1 /* 2 * Copyright (C) 2006 - 2007 Ivo van Doorn 3 * Copyright (C) 2007 Dmitry Torokhov 4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the 18 * Free Software Foundation, Inc., 19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/init.h> 25 #include <linux/workqueue.h> 26 #include <linux/capability.h> 27 #include <linux/list.h> 28 #include <linux/mutex.h> 29 #include <linux/rfkill.h> 30 #include <linux/spinlock.h> 31 #include <linux/miscdevice.h> 32 #include <linux/wait.h> 33 #include <linux/poll.h> 34 #include <linux/fs.h> 35 36 #include "rfkill.h" 37 38 #define POLL_INTERVAL (5 * HZ) 39 40 #define RFKILL_BLOCK_HW BIT(0) 41 #define RFKILL_BLOCK_SW BIT(1) 42 #define RFKILL_BLOCK_SW_PREV BIT(2) 43 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\ 44 RFKILL_BLOCK_SW |\ 45 RFKILL_BLOCK_SW_PREV) 46 #define RFKILL_BLOCK_SW_SETCALL BIT(31) 47 48 struct rfkill { 49 spinlock_t lock; 50 51 const char *name; 52 enum rfkill_type type; 53 54 unsigned long state; 55 56 u32 idx; 57 58 bool registered; 59 bool suspended; 60 bool persistent; 61 62 const struct rfkill_ops *ops; 63 void *data; 64 65 #ifdef CONFIG_RFKILL_LEDS 66 struct led_trigger led_trigger; 67 const char *ledtrigname; 68 #endif 69 70 struct device dev; 71 struct list_head node; 72 73 struct delayed_work poll_work; 74 struct work_struct uevent_work; 75 struct work_struct sync_work; 76 }; 77 #define to_rfkill(d) container_of(d, struct rfkill, dev) 78 79 struct rfkill_int_event { 80 struct list_head list; 81 struct rfkill_event ev; 82 }; 83 84 struct rfkill_data { 85 struct list_head list; 86 struct list_head events; 87 struct mutex mtx; 88 wait_queue_head_t read_wait; 89 bool input_handler; 90 }; 91 92 93 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>"); 94 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); 95 MODULE_DESCRIPTION("RF switch support"); 96 MODULE_LICENSE("GPL"); 97 98 99 /* 100 * The locking here should be made much smarter, we currently have 101 * a bit of a stupid situation because drivers might want to register 102 * the rfkill struct under their own lock, and take this lock during 103 * rfkill method calls -- which will cause an AB-BA deadlock situation. 104 * 105 * To fix that, we need to rework this code here to be mostly lock-free 106 * and only use the mutex for list manipulations, not to protect the 107 * various other global variables. Then we can avoid holding the mutex 108 * around driver operations, and all is happy. 109 */ 110 static LIST_HEAD(rfkill_list); /* list of registered rf switches */ 111 static DEFINE_MUTEX(rfkill_global_mutex); 112 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */ 113 114 static unsigned int rfkill_default_state = 1; 115 module_param_named(default_state, rfkill_default_state, uint, 0444); 116 MODULE_PARM_DESC(default_state, 117 "Default initial state for all radio types, 0 = radio off"); 118 119 static struct { 120 bool cur, sav; 121 } rfkill_global_states[NUM_RFKILL_TYPES]; 122 123 static bool rfkill_epo_lock_active; 124 125 126 #ifdef CONFIG_RFKILL_LEDS 127 static void rfkill_led_trigger_event(struct rfkill *rfkill) 128 { 129 struct led_trigger *trigger; 130 131 if (!rfkill->registered) 132 return; 133 134 trigger = &rfkill->led_trigger; 135 136 if (rfkill->state & RFKILL_BLOCK_ANY) 137 led_trigger_event(trigger, LED_OFF); 138 else 139 led_trigger_event(trigger, LED_FULL); 140 } 141 142 static void rfkill_led_trigger_activate(struct led_classdev *led) 143 { 144 struct rfkill *rfkill; 145 146 rfkill = container_of(led->trigger, struct rfkill, led_trigger); 147 148 rfkill_led_trigger_event(rfkill); 149 } 150 151 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill) 152 { 153 return rfkill->led_trigger.name; 154 } 155 EXPORT_SYMBOL(rfkill_get_led_trigger_name); 156 157 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name) 158 { 159 BUG_ON(!rfkill); 160 161 rfkill->ledtrigname = name; 162 } 163 EXPORT_SYMBOL(rfkill_set_led_trigger_name); 164 165 static int rfkill_led_trigger_register(struct rfkill *rfkill) 166 { 167 rfkill->led_trigger.name = rfkill->ledtrigname 168 ? : dev_name(&rfkill->dev); 169 rfkill->led_trigger.activate = rfkill_led_trigger_activate; 170 return led_trigger_register(&rfkill->led_trigger); 171 } 172 173 static void rfkill_led_trigger_unregister(struct rfkill *rfkill) 174 { 175 led_trigger_unregister(&rfkill->led_trigger); 176 } 177 #else 178 static void rfkill_led_trigger_event(struct rfkill *rfkill) 179 { 180 } 181 182 static inline int rfkill_led_trigger_register(struct rfkill *rfkill) 183 { 184 return 0; 185 } 186 187 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill) 188 { 189 } 190 #endif /* CONFIG_RFKILL_LEDS */ 191 192 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill, 193 enum rfkill_operation op) 194 { 195 unsigned long flags; 196 197 ev->idx = rfkill->idx; 198 ev->type = rfkill->type; 199 ev->op = op; 200 201 spin_lock_irqsave(&rfkill->lock, flags); 202 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW); 203 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW | 204 RFKILL_BLOCK_SW_PREV)); 205 spin_unlock_irqrestore(&rfkill->lock, flags); 206 } 207 208 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op) 209 { 210 struct rfkill_data *data; 211 struct rfkill_int_event *ev; 212 213 list_for_each_entry(data, &rfkill_fds, list) { 214 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 215 if (!ev) 216 continue; 217 rfkill_fill_event(&ev->ev, rfkill, op); 218 mutex_lock(&data->mtx); 219 list_add_tail(&ev->list, &data->events); 220 mutex_unlock(&data->mtx); 221 wake_up_interruptible(&data->read_wait); 222 } 223 } 224 225 static void rfkill_event(struct rfkill *rfkill) 226 { 227 if (!rfkill->registered || rfkill->suspended) 228 return; 229 230 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE); 231 232 /* also send event to /dev/rfkill */ 233 rfkill_send_events(rfkill, RFKILL_OP_CHANGE); 234 } 235 236 static bool __rfkill_set_hw_state(struct rfkill *rfkill, 237 bool blocked, bool *change) 238 { 239 unsigned long flags; 240 bool prev, any; 241 242 BUG_ON(!rfkill); 243 244 spin_lock_irqsave(&rfkill->lock, flags); 245 prev = !!(rfkill->state & RFKILL_BLOCK_HW); 246 if (blocked) 247 rfkill->state |= RFKILL_BLOCK_HW; 248 else 249 rfkill->state &= ~RFKILL_BLOCK_HW; 250 *change = prev != blocked; 251 any = rfkill->state & RFKILL_BLOCK_ANY; 252 spin_unlock_irqrestore(&rfkill->lock, flags); 253 254 rfkill_led_trigger_event(rfkill); 255 256 return any; 257 } 258 259 /** 260 * rfkill_set_block - wrapper for set_block method 261 * 262 * @rfkill: the rfkill struct to use 263 * @blocked: the new software state 264 * 265 * Calls the set_block method (when applicable) and handles notifications 266 * etc. as well. 267 */ 268 static void rfkill_set_block(struct rfkill *rfkill, bool blocked) 269 { 270 unsigned long flags; 271 int err; 272 273 /* 274 * Some platforms (...!) generate input events which affect the 275 * _hard_ kill state -- whenever something tries to change the 276 * current software state query the hardware state too. 277 */ 278 if (rfkill->ops->query) 279 rfkill->ops->query(rfkill, rfkill->data); 280 281 spin_lock_irqsave(&rfkill->lock, flags); 282 if (rfkill->state & RFKILL_BLOCK_SW) 283 rfkill->state |= RFKILL_BLOCK_SW_PREV; 284 else 285 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 286 287 if (blocked) 288 rfkill->state |= RFKILL_BLOCK_SW; 289 else 290 rfkill->state &= ~RFKILL_BLOCK_SW; 291 292 rfkill->state |= RFKILL_BLOCK_SW_SETCALL; 293 spin_unlock_irqrestore(&rfkill->lock, flags); 294 295 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP)) 296 return; 297 298 err = rfkill->ops->set_block(rfkill->data, blocked); 299 300 spin_lock_irqsave(&rfkill->lock, flags); 301 if (err) { 302 /* 303 * Failed -- reset status to _prev, this may be different 304 * from what set set _PREV to earlier in this function 305 * if rfkill_set_sw_state was invoked. 306 */ 307 if (rfkill->state & RFKILL_BLOCK_SW_PREV) 308 rfkill->state |= RFKILL_BLOCK_SW; 309 else 310 rfkill->state &= ~RFKILL_BLOCK_SW; 311 } 312 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL; 313 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 314 spin_unlock_irqrestore(&rfkill->lock, flags); 315 316 rfkill_led_trigger_event(rfkill); 317 rfkill_event(rfkill); 318 } 319 320 #ifdef CONFIG_RFKILL_INPUT 321 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0); 322 323 /** 324 * __rfkill_switch_all - Toggle state of all switches of given type 325 * @type: type of interfaces to be affected 326 * @state: the new state 327 * 328 * This function sets the state of all switches of given type, 329 * unless a specific switch is claimed by userspace (in which case, 330 * that switch is left alone) or suspended. 331 * 332 * Caller must have acquired rfkill_global_mutex. 333 */ 334 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked) 335 { 336 struct rfkill *rfkill; 337 338 rfkill_global_states[type].cur = blocked; 339 list_for_each_entry(rfkill, &rfkill_list, node) { 340 if (rfkill->type != type) 341 continue; 342 343 rfkill_set_block(rfkill, blocked); 344 } 345 } 346 347 /** 348 * rfkill_switch_all - Toggle state of all switches of given type 349 * @type: type of interfaces to be affected 350 * @state: the new state 351 * 352 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state). 353 * Please refer to __rfkill_switch_all() for details. 354 * 355 * Does nothing if the EPO lock is active. 356 */ 357 void rfkill_switch_all(enum rfkill_type type, bool blocked) 358 { 359 if (atomic_read(&rfkill_input_disabled)) 360 return; 361 362 mutex_lock(&rfkill_global_mutex); 363 364 if (!rfkill_epo_lock_active) 365 __rfkill_switch_all(type, blocked); 366 367 mutex_unlock(&rfkill_global_mutex); 368 } 369 370 /** 371 * rfkill_epo - emergency power off all transmitters 372 * 373 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED, 374 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex. 375 * 376 * The global state before the EPO is saved and can be restored later 377 * using rfkill_restore_states(). 378 */ 379 void rfkill_epo(void) 380 { 381 struct rfkill *rfkill; 382 int i; 383 384 if (atomic_read(&rfkill_input_disabled)) 385 return; 386 387 mutex_lock(&rfkill_global_mutex); 388 389 rfkill_epo_lock_active = true; 390 list_for_each_entry(rfkill, &rfkill_list, node) 391 rfkill_set_block(rfkill, true); 392 393 for (i = 0; i < NUM_RFKILL_TYPES; i++) { 394 rfkill_global_states[i].sav = rfkill_global_states[i].cur; 395 rfkill_global_states[i].cur = true; 396 } 397 398 mutex_unlock(&rfkill_global_mutex); 399 } 400 401 /** 402 * rfkill_restore_states - restore global states 403 * 404 * Restore (and sync switches to) the global state from the 405 * states in rfkill_default_states. This can undo the effects of 406 * a call to rfkill_epo(). 407 */ 408 void rfkill_restore_states(void) 409 { 410 int i; 411 412 if (atomic_read(&rfkill_input_disabled)) 413 return; 414 415 mutex_lock(&rfkill_global_mutex); 416 417 rfkill_epo_lock_active = false; 418 for (i = 0; i < NUM_RFKILL_TYPES; i++) 419 __rfkill_switch_all(i, rfkill_global_states[i].sav); 420 mutex_unlock(&rfkill_global_mutex); 421 } 422 423 /** 424 * rfkill_remove_epo_lock - unlock state changes 425 * 426 * Used by rfkill-input manually unlock state changes, when 427 * the EPO switch is deactivated. 428 */ 429 void rfkill_remove_epo_lock(void) 430 { 431 if (atomic_read(&rfkill_input_disabled)) 432 return; 433 434 mutex_lock(&rfkill_global_mutex); 435 rfkill_epo_lock_active = false; 436 mutex_unlock(&rfkill_global_mutex); 437 } 438 439 /** 440 * rfkill_is_epo_lock_active - returns true EPO is active 441 * 442 * Returns 0 (false) if there is NOT an active EPO contidion, 443 * and 1 (true) if there is an active EPO contition, which 444 * locks all radios in one of the BLOCKED states. 445 * 446 * Can be called in atomic context. 447 */ 448 bool rfkill_is_epo_lock_active(void) 449 { 450 return rfkill_epo_lock_active; 451 } 452 453 /** 454 * rfkill_get_global_sw_state - returns global state for a type 455 * @type: the type to get the global state of 456 * 457 * Returns the current global state for a given wireless 458 * device type. 459 */ 460 bool rfkill_get_global_sw_state(const enum rfkill_type type) 461 { 462 return rfkill_global_states[type].cur; 463 } 464 #endif 465 466 467 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked) 468 { 469 bool ret, change; 470 471 ret = __rfkill_set_hw_state(rfkill, blocked, &change); 472 473 if (!rfkill->registered) 474 return ret; 475 476 if (change) 477 schedule_work(&rfkill->uevent_work); 478 479 return ret; 480 } 481 EXPORT_SYMBOL(rfkill_set_hw_state); 482 483 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 484 { 485 u32 bit = RFKILL_BLOCK_SW; 486 487 /* if in a ops->set_block right now, use other bit */ 488 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL) 489 bit = RFKILL_BLOCK_SW_PREV; 490 491 if (blocked) 492 rfkill->state |= bit; 493 else 494 rfkill->state &= ~bit; 495 } 496 497 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 498 { 499 unsigned long flags; 500 bool prev, hwblock; 501 502 BUG_ON(!rfkill); 503 504 spin_lock_irqsave(&rfkill->lock, flags); 505 prev = !!(rfkill->state & RFKILL_BLOCK_SW); 506 __rfkill_set_sw_state(rfkill, blocked); 507 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW); 508 blocked = blocked || hwblock; 509 spin_unlock_irqrestore(&rfkill->lock, flags); 510 511 if (!rfkill->registered) { 512 rfkill->persistent = true; 513 } else { 514 if (prev != blocked && !hwblock) 515 schedule_work(&rfkill->uevent_work); 516 517 rfkill_led_trigger_event(rfkill); 518 } 519 520 return blocked; 521 } 522 EXPORT_SYMBOL(rfkill_set_sw_state); 523 524 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw) 525 { 526 unsigned long flags; 527 bool swprev, hwprev; 528 529 BUG_ON(!rfkill); 530 531 spin_lock_irqsave(&rfkill->lock, flags); 532 533 /* 534 * No need to care about prev/setblock ... this is for uevent only 535 * and that will get triggered by rfkill_set_block anyway. 536 */ 537 swprev = !!(rfkill->state & RFKILL_BLOCK_SW); 538 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW); 539 __rfkill_set_sw_state(rfkill, sw); 540 541 spin_unlock_irqrestore(&rfkill->lock, flags); 542 543 if (!rfkill->registered) { 544 rfkill->persistent = true; 545 } else { 546 if (swprev != sw || hwprev != hw) 547 schedule_work(&rfkill->uevent_work); 548 549 rfkill_led_trigger_event(rfkill); 550 } 551 } 552 EXPORT_SYMBOL(rfkill_set_states); 553 554 static ssize_t rfkill_name_show(struct device *dev, 555 struct device_attribute *attr, 556 char *buf) 557 { 558 struct rfkill *rfkill = to_rfkill(dev); 559 560 return sprintf(buf, "%s\n", rfkill->name); 561 } 562 563 static const char *rfkill_get_type_str(enum rfkill_type type) 564 { 565 switch (type) { 566 case RFKILL_TYPE_WLAN: 567 return "wlan"; 568 case RFKILL_TYPE_BLUETOOTH: 569 return "bluetooth"; 570 case RFKILL_TYPE_UWB: 571 return "ultrawideband"; 572 case RFKILL_TYPE_WIMAX: 573 return "wimax"; 574 case RFKILL_TYPE_WWAN: 575 return "wwan"; 576 default: 577 BUG(); 578 } 579 580 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_WWAN + 1); 581 } 582 583 static ssize_t rfkill_type_show(struct device *dev, 584 struct device_attribute *attr, 585 char *buf) 586 { 587 struct rfkill *rfkill = to_rfkill(dev); 588 589 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type)); 590 } 591 592 static ssize_t rfkill_idx_show(struct device *dev, 593 struct device_attribute *attr, 594 char *buf) 595 { 596 struct rfkill *rfkill = to_rfkill(dev); 597 598 return sprintf(buf, "%d\n", rfkill->idx); 599 } 600 601 static u8 user_state_from_blocked(unsigned long state) 602 { 603 if (state & RFKILL_BLOCK_HW) 604 return RFKILL_USER_STATE_HARD_BLOCKED; 605 if (state & RFKILL_BLOCK_SW) 606 return RFKILL_USER_STATE_SOFT_BLOCKED; 607 608 return RFKILL_USER_STATE_UNBLOCKED; 609 } 610 611 static ssize_t rfkill_state_show(struct device *dev, 612 struct device_attribute *attr, 613 char *buf) 614 { 615 struct rfkill *rfkill = to_rfkill(dev); 616 unsigned long flags; 617 u32 state; 618 619 spin_lock_irqsave(&rfkill->lock, flags); 620 state = rfkill->state; 621 spin_unlock_irqrestore(&rfkill->lock, flags); 622 623 return sprintf(buf, "%d\n", user_state_from_blocked(state)); 624 } 625 626 static ssize_t rfkill_state_store(struct device *dev, 627 struct device_attribute *attr, 628 const char *buf, size_t count) 629 { 630 /* 631 * The intention was that userspace can only take control over 632 * a given device when/if rfkill-input doesn't control it due 633 * to user_claim. Since user_claim is currently unsupported, 634 * we never support changing the state from userspace -- this 635 * can be implemented again later. 636 */ 637 638 return -EPERM; 639 } 640 641 static ssize_t rfkill_claim_show(struct device *dev, 642 struct device_attribute *attr, 643 char *buf) 644 { 645 return sprintf(buf, "%d\n", 0); 646 } 647 648 static ssize_t rfkill_claim_store(struct device *dev, 649 struct device_attribute *attr, 650 const char *buf, size_t count) 651 { 652 return -EOPNOTSUPP; 653 } 654 655 static struct device_attribute rfkill_dev_attrs[] = { 656 __ATTR(name, S_IRUGO, rfkill_name_show, NULL), 657 __ATTR(type, S_IRUGO, rfkill_type_show, NULL), 658 __ATTR(index, S_IRUGO, rfkill_idx_show, NULL), 659 __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store), 660 __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store), 661 __ATTR_NULL 662 }; 663 664 static void rfkill_release(struct device *dev) 665 { 666 struct rfkill *rfkill = to_rfkill(dev); 667 668 kfree(rfkill); 669 } 670 671 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 672 { 673 struct rfkill *rfkill = to_rfkill(dev); 674 unsigned long flags; 675 u32 state; 676 int error; 677 678 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name); 679 if (error) 680 return error; 681 error = add_uevent_var(env, "RFKILL_TYPE=%s", 682 rfkill_get_type_str(rfkill->type)); 683 if (error) 684 return error; 685 spin_lock_irqsave(&rfkill->lock, flags); 686 state = rfkill->state; 687 spin_unlock_irqrestore(&rfkill->lock, flags); 688 error = add_uevent_var(env, "RFKILL_STATE=%d", 689 user_state_from_blocked(state)); 690 return error; 691 } 692 693 void rfkill_pause_polling(struct rfkill *rfkill) 694 { 695 BUG_ON(!rfkill); 696 697 if (!rfkill->ops->poll) 698 return; 699 700 cancel_delayed_work_sync(&rfkill->poll_work); 701 } 702 EXPORT_SYMBOL(rfkill_pause_polling); 703 704 void rfkill_resume_polling(struct rfkill *rfkill) 705 { 706 BUG_ON(!rfkill); 707 708 if (!rfkill->ops->poll) 709 return; 710 711 schedule_work(&rfkill->poll_work.work); 712 } 713 EXPORT_SYMBOL(rfkill_resume_polling); 714 715 static int rfkill_suspend(struct device *dev, pm_message_t state) 716 { 717 struct rfkill *rfkill = to_rfkill(dev); 718 719 rfkill_pause_polling(rfkill); 720 721 rfkill->suspended = true; 722 723 return 0; 724 } 725 726 static int rfkill_resume(struct device *dev) 727 { 728 struct rfkill *rfkill = to_rfkill(dev); 729 bool cur; 730 731 cur = !!(rfkill->state & RFKILL_BLOCK_SW); 732 rfkill_set_block(rfkill, cur); 733 734 rfkill->suspended = false; 735 736 rfkill_resume_polling(rfkill); 737 738 return 0; 739 } 740 741 static struct class rfkill_class = { 742 .name = "rfkill", 743 .dev_release = rfkill_release, 744 .dev_attrs = rfkill_dev_attrs, 745 .dev_uevent = rfkill_dev_uevent, 746 .suspend = rfkill_suspend, 747 .resume = rfkill_resume, 748 }; 749 750 bool rfkill_blocked(struct rfkill *rfkill) 751 { 752 unsigned long flags; 753 u32 state; 754 755 spin_lock_irqsave(&rfkill->lock, flags); 756 state = rfkill->state; 757 spin_unlock_irqrestore(&rfkill->lock, flags); 758 759 return !!(state & RFKILL_BLOCK_ANY); 760 } 761 EXPORT_SYMBOL(rfkill_blocked); 762 763 764 struct rfkill * __must_check rfkill_alloc(const char *name, 765 struct device *parent, 766 const enum rfkill_type type, 767 const struct rfkill_ops *ops, 768 void *ops_data) 769 { 770 struct rfkill *rfkill; 771 struct device *dev; 772 773 if (WARN_ON(!ops)) 774 return NULL; 775 776 if (WARN_ON(!ops->set_block)) 777 return NULL; 778 779 if (WARN_ON(!name)) 780 return NULL; 781 782 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES)) 783 return NULL; 784 785 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL); 786 if (!rfkill) 787 return NULL; 788 789 spin_lock_init(&rfkill->lock); 790 INIT_LIST_HEAD(&rfkill->node); 791 rfkill->type = type; 792 rfkill->name = name; 793 rfkill->ops = ops; 794 rfkill->data = ops_data; 795 796 dev = &rfkill->dev; 797 dev->class = &rfkill_class; 798 dev->parent = parent; 799 device_initialize(dev); 800 801 return rfkill; 802 } 803 EXPORT_SYMBOL(rfkill_alloc); 804 805 static void rfkill_poll(struct work_struct *work) 806 { 807 struct rfkill *rfkill; 808 809 rfkill = container_of(work, struct rfkill, poll_work.work); 810 811 /* 812 * Poll hardware state -- driver will use one of the 813 * rfkill_set{,_hw,_sw}_state functions and use its 814 * return value to update the current status. 815 */ 816 rfkill->ops->poll(rfkill, rfkill->data); 817 818 schedule_delayed_work(&rfkill->poll_work, 819 round_jiffies_relative(POLL_INTERVAL)); 820 } 821 822 static void rfkill_uevent_work(struct work_struct *work) 823 { 824 struct rfkill *rfkill; 825 826 rfkill = container_of(work, struct rfkill, uevent_work); 827 828 mutex_lock(&rfkill_global_mutex); 829 rfkill_event(rfkill); 830 mutex_unlock(&rfkill_global_mutex); 831 } 832 833 static void rfkill_sync_work(struct work_struct *work) 834 { 835 struct rfkill *rfkill; 836 bool cur; 837 838 rfkill = container_of(work, struct rfkill, sync_work); 839 840 mutex_lock(&rfkill_global_mutex); 841 cur = rfkill_global_states[rfkill->type].cur; 842 rfkill_set_block(rfkill, cur); 843 mutex_unlock(&rfkill_global_mutex); 844 } 845 846 int __must_check rfkill_register(struct rfkill *rfkill) 847 { 848 static unsigned long rfkill_no; 849 struct device *dev = &rfkill->dev; 850 int error; 851 852 BUG_ON(!rfkill); 853 854 mutex_lock(&rfkill_global_mutex); 855 856 if (rfkill->registered) { 857 error = -EALREADY; 858 goto unlock; 859 } 860 861 rfkill->idx = rfkill_no; 862 dev_set_name(dev, "rfkill%lu", rfkill_no); 863 rfkill_no++; 864 865 list_add_tail(&rfkill->node, &rfkill_list); 866 867 error = device_add(dev); 868 if (error) 869 goto remove; 870 871 error = rfkill_led_trigger_register(rfkill); 872 if (error) 873 goto devdel; 874 875 rfkill->registered = true; 876 877 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll); 878 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work); 879 INIT_WORK(&rfkill->sync_work, rfkill_sync_work); 880 881 if (rfkill->ops->poll) 882 schedule_delayed_work(&rfkill->poll_work, 883 round_jiffies_relative(POLL_INTERVAL)); 884 885 if (!rfkill->persistent || rfkill_epo_lock_active) { 886 schedule_work(&rfkill->sync_work); 887 } else { 888 #ifdef CONFIG_RFKILL_INPUT 889 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW); 890 891 if (!atomic_read(&rfkill_input_disabled)) 892 __rfkill_switch_all(rfkill->type, soft_blocked); 893 #endif 894 } 895 896 rfkill_send_events(rfkill, RFKILL_OP_ADD); 897 898 mutex_unlock(&rfkill_global_mutex); 899 return 0; 900 901 devdel: 902 device_del(&rfkill->dev); 903 remove: 904 list_del_init(&rfkill->node); 905 unlock: 906 mutex_unlock(&rfkill_global_mutex); 907 return error; 908 } 909 EXPORT_SYMBOL(rfkill_register); 910 911 void rfkill_unregister(struct rfkill *rfkill) 912 { 913 BUG_ON(!rfkill); 914 915 if (rfkill->ops->poll) 916 cancel_delayed_work_sync(&rfkill->poll_work); 917 918 cancel_work_sync(&rfkill->uevent_work); 919 cancel_work_sync(&rfkill->sync_work); 920 921 rfkill->registered = false; 922 923 device_del(&rfkill->dev); 924 925 mutex_lock(&rfkill_global_mutex); 926 rfkill_send_events(rfkill, RFKILL_OP_DEL); 927 list_del_init(&rfkill->node); 928 mutex_unlock(&rfkill_global_mutex); 929 930 rfkill_led_trigger_unregister(rfkill); 931 } 932 EXPORT_SYMBOL(rfkill_unregister); 933 934 void rfkill_destroy(struct rfkill *rfkill) 935 { 936 if (rfkill) 937 put_device(&rfkill->dev); 938 } 939 EXPORT_SYMBOL(rfkill_destroy); 940 941 static int rfkill_fop_open(struct inode *inode, struct file *file) 942 { 943 struct rfkill_data *data; 944 struct rfkill *rfkill; 945 struct rfkill_int_event *ev, *tmp; 946 947 data = kzalloc(sizeof(*data), GFP_KERNEL); 948 if (!data) 949 return -ENOMEM; 950 951 INIT_LIST_HEAD(&data->events); 952 mutex_init(&data->mtx); 953 init_waitqueue_head(&data->read_wait); 954 955 mutex_lock(&rfkill_global_mutex); 956 mutex_lock(&data->mtx); 957 /* 958 * start getting events from elsewhere but hold mtx to get 959 * startup events added first 960 */ 961 list_add(&data->list, &rfkill_fds); 962 963 list_for_each_entry(rfkill, &rfkill_list, node) { 964 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 965 if (!ev) 966 goto free; 967 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD); 968 list_add_tail(&ev->list, &data->events); 969 } 970 mutex_unlock(&data->mtx); 971 mutex_unlock(&rfkill_global_mutex); 972 973 file->private_data = data; 974 975 return nonseekable_open(inode, file); 976 977 free: 978 mutex_unlock(&data->mtx); 979 mutex_unlock(&rfkill_global_mutex); 980 mutex_destroy(&data->mtx); 981 list_for_each_entry_safe(ev, tmp, &data->events, list) 982 kfree(ev); 983 kfree(data); 984 return -ENOMEM; 985 } 986 987 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait) 988 { 989 struct rfkill_data *data = file->private_data; 990 unsigned int res = POLLOUT | POLLWRNORM; 991 992 poll_wait(file, &data->read_wait, wait); 993 994 mutex_lock(&data->mtx); 995 if (!list_empty(&data->events)) 996 res = POLLIN | POLLRDNORM; 997 mutex_unlock(&data->mtx); 998 999 return res; 1000 } 1001 1002 static bool rfkill_readable(struct rfkill_data *data) 1003 { 1004 bool r; 1005 1006 mutex_lock(&data->mtx); 1007 r = !list_empty(&data->events); 1008 mutex_unlock(&data->mtx); 1009 1010 return r; 1011 } 1012 1013 static ssize_t rfkill_fop_read(struct file *file, char __user *buf, 1014 size_t count, loff_t *pos) 1015 { 1016 struct rfkill_data *data = file->private_data; 1017 struct rfkill_int_event *ev; 1018 unsigned long sz; 1019 int ret; 1020 1021 mutex_lock(&data->mtx); 1022 1023 while (list_empty(&data->events)) { 1024 if (file->f_flags & O_NONBLOCK) { 1025 ret = -EAGAIN; 1026 goto out; 1027 } 1028 mutex_unlock(&data->mtx); 1029 ret = wait_event_interruptible(data->read_wait, 1030 rfkill_readable(data)); 1031 mutex_lock(&data->mtx); 1032 1033 if (ret) 1034 goto out; 1035 } 1036 1037 ev = list_first_entry(&data->events, struct rfkill_int_event, 1038 list); 1039 1040 sz = min_t(unsigned long, sizeof(ev->ev), count); 1041 ret = sz; 1042 if (copy_to_user(buf, &ev->ev, sz)) 1043 ret = -EFAULT; 1044 1045 list_del(&ev->list); 1046 kfree(ev); 1047 out: 1048 mutex_unlock(&data->mtx); 1049 return ret; 1050 } 1051 1052 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf, 1053 size_t count, loff_t *pos) 1054 { 1055 struct rfkill *rfkill; 1056 struct rfkill_event ev; 1057 1058 /* we don't need the 'hard' variable but accept it */ 1059 if (count < sizeof(ev) - 1) 1060 return -EINVAL; 1061 1062 if (copy_from_user(&ev, buf, sizeof(ev) - 1)) 1063 return -EFAULT; 1064 1065 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL) 1066 return -EINVAL; 1067 1068 if (ev.type >= NUM_RFKILL_TYPES) 1069 return -EINVAL; 1070 1071 mutex_lock(&rfkill_global_mutex); 1072 1073 if (ev.op == RFKILL_OP_CHANGE_ALL) { 1074 if (ev.type == RFKILL_TYPE_ALL) { 1075 enum rfkill_type i; 1076 for (i = 0; i < NUM_RFKILL_TYPES; i++) 1077 rfkill_global_states[i].cur = ev.soft; 1078 } else { 1079 rfkill_global_states[ev.type].cur = ev.soft; 1080 } 1081 } 1082 1083 list_for_each_entry(rfkill, &rfkill_list, node) { 1084 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL) 1085 continue; 1086 1087 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL) 1088 continue; 1089 1090 rfkill_set_block(rfkill, ev.soft); 1091 } 1092 mutex_unlock(&rfkill_global_mutex); 1093 1094 return count; 1095 } 1096 1097 static int rfkill_fop_release(struct inode *inode, struct file *file) 1098 { 1099 struct rfkill_data *data = file->private_data; 1100 struct rfkill_int_event *ev, *tmp; 1101 1102 mutex_lock(&rfkill_global_mutex); 1103 list_del(&data->list); 1104 mutex_unlock(&rfkill_global_mutex); 1105 1106 mutex_destroy(&data->mtx); 1107 list_for_each_entry_safe(ev, tmp, &data->events, list) 1108 kfree(ev); 1109 1110 #ifdef CONFIG_RFKILL_INPUT 1111 if (data->input_handler) 1112 if (atomic_dec_return(&rfkill_input_disabled) == 0) 1113 printk(KERN_DEBUG "rfkill: input handler enabled\n"); 1114 #endif 1115 1116 kfree(data); 1117 1118 return 0; 1119 } 1120 1121 #ifdef CONFIG_RFKILL_INPUT 1122 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd, 1123 unsigned long arg) 1124 { 1125 struct rfkill_data *data = file->private_data; 1126 1127 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC) 1128 return -ENOSYS; 1129 1130 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT) 1131 return -ENOSYS; 1132 1133 mutex_lock(&data->mtx); 1134 1135 if (!data->input_handler) { 1136 if (atomic_inc_return(&rfkill_input_disabled) == 1) 1137 printk(KERN_DEBUG "rfkill: input handler disabled\n"); 1138 data->input_handler = true; 1139 } 1140 1141 mutex_unlock(&data->mtx); 1142 1143 return 0; 1144 } 1145 #endif 1146 1147 static const struct file_operations rfkill_fops = { 1148 .open = rfkill_fop_open, 1149 .read = rfkill_fop_read, 1150 .write = rfkill_fop_write, 1151 .poll = rfkill_fop_poll, 1152 .release = rfkill_fop_release, 1153 #ifdef CONFIG_RFKILL_INPUT 1154 .unlocked_ioctl = rfkill_fop_ioctl, 1155 .compat_ioctl = rfkill_fop_ioctl, 1156 #endif 1157 }; 1158 1159 static struct miscdevice rfkill_miscdev = { 1160 .name = "rfkill", 1161 .fops = &rfkill_fops, 1162 .minor = MISC_DYNAMIC_MINOR, 1163 }; 1164 1165 static int __init rfkill_init(void) 1166 { 1167 int error; 1168 int i; 1169 1170 for (i = 0; i < NUM_RFKILL_TYPES; i++) 1171 rfkill_global_states[i].cur = !rfkill_default_state; 1172 1173 error = class_register(&rfkill_class); 1174 if (error) 1175 goto out; 1176 1177 error = misc_register(&rfkill_miscdev); 1178 if (error) { 1179 class_unregister(&rfkill_class); 1180 goto out; 1181 } 1182 1183 #ifdef CONFIG_RFKILL_INPUT 1184 error = rfkill_handler_init(); 1185 if (error) { 1186 misc_deregister(&rfkill_miscdev); 1187 class_unregister(&rfkill_class); 1188 goto out; 1189 } 1190 #endif 1191 1192 out: 1193 return error; 1194 } 1195 subsys_initcall(rfkill_init); 1196 1197 static void __exit rfkill_exit(void) 1198 { 1199 #ifdef CONFIG_RFKILL_INPUT 1200 rfkill_handler_exit(); 1201 #endif 1202 misc_deregister(&rfkill_miscdev); 1203 class_unregister(&rfkill_class); 1204 } 1205 module_exit(rfkill_exit); 1206