1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* GSSAPI-based RxRPC security 3 * 4 * Copyright (C) 2025 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/net.h> 11 #include <linux/skbuff.h> 12 #include <linux/slab.h> 13 #include <linux/key-type.h> 14 #include "ar-internal.h" 15 #include "rxgk_common.h" 16 17 /* 18 * Parse the information from a server key 19 */ 20 static int rxgk_preparse_server_key(struct key_preparsed_payload *prep) 21 { 22 const struct krb5_enctype *krb5; 23 struct krb5_buffer *server_key = (void *)&prep->payload.data[2]; 24 unsigned int service, sec_class, kvno, enctype; 25 int n = 0; 26 27 _enter("%zu", prep->datalen); 28 29 if (sscanf(prep->orig_description, "%u:%u:%u:%u%n", 30 &service, &sec_class, &kvno, &enctype, &n) != 4) 31 return -EINVAL; 32 33 if (prep->orig_description[n]) 34 return -EINVAL; 35 36 krb5 = crypto_krb5_find_enctype(enctype); 37 if (!krb5) 38 return -ENOPKG; 39 40 prep->payload.data[0] = (struct krb5_enctype *)krb5; 41 42 if (prep->datalen != krb5->key_len) 43 return -EKEYREJECTED; 44 45 server_key->len = prep->datalen; 46 server_key->data = kmemdup(prep->data, prep->datalen, GFP_KERNEL); 47 if (!server_key->data) 48 return -ENOMEM; 49 50 _leave(" = 0"); 51 return 0; 52 } 53 54 static void rxgk_free_server_key(union key_payload *payload) 55 { 56 struct krb5_buffer *server_key = (void *)&payload->data[2]; 57 58 kfree_sensitive(server_key->data); 59 } 60 61 static void rxgk_free_preparse_server_key(struct key_preparsed_payload *prep) 62 { 63 rxgk_free_server_key(&prep->payload); 64 } 65 66 static void rxgk_destroy_server_key(struct key *key) 67 { 68 rxgk_free_server_key(&key->payload); 69 } 70 71 static void rxgk_describe_server_key(const struct key *key, struct seq_file *m) 72 { 73 const struct krb5_enctype *krb5 = key->payload.data[0]; 74 75 if (krb5) 76 seq_printf(m, ": %s", krb5->name); 77 } 78 79 /* 80 * Handle rekeying the connection when we see our limits overrun or when the 81 * far side decided to rekey. 82 * 83 * Returns a ref on the context if successful or -ESTALE if the key is out of 84 * date. 85 */ 86 static struct rxgk_context *rxgk_rekey(struct rxrpc_connection *conn, 87 const u16 *specific_key_number) 88 { 89 struct rxgk_context *gk, *dead = NULL; 90 unsigned int key_number, current_key, mask = ARRAY_SIZE(conn->rxgk.keys) - 1; 91 bool crank = false; 92 93 _enter("%d", specific_key_number ? *specific_key_number : -1); 94 95 mutex_lock(&conn->security_lock); 96 97 current_key = conn->rxgk.key_number; 98 if (!specific_key_number) { 99 key_number = current_key; 100 } else { 101 if (*specific_key_number == (u16)current_key) 102 key_number = current_key; 103 else if (*specific_key_number == (u16)(current_key - 1)) 104 key_number = current_key - 1; 105 else if (*specific_key_number == (u16)(current_key + 1)) 106 goto crank_window; 107 else 108 goto bad_key; 109 } 110 111 gk = conn->rxgk.keys[key_number & mask]; 112 if (!gk) 113 goto generate_key; 114 if (!specific_key_number && 115 test_bit(RXGK_TK_NEEDS_REKEY, &gk->flags)) 116 goto crank_window; 117 118 grab: 119 refcount_inc(&gk->usage); 120 mutex_unlock(&conn->security_lock); 121 rxgk_put(dead); 122 return gk; 123 124 crank_window: 125 trace_rxrpc_rxgk_rekey(conn, current_key, 126 specific_key_number ? *specific_key_number : -1); 127 if (current_key == UINT_MAX) 128 goto bad_key; 129 if (current_key + 1 == UINT_MAX) 130 set_bit(RXRPC_CONN_DONT_REUSE, &conn->flags); 131 132 key_number = current_key + 1; 133 if (WARN_ON(conn->rxgk.keys[key_number & mask])) 134 goto bad_key; 135 crank = true; 136 137 generate_key: 138 gk = conn->rxgk.keys[current_key & mask]; 139 gk = rxgk_generate_transport_key(conn, gk->key, key_number, GFP_NOFS); 140 if (IS_ERR(gk)) { 141 mutex_unlock(&conn->security_lock); 142 return gk; 143 } 144 145 write_lock(&conn->security_use_lock); 146 if (crank) { 147 current_key++; 148 conn->rxgk.key_number = current_key; 149 dead = conn->rxgk.keys[(current_key - 2) & mask]; 150 conn->rxgk.keys[(current_key - 2) & mask] = NULL; 151 } 152 conn->rxgk.keys[current_key & mask] = gk; 153 write_unlock(&conn->security_use_lock); 154 goto grab; 155 156 bad_key: 157 mutex_unlock(&conn->security_lock); 158 return ERR_PTR(-ESTALE); 159 } 160 161 /* 162 * Get the specified keying context. 163 * 164 * Returns a ref on the context if successful or -ESTALE if the key is out of 165 * date. 166 */ 167 static struct rxgk_context *rxgk_get_key(struct rxrpc_connection *conn, 168 const u16 *specific_key_number) 169 { 170 struct rxgk_context *gk; 171 unsigned int key_number, current_key, mask = ARRAY_SIZE(conn->rxgk.keys) - 1; 172 173 _enter("{%u},%d", 174 conn->rxgk.key_number, specific_key_number ? *specific_key_number : -1); 175 176 read_lock(&conn->security_use_lock); 177 178 current_key = conn->rxgk.key_number; 179 if (!specific_key_number) { 180 key_number = current_key; 181 } else { 182 /* Only the bottom 16 bits of the key number are exposed in the 183 * header, so we try and keep the upper 16 bits in step. The 184 * whole 32 bits are used to generate the TK. 185 */ 186 if (*specific_key_number == (u16)current_key) 187 key_number = current_key; 188 else if (*specific_key_number == (u16)(current_key - 1)) 189 key_number = current_key - 1; 190 else if (*specific_key_number == (u16)(current_key + 1)) 191 goto rekey; 192 else 193 goto bad_key; 194 } 195 196 gk = conn->rxgk.keys[key_number & mask]; 197 if (!gk) 198 goto slow_path; 199 if (!specific_key_number && 200 key_number < UINT_MAX) { 201 if (time_after(jiffies, gk->expiry) || 202 gk->bytes_remaining < 0) { 203 set_bit(RXGK_TK_NEEDS_REKEY, &gk->flags); 204 goto slow_path; 205 } 206 207 if (test_bit(RXGK_TK_NEEDS_REKEY, &gk->flags)) 208 goto slow_path; 209 } 210 211 refcount_inc(&gk->usage); 212 read_unlock(&conn->security_use_lock); 213 return gk; 214 215 rekey: 216 _debug("rekey"); 217 if (current_key == UINT_MAX) 218 goto bad_key; 219 gk = conn->rxgk.keys[current_key & mask]; 220 if (gk) 221 set_bit(RXGK_TK_NEEDS_REKEY, &gk->flags); 222 slow_path: 223 read_unlock(&conn->security_use_lock); 224 return rxgk_rekey(conn, specific_key_number); 225 bad_key: 226 read_unlock(&conn->security_use_lock); 227 return ERR_PTR(-ESTALE); 228 } 229 230 /* 231 * initialise connection security 232 */ 233 static int rxgk_init_connection_security(struct rxrpc_connection *conn, 234 struct rxrpc_key_token *token) 235 { 236 struct rxgk_context *gk; 237 int ret; 238 239 _enter("{%d,%u},{%x}", 240 conn->debug_id, conn->rxgk.key_number, key_serial(conn->key)); 241 242 conn->security_ix = token->security_index; 243 conn->security_level = token->rxgk->level; 244 245 if (rxrpc_conn_is_client(conn)) { 246 conn->rxgk.start_time = ktime_get(); 247 do_div(conn->rxgk.start_time, 100); 248 } 249 250 gk = rxgk_generate_transport_key(conn, token->rxgk, conn->rxgk.key_number, 251 GFP_NOFS); 252 if (IS_ERR(gk)) 253 return PTR_ERR(gk); 254 conn->rxgk.enctype = gk->krb5->etype; 255 conn->rxgk.keys[gk->key_number & 3] = gk; 256 257 switch (conn->security_level) { 258 case RXRPC_SECURITY_PLAIN: 259 case RXRPC_SECURITY_AUTH: 260 case RXRPC_SECURITY_ENCRYPT: 261 break; 262 default: 263 ret = -EKEYREJECTED; 264 goto error; 265 } 266 267 ret = 0; 268 error: 269 _leave(" = %d", ret); 270 return ret; 271 } 272 273 /* 274 * Clean up the crypto on a call. 275 */ 276 static void rxgk_free_call_crypto(struct rxrpc_call *call) 277 { 278 } 279 280 /* 281 * Work out how much data we can put in a packet. 282 */ 283 static struct rxrpc_txbuf *rxgk_alloc_txbuf(struct rxrpc_call *call, size_t remain, gfp_t gfp) 284 { 285 enum krb5_crypto_mode mode; 286 struct rxgk_context *gk; 287 struct rxrpc_txbuf *txb; 288 size_t shdr, alloc, limit, part, offset, gap; 289 290 switch (call->conn->security_level) { 291 default: 292 alloc = umin(remain, RXRPC_JUMBO_DATALEN); 293 return rxrpc_alloc_data_txbuf(call, alloc, 1, gfp); 294 case RXRPC_SECURITY_AUTH: 295 shdr = 0; 296 mode = KRB5_CHECKSUM_MODE; 297 break; 298 case RXRPC_SECURITY_ENCRYPT: 299 shdr = sizeof(struct rxgk_header); 300 mode = KRB5_ENCRYPT_MODE; 301 break; 302 } 303 304 gk = rxgk_get_key(call->conn, NULL); 305 if (IS_ERR(gk)) 306 return NULL; 307 308 /* Work out the maximum amount of data that will fit. */ 309 alloc = RXRPC_JUMBO_DATALEN; 310 limit = crypto_krb5_how_much_data(gk->krb5, mode, &alloc, &offset); 311 312 if (remain < limit - shdr) { 313 part = remain; 314 alloc = crypto_krb5_how_much_buffer(gk->krb5, mode, 315 shdr + part, &offset); 316 gap = 0; 317 } else { 318 part = limit - shdr; 319 gap = RXRPC_JUMBO_DATALEN - alloc; 320 alloc = RXRPC_JUMBO_DATALEN; 321 } 322 323 rxgk_put(gk); 324 325 txb = rxrpc_alloc_data_txbuf(call, alloc, 16, gfp); 326 if (!txb) 327 return NULL; 328 329 txb->crypto_header = offset; 330 txb->sec_header = shdr; 331 txb->offset += offset + shdr; 332 txb->space = part; 333 334 /* Clear excess space in the packet */ 335 if (gap) 336 memset(txb->data + alloc - gap, 0, gap); 337 return txb; 338 } 339 340 /* 341 * Integrity mode (sign a packet - level 1 security) 342 */ 343 static int rxgk_secure_packet_integrity(const struct rxrpc_call *call, 344 struct rxgk_context *gk, 345 struct rxrpc_txbuf *txb) 346 { 347 struct rxgk_header *hdr; 348 struct scatterlist sg[1]; 349 struct krb5_buffer metadata; 350 int ret = -ENOMEM; 351 352 _enter(""); 353 354 hdr = kzalloc(sizeof(*hdr), GFP_NOFS); 355 if (!hdr) 356 goto error_gk; 357 358 hdr->epoch = htonl(call->conn->proto.epoch); 359 hdr->cid = htonl(call->cid); 360 hdr->call_number = htonl(call->call_id); 361 hdr->seq = htonl(txb->seq); 362 hdr->sec_index = htonl(call->security_ix); 363 hdr->data_len = htonl(txb->len); 364 metadata.len = sizeof(*hdr); 365 metadata.data = hdr; 366 367 sg_init_table(sg, 1); 368 sg_set_buf(&sg[0], txb->data, txb->alloc_size); 369 370 ret = crypto_krb5_get_mic(gk->krb5, gk->tx_Kc, &metadata, 371 sg, 1, txb->alloc_size, 372 txb->crypto_header, txb->sec_header + txb->len); 373 if (ret >= 0) { 374 txb->pkt_len = ret; 375 if (txb->alloc_size == RXRPC_JUMBO_DATALEN) 376 txb->jumboable = true; 377 gk->bytes_remaining -= ret; 378 } 379 kfree(hdr); 380 error_gk: 381 rxgk_put(gk); 382 _leave(" = %d", ret); 383 return ret; 384 } 385 386 /* 387 * wholly encrypt a packet (level 2 security) 388 */ 389 static int rxgk_secure_packet_encrypted(const struct rxrpc_call *call, 390 struct rxgk_context *gk, 391 struct rxrpc_txbuf *txb) 392 { 393 struct rxgk_header *hdr; 394 struct scatterlist sg[1]; 395 int ret; 396 397 _enter("%x", txb->len); 398 399 /* Insert the header into the buffer. */ 400 hdr = txb->data + txb->crypto_header; 401 hdr->epoch = htonl(call->conn->proto.epoch); 402 hdr->cid = htonl(call->cid); 403 hdr->call_number = htonl(call->call_id); 404 hdr->seq = htonl(txb->seq); 405 hdr->sec_index = htonl(call->security_ix); 406 hdr->data_len = htonl(txb->len); 407 408 sg_init_table(sg, 1); 409 sg_set_buf(&sg[0], txb->data, txb->alloc_size); 410 411 ret = crypto_krb5_encrypt(gk->krb5, gk->tx_enc, 412 sg, 1, txb->alloc_size, 413 txb->crypto_header, txb->sec_header + txb->len, 414 false); 415 if (ret >= 0) { 416 txb->pkt_len = ret; 417 if (txb->alloc_size == RXRPC_JUMBO_DATALEN) 418 txb->jumboable = true; 419 gk->bytes_remaining -= ret; 420 } 421 422 rxgk_put(gk); 423 _leave(" = %d", ret); 424 return ret; 425 } 426 427 /* 428 * checksum an RxRPC packet header 429 */ 430 static int rxgk_secure_packet(struct rxrpc_call *call, struct rxrpc_txbuf *txb) 431 { 432 struct rxgk_context *gk; 433 int ret; 434 435 _enter("{%d{%x}},{#%u},%u,", 436 call->debug_id, key_serial(call->conn->key), txb->seq, txb->len); 437 438 gk = rxgk_get_key(call->conn, NULL); 439 if (IS_ERR(gk)) 440 return PTR_ERR(gk) == -ESTALE ? -EKEYREJECTED : PTR_ERR(gk); 441 442 ret = key_validate(call->conn->key); 443 if (ret < 0) 444 return ret; 445 446 call->security_enctype = gk->krb5->etype; 447 txb->cksum = htons(gk->key_number); 448 449 switch (call->conn->security_level) { 450 case RXRPC_SECURITY_PLAIN: 451 rxgk_put(gk); 452 txb->pkt_len = txb->len; 453 return 0; 454 case RXRPC_SECURITY_AUTH: 455 return rxgk_secure_packet_integrity(call, gk, txb); 456 case RXRPC_SECURITY_ENCRYPT: 457 return rxgk_secure_packet_encrypted(call, gk, txb); 458 default: 459 rxgk_put(gk); 460 return -EPERM; 461 } 462 } 463 464 /* 465 * Integrity mode (check the signature on a packet - level 1 security) 466 */ 467 static int rxgk_verify_packet_integrity(struct rxrpc_call *call, 468 struct rxgk_context *gk, 469 struct sk_buff *skb) 470 { 471 struct rxrpc_skb_priv *sp = rxrpc_skb(skb); 472 struct rxgk_header *hdr; 473 struct krb5_buffer metadata; 474 unsigned int offset = sp->offset, len = sp->len; 475 size_t data_offset = 0, data_len = len; 476 u32 ac; 477 int ret = -ENOMEM; 478 479 _enter(""); 480 481 crypto_krb5_where_is_the_data(gk->krb5, KRB5_CHECKSUM_MODE, 482 &data_offset, &data_len); 483 484 hdr = kzalloc(sizeof(*hdr), GFP_NOFS); 485 if (!hdr) 486 return -ENOMEM; 487 488 hdr->epoch = htonl(call->conn->proto.epoch); 489 hdr->cid = htonl(call->cid); 490 hdr->call_number = htonl(call->call_id); 491 hdr->seq = htonl(sp->hdr.seq); 492 hdr->sec_index = htonl(call->security_ix); 493 hdr->data_len = htonl(data_len); 494 495 metadata.len = sizeof(*hdr); 496 metadata.data = hdr; 497 ret = rxgk_verify_mic_skb(gk->krb5, gk->rx_Kc, &metadata, 498 skb, &offset, &len, &ac); 499 kfree(hdr); 500 if (ret == -EPROTO) { 501 rxrpc_abort_eproto(call, skb, ac, 502 rxgk_abort_1_verify_mic_eproto); 503 } else { 504 sp->offset = offset; 505 sp->len = len; 506 } 507 508 rxgk_put(gk); 509 _leave(" = %d", ret); 510 return ret; 511 } 512 513 /* 514 * Decrypt an encrypted packet (level 2 security). 515 */ 516 static int rxgk_verify_packet_encrypted(struct rxrpc_call *call, 517 struct rxgk_context *gk, 518 struct sk_buff *skb) 519 { 520 struct rxrpc_skb_priv *sp = rxrpc_skb(skb); 521 struct rxgk_header hdr; 522 unsigned int offset = sp->offset, len = sp->len; 523 int ret; 524 u32 ac; 525 526 _enter(""); 527 528 ret = rxgk_decrypt_skb(gk->krb5, gk->rx_enc, skb, &offset, &len, &ac); 529 if (ret == -EPROTO) 530 rxrpc_abort_eproto(call, skb, ac, rxgk_abort_2_decrypt_eproto); 531 if (ret < 0) 532 goto error; 533 534 if (len < sizeof(hdr)) { 535 ret = rxrpc_abort_eproto(call, skb, RXGK_PACKETSHORT, 536 rxgk_abort_2_short_header); 537 goto error; 538 } 539 540 /* Extract the header from the skb */ 541 ret = skb_copy_bits(skb, offset, &hdr, sizeof(hdr)); 542 if (ret < 0) { 543 ret = rxrpc_abort_eproto(call, skb, RXGK_PACKETSHORT, 544 rxgk_abort_2_short_encdata); 545 goto error; 546 } 547 offset += sizeof(hdr); 548 len -= sizeof(hdr); 549 550 if (ntohl(hdr.epoch) != call->conn->proto.epoch || 551 ntohl(hdr.cid) != call->cid || 552 ntohl(hdr.call_number) != call->call_id || 553 ntohl(hdr.seq) != sp->hdr.seq || 554 ntohl(hdr.sec_index) != call->security_ix || 555 ntohl(hdr.data_len) > len) { 556 ret = rxrpc_abort_eproto(call, skb, RXGK_SEALEDINCON, 557 rxgk_abort_2_short_data); 558 goto error; 559 } 560 561 sp->offset = offset; 562 sp->len = ntohl(hdr.data_len); 563 ret = 0; 564 error: 565 rxgk_put(gk); 566 _leave(" = %d", ret); 567 return ret; 568 } 569 570 /* 571 * Verify the security on a received packet or subpacket (if part of a 572 * jumbo packet). 573 */ 574 static int rxgk_verify_packet(struct rxrpc_call *call, struct sk_buff *skb) 575 { 576 struct rxrpc_skb_priv *sp = rxrpc_skb(skb); 577 struct rxgk_context *gk; 578 u16 key_number = sp->hdr.cksum; 579 580 _enter("{%d{%x}},{#%u}", 581 call->debug_id, key_serial(call->conn->key), sp->hdr.seq); 582 583 gk = rxgk_get_key(call->conn, &key_number); 584 if (IS_ERR(gk)) { 585 switch (PTR_ERR(gk)) { 586 case -ESTALE: 587 return rxrpc_abort_eproto(call, skb, RXGK_BADKEYNO, 588 rxgk_abort_bad_key_number); 589 default: 590 return PTR_ERR(gk); 591 } 592 } 593 594 call->security_enctype = gk->krb5->etype; 595 switch (call->conn->security_level) { 596 case RXRPC_SECURITY_PLAIN: 597 return 0; 598 case RXRPC_SECURITY_AUTH: 599 return rxgk_verify_packet_integrity(call, gk, skb); 600 case RXRPC_SECURITY_ENCRYPT: 601 return rxgk_verify_packet_encrypted(call, gk, skb); 602 default: 603 rxgk_put(gk); 604 return -ENOANO; 605 } 606 } 607 608 /* 609 * Allocate memory to hold a challenge or a response packet. We're not running 610 * in the io_thread, so we can't use ->tx_alloc. 611 */ 612 static struct page *rxgk_alloc_packet(size_t total_len) 613 { 614 gfp_t gfp = GFP_NOFS; 615 int order; 616 617 order = get_order(total_len); 618 if (order > 0) 619 gfp |= __GFP_COMP; 620 return alloc_pages(gfp, order); 621 } 622 623 /* 624 * Issue a challenge. 625 */ 626 static int rxgk_issue_challenge(struct rxrpc_connection *conn) 627 { 628 struct rxrpc_wire_header *whdr; 629 struct bio_vec bvec[1]; 630 struct msghdr msg; 631 struct page *page; 632 size_t len = sizeof(*whdr) + sizeof(conn->rxgk.nonce); 633 u32 serial; 634 int ret; 635 636 _enter("{%d}", conn->debug_id); 637 638 get_random_bytes(&conn->rxgk.nonce, sizeof(conn->rxgk.nonce)); 639 640 /* We can't use conn->tx_alloc without a lock */ 641 page = rxgk_alloc_packet(sizeof(*whdr) + sizeof(conn->rxgk.nonce)); 642 if (!page) 643 return -ENOMEM; 644 645 bvec_set_page(&bvec[0], page, len, 0); 646 iov_iter_bvec(&msg.msg_iter, WRITE, bvec, 1, len); 647 648 msg.msg_name = &conn->peer->srx.transport; 649 msg.msg_namelen = conn->peer->srx.transport_len; 650 msg.msg_control = NULL; 651 msg.msg_controllen = 0; 652 msg.msg_flags = MSG_SPLICE_PAGES; 653 654 whdr = page_address(page); 655 whdr->epoch = htonl(conn->proto.epoch); 656 whdr->cid = htonl(conn->proto.cid); 657 whdr->callNumber = 0; 658 whdr->seq = 0; 659 whdr->type = RXRPC_PACKET_TYPE_CHALLENGE; 660 whdr->flags = conn->out_clientflag; 661 whdr->userStatus = 0; 662 whdr->securityIndex = conn->security_ix; 663 whdr->_rsvd = 0; 664 whdr->serviceId = htons(conn->service_id); 665 666 memcpy(whdr + 1, conn->rxgk.nonce, sizeof(conn->rxgk.nonce)); 667 668 serial = rxrpc_get_next_serials(conn, 1); 669 whdr->serial = htonl(serial); 670 671 trace_rxrpc_tx_challenge(conn, serial, 0, *(u32 *)&conn->rxgk.nonce); 672 673 ret = do_udp_sendmsg(conn->local->socket, &msg, len); 674 if (ret > 0) 675 conn->peer->last_tx_at = ktime_get_seconds(); 676 __free_page(page); 677 678 if (ret < 0) { 679 trace_rxrpc_tx_fail(conn->debug_id, serial, ret, 680 rxrpc_tx_point_rxgk_challenge); 681 return -EAGAIN; 682 } 683 684 trace_rxrpc_tx_packet(conn->debug_id, whdr, 685 rxrpc_tx_point_rxgk_challenge); 686 _leave(" = 0"); 687 return 0; 688 } 689 690 /* 691 * Validate a challenge packet. 692 */ 693 static bool rxgk_validate_challenge(struct rxrpc_connection *conn, 694 struct sk_buff *skb) 695 { 696 struct rxrpc_skb_priv *sp = rxrpc_skb(skb); 697 u8 nonce[20]; 698 699 if (!conn->key) { 700 rxrpc_abort_conn(conn, skb, RX_PROTOCOL_ERROR, -EPROTO, 701 rxgk_abort_chall_no_key); 702 return false; 703 } 704 705 if (key_validate(conn->key) < 0) { 706 rxrpc_abort_conn(conn, skb, RXGK_EXPIRED, -EPROTO, 707 rxgk_abort_chall_key_expired); 708 return false; 709 } 710 711 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header), 712 nonce, sizeof(nonce)) < 0) { 713 rxrpc_abort_conn(conn, skb, RXGK_PACKETSHORT, -EPROTO, 714 rxgk_abort_chall_short); 715 return false; 716 } 717 718 trace_rxrpc_rx_challenge(conn, sp->hdr.serial, 0, *(u32 *)nonce, 0); 719 return true; 720 } 721 722 /** 723 * rxgk_kernel_query_challenge - Query RxGK-specific challenge parameters 724 * @challenge: The challenge packet to query 725 * 726 * Return: The Kerberos 5 encoding type for the challenged connection. 727 */ 728 u32 rxgk_kernel_query_challenge(struct sk_buff *challenge) 729 { 730 struct rxrpc_skb_priv *sp = rxrpc_skb(challenge); 731 732 return sp->chall.conn->rxgk.enctype; 733 } 734 EXPORT_SYMBOL(rxgk_kernel_query_challenge); 735 736 /* 737 * Fill out the control message to pass to userspace to inform about the 738 * challenge. 739 */ 740 static int rxgk_challenge_to_recvmsg(struct rxrpc_connection *conn, 741 struct sk_buff *challenge, 742 struct msghdr *msg) 743 { 744 struct rxgk_challenge chall; 745 746 chall.base.service_id = conn->service_id; 747 chall.base.security_index = conn->security_ix; 748 chall.enctype = conn->rxgk.enctype; 749 750 return put_cmsg(msg, SOL_RXRPC, RXRPC_CHALLENGED, sizeof(chall), &chall); 751 } 752 753 /* 754 * Insert the requisite amount of XDR padding for the length given. 755 */ 756 static int rxgk_pad_out(struct sk_buff *response, size_t len, size_t offset) 757 { 758 __be32 zero = 0; 759 size_t pad = xdr_round_up(len) - len; 760 int ret; 761 762 if (!pad) 763 return 0; 764 765 ret = skb_store_bits(response, offset, &zero, pad); 766 if (ret < 0) 767 return ret; 768 return pad; 769 } 770 771 /* 772 * Insert the header into the response. 773 */ 774 static noinline ssize_t rxgk_insert_response_header(struct rxrpc_connection *conn, 775 struct rxgk_context *gk, 776 struct sk_buff *response, 777 size_t offset) 778 { 779 struct rxrpc_skb_priv *rsp = rxrpc_skb(response); 780 781 struct { 782 struct rxrpc_wire_header whdr; 783 __be32 start_time_msw; 784 __be32 start_time_lsw; 785 __be32 ticket_len; 786 } h; 787 int ret; 788 789 rsp->resp.kvno = gk->key_number; 790 rsp->resp.version = gk->krb5->etype; 791 792 h.whdr.epoch = htonl(conn->proto.epoch); 793 h.whdr.cid = htonl(conn->proto.cid); 794 h.whdr.callNumber = 0; 795 h.whdr.serial = 0; 796 h.whdr.seq = 0; 797 h.whdr.type = RXRPC_PACKET_TYPE_RESPONSE; 798 h.whdr.flags = conn->out_clientflag; 799 h.whdr.userStatus = 0; 800 h.whdr.securityIndex = conn->security_ix; 801 h.whdr.cksum = htons(gk->key_number); 802 h.whdr.serviceId = htons(conn->service_id); 803 h.start_time_msw = htonl(upper_32_bits(conn->rxgk.start_time)); 804 h.start_time_lsw = htonl(lower_32_bits(conn->rxgk.start_time)); 805 h.ticket_len = htonl(gk->key->ticket.len); 806 807 ret = skb_store_bits(response, offset, &h, sizeof(h)); 808 return ret < 0 ? ret : sizeof(h); 809 } 810 811 /* 812 * Construct the authenticator to go in the response packet 813 * 814 * struct RXGK_Authenticator { 815 * opaque nonce[20]; 816 * opaque appdata<>; 817 * RXGK_Level level; 818 * unsigned int epoch; 819 * unsigned int cid; 820 * unsigned int call_numbers<>; 821 * }; 822 */ 823 static ssize_t rxgk_construct_authenticator(struct rxrpc_connection *conn, 824 struct sk_buff *challenge, 825 const struct krb5_buffer *appdata, 826 struct sk_buff *response, 827 size_t offset) 828 { 829 struct { 830 u8 nonce[20]; 831 __be32 appdata_len; 832 } a; 833 struct { 834 __be32 level; 835 __be32 epoch; 836 __be32 cid; 837 __be32 call_numbers_count; 838 __be32 call_numbers[4]; 839 } b; 840 int ret; 841 842 ret = skb_copy_bits(challenge, sizeof(struct rxrpc_wire_header), 843 a.nonce, sizeof(a.nonce)); 844 if (ret < 0) 845 return -EPROTO; 846 847 a.appdata_len = htonl(appdata->len); 848 849 ret = skb_store_bits(response, offset, &a, sizeof(a)); 850 if (ret < 0) 851 return ret; 852 offset += sizeof(a); 853 854 if (appdata->len) { 855 ret = skb_store_bits(response, offset, appdata->data, appdata->len); 856 if (ret < 0) 857 return ret; 858 offset += appdata->len; 859 860 ret = rxgk_pad_out(response, appdata->len, offset); 861 if (ret < 0) 862 return ret; 863 offset += ret; 864 } 865 866 b.level = htonl(conn->security_level); 867 b.epoch = htonl(conn->proto.epoch); 868 b.cid = htonl(conn->proto.cid); 869 b.call_numbers_count = htonl(4); 870 b.call_numbers[0] = htonl(conn->channels[0].call_counter); 871 b.call_numbers[1] = htonl(conn->channels[1].call_counter); 872 b.call_numbers[2] = htonl(conn->channels[2].call_counter); 873 b.call_numbers[3] = htonl(conn->channels[3].call_counter); 874 875 ret = skb_store_bits(response, offset, &b, sizeof(b)); 876 if (ret < 0) 877 return ret; 878 return sizeof(a) + xdr_round_up(appdata->len) + sizeof(b); 879 } 880 881 static ssize_t rxgk_encrypt_authenticator(struct rxrpc_connection *conn, 882 struct rxgk_context *gk, 883 struct sk_buff *response, 884 size_t offset, 885 size_t alloc_len, 886 size_t auth_offset, 887 size_t auth_len) 888 { 889 struct scatterlist sg[16]; 890 int nr_sg; 891 892 sg_init_table(sg, ARRAY_SIZE(sg)); 893 nr_sg = skb_to_sgvec(response, sg, offset, alloc_len); 894 if (unlikely(nr_sg < 0)) 895 return nr_sg; 896 return crypto_krb5_encrypt(gk->krb5, gk->resp_enc, sg, nr_sg, alloc_len, 897 auth_offset, auth_len, false); 898 } 899 900 /* 901 * Construct the response. 902 * 903 * struct RXGK_Response { 904 * rxgkTime start_time; 905 * RXGK_Data token; 906 * opaque authenticator<RXGK_MAXAUTHENTICATOR> 907 * }; 908 */ 909 static int rxgk_construct_response(struct rxrpc_connection *conn, 910 struct sk_buff *challenge, 911 struct krb5_buffer *appdata) 912 { 913 struct rxrpc_skb_priv *csp, *rsp; 914 struct rxgk_context *gk; 915 struct sk_buff *response; 916 size_t len, auth_len, authx_len, offset, auth_offset, authx_offset; 917 __be32 tmp; 918 int ret; 919 920 gk = rxgk_get_key(conn, NULL); 921 if (IS_ERR(gk)) 922 return PTR_ERR(gk); 923 924 auth_len = 20 + (4 + appdata->len) + 12 + (1 + 4) * 4; 925 authx_len = crypto_krb5_how_much_buffer(gk->krb5, KRB5_ENCRYPT_MODE, 926 auth_len, &auth_offset); 927 len = sizeof(struct rxrpc_wire_header) + 928 8 + (4 + xdr_round_up(gk->key->ticket.len)) + (4 + authx_len); 929 930 response = alloc_skb_with_frags(0, len, 0, &ret, GFP_NOFS); 931 if (!response) 932 goto error; 933 rxrpc_new_skb(response, rxrpc_skb_new_response_rxgk); 934 response->len = len; 935 response->data_len = len; 936 937 ret = rxgk_insert_response_header(conn, gk, response, 0); 938 if (ret < 0) 939 goto error; 940 offset = ret; 941 942 ret = skb_store_bits(response, offset, gk->key->ticket.data, gk->key->ticket.len); 943 if (ret < 0) 944 goto error; 945 offset += gk->key->ticket.len; 946 ret = rxgk_pad_out(response, gk->key->ticket.len, offset); 947 if (ret < 0) 948 goto error; 949 950 authx_offset = offset + ret + 4; /* Leave a gap for the length. */ 951 952 ret = rxgk_construct_authenticator(conn, challenge, appdata, response, 953 authx_offset + auth_offset); 954 if (ret < 0) 955 goto error; 956 auth_len = ret; 957 958 ret = rxgk_encrypt_authenticator(conn, gk, response, 959 authx_offset, authx_len, 960 auth_offset, auth_len); 961 if (ret < 0) 962 goto error; 963 authx_len = ret; 964 965 tmp = htonl(authx_len); 966 ret = skb_store_bits(response, authx_offset - 4, &tmp, 4); 967 if (ret < 0) 968 goto error; 969 970 ret = rxgk_pad_out(response, authx_len, authx_offset + authx_len); 971 if (ret < 0) 972 return ret; 973 len = authx_offset + authx_len + ret; 974 975 if (len != response->len) { 976 response->len = len; 977 response->data_len = len; 978 } 979 980 csp = rxrpc_skb(challenge); 981 rsp = rxrpc_skb(response); 982 rsp->resp.len = len; 983 rsp->resp.challenge_serial = csp->hdr.serial; 984 rxrpc_post_response(conn, response); 985 response = NULL; 986 ret = 0; 987 988 error: 989 rxrpc_free_skb(response, rxrpc_skb_put_response); 990 rxgk_put(gk); 991 _leave(" = %d", ret); 992 return ret; 993 } 994 995 /* 996 * Respond to a challenge packet. 997 */ 998 static int rxgk_respond_to_challenge(struct rxrpc_connection *conn, 999 struct sk_buff *challenge, 1000 struct krb5_buffer *appdata) 1001 { 1002 _enter("{%d,%x}", conn->debug_id, key_serial(conn->key)); 1003 1004 if (key_validate(conn->key) < 0) 1005 return rxrpc_abort_conn(conn, NULL, RXGK_EXPIRED, -EPROTO, 1006 rxgk_abort_chall_key_expired); 1007 1008 return rxgk_construct_response(conn, challenge, appdata); 1009 } 1010 1011 static int rxgk_respond_to_challenge_no_appdata(struct rxrpc_connection *conn, 1012 struct sk_buff *challenge) 1013 { 1014 struct krb5_buffer appdata = {}; 1015 1016 return rxgk_respond_to_challenge(conn, challenge, &appdata); 1017 } 1018 1019 /** 1020 * rxgk_kernel_respond_to_challenge - Respond to a challenge with appdata 1021 * @challenge: The challenge to respond to 1022 * @appdata: The application data to include in the RESPONSE authenticator 1023 * 1024 * Allow a kernel application to respond to a CHALLENGE with application data 1025 * to be included in the RxGK RESPONSE Authenticator. 1026 * 1027 * Return: %0 if successful and a negative error code otherwise. 1028 */ 1029 int rxgk_kernel_respond_to_challenge(struct sk_buff *challenge, 1030 struct krb5_buffer *appdata) 1031 { 1032 struct rxrpc_skb_priv *csp = rxrpc_skb(challenge); 1033 1034 return rxgk_respond_to_challenge(csp->chall.conn, challenge, appdata); 1035 } 1036 EXPORT_SYMBOL(rxgk_kernel_respond_to_challenge); 1037 1038 /* 1039 * Parse sendmsg() control message and respond to challenge. We need to see if 1040 * there's an appdata to fish out. 1041 */ 1042 static int rxgk_sendmsg_respond_to_challenge(struct sk_buff *challenge, 1043 struct msghdr *msg) 1044 { 1045 struct krb5_buffer appdata = {}; 1046 struct cmsghdr *cmsg; 1047 1048 for_each_cmsghdr(cmsg, msg) { 1049 if (cmsg->cmsg_level != SOL_RXRPC || 1050 cmsg->cmsg_type != RXRPC_RESP_RXGK_APPDATA) 1051 continue; 1052 if (appdata.data) 1053 return -EINVAL; 1054 appdata.data = CMSG_DATA(cmsg); 1055 appdata.len = cmsg->cmsg_len - sizeof(struct cmsghdr); 1056 } 1057 1058 return rxgk_kernel_respond_to_challenge(challenge, &appdata); 1059 } 1060 1061 /* 1062 * Verify the authenticator. 1063 * 1064 * struct RXGK_Authenticator { 1065 * opaque nonce[20]; 1066 * opaque appdata<>; 1067 * RXGK_Level level; 1068 * unsigned int epoch; 1069 * unsigned int cid; 1070 * unsigned int call_numbers<>; 1071 * }; 1072 */ 1073 static int rxgk_do_verify_authenticator(struct rxrpc_connection *conn, 1074 const struct krb5_enctype *krb5, 1075 struct sk_buff *skb, 1076 __be32 *p, __be32 *end) 1077 { 1078 u32 app_len, call_count, level, epoch, cid, i; 1079 1080 _enter(""); 1081 1082 if (memcmp(p, conn->rxgk.nonce, 20) != 0) 1083 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1084 rxgk_abort_resp_bad_nonce); 1085 p += 20 / sizeof(__be32); 1086 1087 app_len = ntohl(*p++); 1088 if (app_len > (end - p) * sizeof(__be32)) 1089 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1090 rxgk_abort_resp_short_applen); 1091 1092 p += xdr_round_up(app_len) / sizeof(__be32); 1093 if (end - p < 4) 1094 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1095 rxgk_abort_resp_short_applen); 1096 1097 level = ntohl(*p++); 1098 epoch = ntohl(*p++); 1099 cid = ntohl(*p++); 1100 call_count = ntohl(*p++); 1101 1102 if (level != conn->security_level || 1103 epoch != conn->proto.epoch || 1104 cid != conn->proto.cid || 1105 call_count > 4) 1106 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1107 rxgk_abort_resp_bad_param); 1108 1109 if (end - p < call_count) 1110 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1111 rxgk_abort_resp_short_call_list); 1112 1113 for (i = 0; i < call_count; i++) { 1114 u32 call_id = ntohl(*p++); 1115 1116 if (call_id > INT_MAX) 1117 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1118 rxgk_abort_resp_bad_callid); 1119 1120 if (call_id < conn->channels[i].call_counter) 1121 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1122 rxgk_abort_resp_call_ctr); 1123 1124 if (call_id > conn->channels[i].call_counter) { 1125 if (conn->channels[i].call) 1126 return rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1127 rxgk_abort_resp_call_state); 1128 1129 conn->channels[i].call_counter = call_id; 1130 } 1131 } 1132 1133 _leave(" = 0"); 1134 return 0; 1135 } 1136 1137 /* 1138 * Extract the authenticator and verify it. 1139 */ 1140 static int rxgk_verify_authenticator(struct rxrpc_connection *conn, 1141 const struct krb5_enctype *krb5, 1142 struct sk_buff *skb, 1143 unsigned int auth_offset, unsigned int auth_len) 1144 { 1145 void *auth; 1146 __be32 *p; 1147 int ret; 1148 1149 auth = kmalloc(auth_len, GFP_NOFS); 1150 if (!auth) 1151 return -ENOMEM; 1152 1153 ret = skb_copy_bits(skb, auth_offset, auth, auth_len); 1154 if (ret < 0) { 1155 ret = rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EPROTO, 1156 rxgk_abort_resp_short_auth); 1157 goto error; 1158 } 1159 1160 p = auth; 1161 ret = rxgk_do_verify_authenticator(conn, krb5, skb, p, p + auth_len); 1162 error: 1163 kfree(auth); 1164 return ret; 1165 } 1166 1167 /* 1168 * Verify a response. 1169 * 1170 * struct RXGK_Response { 1171 * rxgkTime start_time; 1172 * RXGK_Data token; 1173 * opaque authenticator<RXGK_MAXAUTHENTICATOR> 1174 * }; 1175 */ 1176 static int rxgk_verify_response(struct rxrpc_connection *conn, 1177 struct sk_buff *skb) 1178 { 1179 const struct krb5_enctype *krb5; 1180 struct rxrpc_key_token *token; 1181 struct rxrpc_skb_priv *sp = rxrpc_skb(skb); 1182 struct rxgk_response rhdr; 1183 struct rxgk_context *gk; 1184 struct key *key = NULL; 1185 unsigned int offset = sizeof(struct rxrpc_wire_header); 1186 unsigned int len = skb->len - sizeof(struct rxrpc_wire_header); 1187 unsigned int token_offset, token_len; 1188 unsigned int auth_offset, auth_len; 1189 __be32 xauth_len; 1190 int ret, ec; 1191 1192 _enter("{%d}", conn->debug_id); 1193 1194 /* Parse the RXGK_Response object */ 1195 if (sizeof(rhdr) + sizeof(__be32) > len) 1196 goto short_packet; 1197 1198 if (skb_copy_bits(skb, offset, &rhdr, sizeof(rhdr)) < 0) 1199 goto short_packet; 1200 offset += sizeof(rhdr); 1201 len -= sizeof(rhdr); 1202 1203 token_offset = offset; 1204 token_len = ntohl(rhdr.token_len); 1205 if (xdr_round_up(token_len) + sizeof(__be32) > len) 1206 goto short_packet; 1207 1208 trace_rxrpc_rx_response(conn, sp->hdr.serial, 0, sp->hdr.cksum, token_len); 1209 1210 offset += xdr_round_up(token_len); 1211 len -= xdr_round_up(token_len); 1212 1213 if (skb_copy_bits(skb, offset, &xauth_len, sizeof(xauth_len)) < 0) 1214 goto short_packet; 1215 offset += sizeof(xauth_len); 1216 len -= sizeof(xauth_len); 1217 1218 auth_offset = offset; 1219 auth_len = ntohl(xauth_len); 1220 if (auth_len < len) 1221 goto short_packet; 1222 if (auth_len & 3) 1223 goto inconsistent; 1224 if (auth_len < 20 + 9 * 4) 1225 goto auth_too_short; 1226 1227 /* We need to extract and decrypt the token and instantiate a session 1228 * key for it. This bit, however, is application-specific. If 1229 * possible, we use a default parser, but we might end up bumping this 1230 * to the app to deal with - which might mean a round trip to 1231 * userspace. 1232 */ 1233 ret = rxgk_extract_token(conn, skb, token_offset, token_len, &key); 1234 if (ret < 0) 1235 goto out; 1236 1237 /* We now have a key instantiated from the decrypted ticket. We can 1238 * pass this to the application so that they can parse the ticket 1239 * content and we can use the session key it contains to derive the 1240 * keys we need. 1241 * 1242 * Note that we have to switch enctype at this point as the enctype of 1243 * the ticket doesn't necessarily match that of the transport. 1244 */ 1245 token = key->payload.data[0]; 1246 conn->security_level = token->rxgk->level; 1247 conn->rxgk.start_time = __be64_to_cpu(rhdr.start_time); 1248 1249 gk = rxgk_generate_transport_key(conn, token->rxgk, sp->hdr.cksum, GFP_NOFS); 1250 if (IS_ERR(gk)) { 1251 ret = PTR_ERR(gk); 1252 goto cant_get_token; 1253 } 1254 1255 krb5 = gk->krb5; 1256 1257 trace_rxrpc_rx_response(conn, sp->hdr.serial, krb5->etype, sp->hdr.cksum, token_len); 1258 1259 /* Decrypt, parse and verify the authenticator. */ 1260 ret = rxgk_decrypt_skb(krb5, gk->resp_enc, skb, 1261 &auth_offset, &auth_len, &ec); 1262 if (ret < 0) { 1263 rxrpc_abort_conn(conn, skb, RXGK_SEALEDINCON, ret, 1264 rxgk_abort_resp_auth_dec); 1265 goto out; 1266 } 1267 1268 ret = rxgk_verify_authenticator(conn, krb5, skb, auth_offset, auth_len); 1269 if (ret < 0) 1270 goto out; 1271 1272 conn->key = key; 1273 key = NULL; 1274 ret = 0; 1275 out: 1276 key_put(key); 1277 _leave(" = %d", ret); 1278 return ret; 1279 1280 inconsistent: 1281 ret = rxrpc_abort_conn(conn, skb, RXGK_INCONSISTENCY, -EPROTO, 1282 rxgk_abort_resp_xdr_align); 1283 goto out; 1284 auth_too_short: 1285 ret = rxrpc_abort_conn(conn, skb, RXGK_PACKETSHORT, -EPROTO, 1286 rxgk_abort_resp_short_auth); 1287 goto out; 1288 short_packet: 1289 ret = rxrpc_abort_conn(conn, skb, RXGK_PACKETSHORT, -EPROTO, 1290 rxgk_abort_resp_short_packet); 1291 goto out; 1292 1293 cant_get_token: 1294 switch (ret) { 1295 case -ENOMEM: 1296 goto temporary_error; 1297 case -EINVAL: 1298 ret = rxrpc_abort_conn(conn, skb, RXGK_NOTAUTH, -EKEYREJECTED, 1299 rxgk_abort_resp_internal_error); 1300 goto out; 1301 case -ENOPKG: 1302 ret = rxrpc_abort_conn(conn, skb, KRB5_PROG_KEYTYPE_NOSUPP, 1303 -EKEYREJECTED, rxgk_abort_resp_nopkg); 1304 goto out; 1305 } 1306 1307 temporary_error: 1308 /* Ignore the response packet if we got a temporary error such as 1309 * ENOMEM. We just want to send the challenge again. Note that we 1310 * also come out this way if the ticket decryption fails. 1311 */ 1312 goto out; 1313 } 1314 1315 /* 1316 * clear the connection security 1317 */ 1318 static void rxgk_clear(struct rxrpc_connection *conn) 1319 { 1320 int i; 1321 1322 for (i = 0; i < ARRAY_SIZE(conn->rxgk.keys); i++) 1323 rxgk_put(conn->rxgk.keys[i]); 1324 } 1325 1326 /* 1327 * Initialise the RxGK security service. 1328 */ 1329 static int rxgk_init(void) 1330 { 1331 return 0; 1332 } 1333 1334 /* 1335 * Clean up the RxGK security service. 1336 */ 1337 static void rxgk_exit(void) 1338 { 1339 } 1340 1341 /* 1342 * RxRPC YFS GSSAPI-based security 1343 */ 1344 const struct rxrpc_security rxgk_yfs = { 1345 .name = "yfs-rxgk", 1346 .security_index = RXRPC_SECURITY_YFS_RXGK, 1347 .no_key_abort = RXGK_NOTAUTH, 1348 .init = rxgk_init, 1349 .exit = rxgk_exit, 1350 .preparse_server_key = rxgk_preparse_server_key, 1351 .free_preparse_server_key = rxgk_free_preparse_server_key, 1352 .destroy_server_key = rxgk_destroy_server_key, 1353 .describe_server_key = rxgk_describe_server_key, 1354 .init_connection_security = rxgk_init_connection_security, 1355 .alloc_txbuf = rxgk_alloc_txbuf, 1356 .secure_packet = rxgk_secure_packet, 1357 .verify_packet = rxgk_verify_packet, 1358 .free_call_crypto = rxgk_free_call_crypto, 1359 .issue_challenge = rxgk_issue_challenge, 1360 .validate_challenge = rxgk_validate_challenge, 1361 .challenge_to_recvmsg = rxgk_challenge_to_recvmsg, 1362 .sendmsg_respond_to_challenge = rxgk_sendmsg_respond_to_challenge, 1363 .respond_to_challenge = rxgk_respond_to_challenge_no_appdata, 1364 .verify_response = rxgk_verify_response, 1365 .clear = rxgk_clear, 1366 .default_decode_ticket = rxgk_yfs_decode_ticket, 1367 }; 1368