA_CT_ACTION, 1502 NULL, TCA_CT_UNSPEC, 1503 sizeof(p->ct_action))) 1504 goto nla_put_failure; 1505 1506 if (p->ct_action & TCA_CT_ACT_CLEAR) 1507 goto skip_dump; 1508 1509 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1510 tcf_ct_dump_key_val(skb, 1511 &p->mark, TCA_CT_MARK, 1512 &p->mark_mask, TCA_CT_MARK_MASK, 1513 sizeof(p->mark))) 1514 goto nla_put_failure; 1515 1516 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1517 tcf_ct_dump_key_val(skb, 1518 p->labels, TCA_CT_LABELS, 1519 p->labels_mask, TCA_CT_LABELS_MASK, 1520 sizeof(p->labels))) 1521 goto nla_put_failure; 1522 1523 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1524 tcf_ct_dump_key_val(skb, 1525 &p->zone, TCA_CT_ZONE, 1526 NULL, TCA_CT_UNSPEC, 1527 sizeof(p->zone))) 1528 goto nla_put_failure; 1529 1530 if (tcf_ct_dump_nat(skb, p)) 1531 goto nla_put_failure; 1532 1533 if (tcf_ct_dump_helper(skb, p->helper)) 1534 goto nla_put_failure; 1535 1536 skip_dump: 1537 if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt)) 1538 goto nla_put_failure; 1539 1540 tcf_tm_dump(&t, &c->tcf_tm); 1541 if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD)) 1542 goto nla_put_failure; 1543 spin_unlock_bh(&c->tcf_lock); 1544 1545 return skb->len; 1546 nla_put_failure: 1547 spin_unlock_bh(&c->tcf_lock); 1548 nlmsg_trim(skb, b); 1549 return -1; 1550 } 1551 1552 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets, 1553 u64 drops, u64 lastuse, bool hw) 1554 { 1555 struct tcf_ct *c = to_ct(a); 1556 1557 tcf_action_update_stats(a, bytes, packets, drops, hw); 1558 c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse); 1559 } 1560 1561 static int tcf_ct_offload_act_setup(struct tc_action *act, void *entry_data, 1562 u32 *index_inc, bool bind, 1563 struct netlink_ext_ack *extack) 1564 { 1565 if (bind) { 1566 struct flow_action_entry *entry = entry_data; 1567 1568 entry->id = FLOW_ACTION_CT; 1569 entry->ct.action = tcf_ct_action(act); 1570 entry->ct.zone = tcf_ct_zone(act); 1571 entry->ct.flow_table = tcf_ct_ft(act); 1572 *index_inc = 1; 1573 } else { 1574 struct flow_offload_action *fl_action = entry_data; 1575 1576 fl_action->id = FLOW_ACTION_CT; 1577 } 1578 1579 return 0; 1580 } 1581 1582 static struct tc_action_ops act_ct_ops = { 1583 .kind = "ct", 1584 .id = TCA_ID_CT, 1585 .owner = THIS_MODULE, 1586 .act = tcf_ct_act, 1587 .dump = tcf_ct_dump, 1588 .init = tcf_ct_init, 1589 .cleanup = tcf_ct_cleanup, 1590 .stats_update = tcf_stats_update, 1591 .offload_act_setup = tcf_ct_offload_act_setup, 1592 .size = sizeof(struct tcf_ct), 1593 }; 1594 1595 static __net_init int ct_init_net(struct net *net) 1596 { 1597 unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8; 1598 struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id); 1599 1600 if (nf_connlabels_get(net, n_bits - 1)) { 1601 tn->labels = false; 1602 pr_err("act_ct: Failed to set connlabels length"); 1603 } else { 1604 tn->labels = true; 1605 } 1606 1607 return tc_action_net_init(net, &tn->tn, &act_ct_ops); 1608 } 1609 1610 static void __net_exit ct_exit_net(struct list_head *net_list) 1611 { 1612 struct net *net; 1613 1614 rtnl_lock(); 1615 list_for_each_entry(net, net_list, exit_list) { 1616 struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id); 1617 1618 if (tn->labels) 1619 nf_connlabels_put(net); 1620 } 1621 rtnl_unlock(); 1622 1623 tc_action_net_exit(net_list, act_ct_ops.net_id); 1624 } 1625 1626 static struct pernet_operations ct_net_ops = { 1627 .init = ct_init_net, 1628 .exit_batch = ct_exit_net, 1629 .id = &act_ct_ops.net_id, 1630 .size = sizeof(struct tc_ct_action_net), 1631 }; 1632 1633 static int __init ct_init_module(void) 1634 { 1635 int err; 1636 1637 act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0); 1638 if (!act_ct_wq) 1639 return -ENOMEM; 1640 1641 err = tcf_ct_flow_tables_init(); 1642 if (err) 1643 goto err_tbl_init; 1644 1645 err = tcf_register_action(&act_ct_ops, &ct_net_ops); 1646 if (err) 1647 goto err_register; 1648 1649 static_branch_inc(&tcf_frag_xmit_count); 1650 1651 return 0; 1652 1653 err_register: 1654 tcf_ct_flow_tables_uninit(); 1655 err_tbl_init: 1656 destroy_workqueue(act_ct_wq); 1657 return err; 1658 } 1659 1660 static void __exit ct_cleanup_module(void) 1661 { 1662 static_branch_dec(&tcf_frag_xmit_count); 1663 tcf_unregister_action(&act_ct_ops, &ct_net_ops); 1664 tcf_ct_flow_tables_uninit(); 1665 destroy_workqueue(act_ct_wq); 1666 } 1667 1668 module_init(ct_init_module); 1669 module_exit(ct_cleanup_module); 1670 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>"); 1671 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>"); 1672 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>"); 1673 MODULE_DESCRIPTION("Connection tracking action"); 1674 MODULE_LICENSE("GPL v2"); 1675