1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk) 5 * Copyright (C) Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk) 6 * Copyright (C) Terry Dawson VK2KTJ (terry@animats.net) 7 * Copyright (C) Tomi Manninen OH2BNS (oh2bns@sral.fi) 8 */ 9 10 #include <linux/capability.h> 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/init.h> 14 #include <linux/errno.h> 15 #include <linux/types.h> 16 #include <linux/socket.h> 17 #include <linux/in.h> 18 #include <linux/slab.h> 19 #include <linux/kernel.h> 20 #include <linux/sched/signal.h> 21 #include <linux/spinlock.h> 22 #include <linux/timer.h> 23 #include <linux/string.h> 24 #include <linux/sockios.h> 25 #include <linux/net.h> 26 #include <linux/stat.h> 27 #include <net/net_namespace.h> 28 #include <net/ax25.h> 29 #include <linux/inet.h> 30 #include <linux/netdevice.h> 31 #include <linux/if_arp.h> 32 #include <linux/skbuff.h> 33 #include <net/sock.h> 34 #include <linux/uaccess.h> 35 #include <linux/fcntl.h> 36 #include <linux/termios.h> 37 #include <linux/mm.h> 38 #include <linux/interrupt.h> 39 #include <linux/notifier.h> 40 #include <net/rose.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 #include <net/tcp_states.h> 44 #include <net/ip.h> 45 #include <net/arp.h> 46 47 static int rose_ndevs = 10; 48 49 int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0; 50 int sysctl_rose_call_request_timeout = ROSE_DEFAULT_T1; 51 int sysctl_rose_reset_request_timeout = ROSE_DEFAULT_T2; 52 int sysctl_rose_clear_request_timeout = ROSE_DEFAULT_T3; 53 int sysctl_rose_no_activity_timeout = ROSE_DEFAULT_IDLE; 54 int sysctl_rose_ack_hold_back_timeout = ROSE_DEFAULT_HB; 55 int sysctl_rose_routing_control = ROSE_DEFAULT_ROUTING; 56 int sysctl_rose_link_fail_timeout = ROSE_DEFAULT_FAIL_TIMEOUT; 57 int sysctl_rose_maximum_vcs = ROSE_DEFAULT_MAXVC; 58 int sysctl_rose_window_size = ROSE_DEFAULT_WINDOW_SIZE; 59 60 static HLIST_HEAD(rose_list); 61 static DEFINE_SPINLOCK(rose_list_lock); 62 63 static const struct proto_ops rose_proto_ops; 64 65 ax25_address rose_callsign; 66 67 /* 68 * ROSE network devices are virtual network devices encapsulating ROSE 69 * frames into AX.25 which will be sent through an AX.25 device, so form a 70 * special "super class" of normal net devices; split their locks off into a 71 * separate class since they always nest. 72 */ 73 static struct lock_class_key rose_netdev_xmit_lock_key; 74 static struct lock_class_key rose_netdev_addr_lock_key; 75 76 static void rose_set_lockdep_one(struct net_device *dev, 77 struct netdev_queue *txq, 78 void *_unused) 79 { 80 lockdep_set_class(&txq->_xmit_lock, &rose_netdev_xmit_lock_key); 81 } 82 83 static void rose_set_lockdep_key(struct net_device *dev) 84 { 85 lockdep_set_class(&dev->addr_list_lock, &rose_netdev_addr_lock_key); 86 netdev_for_each_tx_queue(dev, rose_set_lockdep_one, NULL); 87 } 88 89 /* 90 * Convert a ROSE address into text. 91 */ 92 char *rose2asc(char *buf, const rose_address *addr) 93 { 94 if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 && 95 addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 && 96 addr->rose_addr[4] == 0x00) { 97 strcpy(buf, "*"); 98 } else { 99 sprintf(buf, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF, 100 addr->rose_addr[1] & 0xFF, 101 addr->rose_addr[2] & 0xFF, 102 addr->rose_addr[3] & 0xFF, 103 addr->rose_addr[4] & 0xFF); 104 } 105 106 return buf; 107 } 108 109 /* 110 * Compare two ROSE addresses, 0 == equal. 111 */ 112 int rosecmp(const rose_address *addr1, const rose_address *addr2) 113 { 114 int i; 115 116 for (i = 0; i < 5; i++) 117 if (addr1->rose_addr[i] != addr2->rose_addr[i]) 118 return 1; 119 120 return 0; 121 } 122 123 /* 124 * Compare two ROSE addresses for only mask digits, 0 == equal. 125 */ 126 int rosecmpm(const rose_address *addr1, const rose_address *addr2, 127 unsigned short mask) 128 { 129 unsigned int i, j; 130 131 if (mask > 10) 132 return 1; 133 134 for (i = 0; i < mask; i++) { 135 j = i / 2; 136 137 if ((i % 2) != 0) { 138 if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F)) 139 return 1; 140 } else { 141 if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0)) 142 return 1; 143 } 144 } 145 146 return 0; 147 } 148 149 /* 150 * Socket removal during an interrupt is now safe. 151 */ 152 static void rose_remove_socket(struct sock *sk) 153 { 154 spin_lock_bh(&rose_list_lock); 155 sk_del_node_init(sk); 156 spin_unlock_bh(&rose_list_lock); 157 } 158 159 /* 160 * Kill all bound sockets on a broken link layer connection to a 161 * particular neighbour. 162 */ 163 void rose_kill_by_neigh(struct rose_neigh *neigh) 164 { 165 struct sock *s; 166 167 spin_lock_bh(&rose_list_lock); 168 sk_for_each(s, &rose_list) { 169 struct rose_sock *rose = rose_sk(s); 170 171 if (rose->neighbour == neigh) { 172 rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0); 173 rose->neighbour->use--; 174 rose->neighbour = NULL; 175 } 176 } 177 spin_unlock_bh(&rose_list_lock); 178 } 179 180 /* 181 * Kill all bound sockets on a dropped device. 182 */ 183 static void rose_kill_by_device(struct net_device *dev) 184 { 185 struct sock *s; 186 187 spin_lock_bh(&rose_list_lock); 188 sk_for_each(s, &rose_list) { 189 struct rose_sock *rose = rose_sk(s); 190 191 if (rose->device == dev) { 192 rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0); 193 if (rose->neighbour) 194 rose->neighbour->use--; 195 netdev_put(rose->device, &rose->dev_tracker); 196 rose->device = NULL; 197 } 198 } 199 spin_unlock_bh(&rose_list_lock); 200 } 201 202 /* 203 * Handle device status changes. 204 */ 205 static int rose_device_event(struct notifier_block *this, 206 unsigned long event, void *ptr) 207 { 208 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 209 210 if (!net_eq(dev_net(dev), &init_net)) 211 return NOTIFY_DONE; 212 213 if (event != NETDEV_DOWN) 214 return NOTIFY_DONE; 215 216 switch (dev->type) { 217 case ARPHRD_ROSE: 218 rose_kill_by_device(dev); 219 break; 220 case ARPHRD_AX25: 221 rose_link_device_down(dev); 222 rose_rt_device_down(dev); 223 break; 224 } 225 226 return NOTIFY_DONE; 227 } 228 229 /* 230 * Add a socket to the bound sockets list. 231 */ 232 static void rose_insert_socket(struct sock *sk) 233 { 234 235 spin_lock_bh(&rose_list_lock); 236 sk_add_node(sk, &rose_list); 237 spin_unlock_bh(&rose_list_lock); 238 } 239 240 /* 241 * Find a socket that wants to accept the Call Request we just 242 * received. 243 */ 244 static struct sock *rose_find_listener(rose_address *addr, ax25_address *call) 245 { 246 struct sock *s; 247 248 spin_lock_bh(&rose_list_lock); 249 sk_for_each(s, &rose_list) { 250 struct rose_sock *rose = rose_sk(s); 251 252 if (!rosecmp(&rose->source_addr, addr) && 253 !ax25cmp(&rose->source_call, call) && 254 !rose->source_ndigis && s->sk_state == TCP_LISTEN) 255 goto found; 256 } 257 258 sk_for_each(s, &rose_list) { 259 struct rose_sock *rose = rose_sk(s); 260 261 if (!rosecmp(&rose->source_addr, addr) && 262 !ax25cmp(&rose->source_call, &null_ax25_address) && 263 s->sk_state == TCP_LISTEN) 264 goto found; 265 } 266 s = NULL; 267 found: 268 spin_unlock_bh(&rose_list_lock); 269 return s; 270 } 271 272 /* 273 * Find a connected ROSE socket given my LCI and device. 274 */ 275 struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh) 276 { 277 struct sock *s; 278 279 spin_lock_bh(&rose_list_lock); 280 sk_for_each(s, &rose_list) { 281 struct rose_sock *rose = rose_sk(s); 282 283 if (rose->lci == lci && rose->neighbour == neigh) 284 goto found; 285 } 286 s = NULL; 287 found: 288 spin_unlock_bh(&rose_list_lock); 289 return s; 290 } 291 292 /* 293 * Find a unique LCI for a given device. 294 */ 295 unsigned int rose_new_lci(struct rose_neigh *neigh) 296 { 297 int lci; 298 299 if (neigh->dce_mode) { 300 for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++) 301 if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL) 302 return lci; 303 } else { 304 for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--) 305 if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL) 306 return lci; 307 } 308 309 return 0; 310 } 311 312 /* 313 * Deferred destroy. 314 */ 315 void rose_destroy_socket(struct sock *); 316 317 /* 318 * Handler for deferred kills. 319 */ 320 static void rose_destroy_timer(struct timer_list *t) 321 { 322 struct sock *sk = from_timer(sk, t, sk_timer); 323 324 rose_destroy_socket(sk); 325 } 326 327 /* 328 * This is called from user mode and the timers. Thus it protects itself 329 * against interrupt users but doesn't worry about being called during 330 * work. Once it is removed from the queue no interrupt or bottom half 331 * will touch it and we are (fairly 8-) ) safe. 332 */ 333 void rose_destroy_socket(struct sock *sk) 334 { 335 struct sk_buff *skb; 336 337 rose_remove_socket(sk); 338 rose_stop_heartbeat(sk); 339 rose_stop_idletimer(sk); 340 rose_stop_timer(sk); 341 342 rose_clear_queues(sk); /* Flush the queues */ 343 344 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 345 if (skb->sk != sk) { /* A pending connection */ 346 /* Queue the unaccepted socket for death */ 347 sock_set_flag(skb->sk, SOCK_DEAD); 348 rose_start_heartbeat(skb->sk); 349 rose_sk(skb->sk)->state = ROSE_STATE_0; 350 } 351 352 kfree_skb(skb); 353 } 354 355 if (sk_has_allocations(sk)) { 356 /* Defer: outstanding buffers */ 357 timer_setup(&sk->sk_timer, rose_destroy_timer, 0); 358 sk->sk_timer.expires = jiffies + 10 * HZ; 359 add_timer(&sk->sk_timer); 360 } else 361 sock_put(sk); 362 } 363 364 /* 365 * Handling for system calls applied via the various interfaces to a 366 * ROSE socket object. 367 */ 368 369 static int rose_setsockopt(struct socket *sock, int level, int optname, 370 sockptr_t optval, unsigned int optlen) 371 { 372 struct sock *sk = sock->sk; 373 struct rose_sock *rose = rose_sk(sk); 374 int opt; 375 376 if (level != SOL_ROSE) 377 return -ENOPROTOOPT; 378 379 if (optlen < sizeof(int)) 380 return -EINVAL; 381 382 if (copy_from_sockptr(&opt, optval, sizeof(int))) 383 return -EFAULT; 384 385 switch (optname) { 386 case ROSE_DEFER: 387 rose->defer = opt ? 1 : 0; 388 return 0; 389 390 case ROSE_T1: 391 if (opt < 1) 392 return -EINVAL; 393 rose->t1 = opt * HZ; 394 return 0; 395 396 case ROSE_T2: 397 if (opt < 1) 398 return -EINVAL; 399 rose->t2 = opt * HZ; 400 return 0; 401 402 case ROSE_T3: 403 if (opt < 1) 404 return -EINVAL; 405 rose->t3 = opt * HZ; 406 return 0; 407 408 case ROSE_HOLDBACK: 409 if (opt < 1) 410 return -EINVAL; 411 rose->hb = opt * HZ; 412 return 0; 413 414 case ROSE_IDLE: 415 if (opt < 0) 416 return -EINVAL; 417 rose->idle = opt * 60 * HZ; 418 return 0; 419 420 case ROSE_QBITINCL: 421 rose->qbitincl = opt ? 1 : 0; 422 return 0; 423 424 default: 425 return -ENOPROTOOPT; 426 } 427 } 428 429 static int rose_getsockopt(struct socket *sock, int level, int optname, 430 char __user *optval, int __user *optlen) 431 { 432 struct sock *sk = sock->sk; 433 struct rose_sock *rose = rose_sk(sk); 434 int val = 0; 435 int len; 436 437 if (level != SOL_ROSE) 438 return -ENOPROTOOPT; 439 440 if (get_user(len, optlen)) 441 return -EFAULT; 442 443 if (len < 0) 444 return -EINVAL; 445 446 switch (optname) { 447 case ROSE_DEFER: 448 val = rose->defer; 449 break; 450 451 case ROSE_T1: 452 val = rose->t1 / HZ; 453 break; 454 455 case ROSE_T2: 456 val = rose->t2 / HZ; 457 break; 458 459 case ROSE_T3: 460 val = rose->t3 / HZ; 461 break; 462 463 case ROSE_HOLDBACK: 464 val = rose->hb / HZ; 465 break; 466 467 case ROSE_IDLE: 468 val = rose->idle / (60 * HZ); 469 break; 470 471 case ROSE_QBITINCL: 472 val = rose->qbitincl; 473 break; 474 475 default: 476 return -ENOPROTOOPT; 477 } 478 479 len = min_t(unsigned int, len, sizeof(int)); 480 481 if (put_user(len, optlen)) 482 return -EFAULT; 483 484 return copy_to_user(optval, &val, len) ? -EFAULT : 0; 485 } 486 487 static int rose_listen(struct socket *sock, int backlog) 488 { 489 struct sock *sk = sock->sk; 490 491 lock_sock(sk); 492 if (sock->state != SS_UNCONNECTED) { 493 release_sock(sk); 494 return -EINVAL; 495 } 496 497 if (sk->sk_state != TCP_LISTEN) { 498 struct rose_sock *rose = rose_sk(sk); 499 500 rose->dest_ndigis = 0; 501 memset(&rose->dest_addr, 0, ROSE_ADDR_LEN); 502 memset(&rose->dest_call, 0, AX25_ADDR_LEN); 503 memset(rose->dest_digis, 0, AX25_ADDR_LEN * ROSE_MAX_DIGIS); 504 sk->sk_max_ack_backlog = backlog; 505 sk->sk_state = TCP_LISTEN; 506 release_sock(sk); 507 return 0; 508 } 509 release_sock(sk); 510 511 return -EOPNOTSUPP; 512 } 513 514 static struct proto rose_proto = { 515 .name = "ROSE", 516 .owner = THIS_MODULE, 517 .obj_size = sizeof(struct rose_sock), 518 }; 519 520 static int rose_create(struct net *net, struct socket *sock, int protocol, 521 int kern) 522 { 523 struct sock *sk; 524 struct rose_sock *rose; 525 526 if (!net_eq(net, &init_net)) 527 return -EAFNOSUPPORT; 528 529 if (sock->type != SOCK_SEQPACKET || protocol != 0) 530 return -ESOCKTNOSUPPORT; 531 532 sk = sk_alloc(net, PF_ROSE, GFP_ATOMIC, &rose_proto, kern); 533 if (sk == NULL) 534 return -ENOMEM; 535 536 rose = rose_sk(sk); 537 538 sock_init_data(sock, sk); 539 540 skb_queue_head_init(&rose->ack_queue); 541 #ifdef M_BIT 542 skb_queue_head_init(&rose->frag_queue); 543 rose->fraglen = 0; 544 #endif 545 546 sock->ops = &rose_proto_ops; 547 sk->sk_protocol = protocol; 548 549 timer_setup(&rose->timer, NULL, 0); 550 timer_setup(&rose->idletimer, NULL, 0); 551 552 rose->t1 = msecs_to_jiffies(sysctl_rose_call_request_timeout); 553 rose->t2 = msecs_to_jiffies(sysctl_rose_reset_request_timeout); 554 rose->t3 = msecs_to_jiffies(sysctl_rose_clear_request_timeout); 555 rose->hb = msecs_to_jiffies(sysctl_rose_ack_hold_back_timeout); 556 rose->idle = msecs_to_jiffies(sysctl_rose_no_activity_timeout); 557 558 rose->state = ROSE_STATE_0; 559 560 return 0; 561 } 562 563 static struct sock *rose_make_new(struct sock *osk) 564 { 565 struct sock *sk; 566 struct rose_sock *rose, *orose; 567 568 if (osk->sk_type != SOCK_SEQPACKET) 569 return NULL; 570 571 sk = sk_alloc(sock_net(osk), PF_ROSE, GFP_ATOMIC, &rose_proto, 0); 572 if (sk == NULL) 573 return NULL; 574 575 rose = rose_sk(sk); 576 577 sock_init_data(NULL, sk); 578 579 skb_queue_head_init(&rose->ack_queue); 580 #ifdef M_BIT 581 skb_queue_head_init(&rose->frag_queue); 582 rose->fraglen = 0; 583 #endif 584 585 sk->sk_type = osk->sk_type; 586 sk->sk_priority = READ_ONCE(osk->sk_priority); 587 sk->sk_protocol = osk->sk_protocol; 588 sk->sk_rcvbuf = osk->sk_rcvbuf; 589 sk->sk_sndbuf = osk->sk_sndbuf; 590 sk->sk_state = TCP_ESTABLISHED; 591 sock_copy_flags(sk, osk); 592 593 timer_setup(&rose->timer, NULL, 0); 594 timer_setup(&rose->idletimer, NULL, 0); 595 596 orose = rose_sk(osk); 597 rose->t1 = orose->t1; 598 rose->t2 = orose->t2; 599 rose->t3 = orose->t3; 600 rose->hb = orose->hb; 601 rose->idle = orose->idle; 602 rose->defer = orose->defer; 603 rose->device = orose->device; 604 if (rose->device) 605 netdev_hold(rose->device, &rose->dev_tracker, GFP_ATOMIC); 606 rose->qbitincl = orose->qbitincl; 607 608 return sk; 609 } 610 611 static int rose_release(struct socket *sock) 612 { 613 struct sock *sk = sock->sk; 614 struct rose_sock *rose; 615 616 if (sk == NULL) return 0; 617 618 sock_hold(sk); 619 sock_orphan(sk); 620 lock_sock(sk); 621 rose = rose_sk(sk); 622 623 switch (rose->state) { 624 case ROSE_STATE_0: 625 release_sock(sk); 626 rose_disconnect(sk, 0, -1, -1); 627 lock_sock(sk); 628 rose_destroy_socket(sk); 629 break; 630 631 case ROSE_STATE_2: 632 rose->neighbour->use--; 633 release_sock(sk); 634 rose_disconnect(sk, 0, -1, -1); 635 lock_sock(sk); 636 rose_destroy_socket(sk); 637 break; 638 639 case ROSE_STATE_1: 640 case ROSE_STATE_3: 641 case ROSE_STATE_4: 642 case ROSE_STATE_5: 643 rose_clear_queues(sk); 644 rose_stop_idletimer(sk); 645 rose_write_internal(sk, ROSE_CLEAR_REQUEST); 646 rose_start_t3timer(sk); 647 rose->state = ROSE_STATE_2; 648 sk->sk_state = TCP_CLOSE; 649 sk->sk_shutdown |= SEND_SHUTDOWN; 650 sk->sk_state_change(sk); 651 sock_set_flag(sk, SOCK_DEAD); 652 sock_set_flag(sk, SOCK_DESTROY); 653 break; 654 655 default: 656 break; 657 } 658 659 netdev_put(rose->device, &rose->dev_tracker); 660 sock->sk = NULL; 661 release_sock(sk); 662 sock_put(sk); 663 664 return 0; 665 } 666 667 static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 668 { 669 struct sock *sk = sock->sk; 670 struct rose_sock *rose = rose_sk(sk); 671 struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr; 672 struct net_device *dev; 673 ax25_address *source; 674 ax25_uid_assoc *user; 675 int n; 676 677 if (!sock_flag(sk, SOCK_ZAPPED)) 678 return -EINVAL; 679 680 if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose)) 681 return -EINVAL; 682 683 if (addr->srose_family != AF_ROSE) 684 return -EINVAL; 685 686 if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1) 687 return -EINVAL; 688 689 if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS) 690 return -EINVAL; 691 692 if ((dev = rose_dev_get(&addr->srose_addr)) == NULL) 693 return -EADDRNOTAVAIL; 694 695 source = &addr->srose_call; 696 697 user = ax25_findbyuid(current_euid()); 698 if (user) { 699 rose->source_call = user->call; 700 ax25_uid_put(user); 701 } else { 702 if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) { 703 dev_put(dev); 704 return -EACCES; 705 } 706 rose->source_call = *source; 707 } 708 709 rose->source_addr = addr->srose_addr; 710 rose->device = dev; 711 netdev_tracker_alloc(rose->device, &rose->dev_tracker, GFP_KERNEL); 712 rose->source_ndigis = addr->srose_ndigis; 713 714 if (addr_len == sizeof(struct full_sockaddr_rose)) { 715 struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr; 716 for (n = 0 ; n < addr->srose_ndigis ; n++) 717 rose->source_digis[n] = full_addr->srose_digis[n]; 718 } else { 719 if (rose->source_ndigis == 1) { 720 rose->source_digis[0] = addr->srose_digi; 721 } 722 } 723 724 rose_insert_socket(sk); 725 726 sock_reset_flag(sk, SOCK_ZAPPED); 727 728 return 0; 729 } 730 731 static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) 732 { 733 struct sock *sk = sock->sk; 734 struct rose_sock *rose = rose_sk(sk); 735 struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr; 736 unsigned char cause, diagnostic; 737 ax25_uid_assoc *user; 738 int n, err = 0; 739 740 if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose)) 741 return -EINVAL; 742 743 if (addr->srose_family != AF_ROSE) 744 return -EINVAL; 745 746 if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1) 747 return -EINVAL; 748 749 if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS) 750 return -EINVAL; 751 752 /* Source + Destination digis should not exceed ROSE_MAX_DIGIS */ 753 if ((rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS) 754 return -EINVAL; 755 756 lock_sock(sk); 757 758 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { 759 /* Connect completed during a ERESTARTSYS event */ 760 sock->state = SS_CONNECTED; 761 goto out_release; 762 } 763 764 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) { 765 sock->state = SS_UNCONNECTED; 766 err = -ECONNREFUSED; 767 goto out_release; 768 } 769 770 if (sk->sk_state == TCP_ESTABLISHED) { 771 /* No reconnect on a seqpacket socket */ 772 err = -EISCONN; 773 goto out_release; 774 } 775 776 sk->sk_state = TCP_CLOSE; 777 sock->state = SS_UNCONNECTED; 778 779 rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause, 780 &diagnostic, 0); 781 if (!rose->neighbour) { 782 err = -ENETUNREACH; 783 goto out_release; 784 } 785 786 rose->lci = rose_new_lci(rose->neighbour); 787 if (!rose->lci) { 788 err = -ENETUNREACH; 789 goto out_release; 790 } 791 792 if (sock_flag(sk, SOCK_ZAPPED)) { /* Must bind first - autobinding in this may or may not work */ 793 struct net_device *dev; 794 795 sock_reset_flag(sk, SOCK_ZAPPED); 796 797 dev = rose_dev_first(); 798 if (!dev) { 799 err = -ENETUNREACH; 800 goto out_release; 801 } 802 803 user = ax25_findbyuid(current_euid()); 804 if (!user) { 805 err = -EINVAL; 806 dev_put(dev); 807 goto out_release; 808 } 809 810 memcpy(&rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN); 811 rose->source_call = user->call; 812 rose->device = dev; 813 netdev_tracker_alloc(rose->device, &rose->dev_tracker, 814 GFP_KERNEL); 815 ax25_uid_put(user); 816 817 rose_insert_socket(sk); /* Finish the bind */ 818 } 819 rose->dest_addr = addr->srose_addr; 820 rose->dest_call = addr->srose_call; 821 rose->rand = ((long)rose & 0xFFFF) + rose->lci; 822 rose->dest_ndigis = addr->srose_ndigis; 823 824 if (addr_len == sizeof(struct full_sockaddr_rose)) { 825 struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr; 826 for (n = 0 ; n < addr->srose_ndigis ; n++) 827 rose->dest_digis[n] = full_addr->srose_digis[n]; 828 } else { 829 if (rose->dest_ndigis == 1) { 830 rose->dest_digis[0] = addr->srose_digi; 831 } 832 } 833 834 /* Move to connecting socket, start sending Connect Requests */ 835 sock->state = SS_CONNECTING; 836 sk->sk_state = TCP_SYN_SENT; 837 838 rose->state = ROSE_STATE_1; 839 840 rose->neighbour->use++; 841 842 rose_write_internal(sk, ROSE_CALL_REQUEST); 843 rose_start_heartbeat(sk); 844 rose_start_t1timer(sk); 845 846 /* Now the loop */ 847 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) { 848 err = -EINPROGRESS; 849 goto out_release; 850 } 851 852 /* 853 * A Connect Ack with Choke or timeout or failed routing will go to 854 * closed. 855 */ 856 if (sk->sk_state == TCP_SYN_SENT) { 857 DEFINE_WAIT(wait); 858 859 for (;;) { 860 prepare_to_wait(sk_sleep(sk), &wait, 861 TASK_INTERRUPTIBLE); 862 if (sk->sk_state != TCP_SYN_SENT) 863 break; 864 if (!signal_pending(current)) { 865 release_sock(sk); 866 schedule(); 867 lock_sock(sk); 868 continue; 869 } 870 err = -ERESTARTSYS; 871 break; 872 } 873 finish_wait(sk_sleep(sk), &wait); 874 875 if (err) 876 goto out_release; 877 } 878 879 if (sk->sk_state != TCP_ESTABLISHED) { 880 sock->state = SS_UNCONNECTED; 881 err = sock_error(sk); /* Always set at this point */ 882 goto out_release; 883 } 884 885 sock->state = SS_CONNECTED; 886 887 out_release: 888 release_sock(sk); 889 890 return err; 891 } 892 893 static int rose_accept(struct socket *sock, struct socket *newsock, int flags, 894 bool kern) 895 { 896 struct sk_buff *skb; 897 struct sock *newsk; 898 DEFINE_WAIT(wait); 899 struct sock *sk; 900 int err = 0; 901 902 if ((sk = sock->sk) == NULL) 903 return -EINVAL; 904 905 lock_sock(sk); 906 if (sk->sk_type != SOCK_SEQPACKET) { 907 err = -EOPNOTSUPP; 908 goto out_release; 909 } 910 911 if (sk->sk_state != TCP_LISTEN) { 912 err = -EINVAL; 913 goto out_release; 914 } 915 916 /* 917 * The write queue this time is holding sockets ready to use 918 * hooked into the SABM we saved 919 */ 920 for (;;) { 921 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 922 923 skb = skb_dequeue(&sk->sk_receive_queue); 924 if (skb) 925 break; 926 927 if (flags & O_NONBLOCK) { 928 err = -EWOULDBLOCK; 929 break; 930 } 931 if (!signal_pending(current)) { 932 release_sock(sk); 933 schedule(); 934 lock_sock(sk); 935 continue; 936 } 937 err = -ERESTARTSYS; 938 break; 939 } 940 finish_wait(sk_sleep(sk), &wait); 941 if (err) 942 goto out_release; 943 944 newsk = skb->sk; 945 sock_graft(newsk, newsock); 946 947 /* Now attach up the new socket */ 948 skb->sk = NULL; 949 kfree_skb(skb); 950 sk_acceptq_removed(sk); 951 952 out_release: 953 release_sock(sk); 954 955 return err; 956 } 957 958 static int rose_getname(struct socket *sock, struct sockaddr *uaddr, 959 int peer) 960 { 961 struct full_sockaddr_rose *srose = (struct full_sockaddr_rose *)uaddr; 962 struct sock *sk = sock->sk; 963 struct rose_sock *rose = rose_sk(sk); 964 int n; 965 966 memset(srose, 0, sizeof(*srose)); 967 if (peer != 0) { 968 if (sk->sk_state != TCP_ESTABLISHED) 969 return -ENOTCONN; 970 srose->srose_family = AF_ROSE; 971 srose->srose_addr = rose->dest_addr; 972 srose->srose_call = rose->dest_call; 973 srose->srose_ndigis = rose->dest_ndigis; 974 for (n = 0; n < rose->dest_ndigis; n++) 975 srose->srose_digis[n] = rose->dest_digis[n]; 976 } else { 977 srose->srose_family = AF_ROSE; 978 srose->srose_addr = rose->source_addr; 979 srose->srose_call = rose->source_call; 980 srose->srose_ndigis = rose->source_ndigis; 981 for (n = 0; n < rose->source_ndigis; n++) 982 srose->srose_digis[n] = rose->source_digis[n]; 983 } 984 985 return sizeof(struct full_sockaddr_rose); 986 } 987 988 int rose_rx_call_request(struct sk_buff *skb, struct net_device *dev, struct rose_neigh *neigh, unsigned int lci) 989 { 990 struct sock *sk; 991 struct sock *make; 992 struct rose_sock *make_rose; 993 struct rose_facilities_struct facilities; 994 int n; 995 996 skb->sk = NULL; /* Initially we don't know who it's for */ 997 998 /* 999 * skb->data points to the rose frame start 1000 */ 1001 memset(&facilities, 0x00, sizeof(struct rose_facilities_struct)); 1002 1003 if (!rose_parse_facilities(skb->data + ROSE_CALL_REQ_FACILITIES_OFF, 1004 skb->len - ROSE_CALL_REQ_FACILITIES_OFF, 1005 &facilities)) { 1006 rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76); 1007 return 0; 1008 } 1009 1010 sk = rose_find_listener(&facilities.source_addr, &facilities.source_call); 1011 1012 /* 1013 * We can't accept the Call Request. 1014 */ 1015 if (sk == NULL || sk_acceptq_is_full(sk) || 1016 (make = rose_make_new(sk)) == NULL) { 1017 rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120); 1018 return 0; 1019 } 1020 1021 skb->sk = make; 1022 make->sk_state = TCP_ESTABLISHED; 1023 make_rose = rose_sk(make); 1024 1025 make_rose->lci = lci; 1026 make_rose->dest_addr = facilities.dest_addr; 1027 make_rose->dest_call = facilities.dest_call; 1028 make_rose->dest_ndigis = facilities.dest_ndigis; 1029 for (n = 0 ; n < facilities.dest_ndigis ; n++) 1030 make_rose->dest_digis[n] = facilities.dest_digis[n]; 1031 make_rose->source_addr = facilities.source_addr; 1032 make_rose->source_call = facilities.source_call; 1033 make_rose->source_ndigis = facilities.source_ndigis; 1034 for (n = 0 ; n < facilities.source_ndigis ; n++) 1035 make_rose->source_digis[n] = facilities.source_digis[n]; 1036 make_rose->neighbour = neigh; 1037 make_rose->device = dev; 1038 /* Caller got a reference for us. */ 1039 netdev_tracker_alloc(make_rose->device, &make_rose->dev_tracker, 1040 GFP_ATOMIC); 1041 make_rose->facilities = facilities; 1042 1043 make_rose->neighbour->use++; 1044 1045 if (rose_sk(sk)->defer) { 1046 make_rose->state = ROSE_STATE_5; 1047 } else { 1048 rose_write_internal(make, ROSE_CALL_ACCEPTED); 1049 make_rose->state = ROSE_STATE_3; 1050 rose_start_idletimer(make); 1051 } 1052 1053 make_rose->condition = 0x00; 1054 make_rose->vs = 0; 1055 make_rose->va = 0; 1056 make_rose->vr = 0; 1057 make_rose->vl = 0; 1058 sk_acceptq_added(sk); 1059 1060 rose_insert_socket(make); 1061 1062 skb_queue_head(&sk->sk_receive_queue, skb); 1063 1064 rose_start_heartbeat(make); 1065 1066 if (!sock_flag(sk, SOCK_DEAD)) 1067 sk->sk_data_ready(sk); 1068 1069 return 1; 1070 } 1071 1072 static int rose_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 1073 { 1074 struct sock *sk = sock->sk; 1075 struct rose_sock *rose = rose_sk(sk); 1076 DECLARE_SOCKADDR(struct sockaddr_rose *, usrose, msg->msg_name); 1077 int err; 1078 struct full_sockaddr_rose srose; 1079 struct sk_buff *skb; 1080 unsigned char *asmptr; 1081 int n, size, qbit = 0; 1082 1083 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT)) 1084 return -EINVAL; 1085 1086 if (sock_flag(sk, SOCK_ZAPPED)) 1087 return -EADDRNOTAVAIL; 1088 1089 if (sk->sk_shutdown & SEND_SHUTDOWN) { 1090 send_sig(SIGPIPE, current, 0); 1091 return -EPIPE; 1092 } 1093 1094 if (rose->neighbour == NULL || rose->device == NULL) 1095 return -ENETUNREACH; 1096 1097 if (usrose != NULL) { 1098 if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose)) 1099 return -EINVAL; 1100 memset(&srose, 0, sizeof(struct full_sockaddr_rose)); 1101 memcpy(&srose, usrose, msg->msg_namelen); 1102 if (rosecmp(&rose->dest_addr, &srose.srose_addr) != 0 || 1103 ax25cmp(&rose->dest_call, &srose.srose_call) != 0) 1104 return -EISCONN; 1105 if (srose.srose_ndigis != rose->dest_ndigis) 1106 return -EISCONN; 1107 if (srose.srose_ndigis == rose->dest_ndigis) { 1108 for (n = 0 ; n < srose.srose_ndigis ; n++) 1109 if (ax25cmp(&rose->dest_digis[n], 1110 &srose.srose_digis[n])) 1111 return -EISCONN; 1112 } 1113 if (srose.srose_family != AF_ROSE) 1114 return -EINVAL; 1115 } else { 1116 if (sk->sk_state != TCP_ESTABLISHED) 1117 return -ENOTCONN; 1118 1119 srose.srose_family = AF_ROSE; 1120 srose.srose_addr = rose->dest_addr; 1121 srose.srose_call = rose->dest_call; 1122 srose.srose_ndigis = rose->dest_ndigis; 1123 for (n = 0 ; n < rose->dest_ndigis ; n++) 1124 srose.srose_digis[n] = rose->dest_digis[n]; 1125 } 1126 1127 /* Build a packet */ 1128 /* Sanity check the packet size */ 1129 if (len > 65535) 1130 return -EMSGSIZE; 1131 1132 size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN; 1133 1134 if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL) 1135 return err; 1136 1137 skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN); 1138 1139 /* 1140 * Put the data on the end 1141 */ 1142 1143 skb_reset_transport_header(skb); 1144 skb_put(skb, len); 1145 1146 err = memcpy_from_msg(skb_transport_header(skb), msg, len); 1147 if (err) { 1148 kfree_skb(skb); 1149 return err; 1150 } 1151 1152 /* 1153 * If the Q BIT Include socket option is in force, the first 1154 * byte of the user data is the logical value of the Q Bit. 1155 */ 1156 if (rose->qbitincl) { 1157 qbit = skb->data[0]; 1158 skb_pull(skb, 1); 1159 } 1160 1161 /* 1162 * Push down the ROSE header 1163 */ 1164 asmptr = skb_push(skb, ROSE_MIN_LEN); 1165 1166 /* Build a ROSE Network header */ 1167 asmptr[0] = ((rose->lci >> 8) & 0x0F) | ROSE_GFI; 1168 asmptr[1] = (rose->lci >> 0) & 0xFF; 1169 asmptr[2] = ROSE_DATA; 1170 1171 if (qbit) 1172 asmptr[0] |= ROSE_Q_BIT; 1173 1174 if (sk->sk_state != TCP_ESTABLISHED) { 1175 kfree_skb(skb); 1176 return -ENOTCONN; 1177 } 1178 1179 #ifdef M_BIT 1180 #define ROSE_PACLEN (256-ROSE_MIN_LEN) 1181 if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) { 1182 unsigned char header[ROSE_MIN_LEN]; 1183 struct sk_buff *skbn; 1184 int frontlen; 1185 int lg; 1186 1187 /* Save a copy of the Header */ 1188 skb_copy_from_linear_data(skb, header, ROSE_MIN_LEN); 1189 skb_pull(skb, ROSE_MIN_LEN); 1190 1191 frontlen = skb_headroom(skb); 1192 1193 while (skb->len > 0) { 1194 if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, &err)) == NULL) { 1195 kfree_skb(skb); 1196 return err; 1197 } 1198 1199 skbn->sk = sk; 1200 skbn->free = 1; 1201 skbn->arp = 1; 1202 1203 skb_reserve(skbn, frontlen); 1204 1205 lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN; 1206 1207 /* Copy the user data */ 1208 skb_copy_from_linear_data(skb, skb_put(skbn, lg), lg); 1209 skb_pull(skb, lg); 1210 1211 /* Duplicate the Header */ 1212 skb_push(skbn, ROSE_MIN_LEN); 1213 skb_copy_to_linear_data(skbn, header, ROSE_MIN_LEN); 1214 1215 if (skb->len > 0) 1216 skbn->data[2] |= M_BIT; 1217 1218 skb_queue_tail(&sk->sk_write_queue, skbn); /* Throw it on the queue */ 1219 } 1220 1221 skb->free = 1; 1222 kfree_skb(skb); 1223 } else { 1224 skb_queue_tail(&sk->sk_write_queue, skb); /* Throw it on the queue */ 1225 } 1226 #else 1227 skb_queue_tail(&sk->sk_write_queue, skb); /* Shove it onto the queue */ 1228 #endif 1229 1230 rose_kick(sk); 1231 1232 return len; 1233 } 1234 1235 1236 static int rose_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1237 int flags) 1238 { 1239 struct sock *sk = sock->sk; 1240 struct rose_sock *rose = rose_sk(sk); 1241 size_t copied; 1242 unsigned char *asmptr; 1243 struct sk_buff *skb; 1244 int n, er, qbit; 1245 1246 /* 1247 * This works for seqpacket too. The receiver has ordered the queue for 1248 * us! We do one quick check first though 1249 */ 1250 if (sk->sk_state != TCP_ESTABLISHED) 1251 return -ENOTCONN; 1252 1253 /* Now we can treat all alike */ 1254 skb = skb_recv_datagram(sk, flags, &er); 1255 if (!skb) 1256 return er; 1257 1258 qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT; 1259 1260 skb_pull(skb, ROSE_MIN_LEN); 1261 1262 if (rose->qbitincl) { 1263 asmptr = skb_push(skb, 1); 1264 *asmptr = qbit; 1265 } 1266 1267 skb_reset_transport_header(skb); 1268 copied = skb->len; 1269 1270 if (copied > size) { 1271 copied = size; 1272 msg->msg_flags |= MSG_TRUNC; 1273 } 1274 1275 skb_copy_datagram_msg(skb, 0, msg, copied); 1276 1277 if (msg->msg_name) { 1278 struct sockaddr_rose *srose; 1279 DECLARE_SOCKADDR(struct full_sockaddr_rose *, full_srose, 1280 msg->msg_name); 1281 1282 memset(msg->msg_name, 0, sizeof(struct full_sockaddr_rose)); 1283 srose = msg->msg_name; 1284 srose->srose_family = AF_ROSE; 1285 srose->srose_addr = rose->dest_addr; 1286 srose->srose_call = rose->dest_call; 1287 srose->srose_ndigis = rose->dest_ndigis; 1288 for (n = 0 ; n < rose->dest_ndigis ; n++) 1289 full_srose->srose_digis[n] = rose->dest_digis[n]; 1290 msg->msg_namelen = sizeof(struct full_sockaddr_rose); 1291 } 1292 1293 skb_free_datagram(sk, skb); 1294 1295 return copied; 1296 } 1297 1298 1299 static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1300 { 1301 struct sock *sk = sock->sk; 1302 struct rose_sock *rose = rose_sk(sk); 1303 void __user *argp = (void __user *)arg; 1304 1305 switch (cmd) { 1306 case TIOCOUTQ: { 1307 long amount; 1308 1309 amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 1310 if (amount < 0) 1311 amount = 0; 1312 return put_user(amount, (unsigned int __user *) argp); 1313 } 1314 1315 case TIOCINQ: { 1316 struct sk_buff *skb; 1317 long amount = 0L; 1318 /* These two are safe on a single CPU system as only user tasks fiddle here */ 1319 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) 1320 amount = skb->len; 1321 return put_user(amount, (unsigned int __user *) argp); 1322 } 1323 1324 case SIOCGIFADDR: 1325 case SIOCSIFADDR: 1326 case SIOCGIFDSTADDR: 1327 case SIOCSIFDSTADDR: 1328 case SIOCGIFBRDADDR: 1329 case SIOCSIFBRDADDR: 1330 case SIOCGIFNETMASK: 1331 case SIOCSIFNETMASK: 1332 case SIOCGIFMETRIC: 1333 case SIOCSIFMETRIC: 1334 return -EINVAL; 1335 1336 case SIOCADDRT: 1337 case SIOCDELRT: 1338 case SIOCRSCLRRT: 1339 if (!capable(CAP_NET_ADMIN)) 1340 return -EPERM; 1341 return rose_rt_ioctl(cmd, argp); 1342 1343 case SIOCRSGCAUSE: { 1344 struct rose_cause_struct rose_cause; 1345 rose_cause.cause = rose->cause; 1346 rose_cause.diagnostic = rose->diagnostic; 1347 return copy_to_user(argp, &rose_cause, sizeof(struct rose_cause_struct)) ? -EFAULT : 0; 1348 } 1349 1350 case SIOCRSSCAUSE: { 1351 struct rose_cause_struct rose_cause; 1352 if (copy_from_user(&rose_cause, argp, sizeof(struct rose_cause_struct))) 1353 return -EFAULT; 1354 rose->cause = rose_cause.cause; 1355 rose->diagnostic = rose_cause.diagnostic; 1356 return 0; 1357 } 1358 1359 case SIOCRSSL2CALL: 1360 if (!capable(CAP_NET_ADMIN)) return -EPERM; 1361 if (ax25cmp(&rose_callsign, &null_ax25_address) != 0) 1362 ax25_listen_release(&rose_callsign, NULL); 1363 if (copy_from_user(&rose_callsign, argp, sizeof(ax25_address))) 1364 return -EFAULT; 1365 if (ax25cmp(&rose_callsign, &null_ax25_address) != 0) 1366 return ax25_listen_register(&rose_callsign, NULL); 1367 1368 return 0; 1369 1370 case SIOCRSGL2CALL: 1371 return copy_to_user(argp, &rose_callsign, sizeof(ax25_address)) ? -EFAULT : 0; 1372 1373 case SIOCRSACCEPT: 1374 if (rose->state == ROSE_STATE_5) { 1375 rose_write_internal(sk, ROSE_CALL_ACCEPTED); 1376 rose_start_idletimer(sk); 1377 rose->condition = 0x00; 1378 rose->vs = 0; 1379 rose->va = 0; 1380 rose->vr = 0; 1381 rose->vl = 0; 1382 rose->state = ROSE_STATE_3; 1383 } 1384 return 0; 1385 1386 default: 1387 return -ENOIOCTLCMD; 1388 } 1389 1390 return 0; 1391 } 1392 1393 #ifdef CONFIG_PROC_FS 1394 static void *rose_info_start(struct seq_file *seq, loff_t *pos) 1395 __acquires(rose_list_lock) 1396 { 1397 spin_lock_bh(&rose_list_lock); 1398 return seq_hlist_start_head(&rose_list, *pos); 1399 } 1400 1401 static void *rose_info_next(struct seq_file *seq, void *v, loff_t *pos) 1402 { 1403 return seq_hlist_next(v, &rose_list, pos); 1404 } 1405 1406 static void rose_info_stop(struct seq_file *seq, void *v) 1407 __releases(rose_list_lock) 1408 { 1409 spin_unlock_bh(&rose_list_lock); 1410 } 1411 1412 static int rose_info_show(struct seq_file *seq, void *v) 1413 { 1414 char buf[11], rsbuf[11]; 1415 1416 if (v == SEQ_START_TOKEN) 1417 seq_puts(seq, 1418 "dest_addr dest_call src_addr src_call dev lci neigh st vs vr va t t1 t2 t3 hb idle Snd-Q Rcv-Q inode\n"); 1419 1420 else { 1421 struct sock *s = sk_entry(v); 1422 struct rose_sock *rose = rose_sk(s); 1423 const char *devname, *callsign; 1424 const struct net_device *dev = rose->device; 1425 1426 if (!dev) 1427 devname = "???"; 1428 else 1429 devname = dev->name; 1430 1431 seq_printf(seq, "%-10s %-9s ", 1432 rose2asc(rsbuf, &rose->dest_addr), 1433 ax2asc(buf, &rose->dest_call)); 1434 1435 if (ax25cmp(&rose->source_call, &null_ax25_address) == 0) 1436 callsign = "??????-?"; 1437 else 1438 callsign = ax2asc(buf, &rose->source_call); 1439 1440 seq_printf(seq, 1441 "%-10s %-9s %-5s %3.3X %05d %d %d %d %d %3lu %3lu %3lu %3lu %3lu %3lu/%03lu %5d %5d %ld\n", 1442 rose2asc(rsbuf, &rose->source_addr), 1443 callsign, 1444 devname, 1445 rose->lci & 0x0FFF, 1446 (rose->neighbour) ? rose->neighbour->number : 0, 1447 rose->state, 1448 rose->vs, 1449 rose->vr, 1450 rose->va, 1451 ax25_display_timer(&rose->timer) / HZ, 1452 rose->t1 / HZ, 1453 rose->t2 / HZ, 1454 rose->t3 / HZ, 1455 rose->hb / HZ, 1456 ax25_display_timer(&rose->idletimer) / (60 * HZ), 1457 rose->idle / (60 * HZ), 1458 sk_wmem_alloc_get(s), 1459 sk_rmem_alloc_get(s), 1460 s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L); 1461 } 1462 1463 return 0; 1464 } 1465 1466 static const struct seq_operations rose_info_seqops = { 1467 .start = rose_info_start, 1468 .next = rose_info_next, 1469 .stop = rose_info_stop, 1470 .show = rose_info_show, 1471 }; 1472 #endif /* CONFIG_PROC_FS */ 1473 1474 static const struct net_proto_family rose_family_ops = { 1475 .family = PF_ROSE, 1476 .create = rose_create, 1477 .owner = THIS_MODULE, 1478 }; 1479 1480 static const struct proto_ops rose_proto_ops = { 1481 .family = PF_ROSE, 1482 .owner = THIS_MODULE, 1483 .release = rose_release, 1484 .bind = rose_bind, 1485 .connect = rose_connect, 1486 .socketpair = sock_no_socketpair, 1487 .accept = rose_accept, 1488 .getname = rose_getname, 1489 .poll = datagram_poll, 1490 .ioctl = rose_ioctl, 1491 .gettstamp = sock_gettstamp, 1492 .listen = rose_listen, 1493 .shutdown = sock_no_shutdown, 1494 .setsockopt = rose_setsockopt, 1495 .getsockopt = rose_getsockopt, 1496 .sendmsg = rose_sendmsg, 1497 .recvmsg = rose_recvmsg, 1498 .mmap = sock_no_mmap, 1499 }; 1500 1501 static struct notifier_block rose_dev_notifier = { 1502 .notifier_call = rose_device_event, 1503 }; 1504 1505 static struct net_device **dev_rose; 1506 1507 static struct ax25_protocol rose_pid = { 1508 .pid = AX25_P_ROSE, 1509 .func = rose_route_frame 1510 }; 1511 1512 static struct ax25_linkfail rose_linkfail_notifier = { 1513 .func = rose_link_failed 1514 }; 1515 1516 static int __init rose_proto_init(void) 1517 { 1518 int i; 1519 int rc; 1520 1521 if (rose_ndevs > 0x7FFFFFFF/sizeof(struct net_device *)) { 1522 printk(KERN_ERR "ROSE: rose_proto_init - rose_ndevs parameter too large\n"); 1523 rc = -EINVAL; 1524 goto out; 1525 } 1526 1527 rc = proto_register(&rose_proto, 0); 1528 if (rc != 0) 1529 goto out; 1530 1531 rose_callsign = null_ax25_address; 1532 1533 dev_rose = kcalloc(rose_ndevs, sizeof(struct net_device *), 1534 GFP_KERNEL); 1535 if (dev_rose == NULL) { 1536 printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate device structure\n"); 1537 rc = -ENOMEM; 1538 goto out_proto_unregister; 1539 } 1540 1541 for (i = 0; i < rose_ndevs; i++) { 1542 struct net_device *dev; 1543 char name[IFNAMSIZ]; 1544 1545 sprintf(name, "rose%d", i); 1546 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, rose_setup); 1547 if (!dev) { 1548 printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate memory\n"); 1549 rc = -ENOMEM; 1550 goto fail; 1551 } 1552 rc = register_netdev(dev); 1553 if (rc) { 1554 printk(KERN_ERR "ROSE: netdevice registration failed\n"); 1555 free_netdev(dev); 1556 goto fail; 1557 } 1558 rose_set_lockdep_key(dev); 1559 dev_rose[i] = dev; 1560 } 1561 1562 sock_register(&rose_family_ops); 1563 register_netdevice_notifier(&rose_dev_notifier); 1564 1565 ax25_register_pid(&rose_pid); 1566 ax25_linkfail_register(&rose_linkfail_notifier); 1567 1568 #ifdef CONFIG_SYSCTL 1569 rose_register_sysctl(); 1570 #endif 1571 rose_loopback_init(); 1572 1573 rose_add_loopback_neigh(); 1574 1575 proc_create_seq("rose", 0444, init_net.proc_net, &rose_info_seqops); 1576 proc_create_seq("rose_neigh", 0444, init_net.proc_net, 1577 &rose_neigh_seqops); 1578 proc_create_seq("rose_nodes", 0444, init_net.proc_net, 1579 &rose_node_seqops); 1580 proc_create_seq("rose_routes", 0444, init_net.proc_net, 1581 &rose_route_seqops); 1582 out: 1583 return rc; 1584 fail: 1585 while (--i >= 0) { 1586 unregister_netdev(dev_rose[i]); 1587 free_netdev(dev_rose[i]); 1588 } 1589 kfree(dev_rose); 1590 out_proto_unregister: 1591 proto_unregister(&rose_proto); 1592 goto out; 1593 } 1594 module_init(rose_proto_init); 1595 1596 module_param(rose_ndevs, int, 0); 1597 MODULE_PARM_DESC(rose_ndevs, "number of ROSE devices"); 1598 1599 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>"); 1600 MODULE_DESCRIPTION("The amateur radio ROSE network layer protocol"); 1601 MODULE_LICENSE("GPL"); 1602 MODULE_ALIAS_NETPROTO(PF_ROSE); 1603 1604 static void __exit rose_exit(void) 1605 { 1606 int i; 1607 1608 remove_proc_entry("rose", init_net.proc_net); 1609 remove_proc_entry("rose_neigh", init_net.proc_net); 1610 remove_proc_entry("rose_nodes", init_net.proc_net); 1611 remove_proc_entry("rose_routes", init_net.proc_net); 1612 rose_loopback_clear(); 1613 1614 rose_rt_free(); 1615 1616 ax25_protocol_release(AX25_P_ROSE); 1617 ax25_linkfail_release(&rose_linkfail_notifier); 1618 1619 if (ax25cmp(&rose_callsign, &null_ax25_address) != 0) 1620 ax25_listen_release(&rose_callsign, NULL); 1621 1622 #ifdef CONFIG_SYSCTL 1623 rose_unregister_sysctl(); 1624 #endif 1625 unregister_netdevice_notifier(&rose_dev_notifier); 1626 1627 sock_unregister(PF_ROSE); 1628 1629 for (i = 0; i < rose_ndevs; i++) { 1630 struct net_device *dev = dev_rose[i]; 1631 1632 if (dev) { 1633 unregister_netdev(dev); 1634 free_netdev(dev); 1635 } 1636 } 1637 1638 kfree(dev_rose); 1639 proto_unregister(&rose_proto); 1640 } 1641 1642 module_exit(rose_exit); 1643