xref: /linux/net/rxrpc/peer_event.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /* Peer event handling, typically ICMP messages.
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/net.h>
14 #include <linux/skbuff.h>
15 #include <linux/errqueue.h>
16 #include <linux/udp.h>
17 #include <linux/in.h>
18 #include <linux/in6.h>
19 #include <linux/icmp.h>
20 #include <net/sock.h>
21 #include <net/af_rxrpc.h>
22 #include <net/ip.h>
23 #include "ar-internal.h"
24 
25 static void rxrpc_store_error(struct rxrpc_peer *, struct sock_exterr_skb *);
26 
27 /*
28  * Find the peer associated with an ICMP packet.
29  */
30 static struct rxrpc_peer *rxrpc_lookup_peer_icmp_rcu(struct rxrpc_local *local,
31 						     const struct sk_buff *skb)
32 {
33 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
34 	struct sockaddr_rxrpc srx;
35 
36 	_enter("");
37 
38 	memset(&srx, 0, sizeof(srx));
39 	srx.transport_type = local->srx.transport_type;
40 	srx.transport_len = local->srx.transport_len;
41 	srx.transport.family = local->srx.transport.family;
42 
43 	/* Can we see an ICMP4 packet on an ICMP6 listening socket?  and vice
44 	 * versa?
45 	 */
46 	switch (srx.transport.family) {
47 	case AF_INET:
48 		srx.transport.sin.sin_port = serr->port;
49 		switch (serr->ee.ee_origin) {
50 		case SO_EE_ORIGIN_ICMP:
51 			_net("Rx ICMP");
52 			memcpy(&srx.transport.sin.sin_addr,
53 			       skb_network_header(skb) + serr->addr_offset,
54 			       sizeof(struct in_addr));
55 			break;
56 		case SO_EE_ORIGIN_ICMP6:
57 			_net("Rx ICMP6 on v4 sock");
58 			memcpy(&srx.transport.sin.sin_addr,
59 			       skb_network_header(skb) + serr->addr_offset + 12,
60 			       sizeof(struct in_addr));
61 			break;
62 		default:
63 			memcpy(&srx.transport.sin.sin_addr, &ip_hdr(skb)->saddr,
64 			       sizeof(struct in_addr));
65 			break;
66 		}
67 		break;
68 
69 #ifdef CONFIG_AF_RXRPC_IPV6
70 	case AF_INET6:
71 		srx.transport.sin6.sin6_port = serr->port;
72 		switch (serr->ee.ee_origin) {
73 		case SO_EE_ORIGIN_ICMP6:
74 			_net("Rx ICMP6");
75 			memcpy(&srx.transport.sin6.sin6_addr,
76 			       skb_network_header(skb) + serr->addr_offset,
77 			       sizeof(struct in6_addr));
78 			break;
79 		case SO_EE_ORIGIN_ICMP:
80 			_net("Rx ICMP on v6 sock");
81 			srx.transport.sin6.sin6_addr.s6_addr32[0] = 0;
82 			srx.transport.sin6.sin6_addr.s6_addr32[1] = 0;
83 			srx.transport.sin6.sin6_addr.s6_addr32[2] = htonl(0xffff);
84 			memcpy(srx.transport.sin6.sin6_addr.s6_addr + 12,
85 			       skb_network_header(skb) + serr->addr_offset,
86 			       sizeof(struct in_addr));
87 			break;
88 		default:
89 			memcpy(&srx.transport.sin6.sin6_addr,
90 			       &ipv6_hdr(skb)->saddr,
91 			       sizeof(struct in6_addr));
92 			break;
93 		}
94 		break;
95 #endif
96 
97 	default:
98 		BUG();
99 	}
100 
101 	return rxrpc_lookup_peer_rcu(local, &srx);
102 }
103 
104 /*
105  * Handle an MTU/fragmentation problem.
106  */
107 static void rxrpc_adjust_mtu(struct rxrpc_peer *peer, struct sock_exterr_skb *serr)
108 {
109 	u32 mtu = serr->ee.ee_info;
110 
111 	_net("Rx ICMP Fragmentation Needed (%d)", mtu);
112 
113 	/* wind down the local interface MTU */
114 	if (mtu > 0 && peer->if_mtu == 65535 && mtu < peer->if_mtu) {
115 		peer->if_mtu = mtu;
116 		_net("I/F MTU %u", mtu);
117 	}
118 
119 	if (mtu == 0) {
120 		/* they didn't give us a size, estimate one */
121 		mtu = peer->if_mtu;
122 		if (mtu > 1500) {
123 			mtu >>= 1;
124 			if (mtu < 1500)
125 				mtu = 1500;
126 		} else {
127 			mtu -= 100;
128 			if (mtu < peer->hdrsize)
129 				mtu = peer->hdrsize + 4;
130 		}
131 	}
132 
133 	if (mtu < peer->mtu) {
134 		spin_lock_bh(&peer->lock);
135 		peer->mtu = mtu;
136 		peer->maxdata = peer->mtu - peer->hdrsize;
137 		spin_unlock_bh(&peer->lock);
138 		_net("Net MTU %u (maxdata %u)",
139 		     peer->mtu, peer->maxdata);
140 	}
141 }
142 
143 /*
144  * Handle an error received on the local endpoint.
145  */
146 void rxrpc_error_report(struct sock *sk)
147 {
148 	struct sock_exterr_skb *serr;
149 	struct rxrpc_local *local = sk->sk_user_data;
150 	struct rxrpc_peer *peer;
151 	struct sk_buff *skb;
152 
153 	_enter("%p{%d}", sk, local->debug_id);
154 
155 	skb = sock_dequeue_err_skb(sk);
156 	if (!skb) {
157 		_leave("UDP socket errqueue empty");
158 		return;
159 	}
160 	rxrpc_new_skb(skb, rxrpc_skb_rx_received);
161 	serr = SKB_EXT_ERR(skb);
162 	if (!skb->len && serr->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) {
163 		_leave("UDP empty message");
164 		rxrpc_free_skb(skb, rxrpc_skb_rx_freed);
165 		return;
166 	}
167 
168 	rcu_read_lock();
169 	peer = rxrpc_lookup_peer_icmp_rcu(local, skb);
170 	if (peer && !rxrpc_get_peer_maybe(peer))
171 		peer = NULL;
172 	if (!peer) {
173 		rcu_read_unlock();
174 		rxrpc_free_skb(skb, rxrpc_skb_rx_freed);
175 		_leave(" [no peer]");
176 		return;
177 	}
178 
179 	if ((serr->ee.ee_origin == SO_EE_ORIGIN_ICMP &&
180 	     serr->ee.ee_type == ICMP_DEST_UNREACH &&
181 	     serr->ee.ee_code == ICMP_FRAG_NEEDED)) {
182 		rxrpc_adjust_mtu(peer, serr);
183 		rcu_read_unlock();
184 		rxrpc_free_skb(skb, rxrpc_skb_rx_freed);
185 		rxrpc_put_peer(peer);
186 		_leave(" [MTU update]");
187 		return;
188 	}
189 
190 	rxrpc_store_error(peer, serr);
191 	rcu_read_unlock();
192 	rxrpc_free_skb(skb, rxrpc_skb_rx_freed);
193 
194 	/* The ref we obtained is passed off to the work item */
195 	rxrpc_queue_work(&peer->error_distributor);
196 	_leave("");
197 }
198 
199 /*
200  * Map an error report to error codes on the peer record.
201  */
202 static void rxrpc_store_error(struct rxrpc_peer *peer,
203 			      struct sock_exterr_skb *serr)
204 {
205 	struct sock_extended_err *ee;
206 	int err;
207 
208 	_enter("");
209 
210 	ee = &serr->ee;
211 
212 	_net("Rx Error o=%d t=%d c=%d e=%d",
213 	     ee->ee_origin, ee->ee_type, ee->ee_code, ee->ee_errno);
214 
215 	err = ee->ee_errno;
216 
217 	switch (ee->ee_origin) {
218 	case SO_EE_ORIGIN_ICMP:
219 		switch (ee->ee_type) {
220 		case ICMP_DEST_UNREACH:
221 			switch (ee->ee_code) {
222 			case ICMP_NET_UNREACH:
223 				_net("Rx Received ICMP Network Unreachable");
224 				break;
225 			case ICMP_HOST_UNREACH:
226 				_net("Rx Received ICMP Host Unreachable");
227 				break;
228 			case ICMP_PORT_UNREACH:
229 				_net("Rx Received ICMP Port Unreachable");
230 				break;
231 			case ICMP_NET_UNKNOWN:
232 				_net("Rx Received ICMP Unknown Network");
233 				break;
234 			case ICMP_HOST_UNKNOWN:
235 				_net("Rx Received ICMP Unknown Host");
236 				break;
237 			default:
238 				_net("Rx Received ICMP DestUnreach code=%u",
239 				     ee->ee_code);
240 				break;
241 			}
242 			break;
243 
244 		case ICMP_TIME_EXCEEDED:
245 			_net("Rx Received ICMP TTL Exceeded");
246 			break;
247 
248 		default:
249 			_proto("Rx Received ICMP error { type=%u code=%u }",
250 			       ee->ee_type, ee->ee_code);
251 			break;
252 		}
253 		break;
254 
255 	case SO_EE_ORIGIN_NONE:
256 	case SO_EE_ORIGIN_LOCAL:
257 		_proto("Rx Received local error { error=%d }", err);
258 		err += RXRPC_LOCAL_ERROR_OFFSET;
259 		break;
260 
261 	case SO_EE_ORIGIN_ICMP6:
262 	default:
263 		_proto("Rx Received error report { orig=%u }", ee->ee_origin);
264 		break;
265 	}
266 
267 	peer->error_report = err;
268 }
269 
270 /*
271  * Distribute an error that occurred on a peer
272  */
273 void rxrpc_peer_error_distributor(struct work_struct *work)
274 {
275 	struct rxrpc_peer *peer =
276 		container_of(work, struct rxrpc_peer, error_distributor);
277 	struct rxrpc_call *call;
278 	enum rxrpc_call_completion compl;
279 	int error;
280 
281 	_enter("");
282 
283 	error = READ_ONCE(peer->error_report);
284 	if (error < RXRPC_LOCAL_ERROR_OFFSET) {
285 		compl = RXRPC_CALL_NETWORK_ERROR;
286 	} else {
287 		compl = RXRPC_CALL_LOCAL_ERROR;
288 		error -= RXRPC_LOCAL_ERROR_OFFSET;
289 	}
290 
291 	_debug("ISSUE ERROR %s %d", rxrpc_call_completions[compl], error);
292 
293 	spin_lock_bh(&peer->lock);
294 
295 	while (!hlist_empty(&peer->error_targets)) {
296 		call = hlist_entry(peer->error_targets.first,
297 				   struct rxrpc_call, error_link);
298 		hlist_del_init(&call->error_link);
299 		rxrpc_see_call(call);
300 
301 		if (rxrpc_set_call_completion(call, compl, 0, -error))
302 			rxrpc_notify_socket(call);
303 	}
304 
305 	spin_unlock_bh(&peer->lock);
306 
307 	rxrpc_put_peer(peer);
308 	_leave("");
309 }
310 
311 /*
312  * Add RTT information to cache.  This is called in softirq mode and has
313  * exclusive access to the peer RTT data.
314  */
315 void rxrpc_peer_add_rtt(struct rxrpc_call *call, enum rxrpc_rtt_rx_trace why,
316 			rxrpc_serial_t send_serial, rxrpc_serial_t resp_serial,
317 			ktime_t send_time, ktime_t resp_time)
318 {
319 	struct rxrpc_peer *peer = call->peer;
320 	s64 rtt;
321 	u64 sum = peer->rtt_sum, avg;
322 	u8 cursor = peer->rtt_cursor, usage = peer->rtt_usage;
323 
324 	rtt = ktime_to_ns(ktime_sub(resp_time, send_time));
325 	if (rtt < 0)
326 		return;
327 
328 	/* Replace the oldest datum in the RTT buffer */
329 	sum -= peer->rtt_cache[cursor];
330 	sum += rtt;
331 	peer->rtt_cache[cursor] = rtt;
332 	peer->rtt_cursor = (cursor + 1) & (RXRPC_RTT_CACHE_SIZE - 1);
333 	peer->rtt_sum = sum;
334 	if (usage < RXRPC_RTT_CACHE_SIZE) {
335 		usage++;
336 		peer->rtt_usage = usage;
337 	}
338 
339 	/* Now recalculate the average */
340 	if (usage == RXRPC_RTT_CACHE_SIZE) {
341 		avg = sum / RXRPC_RTT_CACHE_SIZE;
342 	} else {
343 		avg = sum;
344 		do_div(avg, usage);
345 	}
346 
347 	peer->rtt = avg;
348 	trace_rxrpc_rtt_rx(call, why, send_serial, resp_serial, rtt,
349 			   usage, avg);
350 }
351