xref: /linux/net/rxrpc/rxkad.c (revision 95f68e06b41b9e88291796efa3969409d13fdd4c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Kerberos-based RxRPC security
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <crypto/skcipher.h>
11 #include <linux/module.h>
12 #include <linux/net.h>
13 #include <linux/skbuff.h>
14 #include <linux/udp.h>
15 #include <linux/scatterlist.h>
16 #include <linux/ctype.h>
17 #include <linux/slab.h>
18 #include <linux/key-type.h>
19 #include <net/sock.h>
20 #include <net/af_rxrpc.h>
21 #include <keys/rxrpc-type.h>
22 #include "ar-internal.h"
23 
24 #define RXKAD_VERSION			2
25 #define MAXKRB5TICKETLEN		1024
26 #define RXKAD_TKT_TYPE_KERBEROS_V5	256
27 #define ANAME_SZ			40	/* size of authentication name */
28 #define INST_SZ				40	/* size of principal's instance */
29 #define REALM_SZ			40	/* size of principal's auth domain */
30 #define SNAME_SZ			40	/* size of service name */
31 #define RXKAD_ALIGN			8
32 
33 struct rxkad_level1_hdr {
34 	__be32	data_size;	/* true data size (excluding padding) */
35 };
36 
37 struct rxkad_level2_hdr {
38 	__be32	data_size;	/* true data size (excluding padding) */
39 	__be32	checksum;	/* decrypted data checksum */
40 };
41 
42 static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
43 				       struct crypto_sync_skcipher *ci);
44 
45 /*
46  * this holds a pinned cipher so that keventd doesn't get called by the cipher
47  * alloc routine, but since we have it to hand, we use it to decrypt RESPONSE
48  * packets
49  */
50 static struct crypto_sync_skcipher *rxkad_ci;
51 static struct skcipher_request *rxkad_ci_req;
52 static DEFINE_MUTEX(rxkad_ci_mutex);
53 
54 /*
55  * Parse the information from a server key
56  *
57  * The data should be the 8-byte secret key.
58  */
59 static int rxkad_preparse_server_key(struct key_preparsed_payload *prep)
60 {
61 	struct crypto_skcipher *ci;
62 
63 	if (prep->datalen != 8)
64 		return -EINVAL;
65 
66 	memcpy(&prep->payload.data[2], prep->data, 8);
67 
68 	ci = crypto_alloc_skcipher("pcbc(des)", 0, CRYPTO_ALG_ASYNC);
69 	if (IS_ERR(ci)) {
70 		_leave(" = %ld", PTR_ERR(ci));
71 		return PTR_ERR(ci);
72 	}
73 
74 	if (crypto_skcipher_setkey(ci, prep->data, 8) < 0)
75 		BUG();
76 
77 	prep->payload.data[0] = ci;
78 	_leave(" = 0");
79 	return 0;
80 }
81 
82 static void rxkad_free_preparse_server_key(struct key_preparsed_payload *prep)
83 {
84 
85 	if (prep->payload.data[0])
86 		crypto_free_skcipher(prep->payload.data[0]);
87 }
88 
89 static void rxkad_destroy_server_key(struct key *key)
90 {
91 	if (key->payload.data[0]) {
92 		crypto_free_skcipher(key->payload.data[0]);
93 		key->payload.data[0] = NULL;
94 	}
95 }
96 
97 /*
98  * initialise connection security
99  */
100 static int rxkad_init_connection_security(struct rxrpc_connection *conn,
101 					  struct rxrpc_key_token *token)
102 {
103 	struct crypto_sync_skcipher *ci;
104 	int ret;
105 
106 	_enter("{%d},{%x}", conn->debug_id, key_serial(conn->key));
107 
108 	conn->security_ix = token->security_index;
109 
110 	ci = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
111 	if (IS_ERR(ci)) {
112 		_debug("no cipher");
113 		ret = PTR_ERR(ci);
114 		goto error;
115 	}
116 
117 	if (crypto_sync_skcipher_setkey(ci, token->kad->session_key,
118 				   sizeof(token->kad->session_key)) < 0)
119 		BUG();
120 
121 	switch (conn->security_level) {
122 	case RXRPC_SECURITY_PLAIN:
123 	case RXRPC_SECURITY_AUTH:
124 	case RXRPC_SECURITY_ENCRYPT:
125 		break;
126 	default:
127 		ret = -EKEYREJECTED;
128 		goto error;
129 	}
130 
131 	ret = rxkad_prime_packet_security(conn, ci);
132 	if (ret < 0)
133 		goto error_ci;
134 
135 	conn->rxkad.cipher = ci;
136 	return 0;
137 
138 error_ci:
139 	crypto_free_sync_skcipher(ci);
140 error:
141 	_leave(" = %d", ret);
142 	return ret;
143 }
144 
145 /*
146  * Work out how much data we can put in a packet.
147  */
148 static struct rxrpc_txbuf *rxkad_alloc_txbuf(struct rxrpc_call *call, size_t remain, gfp_t gfp)
149 {
150 	struct rxrpc_txbuf *txb;
151 	size_t shdr, alloc, limit, part;
152 
153 	remain = umin(remain, 65535 - sizeof(struct rxrpc_wire_header));
154 
155 	switch (call->conn->security_level) {
156 	default:
157 		alloc = umin(remain, RXRPC_JUMBO_DATALEN);
158 		return rxrpc_alloc_data_txbuf(call, alloc, 1, gfp);
159 	case RXRPC_SECURITY_AUTH:
160 		shdr = sizeof(struct rxkad_level1_hdr);
161 		break;
162 	case RXRPC_SECURITY_ENCRYPT:
163 		shdr = sizeof(struct rxkad_level2_hdr);
164 		break;
165 	}
166 
167 	limit = round_down(RXRPC_JUMBO_DATALEN, RXKAD_ALIGN) - shdr;
168 	if (remain < limit) {
169 		part = remain;
170 		alloc = round_up(shdr + part, RXKAD_ALIGN);
171 	} else {
172 		part = limit;
173 		alloc = RXRPC_JUMBO_DATALEN;
174 	}
175 
176 	txb = rxrpc_alloc_data_txbuf(call, alloc, RXKAD_ALIGN, gfp);
177 	if (!txb)
178 		return NULL;
179 
180 	txb->offset += shdr;
181 	txb->space = part;
182 	return txb;
183 }
184 
185 /*
186  * prime the encryption state with the invariant parts of a connection's
187  * description
188  */
189 static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
190 				       struct crypto_sync_skcipher *ci)
191 {
192 	struct skcipher_request *req;
193 	struct rxrpc_key_token *token;
194 	struct scatterlist sg;
195 	struct rxrpc_crypt iv;
196 	__be32 *tmpbuf;
197 	size_t tmpsize = 4 * sizeof(__be32);
198 
199 	_enter("");
200 
201 	if (!conn->key)
202 		return 0;
203 
204 	tmpbuf = kmalloc(tmpsize, GFP_KERNEL);
205 	if (!tmpbuf)
206 		return -ENOMEM;
207 
208 	req = skcipher_request_alloc(&ci->base, GFP_NOFS);
209 	if (!req) {
210 		kfree(tmpbuf);
211 		return -ENOMEM;
212 	}
213 
214 	token = conn->key->payload.data[0];
215 	memcpy(&iv, token->kad->session_key, sizeof(iv));
216 
217 	tmpbuf[0] = htonl(conn->proto.epoch);
218 	tmpbuf[1] = htonl(conn->proto.cid);
219 	tmpbuf[2] = 0;
220 	tmpbuf[3] = htonl(conn->security_ix);
221 
222 	sg_init_one(&sg, tmpbuf, tmpsize);
223 	skcipher_request_set_sync_tfm(req, ci);
224 	skcipher_request_set_callback(req, 0, NULL, NULL);
225 	skcipher_request_set_crypt(req, &sg, &sg, tmpsize, iv.x);
226 	crypto_skcipher_encrypt(req);
227 	skcipher_request_free(req);
228 
229 	memcpy(&conn->rxkad.csum_iv, tmpbuf + 2, sizeof(conn->rxkad.csum_iv));
230 	kfree(tmpbuf);
231 	_leave(" = 0");
232 	return 0;
233 }
234 
235 /*
236  * Allocate and prepare the crypto request on a call.  For any particular call,
237  * this is called serially for the packets, so no lock should be necessary.
238  */
239 static struct skcipher_request *rxkad_get_call_crypto(struct rxrpc_call *call)
240 {
241 	struct crypto_skcipher *tfm = &call->conn->rxkad.cipher->base;
242 
243 	return skcipher_request_alloc(tfm, GFP_NOFS);
244 }
245 
246 /*
247  * Clean up the crypto on a call.
248  */
249 static void rxkad_free_call_crypto(struct rxrpc_call *call)
250 {
251 }
252 
253 /*
254  * partially encrypt a packet (level 1 security)
255  */
256 static int rxkad_secure_packet_auth(const struct rxrpc_call *call,
257 				    struct rxrpc_txbuf *txb,
258 				    struct skcipher_request *req)
259 {
260 	struct rxrpc_wire_header *whdr = txb->kvec[0].iov_base;
261 	struct rxkad_level1_hdr *hdr = (void *)(whdr + 1);
262 	struct rxrpc_crypt iv;
263 	struct scatterlist sg;
264 	size_t pad;
265 	u16 check;
266 
267 	_enter("");
268 
269 	check = txb->seq ^ call->call_id;
270 	hdr->data_size = htonl((u32)check << 16 | txb->len);
271 
272 	txb->pkt_len = sizeof(struct rxkad_level1_hdr) + txb->len;
273 	pad = txb->pkt_len;
274 	pad = RXKAD_ALIGN - pad;
275 	pad &= RXKAD_ALIGN - 1;
276 	if (pad) {
277 		memset(txb->kvec[0].iov_base + txb->offset, 0, pad);
278 		txb->pkt_len += pad;
279 	}
280 
281 	/* start the encryption afresh */
282 	memset(&iv, 0, sizeof(iv));
283 
284 	sg_init_one(&sg, hdr, 8);
285 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
286 	skcipher_request_set_callback(req, 0, NULL, NULL);
287 	skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
288 	crypto_skcipher_encrypt(req);
289 	skcipher_request_zero(req);
290 
291 	_leave(" = 0");
292 	return 0;
293 }
294 
295 /*
296  * wholly encrypt a packet (level 2 security)
297  */
298 static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call,
299 				       struct rxrpc_txbuf *txb,
300 				       struct skcipher_request *req)
301 {
302 	const struct rxrpc_key_token *token;
303 	struct rxrpc_wire_header *whdr = txb->kvec[0].iov_base;
304 	struct rxkad_level2_hdr *rxkhdr = (void *)(whdr + 1);
305 	struct rxrpc_crypt iv;
306 	struct scatterlist sg;
307 	size_t content, pad;
308 	u16 check;
309 	int ret;
310 
311 	_enter("");
312 
313 	check = txb->seq ^ call->call_id;
314 
315 	rxkhdr->data_size = htonl(txb->len | (u32)check << 16);
316 	rxkhdr->checksum = 0;
317 
318 	content = sizeof(struct rxkad_level2_hdr) + txb->len;
319 	txb->pkt_len = round_up(content, RXKAD_ALIGN);
320 	pad = txb->pkt_len - content;
321 	if (pad)
322 		memset(txb->kvec[0].iov_base + txb->offset, 0, pad);
323 
324 	/* encrypt from the session key */
325 	token = call->conn->key->payload.data[0];
326 	memcpy(&iv, token->kad->session_key, sizeof(iv));
327 
328 	sg_init_one(&sg, rxkhdr, txb->pkt_len);
329 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
330 	skcipher_request_set_callback(req, 0, NULL, NULL);
331 	skcipher_request_set_crypt(req, &sg, &sg, txb->pkt_len, iv.x);
332 	ret = crypto_skcipher_encrypt(req);
333 	skcipher_request_zero(req);
334 	return ret;
335 }
336 
337 /*
338  * checksum an RxRPC packet header
339  */
340 static int rxkad_secure_packet(struct rxrpc_call *call, struct rxrpc_txbuf *txb)
341 {
342 	struct skcipher_request	*req;
343 	struct rxrpc_crypt iv;
344 	struct scatterlist sg;
345 	union {
346 		__be32 buf[2];
347 	} crypto __aligned(8);
348 	u32 x, y;
349 	int ret;
350 
351 	_enter("{%d{%x}},{#%u},%u,",
352 	       call->debug_id, key_serial(call->conn->key),
353 	       txb->seq, txb->len);
354 
355 	if (!call->conn->rxkad.cipher)
356 		return 0;
357 
358 	ret = key_validate(call->conn->key);
359 	if (ret < 0)
360 		return ret;
361 
362 	req = rxkad_get_call_crypto(call);
363 	if (!req)
364 		return -ENOMEM;
365 
366 	/* continue encrypting from where we left off */
367 	memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
368 
369 	/* calculate the security checksum */
370 	x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
371 	x |= txb->seq & 0x3fffffff;
372 	crypto.buf[0] = htonl(call->call_id);
373 	crypto.buf[1] = htonl(x);
374 
375 	sg_init_one(&sg, crypto.buf, 8);
376 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
377 	skcipher_request_set_callback(req, 0, NULL, NULL);
378 	skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
379 	crypto_skcipher_encrypt(req);
380 	skcipher_request_zero(req);
381 
382 	y = ntohl(crypto.buf[1]);
383 	y = (y >> 16) & 0xffff;
384 	if (y == 0)
385 		y = 1; /* zero checksums are not permitted */
386 	txb->cksum = htons(y);
387 
388 	switch (call->conn->security_level) {
389 	case RXRPC_SECURITY_PLAIN:
390 		txb->pkt_len = txb->len;
391 		ret = 0;
392 		break;
393 	case RXRPC_SECURITY_AUTH:
394 		ret = rxkad_secure_packet_auth(call, txb, req);
395 		if (txb->alloc_size == RXRPC_JUMBO_DATALEN)
396 			txb->jumboable = true;
397 		break;
398 	case RXRPC_SECURITY_ENCRYPT:
399 		ret = rxkad_secure_packet_encrypt(call, txb, req);
400 		if (txb->alloc_size == RXRPC_JUMBO_DATALEN)
401 			txb->jumboable = true;
402 		break;
403 	default:
404 		ret = -EPERM;
405 		break;
406 	}
407 
408 	/* Clear excess space in the packet */
409 	if (txb->pkt_len < txb->alloc_size) {
410 		struct rxrpc_wire_header *whdr = txb->kvec[0].iov_base;
411 		size_t gap = txb->alloc_size - txb->pkt_len;
412 		void *p = whdr + 1;
413 
414 		memset(p + txb->pkt_len, 0, gap);
415 	}
416 
417 	skcipher_request_free(req);
418 	_leave(" = %d [set %x]", ret, y);
419 	return ret;
420 }
421 
422 /*
423  * decrypt partial encryption on a packet (level 1 security)
424  */
425 static int rxkad_verify_packet_1(struct rxrpc_call *call, struct sk_buff *skb,
426 				 rxrpc_seq_t seq,
427 				 struct skcipher_request *req)
428 {
429 	struct rxkad_level1_hdr sechdr;
430 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
431 	struct rxrpc_crypt iv;
432 	struct scatterlist sg[16];
433 	u32 data_size, buf;
434 	u16 check;
435 	int ret;
436 
437 	_enter("");
438 
439 	if (sp->len < 8)
440 		return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
441 					  rxkad_abort_1_short_header);
442 
443 	/* Decrypt the skbuff in-place.  TODO: We really want to decrypt
444 	 * directly into the target buffer.
445 	 */
446 	sg_init_table(sg, ARRAY_SIZE(sg));
447 	ret = skb_to_sgvec(skb, sg, sp->offset, 8);
448 	if (unlikely(ret < 0))
449 		return ret;
450 
451 	/* start the decryption afresh */
452 	memset(&iv, 0, sizeof(iv));
453 
454 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
455 	skcipher_request_set_callback(req, 0, NULL, NULL);
456 	skcipher_request_set_crypt(req, sg, sg, 8, iv.x);
457 	crypto_skcipher_decrypt(req);
458 	skcipher_request_zero(req);
459 
460 	/* Extract the decrypted packet length */
461 	if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0)
462 		return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
463 					  rxkad_abort_1_short_encdata);
464 	sp->offset += sizeof(sechdr);
465 	sp->len    -= sizeof(sechdr);
466 
467 	buf = ntohl(sechdr.data_size);
468 	data_size = buf & 0xffff;
469 
470 	check = buf >> 16;
471 	check ^= seq ^ call->call_id;
472 	check &= 0xffff;
473 	if (check != 0)
474 		return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
475 					  rxkad_abort_1_short_check);
476 	if (data_size > sp->len)
477 		return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
478 					  rxkad_abort_1_short_data);
479 	sp->len = data_size;
480 
481 	_leave(" = 0 [dlen=%x]", data_size);
482 	return 0;
483 }
484 
485 /*
486  * wholly decrypt a packet (level 2 security)
487  */
488 static int rxkad_verify_packet_2(struct rxrpc_call *call, struct sk_buff *skb,
489 				 rxrpc_seq_t seq,
490 				 struct skcipher_request *req)
491 {
492 	const struct rxrpc_key_token *token;
493 	struct rxkad_level2_hdr sechdr;
494 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
495 	struct rxrpc_crypt iv;
496 	struct scatterlist _sg[4], *sg;
497 	u32 data_size, buf;
498 	u16 check;
499 	int nsg, ret;
500 
501 	_enter(",{%d}", sp->len);
502 
503 	if (sp->len < 8)
504 		return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
505 					  rxkad_abort_2_short_header);
506 
507 	/* Decrypt the skbuff in-place.  TODO: We really want to decrypt
508 	 * directly into the target buffer.
509 	 */
510 	sg = _sg;
511 	nsg = skb_shinfo(skb)->nr_frags + 1;
512 	if (nsg <= 4) {
513 		nsg = 4;
514 	} else {
515 		sg = kmalloc_array(nsg, sizeof(*sg), GFP_NOIO);
516 		if (!sg)
517 			return -ENOMEM;
518 	}
519 
520 	sg_init_table(sg, nsg);
521 	ret = skb_to_sgvec(skb, sg, sp->offset, sp->len);
522 	if (unlikely(ret < 0)) {
523 		if (sg != _sg)
524 			kfree(sg);
525 		return ret;
526 	}
527 
528 	/* decrypt from the session key */
529 	token = call->conn->key->payload.data[0];
530 	memcpy(&iv, token->kad->session_key, sizeof(iv));
531 
532 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
533 	skcipher_request_set_callback(req, 0, NULL, NULL);
534 	skcipher_request_set_crypt(req, sg, sg, sp->len, iv.x);
535 	crypto_skcipher_decrypt(req);
536 	skcipher_request_zero(req);
537 	if (sg != _sg)
538 		kfree(sg);
539 
540 	/* Extract the decrypted packet length */
541 	if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0)
542 		return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
543 					  rxkad_abort_2_short_len);
544 	sp->offset += sizeof(sechdr);
545 	sp->len    -= sizeof(sechdr);
546 
547 	buf = ntohl(sechdr.data_size);
548 	data_size = buf & 0xffff;
549 
550 	check = buf >> 16;
551 	check ^= seq ^ call->call_id;
552 	check &= 0xffff;
553 	if (check != 0)
554 		return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
555 					  rxkad_abort_2_short_check);
556 
557 	if (data_size > sp->len)
558 		return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
559 					  rxkad_abort_2_short_data);
560 
561 	sp->len = data_size;
562 	_leave(" = 0 [dlen=%x]", data_size);
563 	return 0;
564 }
565 
566 /*
567  * Verify the security on a received packet and the subpackets therein.
568  */
569 static int rxkad_verify_packet(struct rxrpc_call *call, struct sk_buff *skb)
570 {
571 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
572 	struct skcipher_request	*req;
573 	struct rxrpc_crypt iv;
574 	struct scatterlist sg;
575 	union {
576 		__be32 buf[2];
577 	} crypto __aligned(8);
578 	rxrpc_seq_t seq = sp->hdr.seq;
579 	int ret;
580 	u16 cksum;
581 	u32 x, y;
582 
583 	_enter("{%d{%x}},{#%u}",
584 	       call->debug_id, key_serial(call->conn->key), seq);
585 
586 	if (!call->conn->rxkad.cipher)
587 		return 0;
588 
589 	req = rxkad_get_call_crypto(call);
590 	if (!req)
591 		return -ENOMEM;
592 
593 	/* continue encrypting from where we left off */
594 	memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
595 
596 	/* validate the security checksum */
597 	x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
598 	x |= seq & 0x3fffffff;
599 	crypto.buf[0] = htonl(call->call_id);
600 	crypto.buf[1] = htonl(x);
601 
602 	sg_init_one(&sg, crypto.buf, 8);
603 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
604 	skcipher_request_set_callback(req, 0, NULL, NULL);
605 	skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
606 	crypto_skcipher_encrypt(req);
607 	skcipher_request_zero(req);
608 
609 	y = ntohl(crypto.buf[1]);
610 	cksum = (y >> 16) & 0xffff;
611 	if (cksum == 0)
612 		cksum = 1; /* zero checksums are not permitted */
613 
614 	if (cksum != sp->hdr.cksum) {
615 		ret = rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
616 					 rxkad_abort_bad_checksum);
617 		goto out;
618 	}
619 
620 	switch (call->conn->security_level) {
621 	case RXRPC_SECURITY_PLAIN:
622 		ret = 0;
623 		break;
624 	case RXRPC_SECURITY_AUTH:
625 		ret = rxkad_verify_packet_1(call, skb, seq, req);
626 		break;
627 	case RXRPC_SECURITY_ENCRYPT:
628 		ret = rxkad_verify_packet_2(call, skb, seq, req);
629 		break;
630 	default:
631 		ret = -ENOANO;
632 		break;
633 	}
634 
635 out:
636 	skcipher_request_free(req);
637 	return ret;
638 }
639 
640 /*
641  * issue a challenge
642  */
643 static int rxkad_issue_challenge(struct rxrpc_connection *conn)
644 {
645 	struct rxkad_challenge challenge;
646 	struct rxrpc_wire_header whdr;
647 	struct msghdr msg;
648 	struct kvec iov[2];
649 	size_t len;
650 	u32 serial;
651 	int ret;
652 
653 	_enter("{%d}", conn->debug_id);
654 
655 	get_random_bytes(&conn->rxkad.nonce, sizeof(conn->rxkad.nonce));
656 
657 	challenge.version	= htonl(2);
658 	challenge.nonce		= htonl(conn->rxkad.nonce);
659 	challenge.min_level	= htonl(0);
660 	challenge.__padding	= 0;
661 
662 	msg.msg_name	= &conn->peer->srx.transport;
663 	msg.msg_namelen	= conn->peer->srx.transport_len;
664 	msg.msg_control	= NULL;
665 	msg.msg_controllen = 0;
666 	msg.msg_flags	= 0;
667 
668 	whdr.epoch	= htonl(conn->proto.epoch);
669 	whdr.cid	= htonl(conn->proto.cid);
670 	whdr.callNumber	= 0;
671 	whdr.seq	= 0;
672 	whdr.type	= RXRPC_PACKET_TYPE_CHALLENGE;
673 	whdr.flags	= conn->out_clientflag;
674 	whdr.userStatus	= 0;
675 	whdr.securityIndex = conn->security_ix;
676 	whdr._rsvd	= 0;
677 	whdr.serviceId	= htons(conn->service_id);
678 
679 	iov[0].iov_base	= &whdr;
680 	iov[0].iov_len	= sizeof(whdr);
681 	iov[1].iov_base	= &challenge;
682 	iov[1].iov_len	= sizeof(challenge);
683 
684 	len = iov[0].iov_len + iov[1].iov_len;
685 
686 	serial = rxrpc_get_next_serial(conn);
687 	whdr.serial = htonl(serial);
688 
689 	ret = kernel_sendmsg(conn->local->socket, &msg, iov, 2, len);
690 	if (ret < 0) {
691 		trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
692 				    rxrpc_tx_point_rxkad_challenge);
693 		return -EAGAIN;
694 	}
695 
696 	conn->peer->last_tx_at = ktime_get_seconds();
697 	trace_rxrpc_tx_packet(conn->debug_id, &whdr,
698 			      rxrpc_tx_point_rxkad_challenge);
699 	_leave(" = 0");
700 	return 0;
701 }
702 
703 /*
704  * send a Kerberos security response
705  */
706 static int rxkad_send_response(struct rxrpc_connection *conn,
707 			       struct rxrpc_host_header *hdr,
708 			       struct rxkad_response *resp,
709 			       const struct rxkad_key *s2)
710 {
711 	struct rxrpc_wire_header whdr;
712 	struct msghdr msg;
713 	struct kvec iov[3];
714 	size_t len;
715 	u32 serial;
716 	int ret;
717 
718 	_enter("");
719 
720 	msg.msg_name	= &conn->peer->srx.transport;
721 	msg.msg_namelen	= conn->peer->srx.transport_len;
722 	msg.msg_control	= NULL;
723 	msg.msg_controllen = 0;
724 	msg.msg_flags	= 0;
725 
726 	memset(&whdr, 0, sizeof(whdr));
727 	whdr.epoch	= htonl(hdr->epoch);
728 	whdr.cid	= htonl(hdr->cid);
729 	whdr.type	= RXRPC_PACKET_TYPE_RESPONSE;
730 	whdr.flags	= conn->out_clientflag;
731 	whdr.securityIndex = hdr->securityIndex;
732 	whdr.serviceId	= htons(hdr->serviceId);
733 
734 	iov[0].iov_base	= &whdr;
735 	iov[0].iov_len	= sizeof(whdr);
736 	iov[1].iov_base	= resp;
737 	iov[1].iov_len	= sizeof(*resp);
738 	iov[2].iov_base	= (void *)s2->ticket;
739 	iov[2].iov_len	= s2->ticket_len;
740 
741 	len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;
742 
743 	serial = rxrpc_get_next_serial(conn);
744 	whdr.serial = htonl(serial);
745 
746 	rxrpc_local_dont_fragment(conn->local, false);
747 	ret = kernel_sendmsg(conn->local->socket, &msg, iov, 3, len);
748 	if (ret < 0) {
749 		trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
750 				    rxrpc_tx_point_rxkad_response);
751 		return -EAGAIN;
752 	}
753 
754 	conn->peer->last_tx_at = ktime_get_seconds();
755 	_leave(" = 0");
756 	return 0;
757 }
758 
759 /*
760  * calculate the response checksum
761  */
762 static void rxkad_calc_response_checksum(struct rxkad_response *response)
763 {
764 	u32 csum = 1000003;
765 	int loop;
766 	u8 *p = (u8 *) response;
767 
768 	for (loop = sizeof(*response); loop > 0; loop--)
769 		csum = csum * 0x10204081 + *p++;
770 
771 	response->encrypted.checksum = htonl(csum);
772 }
773 
774 /*
775  * encrypt the response packet
776  */
777 static int rxkad_encrypt_response(struct rxrpc_connection *conn,
778 				  struct rxkad_response *resp,
779 				  const struct rxkad_key *s2)
780 {
781 	struct skcipher_request *req;
782 	struct rxrpc_crypt iv;
783 	struct scatterlist sg[1];
784 
785 	req = skcipher_request_alloc(&conn->rxkad.cipher->base, GFP_NOFS);
786 	if (!req)
787 		return -ENOMEM;
788 
789 	/* continue encrypting from where we left off */
790 	memcpy(&iv, s2->session_key, sizeof(iv));
791 
792 	sg_init_table(sg, 1);
793 	sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
794 	skcipher_request_set_sync_tfm(req, conn->rxkad.cipher);
795 	skcipher_request_set_callback(req, 0, NULL, NULL);
796 	skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
797 	crypto_skcipher_encrypt(req);
798 	skcipher_request_free(req);
799 	return 0;
800 }
801 
802 /*
803  * respond to a challenge packet
804  */
805 static int rxkad_respond_to_challenge(struct rxrpc_connection *conn,
806 				      struct sk_buff *skb)
807 {
808 	const struct rxrpc_key_token *token;
809 	struct rxkad_challenge challenge;
810 	struct rxkad_response *resp;
811 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
812 	u32 version, nonce, min_level;
813 	int ret = -EPROTO;
814 
815 	_enter("{%d,%x}", conn->debug_id, key_serial(conn->key));
816 
817 	if (!conn->key)
818 		return rxrpc_abort_conn(conn, skb, RX_PROTOCOL_ERROR, -EPROTO,
819 					rxkad_abort_chall_no_key);
820 
821 	ret = key_validate(conn->key);
822 	if (ret < 0)
823 		return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret,
824 					rxkad_abort_chall_key_expired);
825 
826 	if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
827 			  &challenge, sizeof(challenge)) < 0)
828 		return rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO,
829 					rxkad_abort_chall_short);
830 
831 	version = ntohl(challenge.version);
832 	nonce = ntohl(challenge.nonce);
833 	min_level = ntohl(challenge.min_level);
834 
835 	trace_rxrpc_rx_challenge(conn, sp->hdr.serial, version, nonce, min_level);
836 
837 	if (version != RXKAD_VERSION)
838 		return rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO,
839 					rxkad_abort_chall_version);
840 
841 	if (conn->security_level < min_level)
842 		return rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EACCES,
843 					rxkad_abort_chall_level);
844 
845 	token = conn->key->payload.data[0];
846 
847 	/* build the response packet */
848 	resp = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
849 	if (!resp)
850 		return -ENOMEM;
851 
852 	resp->version			= htonl(RXKAD_VERSION);
853 	resp->encrypted.epoch		= htonl(conn->proto.epoch);
854 	resp->encrypted.cid		= htonl(conn->proto.cid);
855 	resp->encrypted.securityIndex	= htonl(conn->security_ix);
856 	resp->encrypted.inc_nonce	= htonl(nonce + 1);
857 	resp->encrypted.level		= htonl(conn->security_level);
858 	resp->kvno			= htonl(token->kad->kvno);
859 	resp->ticket_len		= htonl(token->kad->ticket_len);
860 	resp->encrypted.call_id[0]	= htonl(conn->channels[0].call_counter);
861 	resp->encrypted.call_id[1]	= htonl(conn->channels[1].call_counter);
862 	resp->encrypted.call_id[2]	= htonl(conn->channels[2].call_counter);
863 	resp->encrypted.call_id[3]	= htonl(conn->channels[3].call_counter);
864 
865 	/* calculate the response checksum and then do the encryption */
866 	rxkad_calc_response_checksum(resp);
867 	ret = rxkad_encrypt_response(conn, resp, token->kad);
868 	if (ret == 0)
869 		ret = rxkad_send_response(conn, &sp->hdr, resp, token->kad);
870 	kfree(resp);
871 	return ret;
872 }
873 
874 /*
875  * decrypt the kerberos IV ticket in the response
876  */
877 static int rxkad_decrypt_ticket(struct rxrpc_connection *conn,
878 				struct key *server_key,
879 				struct sk_buff *skb,
880 				void *ticket, size_t ticket_len,
881 				struct rxrpc_crypt *_session_key,
882 				time64_t *_expiry)
883 {
884 	struct skcipher_request *req;
885 	struct rxrpc_crypt iv, key;
886 	struct scatterlist sg[1];
887 	struct in_addr addr;
888 	unsigned int life;
889 	time64_t issue, now;
890 	bool little_endian;
891 	u8 *p, *q, *name, *end;
892 
893 	_enter("{%d},{%x}", conn->debug_id, key_serial(server_key));
894 
895 	*_expiry = 0;
896 
897 	ASSERT(server_key->payload.data[0] != NULL);
898 	ASSERTCMP((unsigned long) ticket & 7UL, ==, 0);
899 
900 	memcpy(&iv, &server_key->payload.data[2], sizeof(iv));
901 
902 	req = skcipher_request_alloc(server_key->payload.data[0], GFP_NOFS);
903 	if (!req)
904 		return -ENOMEM;
905 
906 	sg_init_one(&sg[0], ticket, ticket_len);
907 	skcipher_request_set_callback(req, 0, NULL, NULL);
908 	skcipher_request_set_crypt(req, sg, sg, ticket_len, iv.x);
909 	crypto_skcipher_decrypt(req);
910 	skcipher_request_free(req);
911 
912 	p = ticket;
913 	end = p + ticket_len;
914 
915 #define Z(field, fieldl)						\
916 	({								\
917 		u8 *__str = p;						\
918 		q = memchr(p, 0, end - p);				\
919 		if (!q || q - p > field##_SZ)				\
920 			return rxrpc_abort_conn(			\
921 				conn, skb, RXKADBADTICKET, -EPROTO,	\
922 				rxkad_abort_resp_tkt_##fieldl);		\
923 		for (; p < q; p++)					\
924 			if (!isprint(*p))				\
925 				return rxrpc_abort_conn(		\
926 					conn, skb, RXKADBADTICKET, -EPROTO, \
927 					rxkad_abort_resp_tkt_##fieldl);	\
928 		p++;							\
929 		__str;							\
930 	})
931 
932 	/* extract the ticket flags */
933 	_debug("KIV FLAGS: %x", *p);
934 	little_endian = *p & 1;
935 	p++;
936 
937 	/* extract the authentication name */
938 	name = Z(ANAME, aname);
939 	_debug("KIV ANAME: %s", name);
940 
941 	/* extract the principal's instance */
942 	name = Z(INST, inst);
943 	_debug("KIV INST : %s", name);
944 
945 	/* extract the principal's authentication domain */
946 	name = Z(REALM, realm);
947 	_debug("KIV REALM: %s", name);
948 
949 	if (end - p < 4 + 8 + 4 + 2)
950 		return rxrpc_abort_conn(conn, skb, RXKADBADTICKET, -EPROTO,
951 					rxkad_abort_resp_tkt_short);
952 
953 	/* get the IPv4 address of the entity that requested the ticket */
954 	memcpy(&addr, p, sizeof(addr));
955 	p += 4;
956 	_debug("KIV ADDR : %pI4", &addr);
957 
958 	/* get the session key from the ticket */
959 	memcpy(&key, p, sizeof(key));
960 	p += 8;
961 	_debug("KIV KEY  : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1]));
962 	memcpy(_session_key, &key, sizeof(key));
963 
964 	/* get the ticket's lifetime */
965 	life = *p++ * 5 * 60;
966 	_debug("KIV LIFE : %u", life);
967 
968 	/* get the issue time of the ticket */
969 	if (little_endian) {
970 		__le32 stamp;
971 		memcpy(&stamp, p, 4);
972 		issue = rxrpc_u32_to_time64(le32_to_cpu(stamp));
973 	} else {
974 		__be32 stamp;
975 		memcpy(&stamp, p, 4);
976 		issue = rxrpc_u32_to_time64(be32_to_cpu(stamp));
977 	}
978 	p += 4;
979 	now = ktime_get_real_seconds();
980 	_debug("KIV ISSUE: %llx [%llx]", issue, now);
981 
982 	/* check the ticket is in date */
983 	if (issue > now)
984 		return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, -EKEYREJECTED,
985 					rxkad_abort_resp_tkt_future);
986 	if (issue < now - life)
987 		return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, -EKEYEXPIRED,
988 					rxkad_abort_resp_tkt_expired);
989 
990 	*_expiry = issue + life;
991 
992 	/* get the service name */
993 	name = Z(SNAME, sname);
994 	_debug("KIV SNAME: %s", name);
995 
996 	/* get the service instance name */
997 	name = Z(INST, sinst);
998 	_debug("KIV SINST: %s", name);
999 	return 0;
1000 }
1001 
1002 /*
1003  * decrypt the response packet
1004  */
1005 static void rxkad_decrypt_response(struct rxrpc_connection *conn,
1006 				   struct rxkad_response *resp,
1007 				   const struct rxrpc_crypt *session_key)
1008 {
1009 	struct skcipher_request *req = rxkad_ci_req;
1010 	struct scatterlist sg[1];
1011 	struct rxrpc_crypt iv;
1012 
1013 	_enter(",,%08x%08x",
1014 	       ntohl(session_key->n[0]), ntohl(session_key->n[1]));
1015 
1016 	mutex_lock(&rxkad_ci_mutex);
1017 	if (crypto_sync_skcipher_setkey(rxkad_ci, session_key->x,
1018 					sizeof(*session_key)) < 0)
1019 		BUG();
1020 
1021 	memcpy(&iv, session_key, sizeof(iv));
1022 
1023 	sg_init_table(sg, 1);
1024 	sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
1025 	skcipher_request_set_sync_tfm(req, rxkad_ci);
1026 	skcipher_request_set_callback(req, 0, NULL, NULL);
1027 	skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
1028 	crypto_skcipher_decrypt(req);
1029 	skcipher_request_zero(req);
1030 
1031 	mutex_unlock(&rxkad_ci_mutex);
1032 
1033 	_leave("");
1034 }
1035 
1036 /*
1037  * verify a response
1038  */
1039 static int rxkad_verify_response(struct rxrpc_connection *conn,
1040 				 struct sk_buff *skb)
1041 {
1042 	struct rxkad_response *response;
1043 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
1044 	struct rxrpc_crypt session_key;
1045 	struct key *server_key;
1046 	time64_t expiry;
1047 	void *ticket;
1048 	u32 version, kvno, ticket_len, level;
1049 	__be32 csum;
1050 	int ret, i;
1051 
1052 	_enter("{%d}", conn->debug_id);
1053 
1054 	server_key = rxrpc_look_up_server_security(conn, skb, 0, 0);
1055 	if (IS_ERR(server_key)) {
1056 		ret = PTR_ERR(server_key);
1057 		switch (ret) {
1058 		case -ENOKEY:
1059 			return rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, ret,
1060 						rxkad_abort_resp_nokey);
1061 		case -EKEYEXPIRED:
1062 			return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret,
1063 						rxkad_abort_resp_key_expired);
1064 		default:
1065 			return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, ret,
1066 						rxkad_abort_resp_key_rejected);
1067 		}
1068 	}
1069 
1070 	ret = -ENOMEM;
1071 	response = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
1072 	if (!response)
1073 		goto temporary_error;
1074 
1075 	if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
1076 			  response, sizeof(*response)) < 0) {
1077 		rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO,
1078 				 rxkad_abort_resp_short);
1079 		goto protocol_error;
1080 	}
1081 
1082 	version = ntohl(response->version);
1083 	ticket_len = ntohl(response->ticket_len);
1084 	kvno = ntohl(response->kvno);
1085 
1086 	trace_rxrpc_rx_response(conn, sp->hdr.serial, version, kvno, ticket_len);
1087 
1088 	if (version != RXKAD_VERSION) {
1089 		rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO,
1090 				 rxkad_abort_resp_version);
1091 		goto protocol_error;
1092 	}
1093 
1094 	if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN) {
1095 		rxrpc_abort_conn(conn, skb, RXKADTICKETLEN, -EPROTO,
1096 				 rxkad_abort_resp_tkt_len);
1097 		goto protocol_error;
1098 	}
1099 
1100 	if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5) {
1101 		rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, -EPROTO,
1102 				 rxkad_abort_resp_unknown_tkt);
1103 		goto protocol_error;
1104 	}
1105 
1106 	/* extract the kerberos ticket and decrypt and decode it */
1107 	ret = -ENOMEM;
1108 	ticket = kmalloc(ticket_len, GFP_NOFS);
1109 	if (!ticket)
1110 		goto temporary_error_free_resp;
1111 
1112 	if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header) + sizeof(*response),
1113 			  ticket, ticket_len) < 0) {
1114 		rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO,
1115 				 rxkad_abort_resp_short_tkt);
1116 		goto protocol_error;
1117 	}
1118 
1119 	ret = rxkad_decrypt_ticket(conn, server_key, skb, ticket, ticket_len,
1120 				   &session_key, &expiry);
1121 	if (ret < 0)
1122 		goto temporary_error_free_ticket;
1123 
1124 	/* use the session key from inside the ticket to decrypt the
1125 	 * response */
1126 	rxkad_decrypt_response(conn, response, &session_key);
1127 
1128 	if (ntohl(response->encrypted.epoch) != conn->proto.epoch ||
1129 	    ntohl(response->encrypted.cid) != conn->proto.cid ||
1130 	    ntohl(response->encrypted.securityIndex) != conn->security_ix) {
1131 		rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1132 				 rxkad_abort_resp_bad_param);
1133 		goto protocol_error_free;
1134 	}
1135 
1136 	csum = response->encrypted.checksum;
1137 	response->encrypted.checksum = 0;
1138 	rxkad_calc_response_checksum(response);
1139 	if (response->encrypted.checksum != csum) {
1140 		rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1141 				 rxkad_abort_resp_bad_checksum);
1142 		goto protocol_error_free;
1143 	}
1144 
1145 	for (i = 0; i < RXRPC_MAXCALLS; i++) {
1146 		u32 call_id = ntohl(response->encrypted.call_id[i]);
1147 		u32 counter = READ_ONCE(conn->channels[i].call_counter);
1148 
1149 		if (call_id > INT_MAX) {
1150 			rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1151 					 rxkad_abort_resp_bad_callid);
1152 			goto protocol_error_free;
1153 		}
1154 
1155 		if (call_id < counter) {
1156 			rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1157 					 rxkad_abort_resp_call_ctr);
1158 			goto protocol_error_free;
1159 		}
1160 
1161 		if (call_id > counter) {
1162 			if (conn->channels[i].call) {
1163 				rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1164 						 rxkad_abort_resp_call_state);
1165 				goto protocol_error_free;
1166 			}
1167 			conn->channels[i].call_counter = call_id;
1168 		}
1169 	}
1170 
1171 	if (ntohl(response->encrypted.inc_nonce) != conn->rxkad.nonce + 1) {
1172 		rxrpc_abort_conn(conn, skb, RXKADOUTOFSEQUENCE, -EPROTO,
1173 				 rxkad_abort_resp_ooseq);
1174 		goto protocol_error_free;
1175 	}
1176 
1177 	level = ntohl(response->encrypted.level);
1178 	if (level > RXRPC_SECURITY_ENCRYPT) {
1179 		rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EPROTO,
1180 				 rxkad_abort_resp_level);
1181 		goto protocol_error_free;
1182 	}
1183 	conn->security_level = level;
1184 
1185 	/* create a key to hold the security data and expiration time - after
1186 	 * this the connection security can be handled in exactly the same way
1187 	 * as for a client connection */
1188 	ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno);
1189 	if (ret < 0)
1190 		goto temporary_error_free_ticket;
1191 
1192 	kfree(ticket);
1193 	kfree(response);
1194 	_leave(" = 0");
1195 	return 0;
1196 
1197 protocol_error_free:
1198 	kfree(ticket);
1199 protocol_error:
1200 	kfree(response);
1201 	key_put(server_key);
1202 	return -EPROTO;
1203 
1204 temporary_error_free_ticket:
1205 	kfree(ticket);
1206 temporary_error_free_resp:
1207 	kfree(response);
1208 temporary_error:
1209 	/* Ignore the response packet if we got a temporary error such as
1210 	 * ENOMEM.  We just want to send the challenge again.  Note that we
1211 	 * also come out this way if the ticket decryption fails.
1212 	 */
1213 	key_put(server_key);
1214 	return ret;
1215 }
1216 
1217 /*
1218  * clear the connection security
1219  */
1220 static void rxkad_clear(struct rxrpc_connection *conn)
1221 {
1222 	_enter("");
1223 
1224 	if (conn->rxkad.cipher)
1225 		crypto_free_sync_skcipher(conn->rxkad.cipher);
1226 }
1227 
1228 /*
1229  * Initialise the rxkad security service.
1230  */
1231 static int rxkad_init(void)
1232 {
1233 	struct crypto_sync_skcipher *tfm;
1234 	struct skcipher_request *req;
1235 
1236 	/* pin the cipher we need so that the crypto layer doesn't invoke
1237 	 * keventd to go get it */
1238 	tfm = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
1239 	if (IS_ERR(tfm))
1240 		return PTR_ERR(tfm);
1241 
1242 	req = skcipher_request_alloc(&tfm->base, GFP_KERNEL);
1243 	if (!req)
1244 		goto nomem_tfm;
1245 
1246 	rxkad_ci_req = req;
1247 	rxkad_ci = tfm;
1248 	return 0;
1249 
1250 nomem_tfm:
1251 	crypto_free_sync_skcipher(tfm);
1252 	return -ENOMEM;
1253 }
1254 
1255 /*
1256  * Clean up the rxkad security service.
1257  */
1258 static void rxkad_exit(void)
1259 {
1260 	crypto_free_sync_skcipher(rxkad_ci);
1261 	skcipher_request_free(rxkad_ci_req);
1262 }
1263 
1264 /*
1265  * RxRPC Kerberos-based security
1266  */
1267 const struct rxrpc_security rxkad = {
1268 	.name				= "rxkad",
1269 	.security_index			= RXRPC_SECURITY_RXKAD,
1270 	.no_key_abort			= RXKADUNKNOWNKEY,
1271 	.init				= rxkad_init,
1272 	.exit				= rxkad_exit,
1273 	.preparse_server_key		= rxkad_preparse_server_key,
1274 	.free_preparse_server_key	= rxkad_free_preparse_server_key,
1275 	.destroy_server_key		= rxkad_destroy_server_key,
1276 	.init_connection_security	= rxkad_init_connection_security,
1277 	.alloc_txbuf			= rxkad_alloc_txbuf,
1278 	.secure_packet			= rxkad_secure_packet,
1279 	.verify_packet			= rxkad_verify_packet,
1280 	.free_call_crypto		= rxkad_free_call_crypto,
1281 	.issue_challenge		= rxkad_issue_challenge,
1282 	.respond_to_challenge		= rxkad_respond_to_challenge,
1283 	.verify_response		= rxkad_verify_response,
1284 	.clear				= rxkad_clear,
1285 };
1286