xref: /linux/net/rxrpc/peer_event.c (revision af873fcecef567abf8a3468b06dd4e4aab46da6d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Peer event handling, typically ICMP messages.
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/net.h>
10 #include <linux/skbuff.h>
11 #include <linux/errqueue.h>
12 #include <linux/udp.h>
13 #include <linux/in.h>
14 #include <linux/in6.h>
15 #include <linux/icmp.h>
16 #include <net/sock.h>
17 #include <net/af_rxrpc.h>
18 #include <net/ip.h>
19 #include "ar-internal.h"
20 
21 static void rxrpc_store_error(struct rxrpc_peer *, struct sock_exterr_skb *);
22 static void rxrpc_distribute_error(struct rxrpc_peer *, int,
23 				   enum rxrpc_call_completion);
24 
25 /*
26  * Find the peer associated with an ICMP packet.
27  */
28 static struct rxrpc_peer *rxrpc_lookup_peer_icmp_rcu(struct rxrpc_local *local,
29 						     const struct sk_buff *skb,
30 						     struct sockaddr_rxrpc *srx)
31 {
32 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
33 
34 	_enter("");
35 
36 	memset(srx, 0, sizeof(*srx));
37 	srx->transport_type = local->srx.transport_type;
38 	srx->transport_len = local->srx.transport_len;
39 	srx->transport.family = local->srx.transport.family;
40 
41 	/* Can we see an ICMP4 packet on an ICMP6 listening socket?  and vice
42 	 * versa?
43 	 */
44 	switch (srx->transport.family) {
45 	case AF_INET:
46 		srx->transport_len = sizeof(srx->transport.sin);
47 		srx->transport.family = AF_INET;
48 		srx->transport.sin.sin_port = serr->port;
49 		switch (serr->ee.ee_origin) {
50 		case SO_EE_ORIGIN_ICMP:
51 			_net("Rx ICMP");
52 			memcpy(&srx->transport.sin.sin_addr,
53 			       skb_network_header(skb) + serr->addr_offset,
54 			       sizeof(struct in_addr));
55 			break;
56 		case SO_EE_ORIGIN_ICMP6:
57 			_net("Rx ICMP6 on v4 sock");
58 			memcpy(&srx->transport.sin.sin_addr,
59 			       skb_network_header(skb) + serr->addr_offset + 12,
60 			       sizeof(struct in_addr));
61 			break;
62 		default:
63 			memcpy(&srx->transport.sin.sin_addr, &ip_hdr(skb)->saddr,
64 			       sizeof(struct in_addr));
65 			break;
66 		}
67 		break;
68 
69 #ifdef CONFIG_AF_RXRPC_IPV6
70 	case AF_INET6:
71 		switch (serr->ee.ee_origin) {
72 		case SO_EE_ORIGIN_ICMP6:
73 			_net("Rx ICMP6");
74 			srx->transport.sin6.sin6_port = serr->port;
75 			memcpy(&srx->transport.sin6.sin6_addr,
76 			       skb_network_header(skb) + serr->addr_offset,
77 			       sizeof(struct in6_addr));
78 			break;
79 		case SO_EE_ORIGIN_ICMP:
80 			_net("Rx ICMP on v6 sock");
81 			srx->transport_len = sizeof(srx->transport.sin);
82 			srx->transport.family = AF_INET;
83 			srx->transport.sin.sin_port = serr->port;
84 			memcpy(&srx->transport.sin.sin_addr,
85 			       skb_network_header(skb) + serr->addr_offset,
86 			       sizeof(struct in_addr));
87 			break;
88 		default:
89 			memcpy(&srx->transport.sin6.sin6_addr,
90 			       &ipv6_hdr(skb)->saddr,
91 			       sizeof(struct in6_addr));
92 			break;
93 		}
94 		break;
95 #endif
96 
97 	default:
98 		BUG();
99 	}
100 
101 	return rxrpc_lookup_peer_rcu(local, srx);
102 }
103 
104 /*
105  * Handle an MTU/fragmentation problem.
106  */
107 static void rxrpc_adjust_mtu(struct rxrpc_peer *peer, struct sock_exterr_skb *serr)
108 {
109 	u32 mtu = serr->ee.ee_info;
110 
111 	_net("Rx ICMP Fragmentation Needed (%d)", mtu);
112 
113 	/* wind down the local interface MTU */
114 	if (mtu > 0 && peer->if_mtu == 65535 && mtu < peer->if_mtu) {
115 		peer->if_mtu = mtu;
116 		_net("I/F MTU %u", mtu);
117 	}
118 
119 	if (mtu == 0) {
120 		/* they didn't give us a size, estimate one */
121 		mtu = peer->if_mtu;
122 		if (mtu > 1500) {
123 			mtu >>= 1;
124 			if (mtu < 1500)
125 				mtu = 1500;
126 		} else {
127 			mtu -= 100;
128 			if (mtu < peer->hdrsize)
129 				mtu = peer->hdrsize + 4;
130 		}
131 	}
132 
133 	if (mtu < peer->mtu) {
134 		spin_lock_bh(&peer->lock);
135 		peer->mtu = mtu;
136 		peer->maxdata = peer->mtu - peer->hdrsize;
137 		spin_unlock_bh(&peer->lock);
138 		_net("Net MTU %u (maxdata %u)",
139 		     peer->mtu, peer->maxdata);
140 	}
141 }
142 
143 /*
144  * Handle an error received on the local endpoint.
145  */
146 void rxrpc_error_report(struct sock *sk)
147 {
148 	struct sock_exterr_skb *serr;
149 	struct sockaddr_rxrpc srx;
150 	struct rxrpc_local *local = sk->sk_user_data;
151 	struct rxrpc_peer *peer;
152 	struct sk_buff *skb;
153 
154 	_enter("%p{%d}", sk, local->debug_id);
155 
156 	/* Clear the outstanding error value on the socket so that it doesn't
157 	 * cause kernel_sendmsg() to return it later.
158 	 */
159 	sock_error(sk);
160 
161 	skb = sock_dequeue_err_skb(sk);
162 	if (!skb) {
163 		_leave("UDP socket errqueue empty");
164 		return;
165 	}
166 	rxrpc_new_skb(skb, rxrpc_skb_rx_received);
167 	serr = SKB_EXT_ERR(skb);
168 	if (!skb->len && serr->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) {
169 		_leave("UDP empty message");
170 		rxrpc_free_skb(skb, rxrpc_skb_rx_freed);
171 		return;
172 	}
173 
174 	rcu_read_lock();
175 	peer = rxrpc_lookup_peer_icmp_rcu(local, skb, &srx);
176 	if (peer && !rxrpc_get_peer_maybe(peer))
177 		peer = NULL;
178 	if (!peer) {
179 		rcu_read_unlock();
180 		rxrpc_free_skb(skb, rxrpc_skb_rx_freed);
181 		_leave(" [no peer]");
182 		return;
183 	}
184 
185 	trace_rxrpc_rx_icmp(peer, &serr->ee, &srx);
186 
187 	if ((serr->ee.ee_origin == SO_EE_ORIGIN_ICMP &&
188 	     serr->ee.ee_type == ICMP_DEST_UNREACH &&
189 	     serr->ee.ee_code == ICMP_FRAG_NEEDED)) {
190 		rxrpc_adjust_mtu(peer, serr);
191 		rcu_read_unlock();
192 		rxrpc_free_skb(skb, rxrpc_skb_rx_freed);
193 		rxrpc_put_peer(peer);
194 		_leave(" [MTU update]");
195 		return;
196 	}
197 
198 	rxrpc_store_error(peer, serr);
199 	rcu_read_unlock();
200 	rxrpc_free_skb(skb, rxrpc_skb_rx_freed);
201 	rxrpc_put_peer(peer);
202 
203 	_leave("");
204 }
205 
206 /*
207  * Map an error report to error codes on the peer record.
208  */
209 static void rxrpc_store_error(struct rxrpc_peer *peer,
210 			      struct sock_exterr_skb *serr)
211 {
212 	enum rxrpc_call_completion compl = RXRPC_CALL_NETWORK_ERROR;
213 	struct sock_extended_err *ee;
214 	int err;
215 
216 	_enter("");
217 
218 	ee = &serr->ee;
219 
220 	err = ee->ee_errno;
221 
222 	switch (ee->ee_origin) {
223 	case SO_EE_ORIGIN_ICMP:
224 		switch (ee->ee_type) {
225 		case ICMP_DEST_UNREACH:
226 			switch (ee->ee_code) {
227 			case ICMP_NET_UNREACH:
228 				_net("Rx Received ICMP Network Unreachable");
229 				break;
230 			case ICMP_HOST_UNREACH:
231 				_net("Rx Received ICMP Host Unreachable");
232 				break;
233 			case ICMP_PORT_UNREACH:
234 				_net("Rx Received ICMP Port Unreachable");
235 				break;
236 			case ICMP_NET_UNKNOWN:
237 				_net("Rx Received ICMP Unknown Network");
238 				break;
239 			case ICMP_HOST_UNKNOWN:
240 				_net("Rx Received ICMP Unknown Host");
241 				break;
242 			default:
243 				_net("Rx Received ICMP DestUnreach code=%u",
244 				     ee->ee_code);
245 				break;
246 			}
247 			break;
248 
249 		case ICMP_TIME_EXCEEDED:
250 			_net("Rx Received ICMP TTL Exceeded");
251 			break;
252 
253 		default:
254 			_proto("Rx Received ICMP error { type=%u code=%u }",
255 			       ee->ee_type, ee->ee_code);
256 			break;
257 		}
258 		break;
259 
260 	case SO_EE_ORIGIN_NONE:
261 	case SO_EE_ORIGIN_LOCAL:
262 		_proto("Rx Received local error { error=%d }", err);
263 		compl = RXRPC_CALL_LOCAL_ERROR;
264 		break;
265 
266 	case SO_EE_ORIGIN_ICMP6:
267 	default:
268 		_proto("Rx Received error report { orig=%u }", ee->ee_origin);
269 		break;
270 	}
271 
272 	rxrpc_distribute_error(peer, err, compl);
273 }
274 
275 /*
276  * Distribute an error that occurred on a peer.
277  */
278 static void rxrpc_distribute_error(struct rxrpc_peer *peer, int error,
279 				   enum rxrpc_call_completion compl)
280 {
281 	struct rxrpc_call *call;
282 
283 	hlist_for_each_entry_rcu(call, &peer->error_targets, error_link) {
284 		rxrpc_see_call(call);
285 		if (call->state < RXRPC_CALL_COMPLETE &&
286 		    rxrpc_set_call_completion(call, compl, 0, -error))
287 			rxrpc_notify_socket(call);
288 	}
289 }
290 
291 /*
292  * Add RTT information to cache.  This is called in softirq mode and has
293  * exclusive access to the peer RTT data.
294  */
295 void rxrpc_peer_add_rtt(struct rxrpc_call *call, enum rxrpc_rtt_rx_trace why,
296 			rxrpc_serial_t send_serial, rxrpc_serial_t resp_serial,
297 			ktime_t send_time, ktime_t resp_time)
298 {
299 	struct rxrpc_peer *peer = call->peer;
300 	s64 rtt;
301 	u64 sum = peer->rtt_sum, avg;
302 	u8 cursor = peer->rtt_cursor, usage = peer->rtt_usage;
303 
304 	rtt = ktime_to_ns(ktime_sub(resp_time, send_time));
305 	if (rtt < 0)
306 		return;
307 
308 	spin_lock(&peer->rtt_input_lock);
309 
310 	/* Replace the oldest datum in the RTT buffer */
311 	sum -= peer->rtt_cache[cursor];
312 	sum += rtt;
313 	peer->rtt_cache[cursor] = rtt;
314 	peer->rtt_cursor = (cursor + 1) & (RXRPC_RTT_CACHE_SIZE - 1);
315 	peer->rtt_sum = sum;
316 	if (usage < RXRPC_RTT_CACHE_SIZE) {
317 		usage++;
318 		peer->rtt_usage = usage;
319 	}
320 
321 	spin_unlock(&peer->rtt_input_lock);
322 
323 	/* Now recalculate the average */
324 	if (usage == RXRPC_RTT_CACHE_SIZE) {
325 		avg = sum / RXRPC_RTT_CACHE_SIZE;
326 	} else {
327 		avg = sum;
328 		do_div(avg, usage);
329 	}
330 
331 	/* Don't need to update this under lock */
332 	peer->rtt = avg;
333 	trace_rxrpc_rtt_rx(call, why, send_serial, resp_serial, rtt,
334 			   usage, avg);
335 }
336 
337 /*
338  * Perform keep-alive pings.
339  */
340 static void rxrpc_peer_keepalive_dispatch(struct rxrpc_net *rxnet,
341 					  struct list_head *collector,
342 					  time64_t base,
343 					  u8 cursor)
344 {
345 	struct rxrpc_peer *peer;
346 	const u8 mask = ARRAY_SIZE(rxnet->peer_keepalive) - 1;
347 	time64_t keepalive_at;
348 	int slot;
349 
350 	spin_lock_bh(&rxnet->peer_hash_lock);
351 
352 	while (!list_empty(collector)) {
353 		peer = list_entry(collector->next,
354 				  struct rxrpc_peer, keepalive_link);
355 
356 		list_del_init(&peer->keepalive_link);
357 		if (!rxrpc_get_peer_maybe(peer))
358 			continue;
359 
360 		spin_unlock_bh(&rxnet->peer_hash_lock);
361 
362 		keepalive_at = peer->last_tx_at + RXRPC_KEEPALIVE_TIME;
363 		slot = keepalive_at - base;
364 		_debug("%02x peer %u t=%d {%pISp}",
365 		       cursor, peer->debug_id, slot, &peer->srx.transport);
366 
367 		if (keepalive_at <= base ||
368 		    keepalive_at > base + RXRPC_KEEPALIVE_TIME) {
369 			rxrpc_send_keepalive(peer);
370 			slot = RXRPC_KEEPALIVE_TIME;
371 		}
372 
373 		/* A transmission to this peer occurred since last we examined
374 		 * it so put it into the appropriate future bucket.
375 		 */
376 		slot += cursor;
377 		slot &= mask;
378 		spin_lock_bh(&rxnet->peer_hash_lock);
379 		list_add_tail(&peer->keepalive_link,
380 			      &rxnet->peer_keepalive[slot & mask]);
381 		rxrpc_put_peer(peer);
382 	}
383 
384 	spin_unlock_bh(&rxnet->peer_hash_lock);
385 }
386 
387 /*
388  * Perform keep-alive pings with VERSION packets to keep any NAT alive.
389  */
390 void rxrpc_peer_keepalive_worker(struct work_struct *work)
391 {
392 	struct rxrpc_net *rxnet =
393 		container_of(work, struct rxrpc_net, peer_keepalive_work);
394 	const u8 mask = ARRAY_SIZE(rxnet->peer_keepalive) - 1;
395 	time64_t base, now, delay;
396 	u8 cursor, stop;
397 	LIST_HEAD(collector);
398 
399 	now = ktime_get_seconds();
400 	base = rxnet->peer_keepalive_base;
401 	cursor = rxnet->peer_keepalive_cursor;
402 	_enter("%lld,%u", base - now, cursor);
403 
404 	if (!rxnet->live)
405 		return;
406 
407 	/* Remove to a temporary list all the peers that are currently lodged
408 	 * in expired buckets plus all new peers.
409 	 *
410 	 * Everything in the bucket at the cursor is processed this
411 	 * second; the bucket at cursor + 1 goes at now + 1s and so
412 	 * on...
413 	 */
414 	spin_lock_bh(&rxnet->peer_hash_lock);
415 	list_splice_init(&rxnet->peer_keepalive_new, &collector);
416 
417 	stop = cursor + ARRAY_SIZE(rxnet->peer_keepalive);
418 	while (base <= now && (s8)(cursor - stop) < 0) {
419 		list_splice_tail_init(&rxnet->peer_keepalive[cursor & mask],
420 				      &collector);
421 		base++;
422 		cursor++;
423 	}
424 
425 	base = now;
426 	spin_unlock_bh(&rxnet->peer_hash_lock);
427 
428 	rxnet->peer_keepalive_base = base;
429 	rxnet->peer_keepalive_cursor = cursor;
430 	rxrpc_peer_keepalive_dispatch(rxnet, &collector, base, cursor);
431 	ASSERT(list_empty(&collector));
432 
433 	/* Schedule the timer for the next occupied timeslot. */
434 	cursor = rxnet->peer_keepalive_cursor;
435 	stop = cursor + RXRPC_KEEPALIVE_TIME - 1;
436 	for (; (s8)(cursor - stop) < 0; cursor++) {
437 		if (!list_empty(&rxnet->peer_keepalive[cursor & mask]))
438 			break;
439 		base++;
440 	}
441 
442 	now = ktime_get_seconds();
443 	delay = base - now;
444 	if (delay < 1)
445 		delay = 1;
446 	delay *= HZ;
447 	if (rxnet->live)
448 		timer_reduce(&rxnet->peer_keepalive_timer, jiffies + delay);
449 
450 	_leave("");
451 }
452