xref: /linux/net/sched/act_ct.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /* -
3  * net/sched/act_ct.c  Connection Tracking action
4  *
5  * Authors:   Paul Blakey <paulb@mellanox.com>
6  *            Yossi Kuperman <yossiku@mellanox.com>
7  *            Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/skbuff.h>
14 #include <linux/rtnetlink.h>
15 #include <linux/pkt_cls.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/rhashtable.h>
19 #include <net/netlink.h>
20 #include <net/pkt_sched.h>
21 #include <net/pkt_cls.h>
22 #include <net/act_api.h>
23 #include <net/ip.h>
24 #include <net/ipv6_frag.h>
25 #include <uapi/linux/tc_act/tc_ct.h>
26 #include <net/tc_act/tc_ct.h>
27 
28 #include <net/netfilter/nf_flow_table.h>
29 #include <net/netfilter/nf_conntrack.h>
30 #include <net/netfilter/nf_conntrack_core.h>
31 #include <net/netfilter/nf_conntrack_zones.h>
32 #include <net/netfilter/nf_conntrack_helper.h>
33 #include <net/netfilter/nf_conntrack_acct.h>
34 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
35 #include <net/netfilter/nf_conntrack_act_ct.h>
36 #include <uapi/linux/netfilter/nf_nat.h>
37 
38 static struct workqueue_struct *act_ct_wq;
39 static struct rhashtable zones_ht;
40 static DEFINE_MUTEX(zones_mutex);
41 
42 struct tcf_ct_flow_table {
43 	struct rhash_head node; /* In zones tables */
44 
45 	struct rcu_work rwork;
46 	struct nf_flowtable nf_ft;
47 	refcount_t ref;
48 	u16 zone;
49 
50 	bool dying;
51 };
52 
53 static const struct rhashtable_params zones_params = {
54 	.head_offset = offsetof(struct tcf_ct_flow_table, node),
55 	.key_offset = offsetof(struct tcf_ct_flow_table, zone),
56 	.key_len = sizeof_field(struct tcf_ct_flow_table, zone),
57 	.automatic_shrinking = true,
58 };
59 
60 static struct flow_action_entry *
61 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action)
62 {
63 	int i = flow_action->num_entries++;
64 
65 	return &flow_action->entries[i];
66 }
67 
68 static void tcf_ct_add_mangle_action(struct flow_action *action,
69 				     enum flow_action_mangle_base htype,
70 				     u32 offset,
71 				     u32 mask,
72 				     u32 val)
73 {
74 	struct flow_action_entry *entry;
75 
76 	entry = tcf_ct_flow_table_flow_action_get_next(action);
77 	entry->id = FLOW_ACTION_MANGLE;
78 	entry->mangle.htype = htype;
79 	entry->mangle.mask = ~mask;
80 	entry->mangle.offset = offset;
81 	entry->mangle.val = val;
82 }
83 
84 /* The following nat helper functions check if the inverted reverse tuple
85  * (target) is different then the current dir tuple - meaning nat for ports
86  * and/or ip is needed, and add the relevant mangle actions.
87  */
88 static void
89 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple,
90 				      struct nf_conntrack_tuple target,
91 				      struct flow_action *action)
92 {
93 	if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
94 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
95 					 offsetof(struct iphdr, saddr),
96 					 0xFFFFFFFF,
97 					 be32_to_cpu(target.src.u3.ip));
98 	if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
99 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
100 					 offsetof(struct iphdr, daddr),
101 					 0xFFFFFFFF,
102 					 be32_to_cpu(target.dst.u3.ip));
103 }
104 
105 static void
106 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action,
107 				   union nf_inet_addr *addr,
108 				   u32 offset)
109 {
110 	int i;
111 
112 	for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++)
113 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6,
114 					 i * sizeof(u32) + offset,
115 					 0xFFFFFFFF, be32_to_cpu(addr->ip6[i]));
116 }
117 
118 static void
119 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple,
120 				      struct nf_conntrack_tuple target,
121 				      struct flow_action *action)
122 {
123 	if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
124 		tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3,
125 						   offsetof(struct ipv6hdr,
126 							    saddr));
127 	if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
128 		tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3,
129 						   offsetof(struct ipv6hdr,
130 							    daddr));
131 }
132 
133 static void
134 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple,
135 				     struct nf_conntrack_tuple target,
136 				     struct flow_action *action)
137 {
138 	__be16 target_src = target.src.u.tcp.port;
139 	__be16 target_dst = target.dst.u.tcp.port;
140 
141 	if (target_src != tuple->src.u.tcp.port)
142 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
143 					 offsetof(struct tcphdr, source),
144 					 0xFFFF, be16_to_cpu(target_src));
145 	if (target_dst != tuple->dst.u.tcp.port)
146 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
147 					 offsetof(struct tcphdr, dest),
148 					 0xFFFF, be16_to_cpu(target_dst));
149 }
150 
151 static void
152 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple,
153 				     struct nf_conntrack_tuple target,
154 				     struct flow_action *action)
155 {
156 	__be16 target_src = target.src.u.udp.port;
157 	__be16 target_dst = target.dst.u.udp.port;
158 
159 	if (target_src != tuple->src.u.udp.port)
160 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
161 					 offsetof(struct udphdr, source),
162 					 0xFFFF, be16_to_cpu(target_src));
163 	if (target_dst != tuple->dst.u.udp.port)
164 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
165 					 offsetof(struct udphdr, dest),
166 					 0xFFFF, be16_to_cpu(target_dst));
167 }
168 
169 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct,
170 					      enum ip_conntrack_dir dir,
171 					      struct flow_action *action)
172 {
173 	struct nf_conn_labels *ct_labels;
174 	struct flow_action_entry *entry;
175 	enum ip_conntrack_info ctinfo;
176 	u32 *act_ct_labels;
177 
178 	entry = tcf_ct_flow_table_flow_action_get_next(action);
179 	entry->id = FLOW_ACTION_CT_METADATA;
180 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
181 	entry->ct_metadata.mark = ct->mark;
182 #endif
183 	ctinfo = dir == IP_CT_DIR_ORIGINAL ? IP_CT_ESTABLISHED :
184 					     IP_CT_ESTABLISHED_REPLY;
185 	/* aligns with the CT reference on the SKB nf_ct_set */
186 	entry->ct_metadata.cookie = (unsigned long)ct | ctinfo;
187 	entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL;
188 
189 	act_ct_labels = entry->ct_metadata.labels;
190 	ct_labels = nf_ct_labels_find(ct);
191 	if (ct_labels)
192 		memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE);
193 	else
194 		memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE);
195 }
196 
197 static int tcf_ct_flow_table_add_action_nat(struct net *net,
198 					    struct nf_conn *ct,
199 					    enum ip_conntrack_dir dir,
200 					    struct flow_action *action)
201 {
202 	const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple;
203 	struct nf_conntrack_tuple target;
204 
205 	if (!(ct->status & IPS_NAT_MASK))
206 		return 0;
207 
208 	nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple);
209 
210 	switch (tuple->src.l3num) {
211 	case NFPROTO_IPV4:
212 		tcf_ct_flow_table_add_action_nat_ipv4(tuple, target,
213 						      action);
214 		break;
215 	case NFPROTO_IPV6:
216 		tcf_ct_flow_table_add_action_nat_ipv6(tuple, target,
217 						      action);
218 		break;
219 	default:
220 		return -EOPNOTSUPP;
221 	}
222 
223 	switch (nf_ct_protonum(ct)) {
224 	case IPPROTO_TCP:
225 		tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action);
226 		break;
227 	case IPPROTO_UDP:
228 		tcf_ct_flow_table_add_action_nat_udp(tuple, target, action);
229 		break;
230 	default:
231 		return -EOPNOTSUPP;
232 	}
233 
234 	return 0;
235 }
236 
237 static int tcf_ct_flow_table_fill_actions(struct net *net,
238 					  const struct flow_offload *flow,
239 					  enum flow_offload_tuple_dir tdir,
240 					  struct nf_flow_rule *flow_rule)
241 {
242 	struct flow_action *action = &flow_rule->rule->action;
243 	int num_entries = action->num_entries;
244 	struct nf_conn *ct = flow->ct;
245 	enum ip_conntrack_dir dir;
246 	int i, err;
247 
248 	switch (tdir) {
249 	case FLOW_OFFLOAD_DIR_ORIGINAL:
250 		dir = IP_CT_DIR_ORIGINAL;
251 		break;
252 	case FLOW_OFFLOAD_DIR_REPLY:
253 		dir = IP_CT_DIR_REPLY;
254 		break;
255 	default:
256 		return -EOPNOTSUPP;
257 	}
258 
259 	err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action);
260 	if (err)
261 		goto err_nat;
262 
263 	tcf_ct_flow_table_add_action_meta(ct, dir, action);
264 	return 0;
265 
266 err_nat:
267 	/* Clear filled actions */
268 	for (i = num_entries; i < action->num_entries; i++)
269 		memset(&action->entries[i], 0, sizeof(action->entries[i]));
270 	action->num_entries = num_entries;
271 
272 	return err;
273 }
274 
275 static struct nf_flowtable_type flowtable_ct = {
276 	.action		= tcf_ct_flow_table_fill_actions,
277 	.owner		= THIS_MODULE,
278 };
279 
280 static int tcf_ct_flow_table_get(struct tcf_ct_params *params)
281 {
282 	struct tcf_ct_flow_table *ct_ft;
283 	int err = -ENOMEM;
284 
285 	mutex_lock(&zones_mutex);
286 	ct_ft = rhashtable_lookup_fast(&zones_ht, &params->zone, zones_params);
287 	if (ct_ft && refcount_inc_not_zero(&ct_ft->ref))
288 		goto out_unlock;
289 
290 	ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL);
291 	if (!ct_ft)
292 		goto err_alloc;
293 	refcount_set(&ct_ft->ref, 1);
294 
295 	ct_ft->zone = params->zone;
296 	err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params);
297 	if (err)
298 		goto err_insert;
299 
300 	ct_ft->nf_ft.type = &flowtable_ct;
301 	ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD |
302 			      NF_FLOWTABLE_COUNTER;
303 	err = nf_flow_table_init(&ct_ft->nf_ft);
304 	if (err)
305 		goto err_init;
306 
307 	__module_get(THIS_MODULE);
308 out_unlock:
309 	params->ct_ft = ct_ft;
310 	params->nf_ft = &ct_ft->nf_ft;
311 	mutex_unlock(&zones_mutex);
312 
313 	return 0;
314 
315 err_init:
316 	rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
317 err_insert:
318 	kfree(ct_ft);
319 err_alloc:
320 	mutex_unlock(&zones_mutex);
321 	return err;
322 }
323 
324 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work)
325 {
326 	struct flow_block_cb *block_cb, *tmp_cb;
327 	struct tcf_ct_flow_table *ct_ft;
328 	struct flow_block *block;
329 
330 	ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table,
331 			     rwork);
332 	nf_flow_table_free(&ct_ft->nf_ft);
333 
334 	/* Remove any remaining callbacks before cleanup */
335 	block = &ct_ft->nf_ft.flow_block;
336 	down_write(&ct_ft->nf_ft.flow_block_lock);
337 	list_for_each_entry_safe(block_cb, tmp_cb, &block->cb_list, list) {
338 		list_del(&block_cb->list);
339 		flow_block_cb_free(block_cb);
340 	}
341 	up_write(&ct_ft->nf_ft.flow_block_lock);
342 	kfree(ct_ft);
343 
344 	module_put(THIS_MODULE);
345 }
346 
347 static void tcf_ct_flow_table_put(struct tcf_ct_params *params)
348 {
349 	struct tcf_ct_flow_table *ct_ft = params->ct_ft;
350 
351 	if (refcount_dec_and_test(&params->ct_ft->ref)) {
352 		rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
353 		INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work);
354 		queue_rcu_work(act_ct_wq, &ct_ft->rwork);
355 	}
356 }
357 
358 static void tcf_ct_flow_tc_ifidx(struct flow_offload *entry,
359 				 struct nf_conn_act_ct_ext *act_ct_ext, u8 dir)
360 {
361 	entry->tuplehash[dir].tuple.xmit_type = FLOW_OFFLOAD_XMIT_TC;
362 	entry->tuplehash[dir].tuple.tc.iifidx = act_ct_ext->ifindex[dir];
363 }
364 
365 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft,
366 				  struct nf_conn *ct,
367 				  bool tcp)
368 {
369 	struct nf_conn_act_ct_ext *act_ct_ext;
370 	struct flow_offload *entry;
371 	int err;
372 
373 	if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status))
374 		return;
375 
376 	entry = flow_offload_alloc(ct);
377 	if (!entry) {
378 		WARN_ON_ONCE(1);
379 		goto err_alloc;
380 	}
381 
382 	if (tcp) {
383 		ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
384 		ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
385 	}
386 
387 	act_ct_ext = nf_conn_act_ct_ext_find(ct);
388 	if (act_ct_ext) {
389 		tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL);
390 		tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY);
391 	}
392 
393 	err = flow_offload_add(&ct_ft->nf_ft, entry);
394 	if (err)
395 		goto err_add;
396 
397 	return;
398 
399 err_add:
400 	flow_offload_free(entry);
401 err_alloc:
402 	clear_bit(IPS_OFFLOAD_BIT, &ct->status);
403 }
404 
405 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft,
406 					   struct nf_conn *ct,
407 					   enum ip_conntrack_info ctinfo)
408 {
409 	bool tcp = false;
410 
411 	if ((ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY) ||
412 	    !test_bit(IPS_ASSURED_BIT, &ct->status))
413 		return;
414 
415 	switch (nf_ct_protonum(ct)) {
416 	case IPPROTO_TCP:
417 		tcp = true;
418 		if (ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED)
419 			return;
420 		break;
421 	case IPPROTO_UDP:
422 		break;
423 #ifdef CONFIG_NF_CT_PROTO_GRE
424 	case IPPROTO_GRE: {
425 		struct nf_conntrack_tuple *tuple;
426 
427 		if (ct->status & IPS_NAT_MASK)
428 			return;
429 		tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
430 		/* No support for GRE v1 */
431 		if (tuple->src.u.gre.key || tuple->dst.u.gre.key)
432 			return;
433 		break;
434 	}
435 #endif
436 	default:
437 		return;
438 	}
439 
440 	if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) ||
441 	    ct->status & IPS_SEQ_ADJUST)
442 		return;
443 
444 	tcf_ct_flow_table_add(ct_ft, ct, tcp);
445 }
446 
447 static bool
448 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb,
449 				  struct flow_offload_tuple *tuple,
450 				  struct tcphdr **tcph)
451 {
452 	struct flow_ports *ports;
453 	unsigned int thoff;
454 	struct iphdr *iph;
455 	size_t hdrsize;
456 	u8 ipproto;
457 
458 	if (!pskb_network_may_pull(skb, sizeof(*iph)))
459 		return false;
460 
461 	iph = ip_hdr(skb);
462 	thoff = iph->ihl * 4;
463 
464 	if (ip_is_fragment(iph) ||
465 	    unlikely(thoff != sizeof(struct iphdr)))
466 		return false;
467 
468 	ipproto = iph->protocol;
469 	switch (ipproto) {
470 	case IPPROTO_TCP:
471 		hdrsize = sizeof(struct tcphdr);
472 		break;
473 	case IPPROTO_UDP:
474 		hdrsize = sizeof(*ports);
475 		break;
476 #ifdef CONFIG_NF_CT_PROTO_GRE
477 	case IPPROTO_GRE:
478 		hdrsize = sizeof(struct gre_base_hdr);
479 		break;
480 #endif
481 	default:
482 		return false;
483 	}
484 
485 	if (iph->ttl <= 1)
486 		return false;
487 
488 	if (!pskb_network_may_pull(skb, thoff + hdrsize))
489 		return false;
490 
491 	switch (ipproto) {
492 	case IPPROTO_TCP:
493 		*tcph = (void *)(skb_network_header(skb) + thoff);
494 		fallthrough;
495 	case IPPROTO_UDP:
496 		ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
497 		tuple->src_port = ports->source;
498 		tuple->dst_port = ports->dest;
499 		break;
500 	case IPPROTO_GRE: {
501 		struct gre_base_hdr *greh;
502 
503 		greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff);
504 		if ((greh->flags & GRE_VERSION) != GRE_VERSION_0)
505 			return false;
506 		break;
507 	}
508 	}
509 
510 	iph = ip_hdr(skb);
511 
512 	tuple->src_v4.s_addr = iph->saddr;
513 	tuple->dst_v4.s_addr = iph->daddr;
514 	tuple->l3proto = AF_INET;
515 	tuple->l4proto = ipproto;
516 
517 	return true;
518 }
519 
520 static bool
521 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb,
522 				  struct flow_offload_tuple *tuple,
523 				  struct tcphdr **tcph)
524 {
525 	struct flow_ports *ports;
526 	struct ipv6hdr *ip6h;
527 	unsigned int thoff;
528 	size_t hdrsize;
529 	u8 nexthdr;
530 
531 	if (!pskb_network_may_pull(skb, sizeof(*ip6h)))
532 		return false;
533 
534 	ip6h = ipv6_hdr(skb);
535 	thoff = sizeof(*ip6h);
536 
537 	nexthdr = ip6h->nexthdr;
538 	switch (nexthdr) {
539 	case IPPROTO_TCP:
540 		hdrsize = sizeof(struct tcphdr);
541 		break;
542 	case IPPROTO_UDP:
543 		hdrsize = sizeof(*ports);
544 		break;
545 #ifdef CONFIG_NF_CT_PROTO_GRE
546 	case IPPROTO_GRE:
547 		hdrsize = sizeof(struct gre_base_hdr);
548 		break;
549 #endif
550 	default:
551 		return false;
552 	}
553 
554 	if (ip6h->hop_limit <= 1)
555 		return false;
556 
557 	if (!pskb_network_may_pull(skb, thoff + hdrsize))
558 		return false;
559 
560 	switch (nexthdr) {
561 	case IPPROTO_TCP:
562 		*tcph = (void *)(skb_network_header(skb) + thoff);
563 		fallthrough;
564 	case IPPROTO_UDP:
565 		ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
566 		tuple->src_port = ports->source;
567 		tuple->dst_port = ports->dest;
568 		break;
569 	case IPPROTO_GRE: {
570 		struct gre_base_hdr *greh;
571 
572 		greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff);
573 		if ((greh->flags & GRE_VERSION) != GRE_VERSION_0)
574 			return false;
575 		break;
576 	}
577 	}
578 
579 	ip6h = ipv6_hdr(skb);
580 
581 	tuple->src_v6 = ip6h->saddr;
582 	tuple->dst_v6 = ip6h->daddr;
583 	tuple->l3proto = AF_INET6;
584 	tuple->l4proto = nexthdr;
585 
586 	return true;
587 }
588 
589 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p,
590 				     struct sk_buff *skb,
591 				     u8 family)
592 {
593 	struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft;
594 	struct flow_offload_tuple_rhash *tuplehash;
595 	struct flow_offload_tuple tuple = {};
596 	enum ip_conntrack_info ctinfo;
597 	struct tcphdr *tcph = NULL;
598 	struct flow_offload *flow;
599 	struct nf_conn *ct;
600 	u8 dir;
601 
602 	switch (family) {
603 	case NFPROTO_IPV4:
604 		if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph))
605 			return false;
606 		break;
607 	case NFPROTO_IPV6:
608 		if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph))
609 			return false;
610 		break;
611 	default:
612 		return false;
613 	}
614 
615 	tuplehash = flow_offload_lookup(nf_ft, &tuple);
616 	if (!tuplehash)
617 		return false;
618 
619 	dir = tuplehash->tuple.dir;
620 	flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]);
621 	ct = flow->ct;
622 
623 	if (tcph && (unlikely(tcph->fin || tcph->rst))) {
624 		flow_offload_teardown(flow);
625 		return false;
626 	}
627 
628 	ctinfo = dir == FLOW_OFFLOAD_DIR_ORIGINAL ? IP_CT_ESTABLISHED :
629 						    IP_CT_ESTABLISHED_REPLY;
630 
631 	flow_offload_refresh(nf_ft, flow);
632 	nf_conntrack_get(&ct->ct_general);
633 	nf_ct_set(skb, ct, ctinfo);
634 	if (nf_ft->flags & NF_FLOWTABLE_COUNTER)
635 		nf_ct_acct_update(ct, dir, skb->len);
636 
637 	return true;
638 }
639 
640 static int tcf_ct_flow_tables_init(void)
641 {
642 	return rhashtable_init(&zones_ht, &zones_params);
643 }
644 
645 static void tcf_ct_flow_tables_uninit(void)
646 {
647 	rhashtable_destroy(&zones_ht);
648 }
649 
650 static struct tc_action_ops act_ct_ops;
651 static unsigned int ct_net_id;
652 
653 struct tc_ct_action_net {
654 	struct tc_action_net tn; /* Must be first */
655 	bool labels;
656 };
657 
658 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
659 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb,
660 				   u16 zone_id, bool force)
661 {
662 	enum ip_conntrack_info ctinfo;
663 	struct nf_conn *ct;
664 
665 	ct = nf_ct_get(skb, &ctinfo);
666 	if (!ct)
667 		return false;
668 	if (!net_eq(net, read_pnet(&ct->ct_net)))
669 		goto drop_ct;
670 	if (nf_ct_zone(ct)->id != zone_id)
671 		goto drop_ct;
672 
673 	/* Force conntrack entry direction. */
674 	if (force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
675 		if (nf_ct_is_confirmed(ct))
676 			nf_ct_kill(ct);
677 
678 		goto drop_ct;
679 	}
680 
681 	return true;
682 
683 drop_ct:
684 	nf_ct_put(ct);
685 	nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
686 
687 	return false;
688 }
689 
690 /* Trim the skb to the length specified by the IP/IPv6 header,
691  * removing any trailing lower-layer padding. This prepares the skb
692  * for higher-layer processing that assumes skb->len excludes padding
693  * (such as nf_ip_checksum). The caller needs to pull the skb to the
694  * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
695  */
696 static int tcf_ct_skb_network_trim(struct sk_buff *skb, int family)
697 {
698 	unsigned int len;
699 	int err;
700 
701 	switch (family) {
702 	case NFPROTO_IPV4:
703 		len = ntohs(ip_hdr(skb)->tot_len);
704 		break;
705 	case NFPROTO_IPV6:
706 		len = sizeof(struct ipv6hdr)
707 			+ ntohs(ipv6_hdr(skb)->payload_len);
708 		break;
709 	default:
710 		len = skb->len;
711 	}
712 
713 	err = pskb_trim_rcsum(skb, len);
714 
715 	return err;
716 }
717 
718 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb)
719 {
720 	u8 family = NFPROTO_UNSPEC;
721 
722 	switch (skb_protocol(skb, true)) {
723 	case htons(ETH_P_IP):
724 		family = NFPROTO_IPV4;
725 		break;
726 	case htons(ETH_P_IPV6):
727 		family = NFPROTO_IPV6;
728 		break;
729 	default:
730 		break;
731 	}
732 
733 	return family;
734 }
735 
736 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag)
737 {
738 	unsigned int len;
739 
740 	len =  skb_network_offset(skb) + sizeof(struct iphdr);
741 	if (unlikely(skb->len < len))
742 		return -EINVAL;
743 	if (unlikely(!pskb_may_pull(skb, len)))
744 		return -ENOMEM;
745 
746 	*frag = ip_is_fragment(ip_hdr(skb));
747 	return 0;
748 }
749 
750 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag)
751 {
752 	unsigned int flags = 0, len, payload_ofs = 0;
753 	unsigned short frag_off;
754 	int nexthdr;
755 
756 	len =  skb_network_offset(skb) + sizeof(struct ipv6hdr);
757 	if (unlikely(skb->len < len))
758 		return -EINVAL;
759 	if (unlikely(!pskb_may_pull(skb, len)))
760 		return -ENOMEM;
761 
762 	nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
763 	if (unlikely(nexthdr < 0))
764 		return -EPROTO;
765 
766 	*frag = flags & IP6_FH_F_FRAG;
767 	return 0;
768 }
769 
770 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb,
771 				   u8 family, u16 zone, bool *defrag)
772 {
773 	enum ip_conntrack_info ctinfo;
774 	struct nf_conn *ct;
775 	int err = 0;
776 	bool frag;
777 	u16 mru;
778 
779 	/* Previously seen (loopback)? Ignore. */
780 	ct = nf_ct_get(skb, &ctinfo);
781 	if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED)
782 		return 0;
783 
784 	if (family == NFPROTO_IPV4)
785 		err = tcf_ct_ipv4_is_fragment(skb, &frag);
786 	else
787 		err = tcf_ct_ipv6_is_fragment(skb, &frag);
788 	if (err || !frag)
789 		return err;
790 
791 	skb_get(skb);
792 	mru = tc_skb_cb(skb)->mru;
793 
794 	if (family == NFPROTO_IPV4) {
795 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
796 
797 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
798 		local_bh_disable();
799 		err = ip_defrag(net, skb, user);
800 		local_bh_enable();
801 		if (err && err != -EINPROGRESS)
802 			return err;
803 
804 		if (!err) {
805 			*defrag = true;
806 			mru = IPCB(skb)->frag_max_size;
807 		}
808 	} else { /* NFPROTO_IPV6 */
809 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
810 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
811 
812 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
813 		err = nf_ct_frag6_gather(net, skb, user);
814 		if (err && err != -EINPROGRESS)
815 			goto out_free;
816 
817 		if (!err) {
818 			*defrag = true;
819 			mru = IP6CB(skb)->frag_max_size;
820 		}
821 #else
822 		err = -EOPNOTSUPP;
823 		goto out_free;
824 #endif
825 	}
826 
827 	if (err != -EINPROGRESS)
828 		tc_skb_cb(skb)->mru = mru;
829 	skb_clear_hash(skb);
830 	skb->ignore_df = 1;
831 	return err;
832 
833 out_free:
834 	kfree_skb(skb);
835 	return err;
836 }
837 
838 static void tcf_ct_params_free(struct rcu_head *head)
839 {
840 	struct tcf_ct_params *params = container_of(head,
841 						    struct tcf_ct_params, rcu);
842 
843 	tcf_ct_flow_table_put(params);
844 
845 	if (params->tmpl)
846 		nf_ct_put(params->tmpl);
847 	kfree(params);
848 }
849 
850 #if IS_ENABLED(CONFIG_NF_NAT)
851 /* Modelled after nf_nat_ipv[46]_fn().
852  * range is only used for new, uninitialized NAT state.
853  * Returns either NF_ACCEPT or NF_DROP.
854  */
855 static int ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
856 			  enum ip_conntrack_info ctinfo,
857 			  const struct nf_nat_range2 *range,
858 			  enum nf_nat_manip_type maniptype)
859 {
860 	__be16 proto = skb_protocol(skb, true);
861 	int hooknum, err = NF_ACCEPT;
862 
863 	/* See HOOK2MANIP(). */
864 	if (maniptype == NF_NAT_MANIP_SRC)
865 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
866 	else
867 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
868 
869 	switch (ctinfo) {
870 	case IP_CT_RELATED:
871 	case IP_CT_RELATED_REPLY:
872 		if (proto == htons(ETH_P_IP) &&
873 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
874 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
875 							   hooknum))
876 				err = NF_DROP;
877 			goto out;
878 		} else if (IS_ENABLED(CONFIG_IPV6) && proto == htons(ETH_P_IPV6)) {
879 			__be16 frag_off;
880 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
881 			int hdrlen = ipv6_skip_exthdr(skb,
882 						      sizeof(struct ipv6hdr),
883 						      &nexthdr, &frag_off);
884 
885 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
886 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
887 								     ctinfo,
888 								     hooknum,
889 								     hdrlen))
890 					err = NF_DROP;
891 				goto out;
892 			}
893 		}
894 		/* Non-ICMP, fall thru to initialize if needed. */
895 		fallthrough;
896 	case IP_CT_NEW:
897 		/* Seen it before?  This can happen for loopback, retrans,
898 		 * or local packets.
899 		 */
900 		if (!nf_nat_initialized(ct, maniptype)) {
901 			/* Initialize according to the NAT action. */
902 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
903 				/* Action is set up to establish a new
904 				 * mapping.
905 				 */
906 				? nf_nat_setup_info(ct, range, maniptype)
907 				: nf_nat_alloc_null_binding(ct, hooknum);
908 			if (err != NF_ACCEPT)
909 				goto out;
910 		}
911 		break;
912 
913 	case IP_CT_ESTABLISHED:
914 	case IP_CT_ESTABLISHED_REPLY:
915 		break;
916 
917 	default:
918 		err = NF_DROP;
919 		goto out;
920 	}
921 
922 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
923 	if (err == NF_ACCEPT) {
924 		if (maniptype == NF_NAT_MANIP_SRC)
925 			tc_skb_cb(skb)->post_ct_snat = 1;
926 		if (maniptype == NF_NAT_MANIP_DST)
927 			tc_skb_cb(skb)->post_ct_dnat = 1;
928 	}
929 out:
930 	return err;
931 }
932 #endif /* CONFIG_NF_NAT */
933 
934 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask)
935 {
936 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
937 	u32 new_mark;
938 
939 	if (!mask)
940 		return;
941 
942 	new_mark = mark | (ct->mark & ~(mask));
943 	if (ct->mark != new_mark) {
944 		ct->mark = new_mark;
945 		if (nf_ct_is_confirmed(ct))
946 			nf_conntrack_event_cache(IPCT_MARK, ct);
947 	}
948 #endif
949 }
950 
951 static void tcf_ct_act_set_labels(struct nf_conn *ct,
952 				  u32 *labels,
953 				  u32 *labels_m)
954 {
955 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)
956 	size_t labels_sz = sizeof_field(struct tcf_ct_params, labels);
957 
958 	if (!memchr_inv(labels_m, 0, labels_sz))
959 		return;
960 
961 	nf_connlabels_replace(ct, labels, labels_m, 4);
962 #endif
963 }
964 
965 static int tcf_ct_act_nat(struct sk_buff *skb,
966 			  struct nf_conn *ct,
967 			  enum ip_conntrack_info ctinfo,
968 			  int ct_action,
969 			  struct nf_nat_range2 *range,
970 			  bool commit)
971 {
972 #if IS_ENABLED(CONFIG_NF_NAT)
973 	int err;
974 	enum nf_nat_manip_type maniptype;
975 
976 	if (!(ct_action & TCA_CT_ACT_NAT))
977 		return NF_ACCEPT;
978 
979 	/* Add NAT extension if not confirmed yet. */
980 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
981 		return NF_DROP;   /* Can't NAT. */
982 
983 	if (ctinfo != IP_CT_NEW && (ct->status & IPS_NAT_MASK) &&
984 	    (ctinfo != IP_CT_RELATED || commit)) {
985 		/* NAT an established or related connection like before. */
986 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
987 			/* This is the REPLY direction for a connection
988 			 * for which NAT was applied in the forward
989 			 * direction.  Do the reverse NAT.
990 			 */
991 			maniptype = ct->status & IPS_SRC_NAT
992 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
993 		else
994 			maniptype = ct->status & IPS_SRC_NAT
995 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
996 	} else if (ct_action & TCA_CT_ACT_NAT_SRC) {
997 		maniptype = NF_NAT_MANIP_SRC;
998 	} else if (ct_action & TCA_CT_ACT_NAT_DST) {
999 		maniptype = NF_NAT_MANIP_DST;
1000 	} else {
1001 		return NF_ACCEPT;
1002 	}
1003 
1004 	err = ct_nat_execute(skb, ct, ctinfo, range, maniptype);
1005 	if (err == NF_ACCEPT && ct->status & IPS_DST_NAT) {
1006 		if (ct->status & IPS_SRC_NAT) {
1007 			if (maniptype == NF_NAT_MANIP_SRC)
1008 				maniptype = NF_NAT_MANIP_DST;
1009 			else
1010 				maniptype = NF_NAT_MANIP_SRC;
1011 
1012 			err = ct_nat_execute(skb, ct, ctinfo, range,
1013 					     maniptype);
1014 		} else if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) {
1015 			err = ct_nat_execute(skb, ct, ctinfo, NULL,
1016 					     NF_NAT_MANIP_SRC);
1017 		}
1018 	}
1019 	return err;
1020 #else
1021 	return NF_ACCEPT;
1022 #endif
1023 }
1024 
1025 static int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a,
1026 		      struct tcf_result *res)
1027 {
1028 	struct net *net = dev_net(skb->dev);
1029 	bool cached, commit, clear, force;
1030 	enum ip_conntrack_info ctinfo;
1031 	struct tcf_ct *c = to_ct(a);
1032 	struct nf_conn *tmpl = NULL;
1033 	struct nf_hook_state state;
1034 	int nh_ofs, err, retval;
1035 	struct tcf_ct_params *p;
1036 	bool skip_add = false;
1037 	bool defrag = false;
1038 	struct nf_conn *ct;
1039 	u8 family;
1040 
1041 	p = rcu_dereference_bh(c->params);
1042 
1043 	retval = READ_ONCE(c->tcf_action);
1044 	commit = p->ct_action & TCA_CT_ACT_COMMIT;
1045 	clear = p->ct_action & TCA_CT_ACT_CLEAR;
1046 	force = p->ct_action & TCA_CT_ACT_FORCE;
1047 	tmpl = p->tmpl;
1048 
1049 	tcf_lastuse_update(&c->tcf_tm);
1050 	tcf_action_update_bstats(&c->common, skb);
1051 
1052 	if (clear) {
1053 		tc_skb_cb(skb)->post_ct = false;
1054 		ct = nf_ct_get(skb, &ctinfo);
1055 		if (ct) {
1056 			nf_ct_put(ct);
1057 			nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1058 		}
1059 
1060 		goto out_clear;
1061 	}
1062 
1063 	family = tcf_ct_skb_nf_family(skb);
1064 	if (family == NFPROTO_UNSPEC)
1065 		goto drop;
1066 
1067 	/* The conntrack module expects to be working at L3.
1068 	 * We also try to pull the IPv4/6 header to linear area
1069 	 */
1070 	nh_ofs = skb_network_offset(skb);
1071 	skb_pull_rcsum(skb, nh_ofs);
1072 	err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag);
1073 	if (err == -EINPROGRESS) {
1074 		retval = TC_ACT_STOLEN;
1075 		goto out_clear;
1076 	}
1077 	if (err)
1078 		goto drop;
1079 
1080 	err = tcf_ct_skb_network_trim(skb, family);
1081 	if (err)
1082 		goto drop;
1083 
1084 	/* If we are recirculating packets to match on ct fields and
1085 	 * committing with a separate ct action, then we don't need to
1086 	 * actually run the packet through conntrack twice unless it's for a
1087 	 * different zone.
1088 	 */
1089 	cached = tcf_ct_skb_nfct_cached(net, skb, p->zone, force);
1090 	if (!cached) {
1091 		if (tcf_ct_flow_table_lookup(p, skb, family)) {
1092 			skip_add = true;
1093 			goto do_nat;
1094 		}
1095 
1096 		/* Associate skb with specified zone. */
1097 		if (tmpl) {
1098 			nf_conntrack_put(skb_nfct(skb));
1099 			nf_conntrack_get(&tmpl->ct_general);
1100 			nf_ct_set(skb, tmpl, IP_CT_NEW);
1101 		}
1102 
1103 		state.hook = NF_INET_PRE_ROUTING;
1104 		state.net = net;
1105 		state.pf = family;
1106 		err = nf_conntrack_in(skb, &state);
1107 		if (err != NF_ACCEPT)
1108 			goto out_push;
1109 	}
1110 
1111 do_nat:
1112 	ct = nf_ct_get(skb, &ctinfo);
1113 	if (!ct)
1114 		goto out_push;
1115 	nf_ct_deliver_cached_events(ct);
1116 	nf_conn_act_ct_ext_fill(skb, ct, ctinfo);
1117 
1118 	err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit);
1119 	if (err != NF_ACCEPT)
1120 		goto drop;
1121 
1122 	if (commit) {
1123 		tcf_ct_act_set_mark(ct, p->mark, p->mark_mask);
1124 		tcf_ct_act_set_labels(ct, p->labels, p->labels_mask);
1125 
1126 		if (!nf_ct_is_confirmed(ct))
1127 			nf_conn_act_ct_ext_add(ct);
1128 
1129 		/* This will take care of sending queued events
1130 		 * even if the connection is already confirmed.
1131 		 */
1132 		if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1133 			goto drop;
1134 	}
1135 
1136 	if (!skip_add)
1137 		tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo);
1138 
1139 out_push:
1140 	skb_push_rcsum(skb, nh_ofs);
1141 
1142 	tc_skb_cb(skb)->post_ct = true;
1143 	tc_skb_cb(skb)->zone = p->zone;
1144 out_clear:
1145 	if (defrag)
1146 		qdisc_skb_cb(skb)->pkt_len = skb->len;
1147 	return retval;
1148 
1149 drop:
1150 	tcf_action_inc_drop_qstats(&c->common);
1151 	return TC_ACT_SHOT;
1152 }
1153 
1154 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = {
1155 	[TCA_CT_ACTION] = { .type = NLA_U16 },
1156 	[TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)),
1157 	[TCA_CT_ZONE] = { .type = NLA_U16 },
1158 	[TCA_CT_MARK] = { .type = NLA_U32 },
1159 	[TCA_CT_MARK_MASK] = { .type = NLA_U32 },
1160 	[TCA_CT_LABELS] = { .type = NLA_BINARY,
1161 			    .len = 128 / BITS_PER_BYTE },
1162 	[TCA_CT_LABELS_MASK] = { .type = NLA_BINARY,
1163 				 .len = 128 / BITS_PER_BYTE },
1164 	[TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 },
1165 	[TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 },
1166 	[TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
1167 	[TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
1168 	[TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 },
1169 	[TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 },
1170 };
1171 
1172 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p,
1173 				  struct tc_ct *parm,
1174 				  struct nlattr **tb,
1175 				  struct netlink_ext_ack *extack)
1176 {
1177 	struct nf_nat_range2 *range;
1178 
1179 	if (!(p->ct_action & TCA_CT_ACT_NAT))
1180 		return 0;
1181 
1182 	if (!IS_ENABLED(CONFIG_NF_NAT)) {
1183 		NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel");
1184 		return -EOPNOTSUPP;
1185 	}
1186 
1187 	if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
1188 		return 0;
1189 
1190 	if ((p->ct_action & TCA_CT_ACT_NAT_SRC) &&
1191 	    (p->ct_action & TCA_CT_ACT_NAT_DST)) {
1192 		NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time");
1193 		return -EOPNOTSUPP;
1194 	}
1195 
1196 	range = &p->range;
1197 	if (tb[TCA_CT_NAT_IPV4_MIN]) {
1198 		struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX];
1199 
1200 		p->ipv4_range = true;
1201 		range->flags |= NF_NAT_RANGE_MAP_IPS;
1202 		range->min_addr.ip =
1203 			nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]);
1204 
1205 		range->max_addr.ip = max_attr ?
1206 				     nla_get_in_addr(max_attr) :
1207 				     range->min_addr.ip;
1208 	} else if (tb[TCA_CT_NAT_IPV6_MIN]) {
1209 		struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX];
1210 
1211 		p->ipv4_range = false;
1212 		range->flags |= NF_NAT_RANGE_MAP_IPS;
1213 		range->min_addr.in6 =
1214 			nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]);
1215 
1216 		range->max_addr.in6 = max_attr ?
1217 				      nla_get_in6_addr(max_attr) :
1218 				      range->min_addr.in6;
1219 	}
1220 
1221 	if (tb[TCA_CT_NAT_PORT_MIN]) {
1222 		range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1223 		range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]);
1224 
1225 		range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ?
1226 				       nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) :
1227 				       range->min_proto.all;
1228 	}
1229 
1230 	return 0;
1231 }
1232 
1233 static void tcf_ct_set_key_val(struct nlattr **tb,
1234 			       void *val, int val_type,
1235 			       void *mask, int mask_type,
1236 			       int len)
1237 {
1238 	if (!tb[val_type])
1239 		return;
1240 	nla_memcpy(val, tb[val_type], len);
1241 
1242 	if (!mask)
1243 		return;
1244 
1245 	if (mask_type == TCA_CT_UNSPEC || !tb[mask_type])
1246 		memset(mask, 0xff, len);
1247 	else
1248 		nla_memcpy(mask, tb[mask_type], len);
1249 }
1250 
1251 static int tcf_ct_fill_params(struct net *net,
1252 			      struct tcf_ct_params *p,
1253 			      struct tc_ct *parm,
1254 			      struct nlattr **tb,
1255 			      struct netlink_ext_ack *extack)
1256 {
1257 	struct tc_ct_action_net *tn = net_generic(net, ct_net_id);
1258 	struct nf_conntrack_zone zone;
1259 	struct nf_conn *tmpl;
1260 	int err;
1261 
1262 	p->zone = NF_CT_DEFAULT_ZONE_ID;
1263 
1264 	tcf_ct_set_key_val(tb,
1265 			   &p->ct_action, TCA_CT_ACTION,
1266 			   NULL, TCA_CT_UNSPEC,
1267 			   sizeof(p->ct_action));
1268 
1269 	if (p->ct_action & TCA_CT_ACT_CLEAR)
1270 		return 0;
1271 
1272 	err = tcf_ct_fill_params_nat(p, parm, tb, extack);
1273 	if (err)
1274 		return err;
1275 
1276 	if (tb[TCA_CT_MARK]) {
1277 		if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) {
1278 			NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled.");
1279 			return -EOPNOTSUPP;
1280 		}
1281 		tcf_ct_set_key_val(tb,
1282 				   &p->mark, TCA_CT_MARK,
1283 				   &p->mark_mask, TCA_CT_MARK_MASK,
1284 				   sizeof(p->mark));
1285 	}
1286 
1287 	if (tb[TCA_CT_LABELS]) {
1288 		if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) {
1289 			NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled.");
1290 			return -EOPNOTSUPP;
1291 		}
1292 
1293 		if (!tn->labels) {
1294 			NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length");
1295 			return -EOPNOTSUPP;
1296 		}
1297 		tcf_ct_set_key_val(tb,
1298 				   p->labels, TCA_CT_LABELS,
1299 				   p->labels_mask, TCA_CT_LABELS_MASK,
1300 				   sizeof(p->labels));
1301 	}
1302 
1303 	if (tb[TCA_CT_ZONE]) {
1304 		if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) {
1305 			NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled.");
1306 			return -EOPNOTSUPP;
1307 		}
1308 
1309 		tcf_ct_set_key_val(tb,
1310 				   &p->zone, TCA_CT_ZONE,
1311 				   NULL, TCA_CT_UNSPEC,
1312 				   sizeof(p->zone));
1313 	}
1314 
1315 	nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0);
1316 	tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL);
1317 	if (!tmpl) {
1318 		NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template");
1319 		return -ENOMEM;
1320 	}
1321 	__set_bit(IPS_CONFIRMED_BIT, &tmpl->status);
1322 	p->tmpl = tmpl;
1323 
1324 	return 0;
1325 }
1326 
1327 static int tcf_ct_init(struct net *net, struct nlattr *nla,
1328 		       struct nlattr *est, struct tc_action **a,
1329 		       struct tcf_proto *tp, u32 flags,
1330 		       struct netlink_ext_ack *extack)
1331 {
1332 	struct tc_action_net *tn = net_generic(net, ct_net_id);
1333 	bool bind = flags & TCA_ACT_FLAGS_BIND;
1334 	struct tcf_ct_params *params = NULL;
1335 	struct nlattr *tb[TCA_CT_MAX + 1];
1336 	struct tcf_chain *goto_ch = NULL;
1337 	struct tc_ct *parm;
1338 	struct tcf_ct *c;
1339 	int err, res = 0;
1340 	u32 index;
1341 
1342 	if (!nla) {
1343 		NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed");
1344 		return -EINVAL;
1345 	}
1346 
1347 	err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack);
1348 	if (err < 0)
1349 		return err;
1350 
1351 	if (!tb[TCA_CT_PARMS]) {
1352 		NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters");
1353 		return -EINVAL;
1354 	}
1355 	parm = nla_data(tb[TCA_CT_PARMS]);
1356 	index = parm->index;
1357 	err = tcf_idr_check_alloc(tn, &index, a, bind);
1358 	if (err < 0)
1359 		return err;
1360 
1361 	if (!err) {
1362 		err = tcf_idr_create_from_flags(tn, index, est, a,
1363 						&act_ct_ops, bind, flags);
1364 		if (err) {
1365 			tcf_idr_cleanup(tn, index);
1366 			return err;
1367 		}
1368 		res = ACT_P_CREATED;
1369 	} else {
1370 		if (bind)
1371 			return 0;
1372 
1373 		if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
1374 			tcf_idr_release(*a, bind);
1375 			return -EEXIST;
1376 		}
1377 	}
1378 	err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
1379 	if (err < 0)
1380 		goto cleanup;
1381 
1382 	c = to_ct(*a);
1383 
1384 	params = kzalloc(sizeof(*params), GFP_KERNEL);
1385 	if (unlikely(!params)) {
1386 		err = -ENOMEM;
1387 		goto cleanup;
1388 	}
1389 
1390 	err = tcf_ct_fill_params(net, params, parm, tb, extack);
1391 	if (err)
1392 		goto cleanup;
1393 
1394 	err = tcf_ct_flow_table_get(params);
1395 	if (err)
1396 		goto cleanup;
1397 
1398 	spin_lock_bh(&c->tcf_lock);
1399 	goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
1400 	params = rcu_replace_pointer(c->params, params,
1401 				     lockdep_is_held(&c->tcf_lock));
1402 	spin_unlock_bh(&c->tcf_lock);
1403 
1404 	if (goto_ch)
1405 		tcf_chain_put_by_act(goto_ch);
1406 	if (params)
1407 		call_rcu(&params->rcu, tcf_ct_params_free);
1408 
1409 	return res;
1410 
1411 cleanup:
1412 	if (goto_ch)
1413 		tcf_chain_put_by_act(goto_ch);
1414 	kfree(params);
1415 	tcf_idr_release(*a, bind);
1416 	return err;
1417 }
1418 
1419 static void tcf_ct_cleanup(struct tc_action *a)
1420 {
1421 	struct tcf_ct_params *params;
1422 	struct tcf_ct *c = to_ct(a);
1423 
1424 	params = rcu_dereference_protected(c->params, 1);
1425 	if (params)
1426 		call_rcu(&params->rcu, tcf_ct_params_free);
1427 }
1428 
1429 static int tcf_ct_dump_key_val(struct sk_buff *skb,
1430 			       void *val, int val_type,
1431 			       void *mask, int mask_type,
1432 			       int len)
1433 {
1434 	int err;
1435 
1436 	if (mask && !memchr_inv(mask, 0, len))
1437 		return 0;
1438 
1439 	err = nla_put(skb, val_type, len, val);
1440 	if (err)
1441 		return err;
1442 
1443 	if (mask_type != TCA_CT_UNSPEC) {
1444 		err = nla_put(skb, mask_type, len, mask);
1445 		if (err)
1446 			return err;
1447 	}
1448 
1449 	return 0;
1450 }
1451 
1452 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p)
1453 {
1454 	struct nf_nat_range2 *range = &p->range;
1455 
1456 	if (!(p->ct_action & TCA_CT_ACT_NAT))
1457 		return 0;
1458 
1459 	if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
1460 		return 0;
1461 
1462 	if (range->flags & NF_NAT_RANGE_MAP_IPS) {
1463 		if (p->ipv4_range) {
1464 			if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN,
1465 					    range->min_addr.ip))
1466 				return -1;
1467 			if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX,
1468 					    range->max_addr.ip))
1469 				return -1;
1470 		} else {
1471 			if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN,
1472 					     &range->min_addr.in6))
1473 				return -1;
1474 			if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX,
1475 					     &range->max_addr.in6))
1476 				return -1;
1477 		}
1478 	}
1479 
1480 	if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
1481 		if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN,
1482 				 range->min_proto.all))
1483 			return -1;
1484 		if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX,
1485 				 range->max_proto.all))
1486 			return -1;
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a,
1493 			      int bind, int ref)
1494 {
1495 	unsigned char *b = skb_tail_pointer(skb);
1496 	struct tcf_ct *c = to_ct(a);
1497 	struct tcf_ct_params *p;
1498 
1499 	struct tc_ct opt = {
1500 		.index   = c->tcf_index,
1501 		.refcnt  = refcount_read(&c->tcf_refcnt) - ref,
1502 		.bindcnt = atomic_read(&c->tcf_bindcnt) - bind,
1503 	};
1504 	struct tcf_t t;
1505 
1506 	spin_lock_bh(&c->tcf_lock);
1507 	p = rcu_dereference_protected(c->params,
1508 				      lockdep_is_held(&c->tcf_lock));
1509 	opt.action = c->tcf_action;
1510 
1511 	if (tcf_ct_dump_key_val(skb,
1512 				&p->ct_action, TCA_CT_ACTION,
1513 				NULL, TCA_CT_UNSPEC,
1514 				sizeof(p->ct_action)))
1515 		goto nla_put_failure;
1516 
1517 	if (p->ct_action & TCA_CT_ACT_CLEAR)
1518 		goto skip_dump;
1519 
1520 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1521 	    tcf_ct_dump_key_val(skb,
1522 				&p->mark, TCA_CT_MARK,
1523 				&p->mark_mask, TCA_CT_MARK_MASK,
1524 				sizeof(p->mark)))
1525 		goto nla_put_failure;
1526 
1527 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1528 	    tcf_ct_dump_key_val(skb,
1529 				p->labels, TCA_CT_LABELS,
1530 				p->labels_mask, TCA_CT_LABELS_MASK,
1531 				sizeof(p->labels)))
1532 		goto nla_put_failure;
1533 
1534 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1535 	    tcf_ct_dump_key_val(skb,
1536 				&p->zone, TCA_CT_ZONE,
1537 				NULL, TCA_CT_UNSPEC,
1538 				sizeof(p->zone)))
1539 		goto nla_put_failure;
1540 
1541 	if (tcf_ct_dump_nat(skb, p))
1542 		goto nla_put_failure;
1543 
1544 skip_dump:
1545 	if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt))
1546 		goto nla_put_failure;
1547 
1548 	tcf_tm_dump(&t, &c->tcf_tm);
1549 	if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD))
1550 		goto nla_put_failure;
1551 	spin_unlock_bh(&c->tcf_lock);
1552 
1553 	return skb->len;
1554 nla_put_failure:
1555 	spin_unlock_bh(&c->tcf_lock);
1556 	nlmsg_trim(skb, b);
1557 	return -1;
1558 }
1559 
1560 static int tcf_ct_walker(struct net *net, struct sk_buff *skb,
1561 			 struct netlink_callback *cb, int type,
1562 			 const struct tc_action_ops *ops,
1563 			 struct netlink_ext_ack *extack)
1564 {
1565 	struct tc_action_net *tn = net_generic(net, ct_net_id);
1566 
1567 	return tcf_generic_walker(tn, skb, cb, type, ops, extack);
1568 }
1569 
1570 static int tcf_ct_search(struct net *net, struct tc_action **a, u32 index)
1571 {
1572 	struct tc_action_net *tn = net_generic(net, ct_net_id);
1573 
1574 	return tcf_idr_search(tn, a, index);
1575 }
1576 
1577 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets,
1578 			     u64 drops, u64 lastuse, bool hw)
1579 {
1580 	struct tcf_ct *c = to_ct(a);
1581 
1582 	tcf_action_update_stats(a, bytes, packets, drops, hw);
1583 	c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse);
1584 }
1585 
1586 static int tcf_ct_offload_act_setup(struct tc_action *act, void *entry_data,
1587 				    u32 *index_inc, bool bind,
1588 				    struct netlink_ext_ack *extack)
1589 {
1590 	if (bind) {
1591 		struct flow_action_entry *entry = entry_data;
1592 
1593 		entry->id = FLOW_ACTION_CT;
1594 		entry->ct.action = tcf_ct_action(act);
1595 		entry->ct.zone = tcf_ct_zone(act);
1596 		entry->ct.flow_table = tcf_ct_ft(act);
1597 		*index_inc = 1;
1598 	} else {
1599 		struct flow_offload_action *fl_action = entry_data;
1600 
1601 		fl_action->id = FLOW_ACTION_CT;
1602 	}
1603 
1604 	return 0;
1605 }
1606 
1607 static struct tc_action_ops act_ct_ops = {
1608 	.kind		=	"ct",
1609 	.id		=	TCA_ID_CT,
1610 	.owner		=	THIS_MODULE,
1611 	.act		=	tcf_ct_act,
1612 	.dump		=	tcf_ct_dump,
1613 	.init		=	tcf_ct_init,
1614 	.cleanup	=	tcf_ct_cleanup,
1615 	.walk		=	tcf_ct_walker,
1616 	.lookup		=	tcf_ct_search,
1617 	.stats_update	=	tcf_stats_update,
1618 	.offload_act_setup =	tcf_ct_offload_act_setup,
1619 	.size		=	sizeof(struct tcf_ct),
1620 };
1621 
1622 static __net_init int ct_init_net(struct net *net)
1623 {
1624 	unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8;
1625 	struct tc_ct_action_net *tn = net_generic(net, ct_net_id);
1626 
1627 	if (nf_connlabels_get(net, n_bits - 1)) {
1628 		tn->labels = false;
1629 		pr_err("act_ct: Failed to set connlabels length");
1630 	} else {
1631 		tn->labels = true;
1632 	}
1633 
1634 	return tc_action_net_init(net, &tn->tn, &act_ct_ops);
1635 }
1636 
1637 static void __net_exit ct_exit_net(struct list_head *net_list)
1638 {
1639 	struct net *net;
1640 
1641 	rtnl_lock();
1642 	list_for_each_entry(net, net_list, exit_list) {
1643 		struct tc_ct_action_net *tn = net_generic(net, ct_net_id);
1644 
1645 		if (tn->labels)
1646 			nf_connlabels_put(net);
1647 	}
1648 	rtnl_unlock();
1649 
1650 	tc_action_net_exit(net_list, ct_net_id);
1651 }
1652 
1653 static struct pernet_operations ct_net_ops = {
1654 	.init = ct_init_net,
1655 	.exit_batch = ct_exit_net,
1656 	.id   = &ct_net_id,
1657 	.size = sizeof(struct tc_ct_action_net),
1658 };
1659 
1660 static int __init ct_init_module(void)
1661 {
1662 	int err;
1663 
1664 	act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0);
1665 	if (!act_ct_wq)
1666 		return -ENOMEM;
1667 
1668 	err = tcf_ct_flow_tables_init();
1669 	if (err)
1670 		goto err_tbl_init;
1671 
1672 	err = tcf_register_action(&act_ct_ops, &ct_net_ops);
1673 	if (err)
1674 		goto err_register;
1675 
1676 	static_branch_inc(&tcf_frag_xmit_count);
1677 
1678 	return 0;
1679 
1680 err_register:
1681 	tcf_ct_flow_tables_uninit();
1682 err_tbl_init:
1683 	destroy_workqueue(act_ct_wq);
1684 	return err;
1685 }
1686 
1687 static void __exit ct_cleanup_module(void)
1688 {
1689 	static_branch_dec(&tcf_frag_xmit_count);
1690 	tcf_unregister_action(&act_ct_ops, &ct_net_ops);
1691 	tcf_ct_flow_tables_uninit();
1692 	destroy_workqueue(act_ct_wq);
1693 }
1694 
1695 module_init(ct_init_module);
1696 module_exit(ct_cleanup_module);
1697 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>");
1698 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>");
1699 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>");
1700 MODULE_DESCRIPTION("Connection tracking action");
1701 MODULE_LICENSE("GPL v2");
1702