xref: /linux/net/rxrpc/rxkad.c (revision 3f58ff6b53c11773b1bd564082fae37d48e0cc40)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Kerberos-based RxRPC security
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <crypto/skcipher.h>
11 #include <linux/module.h>
12 #include <linux/net.h>
13 #include <linux/skbuff.h>
14 #include <linux/udp.h>
15 #include <linux/scatterlist.h>
16 #include <linux/ctype.h>
17 #include <linux/slab.h>
18 #include <linux/key-type.h>
19 #include <net/sock.h>
20 #include <net/af_rxrpc.h>
21 #include <keys/rxrpc-type.h>
22 #include "ar-internal.h"
23 
24 #define RXKAD_VERSION			2
25 #define MAXKRB5TICKETLEN		1024
26 #define RXKAD_TKT_TYPE_KERBEROS_V5	256
27 #define ANAME_SZ			40	/* size of authentication name */
28 #define INST_SZ				40	/* size of principal's instance */
29 #define REALM_SZ			40	/* size of principal's auth domain */
30 #define SNAME_SZ			40	/* size of service name */
31 #define RXKAD_ALIGN			8
32 
33 struct rxkad_level1_hdr {
34 	__be32	data_size;	/* true data size (excluding padding) */
35 };
36 
37 struct rxkad_level2_hdr {
38 	__be32	data_size;	/* true data size (excluding padding) */
39 	__be32	checksum;	/* decrypted data checksum */
40 };
41 
42 static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
43 				       struct crypto_sync_skcipher *ci);
44 
45 /*
46  * this holds a pinned cipher so that keventd doesn't get called by the cipher
47  * alloc routine, but since we have it to hand, we use it to decrypt RESPONSE
48  * packets
49  */
50 static struct crypto_sync_skcipher *rxkad_ci;
51 static struct skcipher_request *rxkad_ci_req;
52 static DEFINE_MUTEX(rxkad_ci_mutex);
53 
54 /*
55  * Parse the information from a server key
56  *
57  * The data should be the 8-byte secret key.
58  */
59 static int rxkad_preparse_server_key(struct key_preparsed_payload *prep)
60 {
61 	struct crypto_skcipher *ci;
62 
63 	if (prep->datalen != 8)
64 		return -EINVAL;
65 
66 	memcpy(&prep->payload.data[2], prep->data, 8);
67 
68 	ci = crypto_alloc_skcipher("pcbc(des)", 0, CRYPTO_ALG_ASYNC);
69 	if (IS_ERR(ci)) {
70 		_leave(" = %ld", PTR_ERR(ci));
71 		return PTR_ERR(ci);
72 	}
73 
74 	if (crypto_skcipher_setkey(ci, prep->data, 8) < 0)
75 		BUG();
76 
77 	prep->payload.data[0] = ci;
78 	_leave(" = 0");
79 	return 0;
80 }
81 
82 static void rxkad_free_preparse_server_key(struct key_preparsed_payload *prep)
83 {
84 
85 	if (prep->payload.data[0])
86 		crypto_free_skcipher(prep->payload.data[0]);
87 }
88 
89 static void rxkad_destroy_server_key(struct key *key)
90 {
91 	if (key->payload.data[0]) {
92 		crypto_free_skcipher(key->payload.data[0]);
93 		key->payload.data[0] = NULL;
94 	}
95 }
96 
97 /*
98  * initialise connection security
99  */
100 static int rxkad_init_connection_security(struct rxrpc_connection *conn,
101 					  struct rxrpc_key_token *token)
102 {
103 	struct crypto_sync_skcipher *ci;
104 	int ret;
105 
106 	_enter("{%d},{%x}", conn->debug_id, key_serial(conn->key));
107 
108 	conn->security_ix = token->security_index;
109 
110 	ci = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
111 	if (IS_ERR(ci)) {
112 		_debug("no cipher");
113 		ret = PTR_ERR(ci);
114 		goto error;
115 	}
116 
117 	if (crypto_sync_skcipher_setkey(ci, token->kad->session_key,
118 				   sizeof(token->kad->session_key)) < 0)
119 		BUG();
120 
121 	switch (conn->security_level) {
122 	case RXRPC_SECURITY_PLAIN:
123 	case RXRPC_SECURITY_AUTH:
124 	case RXRPC_SECURITY_ENCRYPT:
125 		break;
126 	default:
127 		ret = -EKEYREJECTED;
128 		goto error;
129 	}
130 
131 	ret = rxkad_prime_packet_security(conn, ci);
132 	if (ret < 0)
133 		goto error_ci;
134 
135 	conn->rxkad.cipher = ci;
136 	return 0;
137 
138 error_ci:
139 	crypto_free_sync_skcipher(ci);
140 error:
141 	_leave(" = %d", ret);
142 	return ret;
143 }
144 
145 /*
146  * Work out how much data we can put in a packet.
147  */
148 static int rxkad_how_much_data(struct rxrpc_call *call, size_t remain,
149 			       size_t *_buf_size, size_t *_data_size, size_t *_offset)
150 {
151 	size_t shdr, buf_size, chunk;
152 
153 	switch (call->conn->security_level) {
154 	default:
155 		buf_size = chunk = min_t(size_t, remain, RXRPC_JUMBO_DATALEN);
156 		shdr = 0;
157 		goto out;
158 	case RXRPC_SECURITY_AUTH:
159 		shdr = sizeof(struct rxkad_level1_hdr);
160 		break;
161 	case RXRPC_SECURITY_ENCRYPT:
162 		shdr = sizeof(struct rxkad_level2_hdr);
163 		break;
164 	}
165 
166 	buf_size = round_down(RXRPC_JUMBO_DATALEN, RXKAD_ALIGN);
167 
168 	chunk = buf_size - shdr;
169 	if (remain < chunk)
170 		buf_size = round_up(shdr + remain, RXKAD_ALIGN);
171 
172 out:
173 	*_buf_size = buf_size;
174 	*_data_size = chunk;
175 	*_offset = shdr;
176 	return 0;
177 }
178 
179 /*
180  * prime the encryption state with the invariant parts of a connection's
181  * description
182  */
183 static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
184 				       struct crypto_sync_skcipher *ci)
185 {
186 	struct skcipher_request *req;
187 	struct rxrpc_key_token *token;
188 	struct scatterlist sg;
189 	struct rxrpc_crypt iv;
190 	__be32 *tmpbuf;
191 	size_t tmpsize = 4 * sizeof(__be32);
192 
193 	_enter("");
194 
195 	if (!conn->key)
196 		return 0;
197 
198 	tmpbuf = kmalloc(tmpsize, GFP_KERNEL);
199 	if (!tmpbuf)
200 		return -ENOMEM;
201 
202 	req = skcipher_request_alloc(&ci->base, GFP_NOFS);
203 	if (!req) {
204 		kfree(tmpbuf);
205 		return -ENOMEM;
206 	}
207 
208 	token = conn->key->payload.data[0];
209 	memcpy(&iv, token->kad->session_key, sizeof(iv));
210 
211 	tmpbuf[0] = htonl(conn->proto.epoch);
212 	tmpbuf[1] = htonl(conn->proto.cid);
213 	tmpbuf[2] = 0;
214 	tmpbuf[3] = htonl(conn->security_ix);
215 
216 	sg_init_one(&sg, tmpbuf, tmpsize);
217 	skcipher_request_set_sync_tfm(req, ci);
218 	skcipher_request_set_callback(req, 0, NULL, NULL);
219 	skcipher_request_set_crypt(req, &sg, &sg, tmpsize, iv.x);
220 	crypto_skcipher_encrypt(req);
221 	skcipher_request_free(req);
222 
223 	memcpy(&conn->rxkad.csum_iv, tmpbuf + 2, sizeof(conn->rxkad.csum_iv));
224 	kfree(tmpbuf);
225 	_leave(" = 0");
226 	return 0;
227 }
228 
229 /*
230  * Allocate and prepare the crypto request on a call.  For any particular call,
231  * this is called serially for the packets, so no lock should be necessary.
232  */
233 static struct skcipher_request *rxkad_get_call_crypto(struct rxrpc_call *call)
234 {
235 	struct crypto_skcipher *tfm = &call->conn->rxkad.cipher->base;
236 
237 	return skcipher_request_alloc(tfm, GFP_NOFS);
238 }
239 
240 /*
241  * Clean up the crypto on a call.
242  */
243 static void rxkad_free_call_crypto(struct rxrpc_call *call)
244 {
245 }
246 
247 /*
248  * partially encrypt a packet (level 1 security)
249  */
250 static int rxkad_secure_packet_auth(const struct rxrpc_call *call,
251 				    struct rxrpc_txbuf *txb,
252 				    struct skcipher_request *req)
253 {
254 	struct rxkad_level1_hdr *hdr = (void *)txb->data;
255 	struct rxrpc_crypt iv;
256 	struct scatterlist sg;
257 	size_t pad;
258 	u16 check;
259 
260 	_enter("");
261 
262 	check = txb->seq ^ ntohl(txb->wire.callNumber);
263 	hdr->data_size = htonl((u32)check << 16 | txb->len);
264 
265 	txb->len += sizeof(struct rxkad_level1_hdr);
266 	pad = txb->len;
267 	pad = RXKAD_ALIGN - pad;
268 	pad &= RXKAD_ALIGN - 1;
269 	if (pad) {
270 		memset(txb->data + txb->offset, 0, pad);
271 		txb->len += pad;
272 	}
273 
274 	/* start the encryption afresh */
275 	memset(&iv, 0, sizeof(iv));
276 
277 	sg_init_one(&sg, txb->data, 8);
278 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
279 	skcipher_request_set_callback(req, 0, NULL, NULL);
280 	skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
281 	crypto_skcipher_encrypt(req);
282 	skcipher_request_zero(req);
283 
284 	_leave(" = 0");
285 	return 0;
286 }
287 
288 /*
289  * wholly encrypt a packet (level 2 security)
290  */
291 static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call,
292 				       struct rxrpc_txbuf *txb,
293 				       struct skcipher_request *req)
294 {
295 	const struct rxrpc_key_token *token;
296 	struct rxkad_level2_hdr *rxkhdr = (void *)txb->data;
297 	struct rxrpc_crypt iv;
298 	struct scatterlist sg;
299 	size_t pad;
300 	u16 check;
301 	int ret;
302 
303 	_enter("");
304 
305 	check = txb->seq ^ ntohl(txb->wire.callNumber);
306 
307 	rxkhdr->data_size = htonl(txb->len | (u32)check << 16);
308 	rxkhdr->checksum = 0;
309 
310 	txb->len += sizeof(struct rxkad_level2_hdr);
311 	pad = txb->len;
312 	pad = RXKAD_ALIGN - pad;
313 	pad &= RXKAD_ALIGN - 1;
314 	if (pad) {
315 		memset(txb->data + txb->offset, 0, pad);
316 		txb->len += pad;
317 	}
318 
319 	/* encrypt from the session key */
320 	token = call->conn->key->payload.data[0];
321 	memcpy(&iv, token->kad->session_key, sizeof(iv));
322 
323 	sg_init_one(&sg, txb->data, txb->len);
324 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
325 	skcipher_request_set_callback(req, 0, NULL, NULL);
326 	skcipher_request_set_crypt(req, &sg, &sg, txb->len, iv.x);
327 	ret = crypto_skcipher_encrypt(req);
328 	skcipher_request_zero(req);
329 	return ret;
330 }
331 
332 /*
333  * checksum an RxRPC packet header
334  */
335 static int rxkad_secure_packet(struct rxrpc_call *call, struct rxrpc_txbuf *txb)
336 {
337 	struct skcipher_request	*req;
338 	struct rxrpc_crypt iv;
339 	struct scatterlist sg;
340 	union {
341 		__be32 buf[2];
342 	} crypto __aligned(8);
343 	u32 x, y;
344 	int ret;
345 
346 	_enter("{%d{%x}},{#%u},%u,",
347 	       call->debug_id, key_serial(call->conn->key),
348 	       txb->seq, txb->len);
349 
350 	if (!call->conn->rxkad.cipher)
351 		return 0;
352 
353 	ret = key_validate(call->conn->key);
354 	if (ret < 0)
355 		return ret;
356 
357 	req = rxkad_get_call_crypto(call);
358 	if (!req)
359 		return -ENOMEM;
360 
361 	/* continue encrypting from where we left off */
362 	memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
363 
364 	/* calculate the security checksum */
365 	x = (ntohl(txb->wire.cid) & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
366 	x |= txb->seq & 0x3fffffff;
367 	crypto.buf[0] = txb->wire.callNumber;
368 	crypto.buf[1] = htonl(x);
369 
370 	sg_init_one(&sg, crypto.buf, 8);
371 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
372 	skcipher_request_set_callback(req, 0, NULL, NULL);
373 	skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
374 	crypto_skcipher_encrypt(req);
375 	skcipher_request_zero(req);
376 
377 	y = ntohl(crypto.buf[1]);
378 	y = (y >> 16) & 0xffff;
379 	if (y == 0)
380 		y = 1; /* zero checksums are not permitted */
381 	txb->wire.cksum = htons(y);
382 
383 	switch (call->conn->security_level) {
384 	case RXRPC_SECURITY_PLAIN:
385 		ret = 0;
386 		break;
387 	case RXRPC_SECURITY_AUTH:
388 		ret = rxkad_secure_packet_auth(call, txb, req);
389 		break;
390 	case RXRPC_SECURITY_ENCRYPT:
391 		ret = rxkad_secure_packet_encrypt(call, txb, req);
392 		break;
393 	default:
394 		ret = -EPERM;
395 		break;
396 	}
397 
398 	skcipher_request_free(req);
399 	_leave(" = %d [set %x]", ret, y);
400 	return ret;
401 }
402 
403 /*
404  * decrypt partial encryption on a packet (level 1 security)
405  */
406 static int rxkad_verify_packet_1(struct rxrpc_call *call, struct sk_buff *skb,
407 				 rxrpc_seq_t seq,
408 				 struct skcipher_request *req)
409 {
410 	struct rxkad_level1_hdr sechdr;
411 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
412 	struct rxrpc_crypt iv;
413 	struct scatterlist sg[16];
414 	bool aborted;
415 	u32 data_size, buf;
416 	u16 check;
417 	int ret;
418 
419 	_enter("");
420 
421 	if (sp->len < 8) {
422 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_hdr", "V1H",
423 					     RXKADSEALEDINCON);
424 		goto protocol_error;
425 	}
426 
427 	/* Decrypt the skbuff in-place.  TODO: We really want to decrypt
428 	 * directly into the target buffer.
429 	 */
430 	sg_init_table(sg, ARRAY_SIZE(sg));
431 	ret = skb_to_sgvec(skb, sg, sp->offset, 8);
432 	if (unlikely(ret < 0))
433 		return ret;
434 
435 	/* start the decryption afresh */
436 	memset(&iv, 0, sizeof(iv));
437 
438 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
439 	skcipher_request_set_callback(req, 0, NULL, NULL);
440 	skcipher_request_set_crypt(req, sg, sg, 8, iv.x);
441 	crypto_skcipher_decrypt(req);
442 	skcipher_request_zero(req);
443 
444 	/* Extract the decrypted packet length */
445 	if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0) {
446 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_len", "XV1",
447 					     RXKADDATALEN);
448 		goto protocol_error;
449 	}
450 	sp->offset += sizeof(sechdr);
451 	sp->len    -= sizeof(sechdr);
452 
453 	buf = ntohl(sechdr.data_size);
454 	data_size = buf & 0xffff;
455 
456 	check = buf >> 16;
457 	check ^= seq ^ call->call_id;
458 	check &= 0xffff;
459 	if (check != 0) {
460 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_check", "V1C",
461 					     RXKADSEALEDINCON);
462 		goto protocol_error;
463 	}
464 
465 	if (data_size > sp->len) {
466 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_datalen", "V1L",
467 					     RXKADDATALEN);
468 		goto protocol_error;
469 	}
470 	sp->len = data_size;
471 
472 	_leave(" = 0 [dlen=%x]", data_size);
473 	return 0;
474 
475 protocol_error:
476 	if (aborted)
477 		rxrpc_send_abort_packet(call);
478 	return -EPROTO;
479 }
480 
481 /*
482  * wholly decrypt a packet (level 2 security)
483  */
484 static int rxkad_verify_packet_2(struct rxrpc_call *call, struct sk_buff *skb,
485 				 rxrpc_seq_t seq,
486 				 struct skcipher_request *req)
487 {
488 	const struct rxrpc_key_token *token;
489 	struct rxkad_level2_hdr sechdr;
490 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
491 	struct rxrpc_crypt iv;
492 	struct scatterlist _sg[4], *sg;
493 	bool aborted;
494 	u32 data_size, buf;
495 	u16 check;
496 	int nsg, ret;
497 
498 	_enter(",{%d}", sp->len);
499 
500 	if (sp->len < 8) {
501 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_hdr", "V2H",
502 					     RXKADSEALEDINCON);
503 		goto protocol_error;
504 	}
505 
506 	/* Decrypt the skbuff in-place.  TODO: We really want to decrypt
507 	 * directly into the target buffer.
508 	 */
509 	sg = _sg;
510 	nsg = skb_shinfo(skb)->nr_frags + 1;
511 	if (nsg <= 4) {
512 		nsg = 4;
513 	} else {
514 		sg = kmalloc_array(nsg, sizeof(*sg), GFP_NOIO);
515 		if (!sg)
516 			goto nomem;
517 	}
518 
519 	sg_init_table(sg, nsg);
520 	ret = skb_to_sgvec(skb, sg, sp->offset, sp->len);
521 	if (unlikely(ret < 0)) {
522 		if (sg != _sg)
523 			kfree(sg);
524 		return ret;
525 	}
526 
527 	/* decrypt from the session key */
528 	token = call->conn->key->payload.data[0];
529 	memcpy(&iv, token->kad->session_key, sizeof(iv));
530 
531 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
532 	skcipher_request_set_callback(req, 0, NULL, NULL);
533 	skcipher_request_set_crypt(req, sg, sg, sp->len, iv.x);
534 	crypto_skcipher_decrypt(req);
535 	skcipher_request_zero(req);
536 	if (sg != _sg)
537 		kfree(sg);
538 
539 	/* Extract the decrypted packet length */
540 	if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0) {
541 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_len", "XV2",
542 					     RXKADDATALEN);
543 		goto protocol_error;
544 	}
545 	sp->offset += sizeof(sechdr);
546 	sp->len    -= sizeof(sechdr);
547 
548 	buf = ntohl(sechdr.data_size);
549 	data_size = buf & 0xffff;
550 
551 	check = buf >> 16;
552 	check ^= seq ^ call->call_id;
553 	check &= 0xffff;
554 	if (check != 0) {
555 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_check", "V2C",
556 					     RXKADSEALEDINCON);
557 		goto protocol_error;
558 	}
559 
560 	if (data_size > sp->len) {
561 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_datalen", "V2L",
562 					     RXKADDATALEN);
563 		goto protocol_error;
564 	}
565 
566 	sp->len = data_size;
567 	_leave(" = 0 [dlen=%x]", data_size);
568 	return 0;
569 
570 protocol_error:
571 	if (aborted)
572 		rxrpc_send_abort_packet(call);
573 	return -EPROTO;
574 
575 nomem:
576 	_leave(" = -ENOMEM");
577 	return -ENOMEM;
578 }
579 
580 /*
581  * Verify the security on a received packet and the subpackets therein.
582  */
583 static int rxkad_verify_packet(struct rxrpc_call *call, struct sk_buff *skb)
584 {
585 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
586 	struct skcipher_request	*req;
587 	struct rxrpc_crypt iv;
588 	struct scatterlist sg;
589 	union {
590 		__be32 buf[2];
591 	} crypto __aligned(8);
592 	rxrpc_seq_t seq = sp->hdr.seq;
593 	bool aborted;
594 	int ret;
595 	u16 cksum;
596 	u32 x, y;
597 
598 	_enter("{%d{%x}},{#%u}",
599 	       call->debug_id, key_serial(call->conn->key), seq);
600 
601 	if (!call->conn->rxkad.cipher)
602 		return 0;
603 
604 	req = rxkad_get_call_crypto(call);
605 	if (!req)
606 		return -ENOMEM;
607 
608 	/* continue encrypting from where we left off */
609 	memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
610 
611 	/* validate the security checksum */
612 	x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
613 	x |= seq & 0x3fffffff;
614 	crypto.buf[0] = htonl(call->call_id);
615 	crypto.buf[1] = htonl(x);
616 
617 	sg_init_one(&sg, crypto.buf, 8);
618 	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
619 	skcipher_request_set_callback(req, 0, NULL, NULL);
620 	skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
621 	crypto_skcipher_encrypt(req);
622 	skcipher_request_zero(req);
623 
624 	y = ntohl(crypto.buf[1]);
625 	cksum = (y >> 16) & 0xffff;
626 	if (cksum == 0)
627 		cksum = 1; /* zero checksums are not permitted */
628 
629 	if (cksum != sp->hdr.cksum) {
630 		aborted = rxrpc_abort_eproto(call, skb, "rxkad_csum", "VCK",
631 					     RXKADSEALEDINCON);
632 		goto protocol_error;
633 	}
634 
635 	switch (call->conn->security_level) {
636 	case RXRPC_SECURITY_PLAIN:
637 		ret = 0;
638 		break;
639 	case RXRPC_SECURITY_AUTH:
640 		ret = rxkad_verify_packet_1(call, skb, seq, req);
641 		break;
642 	case RXRPC_SECURITY_ENCRYPT:
643 		ret = rxkad_verify_packet_2(call, skb, seq, req);
644 		break;
645 	default:
646 		ret = -ENOANO;
647 		break;
648 	}
649 
650 	skcipher_request_free(req);
651 	return ret;
652 
653 protocol_error:
654 	if (aborted)
655 		rxrpc_send_abort_packet(call);
656 	return -EPROTO;
657 }
658 
659 /*
660  * issue a challenge
661  */
662 static int rxkad_issue_challenge(struct rxrpc_connection *conn)
663 {
664 	struct rxkad_challenge challenge;
665 	struct rxrpc_wire_header whdr;
666 	struct msghdr msg;
667 	struct kvec iov[2];
668 	size_t len;
669 	u32 serial;
670 	int ret;
671 
672 	_enter("{%d}", conn->debug_id);
673 
674 	get_random_bytes(&conn->rxkad.nonce, sizeof(conn->rxkad.nonce));
675 
676 	challenge.version	= htonl(2);
677 	challenge.nonce		= htonl(conn->rxkad.nonce);
678 	challenge.min_level	= htonl(0);
679 	challenge.__padding	= 0;
680 
681 	msg.msg_name	= &conn->peer->srx.transport;
682 	msg.msg_namelen	= conn->peer->srx.transport_len;
683 	msg.msg_control	= NULL;
684 	msg.msg_controllen = 0;
685 	msg.msg_flags	= 0;
686 
687 	whdr.epoch	= htonl(conn->proto.epoch);
688 	whdr.cid	= htonl(conn->proto.cid);
689 	whdr.callNumber	= 0;
690 	whdr.seq	= 0;
691 	whdr.type	= RXRPC_PACKET_TYPE_CHALLENGE;
692 	whdr.flags	= conn->out_clientflag;
693 	whdr.userStatus	= 0;
694 	whdr.securityIndex = conn->security_ix;
695 	whdr._rsvd	= 0;
696 	whdr.serviceId	= htons(conn->service_id);
697 
698 	iov[0].iov_base	= &whdr;
699 	iov[0].iov_len	= sizeof(whdr);
700 	iov[1].iov_base	= &challenge;
701 	iov[1].iov_len	= sizeof(challenge);
702 
703 	len = iov[0].iov_len + iov[1].iov_len;
704 
705 	serial = atomic_inc_return(&conn->serial);
706 	whdr.serial = htonl(serial);
707 
708 	ret = kernel_sendmsg(conn->local->socket, &msg, iov, 2, len);
709 	if (ret < 0) {
710 		trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
711 				    rxrpc_tx_point_rxkad_challenge);
712 		return -EAGAIN;
713 	}
714 
715 	conn->peer->last_tx_at = ktime_get_seconds();
716 	trace_rxrpc_tx_packet(conn->debug_id, &whdr,
717 			      rxrpc_tx_point_rxkad_challenge);
718 	_leave(" = 0");
719 	return 0;
720 }
721 
722 /*
723  * send a Kerberos security response
724  */
725 static int rxkad_send_response(struct rxrpc_connection *conn,
726 			       struct rxrpc_host_header *hdr,
727 			       struct rxkad_response *resp,
728 			       const struct rxkad_key *s2)
729 {
730 	struct rxrpc_wire_header whdr;
731 	struct msghdr msg;
732 	struct kvec iov[3];
733 	size_t len;
734 	u32 serial;
735 	int ret;
736 
737 	_enter("");
738 
739 	msg.msg_name	= &conn->peer->srx.transport;
740 	msg.msg_namelen	= conn->peer->srx.transport_len;
741 	msg.msg_control	= NULL;
742 	msg.msg_controllen = 0;
743 	msg.msg_flags	= 0;
744 
745 	memset(&whdr, 0, sizeof(whdr));
746 	whdr.epoch	= htonl(hdr->epoch);
747 	whdr.cid	= htonl(hdr->cid);
748 	whdr.type	= RXRPC_PACKET_TYPE_RESPONSE;
749 	whdr.flags	= conn->out_clientflag;
750 	whdr.securityIndex = hdr->securityIndex;
751 	whdr.serviceId	= htons(hdr->serviceId);
752 
753 	iov[0].iov_base	= &whdr;
754 	iov[0].iov_len	= sizeof(whdr);
755 	iov[1].iov_base	= resp;
756 	iov[1].iov_len	= sizeof(*resp);
757 	iov[2].iov_base	= (void *)s2->ticket;
758 	iov[2].iov_len	= s2->ticket_len;
759 
760 	len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;
761 
762 	serial = atomic_inc_return(&conn->serial);
763 	whdr.serial = htonl(serial);
764 
765 	ret = kernel_sendmsg(conn->local->socket, &msg, iov, 3, len);
766 	if (ret < 0) {
767 		trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
768 				    rxrpc_tx_point_rxkad_response);
769 		return -EAGAIN;
770 	}
771 
772 	conn->peer->last_tx_at = ktime_get_seconds();
773 	_leave(" = 0");
774 	return 0;
775 }
776 
777 /*
778  * calculate the response checksum
779  */
780 static void rxkad_calc_response_checksum(struct rxkad_response *response)
781 {
782 	u32 csum = 1000003;
783 	int loop;
784 	u8 *p = (u8 *) response;
785 
786 	for (loop = sizeof(*response); loop > 0; loop--)
787 		csum = csum * 0x10204081 + *p++;
788 
789 	response->encrypted.checksum = htonl(csum);
790 }
791 
792 /*
793  * encrypt the response packet
794  */
795 static int rxkad_encrypt_response(struct rxrpc_connection *conn,
796 				  struct rxkad_response *resp,
797 				  const struct rxkad_key *s2)
798 {
799 	struct skcipher_request *req;
800 	struct rxrpc_crypt iv;
801 	struct scatterlist sg[1];
802 
803 	req = skcipher_request_alloc(&conn->rxkad.cipher->base, GFP_NOFS);
804 	if (!req)
805 		return -ENOMEM;
806 
807 	/* continue encrypting from where we left off */
808 	memcpy(&iv, s2->session_key, sizeof(iv));
809 
810 	sg_init_table(sg, 1);
811 	sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
812 	skcipher_request_set_sync_tfm(req, conn->rxkad.cipher);
813 	skcipher_request_set_callback(req, 0, NULL, NULL);
814 	skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
815 	crypto_skcipher_encrypt(req);
816 	skcipher_request_free(req);
817 	return 0;
818 }
819 
820 /*
821  * respond to a challenge packet
822  */
823 static int rxkad_respond_to_challenge(struct rxrpc_connection *conn,
824 				      struct sk_buff *skb,
825 				      u32 *_abort_code)
826 {
827 	const struct rxrpc_key_token *token;
828 	struct rxkad_challenge challenge;
829 	struct rxkad_response *resp;
830 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
831 	const char *eproto;
832 	u32 version, nonce, min_level, abort_code;
833 	int ret;
834 
835 	_enter("{%d,%x}", conn->debug_id, key_serial(conn->key));
836 
837 	eproto = tracepoint_string("chall_no_key");
838 	abort_code = RX_PROTOCOL_ERROR;
839 	if (!conn->key)
840 		goto protocol_error;
841 
842 	abort_code = RXKADEXPIRED;
843 	ret = key_validate(conn->key);
844 	if (ret < 0)
845 		goto other_error;
846 
847 	eproto = tracepoint_string("chall_short");
848 	abort_code = RXKADPACKETSHORT;
849 	if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
850 			  &challenge, sizeof(challenge)) < 0)
851 		goto protocol_error;
852 
853 	version = ntohl(challenge.version);
854 	nonce = ntohl(challenge.nonce);
855 	min_level = ntohl(challenge.min_level);
856 
857 	trace_rxrpc_rx_challenge(conn, sp->hdr.serial, version, nonce, min_level);
858 
859 	eproto = tracepoint_string("chall_ver");
860 	abort_code = RXKADINCONSISTENCY;
861 	if (version != RXKAD_VERSION)
862 		goto protocol_error;
863 
864 	abort_code = RXKADLEVELFAIL;
865 	ret = -EACCES;
866 	if (conn->security_level < min_level)
867 		goto other_error;
868 
869 	token = conn->key->payload.data[0];
870 
871 	/* build the response packet */
872 	resp = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
873 	if (!resp)
874 		return -ENOMEM;
875 
876 	resp->version			= htonl(RXKAD_VERSION);
877 	resp->encrypted.epoch		= htonl(conn->proto.epoch);
878 	resp->encrypted.cid		= htonl(conn->proto.cid);
879 	resp->encrypted.securityIndex	= htonl(conn->security_ix);
880 	resp->encrypted.inc_nonce	= htonl(nonce + 1);
881 	resp->encrypted.level		= htonl(conn->security_level);
882 	resp->kvno			= htonl(token->kad->kvno);
883 	resp->ticket_len		= htonl(token->kad->ticket_len);
884 	resp->encrypted.call_id[0]	= htonl(conn->channels[0].call_counter);
885 	resp->encrypted.call_id[1]	= htonl(conn->channels[1].call_counter);
886 	resp->encrypted.call_id[2]	= htonl(conn->channels[2].call_counter);
887 	resp->encrypted.call_id[3]	= htonl(conn->channels[3].call_counter);
888 
889 	/* calculate the response checksum and then do the encryption */
890 	rxkad_calc_response_checksum(resp);
891 	ret = rxkad_encrypt_response(conn, resp, token->kad);
892 	if (ret == 0)
893 		ret = rxkad_send_response(conn, &sp->hdr, resp, token->kad);
894 	kfree(resp);
895 	return ret;
896 
897 protocol_error:
898 	trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
899 	ret = -EPROTO;
900 other_error:
901 	*_abort_code = abort_code;
902 	return ret;
903 }
904 
905 /*
906  * decrypt the kerberos IV ticket in the response
907  */
908 static int rxkad_decrypt_ticket(struct rxrpc_connection *conn,
909 				struct key *server_key,
910 				struct sk_buff *skb,
911 				void *ticket, size_t ticket_len,
912 				struct rxrpc_crypt *_session_key,
913 				time64_t *_expiry,
914 				u32 *_abort_code)
915 {
916 	struct skcipher_request *req;
917 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
918 	struct rxrpc_crypt iv, key;
919 	struct scatterlist sg[1];
920 	struct in_addr addr;
921 	unsigned int life;
922 	const char *eproto;
923 	time64_t issue, now;
924 	bool little_endian;
925 	int ret;
926 	u32 abort_code;
927 	u8 *p, *q, *name, *end;
928 
929 	_enter("{%d},{%x}", conn->debug_id, key_serial(server_key));
930 
931 	*_expiry = 0;
932 
933 	ASSERT(server_key->payload.data[0] != NULL);
934 	ASSERTCMP((unsigned long) ticket & 7UL, ==, 0);
935 
936 	memcpy(&iv, &server_key->payload.data[2], sizeof(iv));
937 
938 	ret = -ENOMEM;
939 	req = skcipher_request_alloc(server_key->payload.data[0], GFP_NOFS);
940 	if (!req)
941 		goto temporary_error;
942 
943 	sg_init_one(&sg[0], ticket, ticket_len);
944 	skcipher_request_set_callback(req, 0, NULL, NULL);
945 	skcipher_request_set_crypt(req, sg, sg, ticket_len, iv.x);
946 	crypto_skcipher_decrypt(req);
947 	skcipher_request_free(req);
948 
949 	p = ticket;
950 	end = p + ticket_len;
951 
952 #define Z(field)					\
953 	({						\
954 		u8 *__str = p;				\
955 		eproto = tracepoint_string("rxkad_bad_"#field); \
956 		q = memchr(p, 0, end - p);		\
957 		if (!q || q - p > (field##_SZ))		\
958 			goto bad_ticket;		\
959 		for (; p < q; p++)			\
960 			if (!isprint(*p))		\
961 				goto bad_ticket;	\
962 		p++;					\
963 		__str;					\
964 	})
965 
966 	/* extract the ticket flags */
967 	_debug("KIV FLAGS: %x", *p);
968 	little_endian = *p & 1;
969 	p++;
970 
971 	/* extract the authentication name */
972 	name = Z(ANAME);
973 	_debug("KIV ANAME: %s", name);
974 
975 	/* extract the principal's instance */
976 	name = Z(INST);
977 	_debug("KIV INST : %s", name);
978 
979 	/* extract the principal's authentication domain */
980 	name = Z(REALM);
981 	_debug("KIV REALM: %s", name);
982 
983 	eproto = tracepoint_string("rxkad_bad_len");
984 	if (end - p < 4 + 8 + 4 + 2)
985 		goto bad_ticket;
986 
987 	/* get the IPv4 address of the entity that requested the ticket */
988 	memcpy(&addr, p, sizeof(addr));
989 	p += 4;
990 	_debug("KIV ADDR : %pI4", &addr);
991 
992 	/* get the session key from the ticket */
993 	memcpy(&key, p, sizeof(key));
994 	p += 8;
995 	_debug("KIV KEY  : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1]));
996 	memcpy(_session_key, &key, sizeof(key));
997 
998 	/* get the ticket's lifetime */
999 	life = *p++ * 5 * 60;
1000 	_debug("KIV LIFE : %u", life);
1001 
1002 	/* get the issue time of the ticket */
1003 	if (little_endian) {
1004 		__le32 stamp;
1005 		memcpy(&stamp, p, 4);
1006 		issue = rxrpc_u32_to_time64(le32_to_cpu(stamp));
1007 	} else {
1008 		__be32 stamp;
1009 		memcpy(&stamp, p, 4);
1010 		issue = rxrpc_u32_to_time64(be32_to_cpu(stamp));
1011 	}
1012 	p += 4;
1013 	now = ktime_get_real_seconds();
1014 	_debug("KIV ISSUE: %llx [%llx]", issue, now);
1015 
1016 	/* check the ticket is in date */
1017 	if (issue > now) {
1018 		abort_code = RXKADNOAUTH;
1019 		ret = -EKEYREJECTED;
1020 		goto other_error;
1021 	}
1022 
1023 	if (issue < now - life) {
1024 		abort_code = RXKADEXPIRED;
1025 		ret = -EKEYEXPIRED;
1026 		goto other_error;
1027 	}
1028 
1029 	*_expiry = issue + life;
1030 
1031 	/* get the service name */
1032 	name = Z(SNAME);
1033 	_debug("KIV SNAME: %s", name);
1034 
1035 	/* get the service instance name */
1036 	name = Z(INST);
1037 	_debug("KIV SINST: %s", name);
1038 	return 0;
1039 
1040 bad_ticket:
1041 	trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
1042 	abort_code = RXKADBADTICKET;
1043 	ret = -EPROTO;
1044 other_error:
1045 	*_abort_code = abort_code;
1046 	return ret;
1047 temporary_error:
1048 	return ret;
1049 }
1050 
1051 /*
1052  * decrypt the response packet
1053  */
1054 static void rxkad_decrypt_response(struct rxrpc_connection *conn,
1055 				   struct rxkad_response *resp,
1056 				   const struct rxrpc_crypt *session_key)
1057 {
1058 	struct skcipher_request *req = rxkad_ci_req;
1059 	struct scatterlist sg[1];
1060 	struct rxrpc_crypt iv;
1061 
1062 	_enter(",,%08x%08x",
1063 	       ntohl(session_key->n[0]), ntohl(session_key->n[1]));
1064 
1065 	mutex_lock(&rxkad_ci_mutex);
1066 	if (crypto_sync_skcipher_setkey(rxkad_ci, session_key->x,
1067 					sizeof(*session_key)) < 0)
1068 		BUG();
1069 
1070 	memcpy(&iv, session_key, sizeof(iv));
1071 
1072 	sg_init_table(sg, 1);
1073 	sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
1074 	skcipher_request_set_sync_tfm(req, rxkad_ci);
1075 	skcipher_request_set_callback(req, 0, NULL, NULL);
1076 	skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
1077 	crypto_skcipher_decrypt(req);
1078 	skcipher_request_zero(req);
1079 
1080 	mutex_unlock(&rxkad_ci_mutex);
1081 
1082 	_leave("");
1083 }
1084 
1085 /*
1086  * verify a response
1087  */
1088 static int rxkad_verify_response(struct rxrpc_connection *conn,
1089 				 struct sk_buff *skb,
1090 				 u32 *_abort_code)
1091 {
1092 	struct rxkad_response *response;
1093 	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
1094 	struct rxrpc_crypt session_key;
1095 	struct key *server_key;
1096 	const char *eproto;
1097 	time64_t expiry;
1098 	void *ticket;
1099 	u32 abort_code, version, kvno, ticket_len, level;
1100 	__be32 csum;
1101 	int ret, i;
1102 
1103 	_enter("{%d}", conn->debug_id);
1104 
1105 	server_key = rxrpc_look_up_server_security(conn, skb, 0, 0);
1106 	if (IS_ERR(server_key)) {
1107 		switch (PTR_ERR(server_key)) {
1108 		case -ENOKEY:
1109 			abort_code = RXKADUNKNOWNKEY;
1110 			break;
1111 		case -EKEYEXPIRED:
1112 			abort_code = RXKADEXPIRED;
1113 			break;
1114 		default:
1115 			abort_code = RXKADNOAUTH;
1116 			break;
1117 		}
1118 		trace_rxrpc_abort(0, "SVK",
1119 				  sp->hdr.cid, sp->hdr.callNumber, sp->hdr.seq,
1120 				  abort_code, PTR_ERR(server_key));
1121 		*_abort_code = abort_code;
1122 		return -EPROTO;
1123 	}
1124 
1125 	ret = -ENOMEM;
1126 	response = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
1127 	if (!response)
1128 		goto temporary_error;
1129 
1130 	eproto = tracepoint_string("rxkad_rsp_short");
1131 	abort_code = RXKADPACKETSHORT;
1132 	if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
1133 			  response, sizeof(*response)) < 0)
1134 		goto protocol_error;
1135 
1136 	version = ntohl(response->version);
1137 	ticket_len = ntohl(response->ticket_len);
1138 	kvno = ntohl(response->kvno);
1139 
1140 	trace_rxrpc_rx_response(conn, sp->hdr.serial, version, kvno, ticket_len);
1141 
1142 	eproto = tracepoint_string("rxkad_rsp_ver");
1143 	abort_code = RXKADINCONSISTENCY;
1144 	if (version != RXKAD_VERSION)
1145 		goto protocol_error;
1146 
1147 	eproto = tracepoint_string("rxkad_rsp_tktlen");
1148 	abort_code = RXKADTICKETLEN;
1149 	if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN)
1150 		goto protocol_error;
1151 
1152 	eproto = tracepoint_string("rxkad_rsp_unkkey");
1153 	abort_code = RXKADUNKNOWNKEY;
1154 	if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5)
1155 		goto protocol_error;
1156 
1157 	/* extract the kerberos ticket and decrypt and decode it */
1158 	ret = -ENOMEM;
1159 	ticket = kmalloc(ticket_len, GFP_NOFS);
1160 	if (!ticket)
1161 		goto temporary_error_free_resp;
1162 
1163 	eproto = tracepoint_string("rxkad_tkt_short");
1164 	abort_code = RXKADPACKETSHORT;
1165 	ret = skb_copy_bits(skb, sizeof(struct rxrpc_wire_header) + sizeof(*response),
1166 			    ticket, ticket_len);
1167 	if (ret < 0)
1168 		goto temporary_error_free_ticket;
1169 
1170 	ret = rxkad_decrypt_ticket(conn, server_key, skb, ticket, ticket_len,
1171 				   &session_key, &expiry, _abort_code);
1172 	if (ret < 0)
1173 		goto temporary_error_free_ticket;
1174 
1175 	/* use the session key from inside the ticket to decrypt the
1176 	 * response */
1177 	rxkad_decrypt_response(conn, response, &session_key);
1178 
1179 	eproto = tracepoint_string("rxkad_rsp_param");
1180 	abort_code = RXKADSEALEDINCON;
1181 	if (ntohl(response->encrypted.epoch) != conn->proto.epoch)
1182 		goto protocol_error_free;
1183 	if (ntohl(response->encrypted.cid) != conn->proto.cid)
1184 		goto protocol_error_free;
1185 	if (ntohl(response->encrypted.securityIndex) != conn->security_ix)
1186 		goto protocol_error_free;
1187 	csum = response->encrypted.checksum;
1188 	response->encrypted.checksum = 0;
1189 	rxkad_calc_response_checksum(response);
1190 	eproto = tracepoint_string("rxkad_rsp_csum");
1191 	if (response->encrypted.checksum != csum)
1192 		goto protocol_error_free;
1193 
1194 	spin_lock(&conn->bundle->channel_lock);
1195 	for (i = 0; i < RXRPC_MAXCALLS; i++) {
1196 		struct rxrpc_call *call;
1197 		u32 call_id = ntohl(response->encrypted.call_id[i]);
1198 
1199 		eproto = tracepoint_string("rxkad_rsp_callid");
1200 		if (call_id > INT_MAX)
1201 			goto protocol_error_unlock;
1202 
1203 		eproto = tracepoint_string("rxkad_rsp_callctr");
1204 		if (call_id < conn->channels[i].call_counter)
1205 			goto protocol_error_unlock;
1206 
1207 		eproto = tracepoint_string("rxkad_rsp_callst");
1208 		if (call_id > conn->channels[i].call_counter) {
1209 			call = rcu_dereference_protected(
1210 				conn->channels[i].call,
1211 				lockdep_is_held(&conn->bundle->channel_lock));
1212 			if (call && call->state < RXRPC_CALL_COMPLETE)
1213 				goto protocol_error_unlock;
1214 			conn->channels[i].call_counter = call_id;
1215 		}
1216 	}
1217 	spin_unlock(&conn->bundle->channel_lock);
1218 
1219 	eproto = tracepoint_string("rxkad_rsp_seq");
1220 	abort_code = RXKADOUTOFSEQUENCE;
1221 	if (ntohl(response->encrypted.inc_nonce) != conn->rxkad.nonce + 1)
1222 		goto protocol_error_free;
1223 
1224 	eproto = tracepoint_string("rxkad_rsp_level");
1225 	abort_code = RXKADLEVELFAIL;
1226 	level = ntohl(response->encrypted.level);
1227 	if (level > RXRPC_SECURITY_ENCRYPT)
1228 		goto protocol_error_free;
1229 	conn->security_level = level;
1230 
1231 	/* create a key to hold the security data and expiration time - after
1232 	 * this the connection security can be handled in exactly the same way
1233 	 * as for a client connection */
1234 	ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno);
1235 	if (ret < 0)
1236 		goto temporary_error_free_ticket;
1237 
1238 	kfree(ticket);
1239 	kfree(response);
1240 	_leave(" = 0");
1241 	return 0;
1242 
1243 protocol_error_unlock:
1244 	spin_unlock(&conn->bundle->channel_lock);
1245 protocol_error_free:
1246 	kfree(ticket);
1247 protocol_error:
1248 	kfree(response);
1249 	trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
1250 	key_put(server_key);
1251 	*_abort_code = abort_code;
1252 	return -EPROTO;
1253 
1254 temporary_error_free_ticket:
1255 	kfree(ticket);
1256 temporary_error_free_resp:
1257 	kfree(response);
1258 temporary_error:
1259 	/* Ignore the response packet if we got a temporary error such as
1260 	 * ENOMEM.  We just want to send the challenge again.  Note that we
1261 	 * also come out this way if the ticket decryption fails.
1262 	 */
1263 	key_put(server_key);
1264 	return ret;
1265 }
1266 
1267 /*
1268  * clear the connection security
1269  */
1270 static void rxkad_clear(struct rxrpc_connection *conn)
1271 {
1272 	_enter("");
1273 
1274 	if (conn->rxkad.cipher)
1275 		crypto_free_sync_skcipher(conn->rxkad.cipher);
1276 }
1277 
1278 /*
1279  * Initialise the rxkad security service.
1280  */
1281 static int rxkad_init(void)
1282 {
1283 	struct crypto_sync_skcipher *tfm;
1284 	struct skcipher_request *req;
1285 
1286 	/* pin the cipher we need so that the crypto layer doesn't invoke
1287 	 * keventd to go get it */
1288 	tfm = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
1289 	if (IS_ERR(tfm))
1290 		return PTR_ERR(tfm);
1291 
1292 	req = skcipher_request_alloc(&tfm->base, GFP_KERNEL);
1293 	if (!req)
1294 		goto nomem_tfm;
1295 
1296 	rxkad_ci_req = req;
1297 	rxkad_ci = tfm;
1298 	return 0;
1299 
1300 nomem_tfm:
1301 	crypto_free_sync_skcipher(tfm);
1302 	return -ENOMEM;
1303 }
1304 
1305 /*
1306  * Clean up the rxkad security service.
1307  */
1308 static void rxkad_exit(void)
1309 {
1310 	crypto_free_sync_skcipher(rxkad_ci);
1311 	skcipher_request_free(rxkad_ci_req);
1312 }
1313 
1314 /*
1315  * RxRPC Kerberos-based security
1316  */
1317 const struct rxrpc_security rxkad = {
1318 	.name				= "rxkad",
1319 	.security_index			= RXRPC_SECURITY_RXKAD,
1320 	.no_key_abort			= RXKADUNKNOWNKEY,
1321 	.init				= rxkad_init,
1322 	.exit				= rxkad_exit,
1323 	.preparse_server_key		= rxkad_preparse_server_key,
1324 	.free_preparse_server_key	= rxkad_free_preparse_server_key,
1325 	.destroy_server_key		= rxkad_destroy_server_key,
1326 	.init_connection_security	= rxkad_init_connection_security,
1327 	.how_much_data			= rxkad_how_much_data,
1328 	.secure_packet			= rxkad_secure_packet,
1329 	.verify_packet			= rxkad_verify_packet,
1330 	.free_call_crypto		= rxkad_free_call_crypto,
1331 	.issue_challenge		= rxkad_issue_challenge,
1332 	.respond_to_challenge		= rxkad_respond_to_challenge,
1333 	.verify_response		= rxkad_verify_response,
1334 	.clear				= rxkad_clear,
1335 };
1336