xref: /linux/net/rose/af_rose.c (revision 6e8331ac6973435b1e7604c30f2ad394035b46e1)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License as published by
4  * the Free Software Foundation; either version 2 of the License, or
5  * (at your option) any later version.
6  *
7  * Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
8  * Copyright (C) Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
9  * Copyright (C) Terry Dawson VK2KTJ (terry@animats.net)
10  * Copyright (C) Tomi Manninen OH2BNS (oh2bns@sral.fi)
11  */
12 
13 #include <linux/capability.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/errno.h>
18 #include <linux/types.h>
19 #include <linux/socket.h>
20 #include <linux/in.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/spinlock.h>
24 #include <linux/timer.h>
25 #include <linux/string.h>
26 #include <linux/sockios.h>
27 #include <linux/net.h>
28 #include <linux/stat.h>
29 #include <net/ax25.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/if_arp.h>
33 #include <linux/skbuff.h>
34 #include <net/sock.h>
35 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/mm.h>
40 #include <linux/interrupt.h>
41 #include <linux/notifier.h>
42 #include <net/rose.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <net/tcp_states.h>
46 #include <net/ip.h>
47 #include <net/arp.h>
48 
49 static int rose_ndevs = 10;
50 
51 int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0;
52 int sysctl_rose_call_request_timeout    = ROSE_DEFAULT_T1;
53 int sysctl_rose_reset_request_timeout   = ROSE_DEFAULT_T2;
54 int sysctl_rose_clear_request_timeout   = ROSE_DEFAULT_T3;
55 int sysctl_rose_no_activity_timeout     = ROSE_DEFAULT_IDLE;
56 int sysctl_rose_ack_hold_back_timeout   = ROSE_DEFAULT_HB;
57 int sysctl_rose_routing_control         = ROSE_DEFAULT_ROUTING;
58 int sysctl_rose_link_fail_timeout       = ROSE_DEFAULT_FAIL_TIMEOUT;
59 int sysctl_rose_maximum_vcs             = ROSE_DEFAULT_MAXVC;
60 int sysctl_rose_window_size             = ROSE_DEFAULT_WINDOW_SIZE;
61 
62 static HLIST_HEAD(rose_list);
63 static DEFINE_SPINLOCK(rose_list_lock);
64 
65 static struct proto_ops rose_proto_ops;
66 
67 ax25_address rose_callsign;
68 
69 /*
70  * ROSE network devices are virtual network devices encapsulating ROSE
71  * frames into AX.25 which will be sent through an AX.25 device, so form a
72  * special "super class" of normal net devices; split their locks off into a
73  * separate class since they always nest.
74  */
75 static struct lock_class_key rose_netdev_xmit_lock_key;
76 
77 /*
78  *	Convert a ROSE address into text.
79  */
80 const char *rose2asc(const rose_address *addr)
81 {
82 	static char buffer[11];
83 
84 	if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 &&
85 	    addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 &&
86 	    addr->rose_addr[4] == 0x00) {
87 		strcpy(buffer, "*");
88 	} else {
89 		sprintf(buffer, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF,
90 						addr->rose_addr[1] & 0xFF,
91 						addr->rose_addr[2] & 0xFF,
92 						addr->rose_addr[3] & 0xFF,
93 						addr->rose_addr[4] & 0xFF);
94 	}
95 
96 	return buffer;
97 }
98 
99 /*
100  *	Compare two ROSE addresses, 0 == equal.
101  */
102 int rosecmp(rose_address *addr1, rose_address *addr2)
103 {
104 	int i;
105 
106 	for (i = 0; i < 5; i++)
107 		if (addr1->rose_addr[i] != addr2->rose_addr[i])
108 			return 1;
109 
110 	return 0;
111 }
112 
113 /*
114  *	Compare two ROSE addresses for only mask digits, 0 == equal.
115  */
116 int rosecmpm(rose_address *addr1, rose_address *addr2, unsigned short mask)
117 {
118 	int i, j;
119 
120 	if (mask > 10)
121 		return 1;
122 
123 	for (i = 0; i < mask; i++) {
124 		j = i / 2;
125 
126 		if ((i % 2) != 0) {
127 			if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F))
128 				return 1;
129 		} else {
130 			if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0))
131 				return 1;
132 		}
133 	}
134 
135 	return 0;
136 }
137 
138 /*
139  *	Socket removal during an interrupt is now safe.
140  */
141 static void rose_remove_socket(struct sock *sk)
142 {
143 	spin_lock_bh(&rose_list_lock);
144 	sk_del_node_init(sk);
145 	spin_unlock_bh(&rose_list_lock);
146 }
147 
148 /*
149  *	Kill all bound sockets on a broken link layer connection to a
150  *	particular neighbour.
151  */
152 void rose_kill_by_neigh(struct rose_neigh *neigh)
153 {
154 	struct sock *s;
155 	struct hlist_node *node;
156 
157 	spin_lock_bh(&rose_list_lock);
158 	sk_for_each(s, node, &rose_list) {
159 		struct rose_sock *rose = rose_sk(s);
160 
161 		if (rose->neighbour == neigh) {
162 			rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
163 			rose->neighbour->use--;
164 			rose->neighbour = NULL;
165 		}
166 	}
167 	spin_unlock_bh(&rose_list_lock);
168 }
169 
170 /*
171  *	Kill all bound sockets on a dropped device.
172  */
173 static void rose_kill_by_device(struct net_device *dev)
174 {
175 	struct sock *s;
176 	struct hlist_node *node;
177 
178 	spin_lock_bh(&rose_list_lock);
179 	sk_for_each(s, node, &rose_list) {
180 		struct rose_sock *rose = rose_sk(s);
181 
182 		if (rose->device == dev) {
183 			rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
184 			rose->neighbour->use--;
185 			rose->device = NULL;
186 		}
187 	}
188 	spin_unlock_bh(&rose_list_lock);
189 }
190 
191 /*
192  *	Handle device status changes.
193  */
194 static int rose_device_event(struct notifier_block *this, unsigned long event,
195 	void *ptr)
196 {
197 	struct net_device *dev = (struct net_device *)ptr;
198 
199 	if (event != NETDEV_DOWN)
200 		return NOTIFY_DONE;
201 
202 	switch (dev->type) {
203 	case ARPHRD_ROSE:
204 		rose_kill_by_device(dev);
205 		break;
206 	case ARPHRD_AX25:
207 		rose_link_device_down(dev);
208 		rose_rt_device_down(dev);
209 		break;
210 	}
211 
212 	return NOTIFY_DONE;
213 }
214 
215 /*
216  *	Add a socket to the bound sockets list.
217  */
218 static void rose_insert_socket(struct sock *sk)
219 {
220 
221 	spin_lock_bh(&rose_list_lock);
222 	sk_add_node(sk, &rose_list);
223 	spin_unlock_bh(&rose_list_lock);
224 }
225 
226 /*
227  *	Find a socket that wants to accept the Call Request we just
228  *	received.
229  */
230 static struct sock *rose_find_listener(rose_address *addr, ax25_address *call)
231 {
232 	struct sock *s;
233 	struct hlist_node *node;
234 
235 	spin_lock_bh(&rose_list_lock);
236 	sk_for_each(s, node, &rose_list) {
237 		struct rose_sock *rose = rose_sk(s);
238 
239 		if (!rosecmp(&rose->source_addr, addr) &&
240 		    !ax25cmp(&rose->source_call, call) &&
241 		    !rose->source_ndigis && s->sk_state == TCP_LISTEN)
242 			goto found;
243 	}
244 
245 	sk_for_each(s, node, &rose_list) {
246 		struct rose_sock *rose = rose_sk(s);
247 
248 		if (!rosecmp(&rose->source_addr, addr) &&
249 		    !ax25cmp(&rose->source_call, &null_ax25_address) &&
250 		    s->sk_state == TCP_LISTEN)
251 			goto found;
252 	}
253 	s = NULL;
254 found:
255 	spin_unlock_bh(&rose_list_lock);
256 	return s;
257 }
258 
259 /*
260  *	Find a connected ROSE socket given my LCI and device.
261  */
262 struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh)
263 {
264 	struct sock *s;
265 	struct hlist_node *node;
266 
267 	spin_lock_bh(&rose_list_lock);
268 	sk_for_each(s, node, &rose_list) {
269 		struct rose_sock *rose = rose_sk(s);
270 
271 		if (rose->lci == lci && rose->neighbour == neigh)
272 			goto found;
273 	}
274 	s = NULL;
275 found:
276 	spin_unlock_bh(&rose_list_lock);
277 	return s;
278 }
279 
280 /*
281  *	Find a unique LCI for a given device.
282  */
283 unsigned int rose_new_lci(struct rose_neigh *neigh)
284 {
285 	int lci;
286 
287 	if (neigh->dce_mode) {
288 		for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++)
289 			if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
290 				return lci;
291 	} else {
292 		for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--)
293 			if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
294 				return lci;
295 	}
296 
297 	return 0;
298 }
299 
300 /*
301  *	Deferred destroy.
302  */
303 void rose_destroy_socket(struct sock *);
304 
305 /*
306  *	Handler for deferred kills.
307  */
308 static void rose_destroy_timer(unsigned long data)
309 {
310 	rose_destroy_socket((struct sock *)data);
311 }
312 
313 /*
314  *	This is called from user mode and the timers. Thus it protects itself
315  *	against interrupt users but doesn't worry about being called during
316  *	work.  Once it is removed from the queue no interrupt or bottom half
317  *	will touch it and we are (fairly 8-) ) safe.
318  */
319 void rose_destroy_socket(struct sock *sk)
320 {
321 	struct sk_buff *skb;
322 
323 	rose_remove_socket(sk);
324 	rose_stop_heartbeat(sk);
325 	rose_stop_idletimer(sk);
326 	rose_stop_timer(sk);
327 
328 	rose_clear_queues(sk);		/* Flush the queues */
329 
330 	while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
331 		if (skb->sk != sk) {	/* A pending connection */
332 			/* Queue the unaccepted socket for death */
333 			sock_set_flag(skb->sk, SOCK_DEAD);
334 			rose_start_heartbeat(skb->sk);
335 			rose_sk(skb->sk)->state = ROSE_STATE_0;
336 		}
337 
338 		kfree_skb(skb);
339 	}
340 
341 	if (atomic_read(&sk->sk_wmem_alloc) ||
342 	    atomic_read(&sk->sk_rmem_alloc)) {
343 		/* Defer: outstanding buffers */
344 		init_timer(&sk->sk_timer);
345 		sk->sk_timer.expires  = jiffies + 10 * HZ;
346 		sk->sk_timer.function = rose_destroy_timer;
347 		sk->sk_timer.data     = (unsigned long)sk;
348 		add_timer(&sk->sk_timer);
349 	} else
350 		sock_put(sk);
351 }
352 
353 /*
354  *	Handling for system calls applied via the various interfaces to a
355  *	ROSE socket object.
356  */
357 
358 static int rose_setsockopt(struct socket *sock, int level, int optname,
359 	char __user *optval, int optlen)
360 {
361 	struct sock *sk = sock->sk;
362 	struct rose_sock *rose = rose_sk(sk);
363 	int opt;
364 
365 	if (level != SOL_ROSE)
366 		return -ENOPROTOOPT;
367 
368 	if (optlen < sizeof(int))
369 		return -EINVAL;
370 
371 	if (get_user(opt, (int __user *)optval))
372 		return -EFAULT;
373 
374 	switch (optname) {
375 	case ROSE_DEFER:
376 		rose->defer = opt ? 1 : 0;
377 		return 0;
378 
379 	case ROSE_T1:
380 		if (opt < 1)
381 			return -EINVAL;
382 		rose->t1 = opt * HZ;
383 		return 0;
384 
385 	case ROSE_T2:
386 		if (opt < 1)
387 			return -EINVAL;
388 		rose->t2 = opt * HZ;
389 		return 0;
390 
391 	case ROSE_T3:
392 		if (opt < 1)
393 			return -EINVAL;
394 		rose->t3 = opt * HZ;
395 		return 0;
396 
397 	case ROSE_HOLDBACK:
398 		if (opt < 1)
399 			return -EINVAL;
400 		rose->hb = opt * HZ;
401 		return 0;
402 
403 	case ROSE_IDLE:
404 		if (opt < 0)
405 			return -EINVAL;
406 		rose->idle = opt * 60 * HZ;
407 		return 0;
408 
409 	case ROSE_QBITINCL:
410 		rose->qbitincl = opt ? 1 : 0;
411 		return 0;
412 
413 	default:
414 		return -ENOPROTOOPT;
415 	}
416 }
417 
418 static int rose_getsockopt(struct socket *sock, int level, int optname,
419 	char __user *optval, int __user *optlen)
420 {
421 	struct sock *sk = sock->sk;
422 	struct rose_sock *rose = rose_sk(sk);
423 	int val = 0;
424 	int len;
425 
426 	if (level != SOL_ROSE)
427 		return -ENOPROTOOPT;
428 
429 	if (get_user(len, optlen))
430 		return -EFAULT;
431 
432 	if (len < 0)
433 		return -EINVAL;
434 
435 	switch (optname) {
436 	case ROSE_DEFER:
437 		val = rose->defer;
438 		break;
439 
440 	case ROSE_T1:
441 		val = rose->t1 / HZ;
442 		break;
443 
444 	case ROSE_T2:
445 		val = rose->t2 / HZ;
446 		break;
447 
448 	case ROSE_T3:
449 		val = rose->t3 / HZ;
450 		break;
451 
452 	case ROSE_HOLDBACK:
453 		val = rose->hb / HZ;
454 		break;
455 
456 	case ROSE_IDLE:
457 		val = rose->idle / (60 * HZ);
458 		break;
459 
460 	case ROSE_QBITINCL:
461 		val = rose->qbitincl;
462 		break;
463 
464 	default:
465 		return -ENOPROTOOPT;
466 	}
467 
468 	len = min_t(unsigned int, len, sizeof(int));
469 
470 	if (put_user(len, optlen))
471 		return -EFAULT;
472 
473 	return copy_to_user(optval, &val, len) ? -EFAULT : 0;
474 }
475 
476 static int rose_listen(struct socket *sock, int backlog)
477 {
478 	struct sock *sk = sock->sk;
479 
480 	if (sk->sk_state != TCP_LISTEN) {
481 		struct rose_sock *rose = rose_sk(sk);
482 
483 		rose->dest_ndigis = 0;
484 		memset(&rose->dest_addr, 0, ROSE_ADDR_LEN);
485 		memset(&rose->dest_call, 0, AX25_ADDR_LEN);
486 		memset(rose->dest_digis, 0, AX25_ADDR_LEN * ROSE_MAX_DIGIS);
487 		sk->sk_max_ack_backlog = backlog;
488 		sk->sk_state           = TCP_LISTEN;
489 		return 0;
490 	}
491 
492 	return -EOPNOTSUPP;
493 }
494 
495 static struct proto rose_proto = {
496 	.name	  = "ROSE",
497 	.owner	  = THIS_MODULE,
498 	.obj_size = sizeof(struct rose_sock),
499 };
500 
501 static int rose_create(struct socket *sock, int protocol)
502 {
503 	struct sock *sk;
504 	struct rose_sock *rose;
505 
506 	if (sock->type != SOCK_SEQPACKET || protocol != 0)
507 		return -ESOCKTNOSUPPORT;
508 
509 	if ((sk = sk_alloc(PF_ROSE, GFP_ATOMIC, &rose_proto, 1)) == NULL)
510 		return -ENOMEM;
511 
512 	rose = rose_sk(sk);
513 
514 	sock_init_data(sock, sk);
515 
516 	skb_queue_head_init(&rose->ack_queue);
517 #ifdef M_BIT
518 	skb_queue_head_init(&rose->frag_queue);
519 	rose->fraglen    = 0;
520 #endif
521 
522 	sock->ops    = &rose_proto_ops;
523 	sk->sk_protocol = protocol;
524 
525 	init_timer(&rose->timer);
526 	init_timer(&rose->idletimer);
527 
528 	rose->t1   = msecs_to_jiffies(sysctl_rose_call_request_timeout);
529 	rose->t2   = msecs_to_jiffies(sysctl_rose_reset_request_timeout);
530 	rose->t3   = msecs_to_jiffies(sysctl_rose_clear_request_timeout);
531 	rose->hb   = msecs_to_jiffies(sysctl_rose_ack_hold_back_timeout);
532 	rose->idle = msecs_to_jiffies(sysctl_rose_no_activity_timeout);
533 
534 	rose->state = ROSE_STATE_0;
535 
536 	return 0;
537 }
538 
539 static struct sock *rose_make_new(struct sock *osk)
540 {
541 	struct sock *sk;
542 	struct rose_sock *rose, *orose;
543 
544 	if (osk->sk_type != SOCK_SEQPACKET)
545 		return NULL;
546 
547 	if ((sk = sk_alloc(PF_ROSE, GFP_ATOMIC, &rose_proto, 1)) == NULL)
548 		return NULL;
549 
550 	rose = rose_sk(sk);
551 
552 	sock_init_data(NULL, sk);
553 
554 	skb_queue_head_init(&rose->ack_queue);
555 #ifdef M_BIT
556 	skb_queue_head_init(&rose->frag_queue);
557 	rose->fraglen  = 0;
558 #endif
559 
560 	sk->sk_type     = osk->sk_type;
561 	sk->sk_socket   = osk->sk_socket;
562 	sk->sk_priority = osk->sk_priority;
563 	sk->sk_protocol = osk->sk_protocol;
564 	sk->sk_rcvbuf   = osk->sk_rcvbuf;
565 	sk->sk_sndbuf   = osk->sk_sndbuf;
566 	sk->sk_state    = TCP_ESTABLISHED;
567 	sk->sk_sleep    = osk->sk_sleep;
568 	sock_copy_flags(sk, osk);
569 
570 	init_timer(&rose->timer);
571 	init_timer(&rose->idletimer);
572 
573 	orose		= rose_sk(osk);
574 	rose->t1	= orose->t1;
575 	rose->t2	= orose->t2;
576 	rose->t3	= orose->t3;
577 	rose->hb	= orose->hb;
578 	rose->idle	= orose->idle;
579 	rose->defer	= orose->defer;
580 	rose->device	= orose->device;
581 	rose->qbitincl	= orose->qbitincl;
582 
583 	return sk;
584 }
585 
586 static int rose_release(struct socket *sock)
587 {
588 	struct sock *sk = sock->sk;
589 	struct rose_sock *rose;
590 
591 	if (sk == NULL) return 0;
592 
593 	rose = rose_sk(sk);
594 
595 	switch (rose->state) {
596 	case ROSE_STATE_0:
597 		rose_disconnect(sk, 0, -1, -1);
598 		rose_destroy_socket(sk);
599 		break;
600 
601 	case ROSE_STATE_2:
602 		rose->neighbour->use--;
603 		rose_disconnect(sk, 0, -1, -1);
604 		rose_destroy_socket(sk);
605 		break;
606 
607 	case ROSE_STATE_1:
608 	case ROSE_STATE_3:
609 	case ROSE_STATE_4:
610 	case ROSE_STATE_5:
611 		rose_clear_queues(sk);
612 		rose_stop_idletimer(sk);
613 		rose_write_internal(sk, ROSE_CLEAR_REQUEST);
614 		rose_start_t3timer(sk);
615 		rose->state  = ROSE_STATE_2;
616 		sk->sk_state    = TCP_CLOSE;
617 		sk->sk_shutdown |= SEND_SHUTDOWN;
618 		sk->sk_state_change(sk);
619 		sock_set_flag(sk, SOCK_DEAD);
620 		sock_set_flag(sk, SOCK_DESTROY);
621 		break;
622 
623 	default:
624 		break;
625 	}
626 
627 	sock->sk = NULL;
628 
629 	return 0;
630 }
631 
632 static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
633 {
634 	struct sock *sk = sock->sk;
635 	struct rose_sock *rose = rose_sk(sk);
636 	struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
637 	struct net_device *dev;
638 	ax25_address *source;
639 	ax25_uid_assoc *user;
640 	int n;
641 
642 	if (!sock_flag(sk, SOCK_ZAPPED))
643 		return -EINVAL;
644 
645 	if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
646 		return -EINVAL;
647 
648 	if (addr->srose_family != AF_ROSE)
649 		return -EINVAL;
650 
651 	if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
652 		return -EINVAL;
653 
654 	if (addr->srose_ndigis > ROSE_MAX_DIGIS)
655 		return -EINVAL;
656 
657 	if ((dev = rose_dev_get(&addr->srose_addr)) == NULL) {
658 		SOCK_DEBUG(sk, "ROSE: bind failed: invalid address\n");
659 		return -EADDRNOTAVAIL;
660 	}
661 
662 	source = &addr->srose_call;
663 
664 	user = ax25_findbyuid(current->euid);
665 	if (user) {
666 		rose->source_call = user->call;
667 		ax25_uid_put(user);
668 	} else {
669 		if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE))
670 			return -EACCES;
671 		rose->source_call   = *source;
672 	}
673 
674 	rose->source_addr   = addr->srose_addr;
675 	rose->device        = dev;
676 	rose->source_ndigis = addr->srose_ndigis;
677 
678 	if (addr_len == sizeof(struct full_sockaddr_rose)) {
679 		struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
680 		for (n = 0 ; n < addr->srose_ndigis ; n++)
681 			rose->source_digis[n] = full_addr->srose_digis[n];
682 	} else {
683 		if (rose->source_ndigis == 1) {
684 			rose->source_digis[0] = addr->srose_digi;
685 		}
686 	}
687 
688 	rose_insert_socket(sk);
689 
690 	sock_reset_flag(sk, SOCK_ZAPPED);
691 	SOCK_DEBUG(sk, "ROSE: socket is bound\n");
692 	return 0;
693 }
694 
695 static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags)
696 {
697 	struct sock *sk = sock->sk;
698 	struct rose_sock *rose = rose_sk(sk);
699 	struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
700 	unsigned char cause, diagnostic;
701 	struct net_device *dev;
702 	ax25_uid_assoc *user;
703 	int n;
704 
705 	if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
706 		sock->state = SS_CONNECTED;
707 		return 0;	/* Connect completed during a ERESTARTSYS event */
708 	}
709 
710 	if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
711 		sock->state = SS_UNCONNECTED;
712 		return -ECONNREFUSED;
713 	}
714 
715 	if (sk->sk_state == TCP_ESTABLISHED)
716 		return -EISCONN;	/* No reconnect on a seqpacket socket */
717 
718 	sk->sk_state   = TCP_CLOSE;
719 	sock->state = SS_UNCONNECTED;
720 
721 	if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
722 		return -EINVAL;
723 
724 	if (addr->srose_family != AF_ROSE)
725 		return -EINVAL;
726 
727 	if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
728 		return -EINVAL;
729 
730 	if (addr->srose_ndigis > ROSE_MAX_DIGIS)
731 		return -EINVAL;
732 
733 	/* Source + Destination digis should not exceed ROSE_MAX_DIGIS */
734 	if ((rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS)
735 		return -EINVAL;
736 
737 	rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause,
738 					 &diagnostic);
739 	if (!rose->neighbour)
740 		return -ENETUNREACH;
741 
742 	rose->lci = rose_new_lci(rose->neighbour);
743 	if (!rose->lci)
744 		return -ENETUNREACH;
745 
746 	if (sock_flag(sk, SOCK_ZAPPED)) {	/* Must bind first - autobinding in this may or may not work */
747 		sock_reset_flag(sk, SOCK_ZAPPED);
748 
749 		if ((dev = rose_dev_first()) == NULL)
750 			return -ENETUNREACH;
751 
752 		user = ax25_findbyuid(current->euid);
753 		if (!user)
754 			return -EINVAL;
755 
756 		memcpy(&rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN);
757 		rose->source_call = user->call;
758 		rose->device      = dev;
759 		ax25_uid_put(user);
760 
761 		rose_insert_socket(sk);		/* Finish the bind */
762 	}
763 rose_try_next_neigh:
764 	rose->dest_addr   = addr->srose_addr;
765 	rose->dest_call   = addr->srose_call;
766 	rose->rand        = ((long)rose & 0xFFFF) + rose->lci;
767 	rose->dest_ndigis = addr->srose_ndigis;
768 
769 	if (addr_len == sizeof(struct full_sockaddr_rose)) {
770 		struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
771 		for (n = 0 ; n < addr->srose_ndigis ; n++)
772 			rose->dest_digis[n] = full_addr->srose_digis[n];
773 	} else {
774 		if (rose->dest_ndigis == 1) {
775 			rose->dest_digis[0] = addr->srose_digi;
776 		}
777 	}
778 
779 	/* Move to connecting socket, start sending Connect Requests */
780 	sock->state   = SS_CONNECTING;
781 	sk->sk_state     = TCP_SYN_SENT;
782 
783 	rose->state = ROSE_STATE_1;
784 
785 	rose->neighbour->use++;
786 
787 	rose_write_internal(sk, ROSE_CALL_REQUEST);
788 	rose_start_heartbeat(sk);
789 	rose_start_t1timer(sk);
790 
791 	/* Now the loop */
792 	if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
793 		return -EINPROGRESS;
794 
795 	/*
796 	 * A Connect Ack with Choke or timeout or failed routing will go to
797 	 * closed.
798 	 */
799 	if (sk->sk_state == TCP_SYN_SENT) {
800 		struct task_struct *tsk = current;
801 		DECLARE_WAITQUEUE(wait, tsk);
802 
803 		add_wait_queue(sk->sk_sleep, &wait);
804 		for (;;) {
805 			set_current_state(TASK_INTERRUPTIBLE);
806 			if (sk->sk_state != TCP_SYN_SENT)
807 				break;
808 			if (!signal_pending(tsk)) {
809 				schedule();
810 				continue;
811 			}
812 			current->state = TASK_RUNNING;
813 			remove_wait_queue(sk->sk_sleep, &wait);
814 			return -ERESTARTSYS;
815 		}
816 		current->state = TASK_RUNNING;
817 		remove_wait_queue(sk->sk_sleep, &wait);
818 	}
819 
820 	if (sk->sk_state != TCP_ESTABLISHED) {
821 	/* Try next neighbour */
822 		rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause, &diagnostic);
823 		if (rose->neighbour)
824 			goto rose_try_next_neigh;
825 	/* No more neighbour */
826 		sock->state = SS_UNCONNECTED;
827 		return sock_error(sk);	/* Always set at this point */
828 	}
829 
830 	sock->state = SS_CONNECTED;
831 
832 	return 0;
833 }
834 
835 static int rose_accept(struct socket *sock, struct socket *newsock, int flags)
836 {
837 	struct task_struct *tsk = current;
838 	DECLARE_WAITQUEUE(wait, tsk);
839 	struct sk_buff *skb;
840 	struct sock *newsk;
841 	struct sock *sk;
842 	int err = 0;
843 
844 	if ((sk = sock->sk) == NULL)
845 		return -EINVAL;
846 
847 	lock_sock(sk);
848 	if (sk->sk_type != SOCK_SEQPACKET) {
849 		err = -EOPNOTSUPP;
850 		goto out;
851 	}
852 
853 	if (sk->sk_state != TCP_LISTEN) {
854 		err = -EINVAL;
855 		goto out;
856 	}
857 
858 	/*
859 	 *	The write queue this time is holding sockets ready to use
860 	 *	hooked into the SABM we saved
861 	 */
862 	add_wait_queue(sk->sk_sleep, &wait);
863 	for (;;) {
864 		skb = skb_dequeue(&sk->sk_receive_queue);
865 		if (skb)
866 			break;
867 
868 		current->state = TASK_INTERRUPTIBLE;
869 		release_sock(sk);
870 		if (flags & O_NONBLOCK) {
871 			current->state = TASK_RUNNING;
872 			remove_wait_queue(sk->sk_sleep, &wait);
873 			return -EWOULDBLOCK;
874 		}
875 		if (!signal_pending(tsk)) {
876 			schedule();
877 			lock_sock(sk);
878 			continue;
879 		}
880 		return -ERESTARTSYS;
881 	}
882 	current->state = TASK_RUNNING;
883 	remove_wait_queue(sk->sk_sleep, &wait);
884 
885 	newsk = skb->sk;
886 	newsk->sk_socket = newsock;
887 	newsk->sk_sleep = &newsock->wait;
888 
889 	/* Now attach up the new socket */
890 	skb->sk = NULL;
891 	kfree_skb(skb);
892 	sk->sk_ack_backlog--;
893 	newsock->sk = newsk;
894 
895 out:
896 	release_sock(sk);
897 
898 	return err;
899 }
900 
901 static int rose_getname(struct socket *sock, struct sockaddr *uaddr,
902 	int *uaddr_len, int peer)
903 {
904 	struct full_sockaddr_rose *srose = (struct full_sockaddr_rose *)uaddr;
905 	struct sock *sk = sock->sk;
906 	struct rose_sock *rose = rose_sk(sk);
907 	int n;
908 
909 	if (peer != 0) {
910 		if (sk->sk_state != TCP_ESTABLISHED)
911 			return -ENOTCONN;
912 		srose->srose_family = AF_ROSE;
913 		srose->srose_addr   = rose->dest_addr;
914 		srose->srose_call   = rose->dest_call;
915 		srose->srose_ndigis = rose->dest_ndigis;
916 		for (n = 0; n < rose->dest_ndigis; n++)
917 			srose->srose_digis[n] = rose->dest_digis[n];
918 	} else {
919 		srose->srose_family = AF_ROSE;
920 		srose->srose_addr   = rose->source_addr;
921 		srose->srose_call   = rose->source_call;
922 		srose->srose_ndigis = rose->source_ndigis;
923 		for (n = 0; n < rose->source_ndigis; n++)
924 			srose->srose_digis[n] = rose->source_digis[n];
925 	}
926 
927 	*uaddr_len = sizeof(struct full_sockaddr_rose);
928 	return 0;
929 }
930 
931 int rose_rx_call_request(struct sk_buff *skb, struct net_device *dev, struct rose_neigh *neigh, unsigned int lci)
932 {
933 	struct sock *sk;
934 	struct sock *make;
935 	struct rose_sock *make_rose;
936 	struct rose_facilities_struct facilities;
937 	int n, len;
938 
939 	skb->sk = NULL;		/* Initially we don't know who it's for */
940 
941 	/*
942 	 *	skb->data points to the rose frame start
943 	 */
944 	memset(&facilities, 0x00, sizeof(struct rose_facilities_struct));
945 
946 	len  = (((skb->data[3] >> 4) & 0x0F) + 1) / 2;
947 	len += (((skb->data[3] >> 0) & 0x0F) + 1) / 2;
948 	if (!rose_parse_facilities(skb->data + len + 4, &facilities)) {
949 		rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76);
950 		return 0;
951 	}
952 
953 	sk = rose_find_listener(&facilities.source_addr, &facilities.source_call);
954 
955 	/*
956 	 * We can't accept the Call Request.
957 	 */
958 	if (sk == NULL || sk_acceptq_is_full(sk) ||
959 	    (make = rose_make_new(sk)) == NULL) {
960 		rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120);
961 		return 0;
962 	}
963 
964 	skb->sk     = make;
965 	make->sk_state = TCP_ESTABLISHED;
966 	make_rose = rose_sk(make);
967 
968 	make_rose->lci           = lci;
969 	make_rose->dest_addr     = facilities.dest_addr;
970 	make_rose->dest_call     = facilities.dest_call;
971 	make_rose->dest_ndigis   = facilities.dest_ndigis;
972 	for (n = 0 ; n < facilities.dest_ndigis ; n++)
973 		make_rose->dest_digis[n] = facilities.dest_digis[n];
974 	make_rose->source_addr   = facilities.source_addr;
975 	make_rose->source_call   = facilities.source_call;
976 	make_rose->source_ndigis = facilities.source_ndigis;
977 	for (n = 0 ; n < facilities.source_ndigis ; n++)
978 		make_rose->source_digis[n]= facilities.source_digis[n];
979 	make_rose->neighbour     = neigh;
980 	make_rose->device        = dev;
981 	make_rose->facilities    = facilities;
982 
983 	make_rose->neighbour->use++;
984 
985 	if (rose_sk(sk)->defer) {
986 		make_rose->state = ROSE_STATE_5;
987 	} else {
988 		rose_write_internal(make, ROSE_CALL_ACCEPTED);
989 		make_rose->state = ROSE_STATE_3;
990 		rose_start_idletimer(make);
991 	}
992 
993 	make_rose->condition = 0x00;
994 	make_rose->vs        = 0;
995 	make_rose->va        = 0;
996 	make_rose->vr        = 0;
997 	make_rose->vl        = 0;
998 	sk->sk_ack_backlog++;
999 
1000 	rose_insert_socket(make);
1001 
1002 	skb_queue_head(&sk->sk_receive_queue, skb);
1003 
1004 	rose_start_heartbeat(make);
1005 
1006 	if (!sock_flag(sk, SOCK_DEAD))
1007 		sk->sk_data_ready(sk, skb->len);
1008 
1009 	return 1;
1010 }
1011 
1012 static int rose_sendmsg(struct kiocb *iocb, struct socket *sock,
1013 			struct msghdr *msg, size_t len)
1014 {
1015 	struct sock *sk = sock->sk;
1016 	struct rose_sock *rose = rose_sk(sk);
1017 	struct sockaddr_rose *usrose = (struct sockaddr_rose *)msg->msg_name;
1018 	int err;
1019 	struct full_sockaddr_rose srose;
1020 	struct sk_buff *skb;
1021 	unsigned char *asmptr;
1022 	int n, size, qbit = 0;
1023 
1024 	if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1025 		return -EINVAL;
1026 
1027 	if (sock_flag(sk, SOCK_ZAPPED))
1028 		return -EADDRNOTAVAIL;
1029 
1030 	if (sk->sk_shutdown & SEND_SHUTDOWN) {
1031 		send_sig(SIGPIPE, current, 0);
1032 		return -EPIPE;
1033 	}
1034 
1035 	if (rose->neighbour == NULL || rose->device == NULL)
1036 		return -ENETUNREACH;
1037 
1038 	if (usrose != NULL) {
1039 		if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose))
1040 			return -EINVAL;
1041 		memset(&srose, 0, sizeof(struct full_sockaddr_rose));
1042 		memcpy(&srose, usrose, msg->msg_namelen);
1043 		if (rosecmp(&rose->dest_addr, &srose.srose_addr) != 0 ||
1044 		    ax25cmp(&rose->dest_call, &srose.srose_call) != 0)
1045 			return -EISCONN;
1046 		if (srose.srose_ndigis != rose->dest_ndigis)
1047 			return -EISCONN;
1048 		if (srose.srose_ndigis == rose->dest_ndigis) {
1049 			for (n = 0 ; n < srose.srose_ndigis ; n++)
1050 				if (ax25cmp(&rose->dest_digis[n],
1051 					    &srose.srose_digis[n]))
1052 					return -EISCONN;
1053 		}
1054 		if (srose.srose_family != AF_ROSE)
1055 			return -EINVAL;
1056 	} else {
1057 		if (sk->sk_state != TCP_ESTABLISHED)
1058 			return -ENOTCONN;
1059 
1060 		srose.srose_family = AF_ROSE;
1061 		srose.srose_addr   = rose->dest_addr;
1062 		srose.srose_call   = rose->dest_call;
1063 		srose.srose_ndigis = rose->dest_ndigis;
1064 		for (n = 0 ; n < rose->dest_ndigis ; n++)
1065 			srose.srose_digis[n] = rose->dest_digis[n];
1066 	}
1067 
1068 	SOCK_DEBUG(sk, "ROSE: sendto: Addresses built.\n");
1069 
1070 	/* Build a packet */
1071 	SOCK_DEBUG(sk, "ROSE: sendto: building packet.\n");
1072 	size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN;
1073 
1074 	if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
1075 		return err;
1076 
1077 	skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN);
1078 
1079 	/*
1080 	 *	Put the data on the end
1081 	 */
1082 	SOCK_DEBUG(sk, "ROSE: Appending user data\n");
1083 
1084 	asmptr = skb->h.raw = skb_put(skb, len);
1085 
1086 	err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1087 	if (err) {
1088 		kfree_skb(skb);
1089 		return err;
1090 	}
1091 
1092 	/*
1093 	 *	If the Q BIT Include socket option is in force, the first
1094 	 *	byte of the user data is the logical value of the Q Bit.
1095 	 */
1096 	if (rose->qbitincl) {
1097 		qbit = skb->data[0];
1098 		skb_pull(skb, 1);
1099 	}
1100 
1101 	/*
1102 	 *	Push down the ROSE header
1103 	 */
1104 	asmptr = skb_push(skb, ROSE_MIN_LEN);
1105 
1106 	SOCK_DEBUG(sk, "ROSE: Building Network Header.\n");
1107 
1108 	/* Build a ROSE Network header */
1109 	asmptr[0] = ((rose->lci >> 8) & 0x0F) | ROSE_GFI;
1110 	asmptr[1] = (rose->lci >> 0) & 0xFF;
1111 	asmptr[2] = ROSE_DATA;
1112 
1113 	if (qbit)
1114 		asmptr[0] |= ROSE_Q_BIT;
1115 
1116 	SOCK_DEBUG(sk, "ROSE: Built header.\n");
1117 
1118 	SOCK_DEBUG(sk, "ROSE: Transmitting buffer\n");
1119 
1120 	if (sk->sk_state != TCP_ESTABLISHED) {
1121 		kfree_skb(skb);
1122 		return -ENOTCONN;
1123 	}
1124 
1125 #ifdef M_BIT
1126 #define ROSE_PACLEN (256-ROSE_MIN_LEN)
1127 	if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) {
1128 		unsigned char header[ROSE_MIN_LEN];
1129 		struct sk_buff *skbn;
1130 		int frontlen;
1131 		int lg;
1132 
1133 		/* Save a copy of the Header */
1134 		memcpy(header, skb->data, ROSE_MIN_LEN);
1135 		skb_pull(skb, ROSE_MIN_LEN);
1136 
1137 		frontlen = skb_headroom(skb);
1138 
1139 		while (skb->len > 0) {
1140 			if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, &err)) == NULL) {
1141 				kfree_skb(skb);
1142 				return err;
1143 			}
1144 
1145 			skbn->sk   = sk;
1146 			skbn->free = 1;
1147 			skbn->arp  = 1;
1148 
1149 			skb_reserve(skbn, frontlen);
1150 
1151 			lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN;
1152 
1153 			/* Copy the user data */
1154 			memcpy(skb_put(skbn, lg), skb->data, lg);
1155 			skb_pull(skb, lg);
1156 
1157 			/* Duplicate the Header */
1158 			skb_push(skbn, ROSE_MIN_LEN);
1159 			memcpy(skbn->data, header, ROSE_MIN_LEN);
1160 
1161 			if (skb->len > 0)
1162 				skbn->data[2] |= M_BIT;
1163 
1164 			skb_queue_tail(&sk->sk_write_queue, skbn); /* Throw it on the queue */
1165 		}
1166 
1167 		skb->free = 1;
1168 		kfree_skb(skb);
1169 	} else {
1170 		skb_queue_tail(&sk->sk_write_queue, skb);		/* Throw it on the queue */
1171 	}
1172 #else
1173 	skb_queue_tail(&sk->sk_write_queue, skb);	/* Shove it onto the queue */
1174 #endif
1175 
1176 	rose_kick(sk);
1177 
1178 	return len;
1179 }
1180 
1181 
1182 static int rose_recvmsg(struct kiocb *iocb, struct socket *sock,
1183 			struct msghdr *msg, size_t size, int flags)
1184 {
1185 	struct sock *sk = sock->sk;
1186 	struct rose_sock *rose = rose_sk(sk);
1187 	struct sockaddr_rose *srose = (struct sockaddr_rose *)msg->msg_name;
1188 	size_t copied;
1189 	unsigned char *asmptr;
1190 	struct sk_buff *skb;
1191 	int n, er, qbit;
1192 
1193 	/*
1194 	 * This works for seqpacket too. The receiver has ordered the queue for
1195 	 * us! We do one quick check first though
1196 	 */
1197 	if (sk->sk_state != TCP_ESTABLISHED)
1198 		return -ENOTCONN;
1199 
1200 	/* Now we can treat all alike */
1201 	if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL)
1202 		return er;
1203 
1204 	qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT;
1205 
1206 	skb_pull(skb, ROSE_MIN_LEN);
1207 
1208 	if (rose->qbitincl) {
1209 		asmptr  = skb_push(skb, 1);
1210 		*asmptr = qbit;
1211 	}
1212 
1213 	skb->h.raw = skb->data;
1214 	copied     = skb->len;
1215 
1216 	if (copied > size) {
1217 		copied = size;
1218 		msg->msg_flags |= MSG_TRUNC;
1219 	}
1220 
1221 	skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1222 
1223 	if (srose != NULL) {
1224 		srose->srose_family = AF_ROSE;
1225 		srose->srose_addr   = rose->dest_addr;
1226 		srose->srose_call   = rose->dest_call;
1227 		srose->srose_ndigis = rose->dest_ndigis;
1228 		if (msg->msg_namelen >= sizeof(struct full_sockaddr_rose)) {
1229 			struct full_sockaddr_rose *full_srose = (struct full_sockaddr_rose *)msg->msg_name;
1230 			for (n = 0 ; n < rose->dest_ndigis ; n++)
1231 				full_srose->srose_digis[n] = rose->dest_digis[n];
1232 			msg->msg_namelen = sizeof(struct full_sockaddr_rose);
1233 		} else {
1234 			if (rose->dest_ndigis >= 1) {
1235 				srose->srose_ndigis = 1;
1236 				srose->srose_digi = rose->dest_digis[0];
1237 			}
1238 			msg->msg_namelen = sizeof(struct sockaddr_rose);
1239 		}
1240 	}
1241 
1242 	skb_free_datagram(sk, skb);
1243 
1244 	return copied;
1245 }
1246 
1247 
1248 static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1249 {
1250 	struct sock *sk = sock->sk;
1251 	struct rose_sock *rose = rose_sk(sk);
1252 	void __user *argp = (void __user *)arg;
1253 
1254 	switch (cmd) {
1255 	case TIOCOUTQ: {
1256 		long amount;
1257 		amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1258 		if (amount < 0)
1259 			amount = 0;
1260 		return put_user(amount, (unsigned int __user *) argp);
1261 	}
1262 
1263 	case TIOCINQ: {
1264 		struct sk_buff *skb;
1265 		long amount = 0L;
1266 		/* These two are safe on a single CPU system as only user tasks fiddle here */
1267 		if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1268 			amount = skb->len;
1269 		return put_user(amount, (unsigned int __user *) argp);
1270 	}
1271 
1272 	case SIOCGSTAMP:
1273 		return sock_get_timestamp(sk, (struct timeval __user *) argp);
1274 
1275 	case SIOCGIFADDR:
1276 	case SIOCSIFADDR:
1277 	case SIOCGIFDSTADDR:
1278 	case SIOCSIFDSTADDR:
1279 	case SIOCGIFBRDADDR:
1280 	case SIOCSIFBRDADDR:
1281 	case SIOCGIFNETMASK:
1282 	case SIOCSIFNETMASK:
1283 	case SIOCGIFMETRIC:
1284 	case SIOCSIFMETRIC:
1285 		return -EINVAL;
1286 
1287 	case SIOCADDRT:
1288 	case SIOCDELRT:
1289 	case SIOCRSCLRRT:
1290 		if (!capable(CAP_NET_ADMIN))
1291 			return -EPERM;
1292 		return rose_rt_ioctl(cmd, argp);
1293 
1294 	case SIOCRSGCAUSE: {
1295 		struct rose_cause_struct rose_cause;
1296 		rose_cause.cause      = rose->cause;
1297 		rose_cause.diagnostic = rose->diagnostic;
1298 		return copy_to_user(argp, &rose_cause, sizeof(struct rose_cause_struct)) ? -EFAULT : 0;
1299 	}
1300 
1301 	case SIOCRSSCAUSE: {
1302 		struct rose_cause_struct rose_cause;
1303 		if (copy_from_user(&rose_cause, argp, sizeof(struct rose_cause_struct)))
1304 			return -EFAULT;
1305 		rose->cause      = rose_cause.cause;
1306 		rose->diagnostic = rose_cause.diagnostic;
1307 		return 0;
1308 	}
1309 
1310 	case SIOCRSSL2CALL:
1311 		if (!capable(CAP_NET_ADMIN)) return -EPERM;
1312 		if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1313 			ax25_listen_release(&rose_callsign, NULL);
1314 		if (copy_from_user(&rose_callsign, argp, sizeof(ax25_address)))
1315 			return -EFAULT;
1316 		if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1317 			ax25_listen_register(&rose_callsign, NULL);
1318 		return 0;
1319 
1320 	case SIOCRSGL2CALL:
1321 		return copy_to_user(argp, &rose_callsign, sizeof(ax25_address)) ? -EFAULT : 0;
1322 
1323 	case SIOCRSACCEPT:
1324 		if (rose->state == ROSE_STATE_5) {
1325 			rose_write_internal(sk, ROSE_CALL_ACCEPTED);
1326 			rose_start_idletimer(sk);
1327 			rose->condition = 0x00;
1328 			rose->vs        = 0;
1329 			rose->va        = 0;
1330 			rose->vr        = 0;
1331 			rose->vl        = 0;
1332 			rose->state     = ROSE_STATE_3;
1333 		}
1334 		return 0;
1335 
1336 	default:
1337 		return -ENOIOCTLCMD;
1338 	}
1339 
1340 	return 0;
1341 }
1342 
1343 #ifdef CONFIG_PROC_FS
1344 static void *rose_info_start(struct seq_file *seq, loff_t *pos)
1345 {
1346 	int i;
1347 	struct sock *s;
1348 	struct hlist_node *node;
1349 
1350 	spin_lock_bh(&rose_list_lock);
1351 	if (*pos == 0)
1352 		return SEQ_START_TOKEN;
1353 
1354 	i = 1;
1355 	sk_for_each(s, node, &rose_list) {
1356 		if (i == *pos)
1357 			return s;
1358 		++i;
1359 	}
1360 	return NULL;
1361 }
1362 
1363 static void *rose_info_next(struct seq_file *seq, void *v, loff_t *pos)
1364 {
1365 	++*pos;
1366 
1367 	return (v == SEQ_START_TOKEN) ? sk_head(&rose_list)
1368 		: sk_next((struct sock *)v);
1369 }
1370 
1371 static void rose_info_stop(struct seq_file *seq, void *v)
1372 {
1373 	spin_unlock_bh(&rose_list_lock);
1374 }
1375 
1376 static int rose_info_show(struct seq_file *seq, void *v)
1377 {
1378 	char buf[11];
1379 
1380 	if (v == SEQ_START_TOKEN)
1381 		seq_puts(seq,
1382 			 "dest_addr  dest_call src_addr   src_call  dev   lci neigh st vs vr va   t  t1  t2  t3  hb    idle Snd-Q Rcv-Q inode\n");
1383 
1384 	else {
1385 		struct sock *s = v;
1386 		struct rose_sock *rose = rose_sk(s);
1387 		const char *devname, *callsign;
1388 		const struct net_device *dev = rose->device;
1389 
1390 		if (!dev)
1391 			devname = "???";
1392 		else
1393 			devname = dev->name;
1394 
1395 		seq_printf(seq, "%-10s %-9s ",
1396 			rose2asc(&rose->dest_addr),
1397 			ax2asc(buf, &rose->dest_call));
1398 
1399 		if (ax25cmp(&rose->source_call, &null_ax25_address) == 0)
1400 			callsign = "??????-?";
1401 		else
1402 			callsign = ax2asc(buf, &rose->source_call);
1403 
1404 		seq_printf(seq,
1405 			   "%-10s %-9s %-5s %3.3X %05d  %d  %d  %d  %d %3lu %3lu %3lu %3lu %3lu %3lu/%03lu %5d %5d %ld\n",
1406 			rose2asc(&rose->source_addr),
1407 			callsign,
1408 			devname,
1409 			rose->lci & 0x0FFF,
1410 			(rose->neighbour) ? rose->neighbour->number : 0,
1411 			rose->state,
1412 			rose->vs,
1413 			rose->vr,
1414 			rose->va,
1415 			ax25_display_timer(&rose->timer) / HZ,
1416 			rose->t1 / HZ,
1417 			rose->t2 / HZ,
1418 			rose->t3 / HZ,
1419 			rose->hb / HZ,
1420 			ax25_display_timer(&rose->idletimer) / (60 * HZ),
1421 			rose->idle / (60 * HZ),
1422 			atomic_read(&s->sk_wmem_alloc),
1423 			atomic_read(&s->sk_rmem_alloc),
1424 			s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
1425 	}
1426 
1427 	return 0;
1428 }
1429 
1430 static struct seq_operations rose_info_seqops = {
1431 	.start = rose_info_start,
1432 	.next = rose_info_next,
1433 	.stop = rose_info_stop,
1434 	.show = rose_info_show,
1435 };
1436 
1437 static int rose_info_open(struct inode *inode, struct file *file)
1438 {
1439 	return seq_open(file, &rose_info_seqops);
1440 }
1441 
1442 static struct file_operations rose_info_fops = {
1443 	.owner = THIS_MODULE,
1444 	.open = rose_info_open,
1445 	.read = seq_read,
1446 	.llseek = seq_lseek,
1447 	.release = seq_release,
1448 };
1449 #endif	/* CONFIG_PROC_FS */
1450 
1451 static struct net_proto_family rose_family_ops = {
1452 	.family		=	PF_ROSE,
1453 	.create		=	rose_create,
1454 	.owner		=	THIS_MODULE,
1455 };
1456 
1457 static struct proto_ops rose_proto_ops = {
1458 	.family		=	PF_ROSE,
1459 	.owner		=	THIS_MODULE,
1460 	.release	=	rose_release,
1461 	.bind		=	rose_bind,
1462 	.connect	=	rose_connect,
1463 	.socketpair	=	sock_no_socketpair,
1464 	.accept		=	rose_accept,
1465 	.getname	=	rose_getname,
1466 	.poll		=	datagram_poll,
1467 	.ioctl		=	rose_ioctl,
1468 	.listen		=	rose_listen,
1469 	.shutdown	=	sock_no_shutdown,
1470 	.setsockopt	=	rose_setsockopt,
1471 	.getsockopt	=	rose_getsockopt,
1472 	.sendmsg	=	rose_sendmsg,
1473 	.recvmsg	=	rose_recvmsg,
1474 	.mmap		=	sock_no_mmap,
1475 	.sendpage	=	sock_no_sendpage,
1476 };
1477 
1478 static struct notifier_block rose_dev_notifier = {
1479 	.notifier_call	=	rose_device_event,
1480 };
1481 
1482 static struct net_device **dev_rose;
1483 
1484 static int __init rose_proto_init(void)
1485 {
1486 	int i;
1487 	int rc;
1488 
1489 	if (rose_ndevs > 0x7FFFFFFF/sizeof(struct net_device *)) {
1490 		printk(KERN_ERR "ROSE: rose_proto_init - rose_ndevs parameter to large\n");
1491 		rc = -EINVAL;
1492 		goto out;
1493 	}
1494 
1495 	rc = proto_register(&rose_proto, 0);
1496 	if (rc != 0)
1497 		goto out;
1498 
1499 	rose_callsign = null_ax25_address;
1500 
1501 	dev_rose = kzalloc(rose_ndevs * sizeof(struct net_device *), GFP_KERNEL);
1502 	if (dev_rose == NULL) {
1503 		printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate device structure\n");
1504 		rc = -ENOMEM;
1505 		goto out_proto_unregister;
1506 	}
1507 
1508 	for (i = 0; i < rose_ndevs; i++) {
1509 		struct net_device *dev;
1510 		char name[IFNAMSIZ];
1511 
1512 		sprintf(name, "rose%d", i);
1513 		dev = alloc_netdev(sizeof(struct net_device_stats),
1514 				   name, rose_setup);
1515 		if (!dev) {
1516 			printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate memory\n");
1517 			rc = -ENOMEM;
1518 			goto fail;
1519 		}
1520 		rc = register_netdev(dev);
1521 		if (rc) {
1522 			printk(KERN_ERR "ROSE: netdevice registration failed\n");
1523 			free_netdev(dev);
1524 			goto fail;
1525 		}
1526 		lockdep_set_class(&dev->_xmit_lock, &rose_netdev_xmit_lock_key);
1527 		dev_rose[i] = dev;
1528 	}
1529 
1530 	sock_register(&rose_family_ops);
1531 	register_netdevice_notifier(&rose_dev_notifier);
1532 
1533 	ax25_protocol_register(AX25_P_ROSE, rose_route_frame);
1534 	ax25_linkfail_register(rose_link_failed);
1535 
1536 #ifdef CONFIG_SYSCTL
1537 	rose_register_sysctl();
1538 #endif
1539 	rose_loopback_init();
1540 
1541 	rose_add_loopback_neigh();
1542 
1543 	proc_net_fops_create("rose", S_IRUGO, &rose_info_fops);
1544 	proc_net_fops_create("rose_neigh", S_IRUGO, &rose_neigh_fops);
1545 	proc_net_fops_create("rose_nodes", S_IRUGO, &rose_nodes_fops);
1546 	proc_net_fops_create("rose_routes", S_IRUGO, &rose_routes_fops);
1547 out:
1548 	return rc;
1549 fail:
1550 	while (--i >= 0) {
1551 		unregister_netdev(dev_rose[i]);
1552 		free_netdev(dev_rose[i]);
1553 	}
1554 	kfree(dev_rose);
1555 out_proto_unregister:
1556 	proto_unregister(&rose_proto);
1557 	goto out;
1558 }
1559 module_init(rose_proto_init);
1560 
1561 module_param(rose_ndevs, int, 0);
1562 MODULE_PARM_DESC(rose_ndevs, "number of ROSE devices");
1563 
1564 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
1565 MODULE_DESCRIPTION("The amateur radio ROSE network layer protocol");
1566 MODULE_LICENSE("GPL");
1567 MODULE_ALIAS_NETPROTO(PF_ROSE);
1568 
1569 static void __exit rose_exit(void)
1570 {
1571 	int i;
1572 
1573 	proc_net_remove("rose");
1574 	proc_net_remove("rose_neigh");
1575 	proc_net_remove("rose_nodes");
1576 	proc_net_remove("rose_routes");
1577 	rose_loopback_clear();
1578 
1579 	rose_rt_free();
1580 
1581 	ax25_protocol_release(AX25_P_ROSE);
1582 	ax25_linkfail_release(rose_link_failed);
1583 
1584 	if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1585 		ax25_listen_release(&rose_callsign, NULL);
1586 
1587 #ifdef CONFIG_SYSCTL
1588 	rose_unregister_sysctl();
1589 #endif
1590 	unregister_netdevice_notifier(&rose_dev_notifier);
1591 
1592 	sock_unregister(PF_ROSE);
1593 
1594 	for (i = 0; i < rose_ndevs; i++) {
1595 		struct net_device *dev = dev_rose[i];
1596 
1597 		if (dev) {
1598 			unregister_netdev(dev);
1599 			free_netdev(dev);
1600 		}
1601 	}
1602 
1603 	kfree(dev_rose);
1604 	proto_unregister(&rose_proto);
1605 }
1606 
1607 module_exit(rose_exit);
1608