xref: /linux/net/sched/act_ct.c (revision 005c54278b3dd38f6045a2450a8c988cc7d3def2)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /* -
3  * net/sched/act_ct.c  Connection Tracking action
4  *
5  * Authors:   Paul Blakey <paulb@mellanox.com>
6  *            Yossi Kuperman <yossiku@mellanox.com>
7  *            Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/skbuff.h>
14 #include <linux/rtnetlink.h>
15 #include <linux/pkt_cls.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/rhashtable.h>
19 #include <net/netlink.h>
20 #include <net/pkt_sched.h>
21 #include <net/pkt_cls.h>
22 #include <net/act_api.h>
23 #include <net/ip.h>
24 #include <net/ipv6_frag.h>
25 #include <uapi/linux/tc_act/tc_ct.h>
26 #include <net/tc_act/tc_ct.h>
27 #include <net/tc_wrapper.h>
28 
29 #include <net/netfilter/nf_flow_table.h>
30 #include <net/netfilter/nf_conntrack.h>
31 #include <net/netfilter/nf_conntrack_core.h>
32 #include <net/netfilter/nf_conntrack_zones.h>
33 #include <net/netfilter/nf_conntrack_helper.h>
34 #include <net/netfilter/nf_conntrack_acct.h>
35 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
36 #include <net/netfilter/nf_conntrack_act_ct.h>
37 #include <net/netfilter/nf_conntrack_seqadj.h>
38 #include <uapi/linux/netfilter/nf_nat.h>
39 
40 static struct workqueue_struct *act_ct_wq;
41 static struct rhashtable zones_ht;
42 static DEFINE_MUTEX(zones_mutex);
43 
44 struct tcf_ct_flow_table {
45 	struct rhash_head node; /* In zones tables */
46 
47 	struct rcu_work rwork;
48 	struct nf_flowtable nf_ft;
49 	refcount_t ref;
50 	u16 zone;
51 
52 	bool dying;
53 };
54 
55 static const struct rhashtable_params zones_params = {
56 	.head_offset = offsetof(struct tcf_ct_flow_table, node),
57 	.key_offset = offsetof(struct tcf_ct_flow_table, zone),
58 	.key_len = sizeof_field(struct tcf_ct_flow_table, zone),
59 	.automatic_shrinking = true,
60 };
61 
62 static struct flow_action_entry *
63 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action)
64 {
65 	int i = flow_action->num_entries++;
66 
67 	return &flow_action->entries[i];
68 }
69 
70 static void tcf_ct_add_mangle_action(struct flow_action *action,
71 				     enum flow_action_mangle_base htype,
72 				     u32 offset,
73 				     u32 mask,
74 				     u32 val)
75 {
76 	struct flow_action_entry *entry;
77 
78 	entry = tcf_ct_flow_table_flow_action_get_next(action);
79 	entry->id = FLOW_ACTION_MANGLE;
80 	entry->mangle.htype = htype;
81 	entry->mangle.mask = ~mask;
82 	entry->mangle.offset = offset;
83 	entry->mangle.val = val;
84 }
85 
86 /* The following nat helper functions check if the inverted reverse tuple
87  * (target) is different then the current dir tuple - meaning nat for ports
88  * and/or ip is needed, and add the relevant mangle actions.
89  */
90 static void
91 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple,
92 				      struct nf_conntrack_tuple target,
93 				      struct flow_action *action)
94 {
95 	if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
96 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
97 					 offsetof(struct iphdr, saddr),
98 					 0xFFFFFFFF,
99 					 be32_to_cpu(target.src.u3.ip));
100 	if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
101 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
102 					 offsetof(struct iphdr, daddr),
103 					 0xFFFFFFFF,
104 					 be32_to_cpu(target.dst.u3.ip));
105 }
106 
107 static void
108 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action,
109 				   union nf_inet_addr *addr,
110 				   u32 offset)
111 {
112 	int i;
113 
114 	for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++)
115 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6,
116 					 i * sizeof(u32) + offset,
117 					 0xFFFFFFFF, be32_to_cpu(addr->ip6[i]));
118 }
119 
120 static void
121 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple,
122 				      struct nf_conntrack_tuple target,
123 				      struct flow_action *action)
124 {
125 	if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
126 		tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3,
127 						   offsetof(struct ipv6hdr,
128 							    saddr));
129 	if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
130 		tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3,
131 						   offsetof(struct ipv6hdr,
132 							    daddr));
133 }
134 
135 static void
136 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple,
137 				     struct nf_conntrack_tuple target,
138 				     struct flow_action *action)
139 {
140 	__be16 target_src = target.src.u.tcp.port;
141 	__be16 target_dst = target.dst.u.tcp.port;
142 
143 	if (target_src != tuple->src.u.tcp.port)
144 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
145 					 offsetof(struct tcphdr, source),
146 					 0xFFFF, be16_to_cpu(target_src));
147 	if (target_dst != tuple->dst.u.tcp.port)
148 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
149 					 offsetof(struct tcphdr, dest),
150 					 0xFFFF, be16_to_cpu(target_dst));
151 }
152 
153 static void
154 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple,
155 				     struct nf_conntrack_tuple target,
156 				     struct flow_action *action)
157 {
158 	__be16 target_src = target.src.u.udp.port;
159 	__be16 target_dst = target.dst.u.udp.port;
160 
161 	if (target_src != tuple->src.u.udp.port)
162 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
163 					 offsetof(struct udphdr, source),
164 					 0xFFFF, be16_to_cpu(target_src));
165 	if (target_dst != tuple->dst.u.udp.port)
166 		tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
167 					 offsetof(struct udphdr, dest),
168 					 0xFFFF, be16_to_cpu(target_dst));
169 }
170 
171 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct,
172 					      enum ip_conntrack_dir dir,
173 					      struct flow_action *action)
174 {
175 	struct nf_conn_labels *ct_labels;
176 	struct flow_action_entry *entry;
177 	enum ip_conntrack_info ctinfo;
178 	u32 *act_ct_labels;
179 
180 	entry = tcf_ct_flow_table_flow_action_get_next(action);
181 	entry->id = FLOW_ACTION_CT_METADATA;
182 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
183 	entry->ct_metadata.mark = READ_ONCE(ct->mark);
184 #endif
185 	ctinfo = dir == IP_CT_DIR_ORIGINAL ? IP_CT_ESTABLISHED :
186 					     IP_CT_ESTABLISHED_REPLY;
187 	/* aligns with the CT reference on the SKB nf_ct_set */
188 	entry->ct_metadata.cookie = (unsigned long)ct | ctinfo;
189 	entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL;
190 
191 	act_ct_labels = entry->ct_metadata.labels;
192 	ct_labels = nf_ct_labels_find(ct);
193 	if (ct_labels)
194 		memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE);
195 	else
196 		memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE);
197 }
198 
199 static int tcf_ct_flow_table_add_action_nat(struct net *net,
200 					    struct nf_conn *ct,
201 					    enum ip_conntrack_dir dir,
202 					    struct flow_action *action)
203 {
204 	const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple;
205 	struct nf_conntrack_tuple target;
206 
207 	if (!(ct->status & IPS_NAT_MASK))
208 		return 0;
209 
210 	nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple);
211 
212 	switch (tuple->src.l3num) {
213 	case NFPROTO_IPV4:
214 		tcf_ct_flow_table_add_action_nat_ipv4(tuple, target,
215 						      action);
216 		break;
217 	case NFPROTO_IPV6:
218 		tcf_ct_flow_table_add_action_nat_ipv6(tuple, target,
219 						      action);
220 		break;
221 	default:
222 		return -EOPNOTSUPP;
223 	}
224 
225 	switch (nf_ct_protonum(ct)) {
226 	case IPPROTO_TCP:
227 		tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action);
228 		break;
229 	case IPPROTO_UDP:
230 		tcf_ct_flow_table_add_action_nat_udp(tuple, target, action);
231 		break;
232 	default:
233 		return -EOPNOTSUPP;
234 	}
235 
236 	return 0;
237 }
238 
239 static int tcf_ct_flow_table_fill_actions(struct net *net,
240 					  const struct flow_offload *flow,
241 					  enum flow_offload_tuple_dir tdir,
242 					  struct nf_flow_rule *flow_rule)
243 {
244 	struct flow_action *action = &flow_rule->rule->action;
245 	int num_entries = action->num_entries;
246 	struct nf_conn *ct = flow->ct;
247 	enum ip_conntrack_dir dir;
248 	int i, err;
249 
250 	switch (tdir) {
251 	case FLOW_OFFLOAD_DIR_ORIGINAL:
252 		dir = IP_CT_DIR_ORIGINAL;
253 		break;
254 	case FLOW_OFFLOAD_DIR_REPLY:
255 		dir = IP_CT_DIR_REPLY;
256 		break;
257 	default:
258 		return -EOPNOTSUPP;
259 	}
260 
261 	err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action);
262 	if (err)
263 		goto err_nat;
264 
265 	tcf_ct_flow_table_add_action_meta(ct, dir, action);
266 	return 0;
267 
268 err_nat:
269 	/* Clear filled actions */
270 	for (i = num_entries; i < action->num_entries; i++)
271 		memset(&action->entries[i], 0, sizeof(action->entries[i]));
272 	action->num_entries = num_entries;
273 
274 	return err;
275 }
276 
277 static struct nf_flowtable_type flowtable_ct = {
278 	.action		= tcf_ct_flow_table_fill_actions,
279 	.owner		= THIS_MODULE,
280 };
281 
282 static int tcf_ct_flow_table_get(struct net *net, struct tcf_ct_params *params)
283 {
284 	struct tcf_ct_flow_table *ct_ft;
285 	int err = -ENOMEM;
286 
287 	mutex_lock(&zones_mutex);
288 	ct_ft = rhashtable_lookup_fast(&zones_ht, &params->zone, zones_params);
289 	if (ct_ft && refcount_inc_not_zero(&ct_ft->ref))
290 		goto out_unlock;
291 
292 	ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL);
293 	if (!ct_ft)
294 		goto err_alloc;
295 	refcount_set(&ct_ft->ref, 1);
296 
297 	ct_ft->zone = params->zone;
298 	err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params);
299 	if (err)
300 		goto err_insert;
301 
302 	ct_ft->nf_ft.type = &flowtable_ct;
303 	ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD |
304 			      NF_FLOWTABLE_COUNTER;
305 	err = nf_flow_table_init(&ct_ft->nf_ft);
306 	if (err)
307 		goto err_init;
308 	write_pnet(&ct_ft->nf_ft.net, net);
309 
310 	__module_get(THIS_MODULE);
311 out_unlock:
312 	params->ct_ft = ct_ft;
313 	params->nf_ft = &ct_ft->nf_ft;
314 	mutex_unlock(&zones_mutex);
315 
316 	return 0;
317 
318 err_init:
319 	rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
320 err_insert:
321 	kfree(ct_ft);
322 err_alloc:
323 	mutex_unlock(&zones_mutex);
324 	return err;
325 }
326 
327 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work)
328 {
329 	struct flow_block_cb *block_cb, *tmp_cb;
330 	struct tcf_ct_flow_table *ct_ft;
331 	struct flow_block *block;
332 
333 	ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table,
334 			     rwork);
335 	nf_flow_table_free(&ct_ft->nf_ft);
336 
337 	/* Remove any remaining callbacks before cleanup */
338 	block = &ct_ft->nf_ft.flow_block;
339 	down_write(&ct_ft->nf_ft.flow_block_lock);
340 	list_for_each_entry_safe(block_cb, tmp_cb, &block->cb_list, list) {
341 		list_del(&block_cb->list);
342 		flow_block_cb_free(block_cb);
343 	}
344 	up_write(&ct_ft->nf_ft.flow_block_lock);
345 	kfree(ct_ft);
346 
347 	module_put(THIS_MODULE);
348 }
349 
350 static void tcf_ct_flow_table_put(struct tcf_ct_flow_table *ct_ft)
351 {
352 	if (refcount_dec_and_test(&ct_ft->ref)) {
353 		rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
354 		INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work);
355 		queue_rcu_work(act_ct_wq, &ct_ft->rwork);
356 	}
357 }
358 
359 static void tcf_ct_flow_tc_ifidx(struct flow_offload *entry,
360 				 struct nf_conn_act_ct_ext *act_ct_ext, u8 dir)
361 {
362 	entry->tuplehash[dir].tuple.xmit_type = FLOW_OFFLOAD_XMIT_TC;
363 	entry->tuplehash[dir].tuple.tc.iifidx = act_ct_ext->ifindex[dir];
364 }
365 
366 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft,
367 				  struct nf_conn *ct,
368 				  bool tcp)
369 {
370 	struct nf_conn_act_ct_ext *act_ct_ext;
371 	struct flow_offload *entry;
372 	int err;
373 
374 	if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status))
375 		return;
376 
377 	entry = flow_offload_alloc(ct);
378 	if (!entry) {
379 		WARN_ON_ONCE(1);
380 		goto err_alloc;
381 	}
382 
383 	if (tcp) {
384 		ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
385 		ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
386 	}
387 
388 	act_ct_ext = nf_conn_act_ct_ext_find(ct);
389 	if (act_ct_ext) {
390 		tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL);
391 		tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY);
392 	}
393 
394 	err = flow_offload_add(&ct_ft->nf_ft, entry);
395 	if (err)
396 		goto err_add;
397 
398 	return;
399 
400 err_add:
401 	flow_offload_free(entry);
402 err_alloc:
403 	clear_bit(IPS_OFFLOAD_BIT, &ct->status);
404 }
405 
406 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft,
407 					   struct nf_conn *ct,
408 					   enum ip_conntrack_info ctinfo)
409 {
410 	bool tcp = false;
411 
412 	if ((ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY) ||
413 	    !test_bit(IPS_ASSURED_BIT, &ct->status))
414 		return;
415 
416 	switch (nf_ct_protonum(ct)) {
417 	case IPPROTO_TCP:
418 		tcp = true;
419 		if (ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED)
420 			return;
421 		break;
422 	case IPPROTO_UDP:
423 		break;
424 #ifdef CONFIG_NF_CT_PROTO_GRE
425 	case IPPROTO_GRE: {
426 		struct nf_conntrack_tuple *tuple;
427 
428 		if (ct->status & IPS_NAT_MASK)
429 			return;
430 		tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
431 		/* No support for GRE v1 */
432 		if (tuple->src.u.gre.key || tuple->dst.u.gre.key)
433 			return;
434 		break;
435 	}
436 #endif
437 	default:
438 		return;
439 	}
440 
441 	if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) ||
442 	    ct->status & IPS_SEQ_ADJUST)
443 		return;
444 
445 	tcf_ct_flow_table_add(ct_ft, ct, tcp);
446 }
447 
448 static bool
449 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb,
450 				  struct flow_offload_tuple *tuple,
451 				  struct tcphdr **tcph)
452 {
453 	struct flow_ports *ports;
454 	unsigned int thoff;
455 	struct iphdr *iph;
456 	size_t hdrsize;
457 	u8 ipproto;
458 
459 	if (!pskb_network_may_pull(skb, sizeof(*iph)))
460 		return false;
461 
462 	iph = ip_hdr(skb);
463 	thoff = iph->ihl * 4;
464 
465 	if (ip_is_fragment(iph) ||
466 	    unlikely(thoff != sizeof(struct iphdr)))
467 		return false;
468 
469 	ipproto = iph->protocol;
470 	switch (ipproto) {
471 	case IPPROTO_TCP:
472 		hdrsize = sizeof(struct tcphdr);
473 		break;
474 	case IPPROTO_UDP:
475 		hdrsize = sizeof(*ports);
476 		break;
477 #ifdef CONFIG_NF_CT_PROTO_GRE
478 	case IPPROTO_GRE:
479 		hdrsize = sizeof(struct gre_base_hdr);
480 		break;
481 #endif
482 	default:
483 		return false;
484 	}
485 
486 	if (iph->ttl <= 1)
487 		return false;
488 
489 	if (!pskb_network_may_pull(skb, thoff + hdrsize))
490 		return false;
491 
492 	switch (ipproto) {
493 	case IPPROTO_TCP:
494 		*tcph = (void *)(skb_network_header(skb) + thoff);
495 		fallthrough;
496 	case IPPROTO_UDP:
497 		ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
498 		tuple->src_port = ports->source;
499 		tuple->dst_port = ports->dest;
500 		break;
501 	case IPPROTO_GRE: {
502 		struct gre_base_hdr *greh;
503 
504 		greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff);
505 		if ((greh->flags & GRE_VERSION) != GRE_VERSION_0)
506 			return false;
507 		break;
508 	}
509 	}
510 
511 	iph = ip_hdr(skb);
512 
513 	tuple->src_v4.s_addr = iph->saddr;
514 	tuple->dst_v4.s_addr = iph->daddr;
515 	tuple->l3proto = AF_INET;
516 	tuple->l4proto = ipproto;
517 
518 	return true;
519 }
520 
521 static bool
522 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb,
523 				  struct flow_offload_tuple *tuple,
524 				  struct tcphdr **tcph)
525 {
526 	struct flow_ports *ports;
527 	struct ipv6hdr *ip6h;
528 	unsigned int thoff;
529 	size_t hdrsize;
530 	u8 nexthdr;
531 
532 	if (!pskb_network_may_pull(skb, sizeof(*ip6h)))
533 		return false;
534 
535 	ip6h = ipv6_hdr(skb);
536 	thoff = sizeof(*ip6h);
537 
538 	nexthdr = ip6h->nexthdr;
539 	switch (nexthdr) {
540 	case IPPROTO_TCP:
541 		hdrsize = sizeof(struct tcphdr);
542 		break;
543 	case IPPROTO_UDP:
544 		hdrsize = sizeof(*ports);
545 		break;
546 #ifdef CONFIG_NF_CT_PROTO_GRE
547 	case IPPROTO_GRE:
548 		hdrsize = sizeof(struct gre_base_hdr);
549 		break;
550 #endif
551 	default:
552 		return false;
553 	}
554 
555 	if (ip6h->hop_limit <= 1)
556 		return false;
557 
558 	if (!pskb_network_may_pull(skb, thoff + hdrsize))
559 		return false;
560 
561 	switch (nexthdr) {
562 	case IPPROTO_TCP:
563 		*tcph = (void *)(skb_network_header(skb) + thoff);
564 		fallthrough;
565 	case IPPROTO_UDP:
566 		ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
567 		tuple->src_port = ports->source;
568 		tuple->dst_port = ports->dest;
569 		break;
570 	case IPPROTO_GRE: {
571 		struct gre_base_hdr *greh;
572 
573 		greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff);
574 		if ((greh->flags & GRE_VERSION) != GRE_VERSION_0)
575 			return false;
576 		break;
577 	}
578 	}
579 
580 	ip6h = ipv6_hdr(skb);
581 
582 	tuple->src_v6 = ip6h->saddr;
583 	tuple->dst_v6 = ip6h->daddr;
584 	tuple->l3proto = AF_INET6;
585 	tuple->l4proto = nexthdr;
586 
587 	return true;
588 }
589 
590 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p,
591 				     struct sk_buff *skb,
592 				     u8 family)
593 {
594 	struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft;
595 	struct flow_offload_tuple_rhash *tuplehash;
596 	struct flow_offload_tuple tuple = {};
597 	enum ip_conntrack_info ctinfo;
598 	struct tcphdr *tcph = NULL;
599 	struct flow_offload *flow;
600 	struct nf_conn *ct;
601 	u8 dir;
602 
603 	switch (family) {
604 	case NFPROTO_IPV4:
605 		if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph))
606 			return false;
607 		break;
608 	case NFPROTO_IPV6:
609 		if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph))
610 			return false;
611 		break;
612 	default:
613 		return false;
614 	}
615 
616 	tuplehash = flow_offload_lookup(nf_ft, &tuple);
617 	if (!tuplehash)
618 		return false;
619 
620 	dir = tuplehash->tuple.dir;
621 	flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]);
622 	ct = flow->ct;
623 
624 	if (tcph && (unlikely(tcph->fin || tcph->rst))) {
625 		flow_offload_teardown(flow);
626 		return false;
627 	}
628 
629 	ctinfo = dir == FLOW_OFFLOAD_DIR_ORIGINAL ? IP_CT_ESTABLISHED :
630 						    IP_CT_ESTABLISHED_REPLY;
631 
632 	flow_offload_refresh(nf_ft, flow);
633 	nf_conntrack_get(&ct->ct_general);
634 	nf_ct_set(skb, ct, ctinfo);
635 	if (nf_ft->flags & NF_FLOWTABLE_COUNTER)
636 		nf_ct_acct_update(ct, dir, skb->len);
637 
638 	return true;
639 }
640 
641 static int tcf_ct_flow_tables_init(void)
642 {
643 	return rhashtable_init(&zones_ht, &zones_params);
644 }
645 
646 static void tcf_ct_flow_tables_uninit(void)
647 {
648 	rhashtable_destroy(&zones_ht);
649 }
650 
651 static struct tc_action_ops act_ct_ops;
652 
653 struct tc_ct_action_net {
654 	struct tc_action_net tn; /* Must be first */
655 	bool labels;
656 };
657 
658 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
659 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb,
660 				   struct tcf_ct_params *p)
661 {
662 	enum ip_conntrack_info ctinfo;
663 	struct nf_conn *ct;
664 
665 	ct = nf_ct_get(skb, &ctinfo);
666 	if (!ct)
667 		return false;
668 	if (!net_eq(net, read_pnet(&ct->ct_net)))
669 		goto drop_ct;
670 	if (nf_ct_zone(ct)->id != p->zone)
671 		goto drop_ct;
672 	if (p->helper) {
673 		struct nf_conn_help *help;
674 
675 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
676 		if (help && rcu_access_pointer(help->helper) != p->helper)
677 			goto drop_ct;
678 	}
679 
680 	/* Force conntrack entry direction. */
681 	if ((p->ct_action & TCA_CT_ACT_FORCE) &&
682 	    CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
683 		if (nf_ct_is_confirmed(ct))
684 			nf_ct_kill(ct);
685 
686 		goto drop_ct;
687 	}
688 
689 	return true;
690 
691 drop_ct:
692 	nf_ct_put(ct);
693 	nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
694 
695 	return false;
696 }
697 
698 /* Trim the skb to the length specified by the IP/IPv6 header,
699  * removing any trailing lower-layer padding. This prepares the skb
700  * for higher-layer processing that assumes skb->len excludes padding
701  * (such as nf_ip_checksum). The caller needs to pull the skb to the
702  * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
703  */
704 static int tcf_ct_skb_network_trim(struct sk_buff *skb, int family)
705 {
706 	unsigned int len;
707 
708 	switch (family) {
709 	case NFPROTO_IPV4:
710 		len = ntohs(ip_hdr(skb)->tot_len);
711 		break;
712 	case NFPROTO_IPV6:
713 		len = sizeof(struct ipv6hdr)
714 			+ ntohs(ipv6_hdr(skb)->payload_len);
715 		break;
716 	default:
717 		len = skb->len;
718 	}
719 
720 	return pskb_trim_rcsum(skb, len);
721 }
722 
723 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb)
724 {
725 	u8 family = NFPROTO_UNSPEC;
726 
727 	switch (skb_protocol(skb, true)) {
728 	case htons(ETH_P_IP):
729 		family = NFPROTO_IPV4;
730 		break;
731 	case htons(ETH_P_IPV6):
732 		family = NFPROTO_IPV6;
733 		break;
734 	default:
735 		break;
736 	}
737 
738 	return family;
739 }
740 
741 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag)
742 {
743 	unsigned int len;
744 
745 	len =  skb_network_offset(skb) + sizeof(struct iphdr);
746 	if (unlikely(skb->len < len))
747 		return -EINVAL;
748 	if (unlikely(!pskb_may_pull(skb, len)))
749 		return -ENOMEM;
750 
751 	*frag = ip_is_fragment(ip_hdr(skb));
752 	return 0;
753 }
754 
755 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag)
756 {
757 	unsigned int flags = 0, len, payload_ofs = 0;
758 	unsigned short frag_off;
759 	int nexthdr;
760 
761 	len =  skb_network_offset(skb) + sizeof(struct ipv6hdr);
762 	if (unlikely(skb->len < len))
763 		return -EINVAL;
764 	if (unlikely(!pskb_may_pull(skb, len)))
765 		return -ENOMEM;
766 
767 	nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
768 	if (unlikely(nexthdr < 0))
769 		return -EPROTO;
770 
771 	*frag = flags & IP6_FH_F_FRAG;
772 	return 0;
773 }
774 
775 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb,
776 				   u8 family, u16 zone, bool *defrag)
777 {
778 	enum ip_conntrack_info ctinfo;
779 	struct nf_conn *ct;
780 	int err = 0;
781 	bool frag;
782 	u16 mru;
783 
784 	/* Previously seen (loopback)? Ignore. */
785 	ct = nf_ct_get(skb, &ctinfo);
786 	if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED)
787 		return 0;
788 
789 	if (family == NFPROTO_IPV4)
790 		err = tcf_ct_ipv4_is_fragment(skb, &frag);
791 	else
792 		err = tcf_ct_ipv6_is_fragment(skb, &frag);
793 	if (err || !frag)
794 		return err;
795 
796 	skb_get(skb);
797 	mru = tc_skb_cb(skb)->mru;
798 
799 	if (family == NFPROTO_IPV4) {
800 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
801 
802 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
803 		local_bh_disable();
804 		err = ip_defrag(net, skb, user);
805 		local_bh_enable();
806 		if (err && err != -EINPROGRESS)
807 			return err;
808 
809 		if (!err) {
810 			*defrag = true;
811 			mru = IPCB(skb)->frag_max_size;
812 		}
813 	} else { /* NFPROTO_IPV6 */
814 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
815 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
816 
817 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
818 		err = nf_ct_frag6_gather(net, skb, user);
819 		if (err && err != -EINPROGRESS)
820 			goto out_free;
821 
822 		if (!err) {
823 			*defrag = true;
824 			mru = IP6CB(skb)->frag_max_size;
825 		}
826 #else
827 		err = -EOPNOTSUPP;
828 		goto out_free;
829 #endif
830 	}
831 
832 	if (err != -EINPROGRESS)
833 		tc_skb_cb(skb)->mru = mru;
834 	skb_clear_hash(skb);
835 	skb->ignore_df = 1;
836 	return err;
837 
838 out_free:
839 	kfree_skb(skb);
840 	return err;
841 }
842 
843 static void tcf_ct_params_free(struct tcf_ct_params *params)
844 {
845 	if (params->helper) {
846 #if IS_ENABLED(CONFIG_NF_NAT)
847 		if (params->ct_action & TCA_CT_ACT_NAT)
848 			nf_nat_helper_put(params->helper);
849 #endif
850 		nf_conntrack_helper_put(params->helper);
851 	}
852 	if (params->ct_ft)
853 		tcf_ct_flow_table_put(params->ct_ft);
854 	if (params->tmpl)
855 		nf_ct_put(params->tmpl);
856 	kfree(params);
857 }
858 
859 static void tcf_ct_params_free_rcu(struct rcu_head *head)
860 {
861 	struct tcf_ct_params *params;
862 
863 	params = container_of(head, struct tcf_ct_params, rcu);
864 	tcf_ct_params_free(params);
865 }
866 
867 #if IS_ENABLED(CONFIG_NF_NAT)
868 /* Modelled after nf_nat_ipv[46]_fn().
869  * range is only used for new, uninitialized NAT state.
870  * Returns either NF_ACCEPT or NF_DROP.
871  */
872 static int ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
873 			  enum ip_conntrack_info ctinfo,
874 			  const struct nf_nat_range2 *range,
875 			  enum nf_nat_manip_type maniptype)
876 {
877 	__be16 proto = skb_protocol(skb, true);
878 	int hooknum, err = NF_ACCEPT;
879 
880 	/* See HOOK2MANIP(). */
881 	if (maniptype == NF_NAT_MANIP_SRC)
882 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
883 	else
884 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
885 
886 	switch (ctinfo) {
887 	case IP_CT_RELATED:
888 	case IP_CT_RELATED_REPLY:
889 		if (proto == htons(ETH_P_IP) &&
890 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
891 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
892 							   hooknum))
893 				err = NF_DROP;
894 			goto out;
895 		} else if (IS_ENABLED(CONFIG_IPV6) && proto == htons(ETH_P_IPV6)) {
896 			__be16 frag_off;
897 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
898 			int hdrlen = ipv6_skip_exthdr(skb,
899 						      sizeof(struct ipv6hdr),
900 						      &nexthdr, &frag_off);
901 
902 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
903 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
904 								     ctinfo,
905 								     hooknum,
906 								     hdrlen))
907 					err = NF_DROP;
908 				goto out;
909 			}
910 		}
911 		/* Non-ICMP, fall thru to initialize if needed. */
912 		fallthrough;
913 	case IP_CT_NEW:
914 		/* Seen it before?  This can happen for loopback, retrans,
915 		 * or local packets.
916 		 */
917 		if (!nf_nat_initialized(ct, maniptype)) {
918 			/* Initialize according to the NAT action. */
919 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
920 				/* Action is set up to establish a new
921 				 * mapping.
922 				 */
923 				? nf_nat_setup_info(ct, range, maniptype)
924 				: nf_nat_alloc_null_binding(ct, hooknum);
925 			if (err != NF_ACCEPT)
926 				goto out;
927 		}
928 		break;
929 
930 	case IP_CT_ESTABLISHED:
931 	case IP_CT_ESTABLISHED_REPLY:
932 		break;
933 
934 	default:
935 		err = NF_DROP;
936 		goto out;
937 	}
938 
939 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
940 	if (err == NF_ACCEPT) {
941 		if (maniptype == NF_NAT_MANIP_SRC)
942 			tc_skb_cb(skb)->post_ct_snat = 1;
943 		if (maniptype == NF_NAT_MANIP_DST)
944 			tc_skb_cb(skb)->post_ct_dnat = 1;
945 	}
946 out:
947 	return err;
948 }
949 #endif /* CONFIG_NF_NAT */
950 
951 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask)
952 {
953 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
954 	u32 new_mark;
955 
956 	if (!mask)
957 		return;
958 
959 	new_mark = mark | (READ_ONCE(ct->mark) & ~(mask));
960 	if (READ_ONCE(ct->mark) != new_mark) {
961 		WRITE_ONCE(ct->mark, new_mark);
962 		if (nf_ct_is_confirmed(ct))
963 			nf_conntrack_event_cache(IPCT_MARK, ct);
964 	}
965 #endif
966 }
967 
968 static void tcf_ct_act_set_labels(struct nf_conn *ct,
969 				  u32 *labels,
970 				  u32 *labels_m)
971 {
972 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)
973 	size_t labels_sz = sizeof_field(struct tcf_ct_params, labels);
974 
975 	if (!memchr_inv(labels_m, 0, labels_sz))
976 		return;
977 
978 	nf_connlabels_replace(ct, labels, labels_m, 4);
979 #endif
980 }
981 
982 static int tcf_ct_act_nat(struct sk_buff *skb,
983 			  struct nf_conn *ct,
984 			  enum ip_conntrack_info ctinfo,
985 			  int ct_action,
986 			  struct nf_nat_range2 *range,
987 			  bool commit)
988 {
989 #if IS_ENABLED(CONFIG_NF_NAT)
990 	int err;
991 	enum nf_nat_manip_type maniptype;
992 
993 	if (!(ct_action & TCA_CT_ACT_NAT))
994 		return NF_ACCEPT;
995 
996 	/* Add NAT extension if not confirmed yet. */
997 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
998 		return NF_DROP;   /* Can't NAT. */
999 
1000 	if (ctinfo != IP_CT_NEW && (ct->status & IPS_NAT_MASK) &&
1001 	    (ctinfo != IP_CT_RELATED || commit)) {
1002 		/* NAT an established or related connection like before. */
1003 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
1004 			/* This is the REPLY direction for a connection
1005 			 * for which NAT was applied in the forward
1006 			 * direction.  Do the reverse NAT.
1007 			 */
1008 			maniptype = ct->status & IPS_SRC_NAT
1009 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
1010 		else
1011 			maniptype = ct->status & IPS_SRC_NAT
1012 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
1013 	} else if (ct_action & TCA_CT_ACT_NAT_SRC) {
1014 		maniptype = NF_NAT_MANIP_SRC;
1015 	} else if (ct_action & TCA_CT_ACT_NAT_DST) {
1016 		maniptype = NF_NAT_MANIP_DST;
1017 	} else {
1018 		return NF_ACCEPT;
1019 	}
1020 
1021 	err = ct_nat_execute(skb, ct, ctinfo, range, maniptype);
1022 	if (err == NF_ACCEPT && ct->status & IPS_DST_NAT) {
1023 		if (ct->status & IPS_SRC_NAT) {
1024 			if (maniptype == NF_NAT_MANIP_SRC)
1025 				maniptype = NF_NAT_MANIP_DST;
1026 			else
1027 				maniptype = NF_NAT_MANIP_SRC;
1028 
1029 			err = ct_nat_execute(skb, ct, ctinfo, range,
1030 					     maniptype);
1031 		} else if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) {
1032 			err = ct_nat_execute(skb, ct, ctinfo, NULL,
1033 					     NF_NAT_MANIP_SRC);
1034 		}
1035 	}
1036 	return err;
1037 #else
1038 	return NF_ACCEPT;
1039 #endif
1040 }
1041 
1042 TC_INDIRECT_SCOPE int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a,
1043 				 struct tcf_result *res)
1044 {
1045 	struct net *net = dev_net(skb->dev);
1046 	enum ip_conntrack_info ctinfo;
1047 	struct tcf_ct *c = to_ct(a);
1048 	struct nf_conn *tmpl = NULL;
1049 	struct nf_hook_state state;
1050 	bool cached, commit, clear;
1051 	int nh_ofs, err, retval;
1052 	struct tcf_ct_params *p;
1053 	bool add_helper = false;
1054 	bool skip_add = false;
1055 	bool defrag = false;
1056 	struct nf_conn *ct;
1057 	u8 family;
1058 
1059 	p = rcu_dereference_bh(c->params);
1060 
1061 	retval = READ_ONCE(c->tcf_action);
1062 	commit = p->ct_action & TCA_CT_ACT_COMMIT;
1063 	clear = p->ct_action & TCA_CT_ACT_CLEAR;
1064 	tmpl = p->tmpl;
1065 
1066 	tcf_lastuse_update(&c->tcf_tm);
1067 	tcf_action_update_bstats(&c->common, skb);
1068 
1069 	if (clear) {
1070 		tc_skb_cb(skb)->post_ct = false;
1071 		ct = nf_ct_get(skb, &ctinfo);
1072 		if (ct) {
1073 			nf_ct_put(ct);
1074 			nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1075 		}
1076 
1077 		goto out_clear;
1078 	}
1079 
1080 	family = tcf_ct_skb_nf_family(skb);
1081 	if (family == NFPROTO_UNSPEC)
1082 		goto drop;
1083 
1084 	/* The conntrack module expects to be working at L3.
1085 	 * We also try to pull the IPv4/6 header to linear area
1086 	 */
1087 	nh_ofs = skb_network_offset(skb);
1088 	skb_pull_rcsum(skb, nh_ofs);
1089 	err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag);
1090 	if (err == -EINPROGRESS) {
1091 		retval = TC_ACT_STOLEN;
1092 		goto out_clear;
1093 	}
1094 	if (err)
1095 		goto drop;
1096 
1097 	err = tcf_ct_skb_network_trim(skb, family);
1098 	if (err)
1099 		goto drop;
1100 
1101 	/* If we are recirculating packets to match on ct fields and
1102 	 * committing with a separate ct action, then we don't need to
1103 	 * actually run the packet through conntrack twice unless it's for a
1104 	 * different zone.
1105 	 */
1106 	cached = tcf_ct_skb_nfct_cached(net, skb, p);
1107 	if (!cached) {
1108 		if (tcf_ct_flow_table_lookup(p, skb, family)) {
1109 			skip_add = true;
1110 			goto do_nat;
1111 		}
1112 
1113 		/* Associate skb with specified zone. */
1114 		if (tmpl) {
1115 			nf_conntrack_put(skb_nfct(skb));
1116 			nf_conntrack_get(&tmpl->ct_general);
1117 			nf_ct_set(skb, tmpl, IP_CT_NEW);
1118 		}
1119 
1120 		state.hook = NF_INET_PRE_ROUTING;
1121 		state.net = net;
1122 		state.pf = family;
1123 		err = nf_conntrack_in(skb, &state);
1124 		if (err != NF_ACCEPT)
1125 			goto out_push;
1126 	}
1127 
1128 do_nat:
1129 	ct = nf_ct_get(skb, &ctinfo);
1130 	if (!ct)
1131 		goto out_push;
1132 	nf_ct_deliver_cached_events(ct);
1133 	nf_conn_act_ct_ext_fill(skb, ct, ctinfo);
1134 
1135 	err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit);
1136 	if (err != NF_ACCEPT)
1137 		goto drop;
1138 
1139 	if (!nf_ct_is_confirmed(ct) && commit && p->helper && !nfct_help(ct)) {
1140 		err = __nf_ct_try_assign_helper(ct, p->tmpl, GFP_ATOMIC);
1141 		if (err)
1142 			goto drop;
1143 		add_helper = true;
1144 		if (p->ct_action & TCA_CT_ACT_NAT && !nfct_seqadj(ct)) {
1145 			if (!nfct_seqadj_ext_add(ct))
1146 				goto drop;
1147 		}
1148 	}
1149 
1150 	if (nf_ct_is_confirmed(ct) ? ((!cached && !skip_add) || add_helper) : commit) {
1151 		if (nf_ct_helper(skb, ct, ctinfo, family) != NF_ACCEPT)
1152 			goto drop;
1153 	}
1154 
1155 	if (commit) {
1156 		tcf_ct_act_set_mark(ct, p->mark, p->mark_mask);
1157 		tcf_ct_act_set_labels(ct, p->labels, p->labels_mask);
1158 
1159 		if (!nf_ct_is_confirmed(ct))
1160 			nf_conn_act_ct_ext_add(ct);
1161 
1162 		/* This will take care of sending queued events
1163 		 * even if the connection is already confirmed.
1164 		 */
1165 		if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1166 			goto drop;
1167 	}
1168 
1169 	if (!skip_add)
1170 		tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo);
1171 
1172 out_push:
1173 	skb_push_rcsum(skb, nh_ofs);
1174 
1175 	tc_skb_cb(skb)->post_ct = true;
1176 	tc_skb_cb(skb)->zone = p->zone;
1177 out_clear:
1178 	if (defrag)
1179 		qdisc_skb_cb(skb)->pkt_len = skb->len;
1180 	return retval;
1181 
1182 drop:
1183 	tcf_action_inc_drop_qstats(&c->common);
1184 	return TC_ACT_SHOT;
1185 }
1186 
1187 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = {
1188 	[TCA_CT_ACTION] = { .type = NLA_U16 },
1189 	[TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)),
1190 	[TCA_CT_ZONE] = { .type = NLA_U16 },
1191 	[TCA_CT_MARK] = { .type = NLA_U32 },
1192 	[TCA_CT_MARK_MASK] = { .type = NLA_U32 },
1193 	[TCA_CT_LABELS] = { .type = NLA_BINARY,
1194 			    .len = 128 / BITS_PER_BYTE },
1195 	[TCA_CT_LABELS_MASK] = { .type = NLA_BINARY,
1196 				 .len = 128 / BITS_PER_BYTE },
1197 	[TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 },
1198 	[TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 },
1199 	[TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
1200 	[TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
1201 	[TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 },
1202 	[TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 },
1203 	[TCA_CT_HELPER_NAME] = { .type = NLA_STRING, .len = NF_CT_HELPER_NAME_LEN },
1204 	[TCA_CT_HELPER_FAMILY] = { .type = NLA_U8 },
1205 	[TCA_CT_HELPER_PROTO] = { .type = NLA_U8 },
1206 };
1207 
1208 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p,
1209 				  struct tc_ct *parm,
1210 				  struct nlattr **tb,
1211 				  struct netlink_ext_ack *extack)
1212 {
1213 	struct nf_nat_range2 *range;
1214 
1215 	if (!(p->ct_action & TCA_CT_ACT_NAT))
1216 		return 0;
1217 
1218 	if (!IS_ENABLED(CONFIG_NF_NAT)) {
1219 		NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel");
1220 		return -EOPNOTSUPP;
1221 	}
1222 
1223 	if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
1224 		return 0;
1225 
1226 	if ((p->ct_action & TCA_CT_ACT_NAT_SRC) &&
1227 	    (p->ct_action & TCA_CT_ACT_NAT_DST)) {
1228 		NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time");
1229 		return -EOPNOTSUPP;
1230 	}
1231 
1232 	range = &p->range;
1233 	if (tb[TCA_CT_NAT_IPV4_MIN]) {
1234 		struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX];
1235 
1236 		p->ipv4_range = true;
1237 		range->flags |= NF_NAT_RANGE_MAP_IPS;
1238 		range->min_addr.ip =
1239 			nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]);
1240 
1241 		range->max_addr.ip = max_attr ?
1242 				     nla_get_in_addr(max_attr) :
1243 				     range->min_addr.ip;
1244 	} else if (tb[TCA_CT_NAT_IPV6_MIN]) {
1245 		struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX];
1246 
1247 		p->ipv4_range = false;
1248 		range->flags |= NF_NAT_RANGE_MAP_IPS;
1249 		range->min_addr.in6 =
1250 			nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]);
1251 
1252 		range->max_addr.in6 = max_attr ?
1253 				      nla_get_in6_addr(max_attr) :
1254 				      range->min_addr.in6;
1255 	}
1256 
1257 	if (tb[TCA_CT_NAT_PORT_MIN]) {
1258 		range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1259 		range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]);
1260 
1261 		range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ?
1262 				       nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) :
1263 				       range->min_proto.all;
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 static void tcf_ct_set_key_val(struct nlattr **tb,
1270 			       void *val, int val_type,
1271 			       void *mask, int mask_type,
1272 			       int len)
1273 {
1274 	if (!tb[val_type])
1275 		return;
1276 	nla_memcpy(val, tb[val_type], len);
1277 
1278 	if (!mask)
1279 		return;
1280 
1281 	if (mask_type == TCA_CT_UNSPEC || !tb[mask_type])
1282 		memset(mask, 0xff, len);
1283 	else
1284 		nla_memcpy(mask, tb[mask_type], len);
1285 }
1286 
1287 static int tcf_ct_fill_params(struct net *net,
1288 			      struct tcf_ct_params *p,
1289 			      struct tc_ct *parm,
1290 			      struct nlattr **tb,
1291 			      struct netlink_ext_ack *extack)
1292 {
1293 	struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id);
1294 	struct nf_conntrack_zone zone;
1295 	int err, family, proto, len;
1296 	struct nf_conn *tmpl;
1297 	char *name;
1298 
1299 	p->zone = NF_CT_DEFAULT_ZONE_ID;
1300 
1301 	tcf_ct_set_key_val(tb,
1302 			   &p->ct_action, TCA_CT_ACTION,
1303 			   NULL, TCA_CT_UNSPEC,
1304 			   sizeof(p->ct_action));
1305 
1306 	if (p->ct_action & TCA_CT_ACT_CLEAR)
1307 		return 0;
1308 
1309 	err = tcf_ct_fill_params_nat(p, parm, tb, extack);
1310 	if (err)
1311 		return err;
1312 
1313 	if (tb[TCA_CT_MARK]) {
1314 		if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) {
1315 			NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled.");
1316 			return -EOPNOTSUPP;
1317 		}
1318 		tcf_ct_set_key_val(tb,
1319 				   &p->mark, TCA_CT_MARK,
1320 				   &p->mark_mask, TCA_CT_MARK_MASK,
1321 				   sizeof(p->mark));
1322 	}
1323 
1324 	if (tb[TCA_CT_LABELS]) {
1325 		if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) {
1326 			NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled.");
1327 			return -EOPNOTSUPP;
1328 		}
1329 
1330 		if (!tn->labels) {
1331 			NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length");
1332 			return -EOPNOTSUPP;
1333 		}
1334 		tcf_ct_set_key_val(tb,
1335 				   p->labels, TCA_CT_LABELS,
1336 				   p->labels_mask, TCA_CT_LABELS_MASK,
1337 				   sizeof(p->labels));
1338 	}
1339 
1340 	if (tb[TCA_CT_ZONE]) {
1341 		if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) {
1342 			NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled.");
1343 			return -EOPNOTSUPP;
1344 		}
1345 
1346 		tcf_ct_set_key_val(tb,
1347 				   &p->zone, TCA_CT_ZONE,
1348 				   NULL, TCA_CT_UNSPEC,
1349 				   sizeof(p->zone));
1350 	}
1351 
1352 	nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0);
1353 	tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL);
1354 	if (!tmpl) {
1355 		NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template");
1356 		return -ENOMEM;
1357 	}
1358 	p->tmpl = tmpl;
1359 	if (tb[TCA_CT_HELPER_NAME]) {
1360 		name = nla_data(tb[TCA_CT_HELPER_NAME]);
1361 		len = nla_len(tb[TCA_CT_HELPER_NAME]);
1362 		if (len > 16 || name[len - 1] != '\0') {
1363 			NL_SET_ERR_MSG_MOD(extack, "Failed to parse helper name.");
1364 			err = -EINVAL;
1365 			goto err;
1366 		}
1367 		family = tb[TCA_CT_HELPER_FAMILY] ? nla_get_u8(tb[TCA_CT_HELPER_FAMILY]) : AF_INET;
1368 		proto = tb[TCA_CT_HELPER_PROTO] ? nla_get_u8(tb[TCA_CT_HELPER_PROTO]) : IPPROTO_TCP;
1369 		err = nf_ct_add_helper(tmpl, name, family, proto,
1370 				       p->ct_action & TCA_CT_ACT_NAT, &p->helper);
1371 		if (err) {
1372 			NL_SET_ERR_MSG_MOD(extack, "Failed to add helper");
1373 			goto err;
1374 		}
1375 	}
1376 
1377 	__set_bit(IPS_CONFIRMED_BIT, &tmpl->status);
1378 	return 0;
1379 err:
1380 	nf_ct_put(p->tmpl);
1381 	p->tmpl = NULL;
1382 	return err;
1383 }
1384 
1385 static int tcf_ct_init(struct net *net, struct nlattr *nla,
1386 		       struct nlattr *est, struct tc_action **a,
1387 		       struct tcf_proto *tp, u32 flags,
1388 		       struct netlink_ext_ack *extack)
1389 {
1390 	struct tc_action_net *tn = net_generic(net, act_ct_ops.net_id);
1391 	bool bind = flags & TCA_ACT_FLAGS_BIND;
1392 	struct tcf_ct_params *params = NULL;
1393 	struct nlattr *tb[TCA_CT_MAX + 1];
1394 	struct tcf_chain *goto_ch = NULL;
1395 	struct tc_ct *parm;
1396 	struct tcf_ct *c;
1397 	int err, res = 0;
1398 	u32 index;
1399 
1400 	if (!nla) {
1401 		NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed");
1402 		return -EINVAL;
1403 	}
1404 
1405 	err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack);
1406 	if (err < 0)
1407 		return err;
1408 
1409 	if (!tb[TCA_CT_PARMS]) {
1410 		NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters");
1411 		return -EINVAL;
1412 	}
1413 	parm = nla_data(tb[TCA_CT_PARMS]);
1414 	index = parm->index;
1415 	err = tcf_idr_check_alloc(tn, &index, a, bind);
1416 	if (err < 0)
1417 		return err;
1418 
1419 	if (!err) {
1420 		err = tcf_idr_create_from_flags(tn, index, est, a,
1421 						&act_ct_ops, bind, flags);
1422 		if (err) {
1423 			tcf_idr_cleanup(tn, index);
1424 			return err;
1425 		}
1426 		res = ACT_P_CREATED;
1427 	} else {
1428 		if (bind)
1429 			return 0;
1430 
1431 		if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
1432 			tcf_idr_release(*a, bind);
1433 			return -EEXIST;
1434 		}
1435 	}
1436 	err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
1437 	if (err < 0)
1438 		goto cleanup;
1439 
1440 	c = to_ct(*a);
1441 
1442 	params = kzalloc(sizeof(*params), GFP_KERNEL);
1443 	if (unlikely(!params)) {
1444 		err = -ENOMEM;
1445 		goto cleanup;
1446 	}
1447 
1448 	err = tcf_ct_fill_params(net, params, parm, tb, extack);
1449 	if (err)
1450 		goto cleanup;
1451 
1452 	err = tcf_ct_flow_table_get(net, params);
1453 	if (err)
1454 		goto cleanup;
1455 
1456 	spin_lock_bh(&c->tcf_lock);
1457 	goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
1458 	params = rcu_replace_pointer(c->params, params,
1459 				     lockdep_is_held(&c->tcf_lock));
1460 	spin_unlock_bh(&c->tcf_lock);
1461 
1462 	if (goto_ch)
1463 		tcf_chain_put_by_act(goto_ch);
1464 	if (params)
1465 		call_rcu(&params->rcu, tcf_ct_params_free_rcu);
1466 
1467 	return res;
1468 
1469 cleanup:
1470 	if (goto_ch)
1471 		tcf_chain_put_by_act(goto_ch);
1472 	if (params)
1473 		tcf_ct_params_free(params);
1474 	tcf_idr_release(*a, bind);
1475 	return err;
1476 }
1477 
1478 static void tcf_ct_cleanup(struct tc_action *a)
1479 {
1480 	struct tcf_ct_params *params;
1481 	struct tcf_ct *c = to_ct(a);
1482 
1483 	params = rcu_dereference_protected(c->params, 1);
1484 	if (params)
1485 		call_rcu(&params->rcu, tcf_ct_params_free_rcu);
1486 }
1487 
1488 static int tcf_ct_dump_key_val(struct sk_buff *skb,
1489 			       void *val, int val_type,
1490 			       void *mask, int mask_type,
1491 			       int len)
1492 {
1493 	int err;
1494 
1495 	if (mask && !memchr_inv(mask, 0, len))
1496 		return 0;
1497 
1498 	err = nla_put(skb, val_type, len, val);
1499 	if (err)
1500 		return err;
1501 
1502 	if (mask_type != TCA_CT_UNSPEC) {
1503 		err = nla_put(skb, mask_type, len, mask);
1504 		if (err)
1505 			return err;
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p)
1512 {
1513 	struct nf_nat_range2 *range = &p->range;
1514 
1515 	if (!(p->ct_action & TCA_CT_ACT_NAT))
1516 		return 0;
1517 
1518 	if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
1519 		return 0;
1520 
1521 	if (range->flags & NF_NAT_RANGE_MAP_IPS) {
1522 		if (p->ipv4_range) {
1523 			if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN,
1524 					    range->min_addr.ip))
1525 				return -1;
1526 			if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX,
1527 					    range->max_addr.ip))
1528 				return -1;
1529 		} else {
1530 			if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN,
1531 					     &range->min_addr.in6))
1532 				return -1;
1533 			if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX,
1534 					     &range->max_addr.in6))
1535 				return -1;
1536 		}
1537 	}
1538 
1539 	if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
1540 		if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN,
1541 				 range->min_proto.all))
1542 			return -1;
1543 		if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX,
1544 				 range->max_proto.all))
1545 			return -1;
1546 	}
1547 
1548 	return 0;
1549 }
1550 
1551 static int tcf_ct_dump_helper(struct sk_buff *skb, struct nf_conntrack_helper *helper)
1552 {
1553 	if (!helper)
1554 		return 0;
1555 
1556 	if (nla_put_string(skb, TCA_CT_HELPER_NAME, helper->name) ||
1557 	    nla_put_u8(skb, TCA_CT_HELPER_FAMILY, helper->tuple.src.l3num) ||
1558 	    nla_put_u8(skb, TCA_CT_HELPER_PROTO, helper->tuple.dst.protonum))
1559 		return -1;
1560 
1561 	return 0;
1562 }
1563 
1564 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a,
1565 			      int bind, int ref)
1566 {
1567 	unsigned char *b = skb_tail_pointer(skb);
1568 	struct tcf_ct *c = to_ct(a);
1569 	struct tcf_ct_params *p;
1570 
1571 	struct tc_ct opt = {
1572 		.index   = c->tcf_index,
1573 		.refcnt  = refcount_read(&c->tcf_refcnt) - ref,
1574 		.bindcnt = atomic_read(&c->tcf_bindcnt) - bind,
1575 	};
1576 	struct tcf_t t;
1577 
1578 	spin_lock_bh(&c->tcf_lock);
1579 	p = rcu_dereference_protected(c->params,
1580 				      lockdep_is_held(&c->tcf_lock));
1581 	opt.action = c->tcf_action;
1582 
1583 	if (tcf_ct_dump_key_val(skb,
1584 				&p->ct_action, TCA_CT_ACTION,
1585 				NULL, TCA_CT_UNSPEC,
1586 				sizeof(p->ct_action)))
1587 		goto nla_put_failure;
1588 
1589 	if (p->ct_action & TCA_CT_ACT_CLEAR)
1590 		goto skip_dump;
1591 
1592 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1593 	    tcf_ct_dump_key_val(skb,
1594 				&p->mark, TCA_CT_MARK,
1595 				&p->mark_mask, TCA_CT_MARK_MASK,
1596 				sizeof(p->mark)))
1597 		goto nla_put_failure;
1598 
1599 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1600 	    tcf_ct_dump_key_val(skb,
1601 				p->labels, TCA_CT_LABELS,
1602 				p->labels_mask, TCA_CT_LABELS_MASK,
1603 				sizeof(p->labels)))
1604 		goto nla_put_failure;
1605 
1606 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1607 	    tcf_ct_dump_key_val(skb,
1608 				&p->zone, TCA_CT_ZONE,
1609 				NULL, TCA_CT_UNSPEC,
1610 				sizeof(p->zone)))
1611 		goto nla_put_failure;
1612 
1613 	if (tcf_ct_dump_nat(skb, p))
1614 		goto nla_put_failure;
1615 
1616 	if (tcf_ct_dump_helper(skb, p->helper))
1617 		goto nla_put_failure;
1618 
1619 skip_dump:
1620 	if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt))
1621 		goto nla_put_failure;
1622 
1623 	tcf_tm_dump(&t, &c->tcf_tm);
1624 	if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD))
1625 		goto nla_put_failure;
1626 	spin_unlock_bh(&c->tcf_lock);
1627 
1628 	return skb->len;
1629 nla_put_failure:
1630 	spin_unlock_bh(&c->tcf_lock);
1631 	nlmsg_trim(skb, b);
1632 	return -1;
1633 }
1634 
1635 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets,
1636 			     u64 drops, u64 lastuse, bool hw)
1637 {
1638 	struct tcf_ct *c = to_ct(a);
1639 
1640 	tcf_action_update_stats(a, bytes, packets, drops, hw);
1641 	c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse);
1642 }
1643 
1644 static int tcf_ct_offload_act_setup(struct tc_action *act, void *entry_data,
1645 				    u32 *index_inc, bool bind,
1646 				    struct netlink_ext_ack *extack)
1647 {
1648 	if (bind) {
1649 		struct flow_action_entry *entry = entry_data;
1650 
1651 		entry->id = FLOW_ACTION_CT;
1652 		entry->ct.action = tcf_ct_action(act);
1653 		entry->ct.zone = tcf_ct_zone(act);
1654 		entry->ct.flow_table = tcf_ct_ft(act);
1655 		*index_inc = 1;
1656 	} else {
1657 		struct flow_offload_action *fl_action = entry_data;
1658 
1659 		fl_action->id = FLOW_ACTION_CT;
1660 	}
1661 
1662 	return 0;
1663 }
1664 
1665 static struct tc_action_ops act_ct_ops = {
1666 	.kind		=	"ct",
1667 	.id		=	TCA_ID_CT,
1668 	.owner		=	THIS_MODULE,
1669 	.act		=	tcf_ct_act,
1670 	.dump		=	tcf_ct_dump,
1671 	.init		=	tcf_ct_init,
1672 	.cleanup	=	tcf_ct_cleanup,
1673 	.stats_update	=	tcf_stats_update,
1674 	.offload_act_setup =	tcf_ct_offload_act_setup,
1675 	.size		=	sizeof(struct tcf_ct),
1676 };
1677 
1678 static __net_init int ct_init_net(struct net *net)
1679 {
1680 	unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8;
1681 	struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id);
1682 
1683 	if (nf_connlabels_get(net, n_bits - 1)) {
1684 		tn->labels = false;
1685 		pr_err("act_ct: Failed to set connlabels length");
1686 	} else {
1687 		tn->labels = true;
1688 	}
1689 
1690 	return tc_action_net_init(net, &tn->tn, &act_ct_ops);
1691 }
1692 
1693 static void __net_exit ct_exit_net(struct list_head *net_list)
1694 {
1695 	struct net *net;
1696 
1697 	rtnl_lock();
1698 	list_for_each_entry(net, net_list, exit_list) {
1699 		struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id);
1700 
1701 		if (tn->labels)
1702 			nf_connlabels_put(net);
1703 	}
1704 	rtnl_unlock();
1705 
1706 	tc_action_net_exit(net_list, act_ct_ops.net_id);
1707 }
1708 
1709 static struct pernet_operations ct_net_ops = {
1710 	.init = ct_init_net,
1711 	.exit_batch = ct_exit_net,
1712 	.id   = &act_ct_ops.net_id,
1713 	.size = sizeof(struct tc_ct_action_net),
1714 };
1715 
1716 static int __init ct_init_module(void)
1717 {
1718 	int err;
1719 
1720 	act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0);
1721 	if (!act_ct_wq)
1722 		return -ENOMEM;
1723 
1724 	err = tcf_ct_flow_tables_init();
1725 	if (err)
1726 		goto err_tbl_init;
1727 
1728 	err = tcf_register_action(&act_ct_ops, &ct_net_ops);
1729 	if (err)
1730 		goto err_register;
1731 
1732 	static_branch_inc(&tcf_frag_xmit_count);
1733 
1734 	return 0;
1735 
1736 err_register:
1737 	tcf_ct_flow_tables_uninit();
1738 err_tbl_init:
1739 	destroy_workqueue(act_ct_wq);
1740 	return err;
1741 }
1742 
1743 static void __exit ct_cleanup_module(void)
1744 {
1745 	static_branch_dec(&tcf_frag_xmit_count);
1746 	tcf_unregister_action(&act_ct_ops, &ct_net_ops);
1747 	tcf_ct_flow_tables_uninit();
1748 	destroy_workqueue(act_ct_wq);
1749 }
1750 
1751 module_init(ct_init_module);
1752 module_exit(ct_cleanup_module);
1753 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>");
1754 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>");
1755 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>");
1756 MODULE_DESCRIPTION("Connection tracking action");
1757 MODULE_LICENSE("GPL v2");
1758