xref: /linux/net/rfkill/core.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2006 - 2007 Ivo van Doorn
4  * Copyright (C) 2007 Dmitry Torokhov
5  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/workqueue.h>
12 #include <linux/capability.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/rfkill.h>
16 #include <linux/sched.h>
17 #include <linux/spinlock.h>
18 #include <linux/device.h>
19 #include <linux/miscdevice.h>
20 #include <linux/wait.h>
21 #include <linux/poll.h>
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 
25 #include "rfkill.h"
26 
27 #define POLL_INTERVAL		(5 * HZ)
28 
29 #define RFKILL_BLOCK_HW		BIT(0)
30 #define RFKILL_BLOCK_SW		BIT(1)
31 #define RFKILL_BLOCK_SW_PREV	BIT(2)
32 #define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
33 				 RFKILL_BLOCK_SW |\
34 				 RFKILL_BLOCK_SW_PREV)
35 #define RFKILL_BLOCK_SW_SETCALL	BIT(31)
36 
37 struct rfkill {
38 	spinlock_t		lock;
39 
40 	enum rfkill_type	type;
41 
42 	unsigned long		state;
43 	unsigned long		hard_block_reasons;
44 
45 	u32			idx;
46 
47 	bool			registered;
48 	bool			persistent;
49 	bool			polling_paused;
50 	bool			suspended;
51 
52 	const struct rfkill_ops	*ops;
53 	void			*data;
54 
55 #ifdef CONFIG_RFKILL_LEDS
56 	struct led_trigger	led_trigger;
57 	const char		*ledtrigname;
58 #endif
59 
60 	struct device		dev;
61 	struct list_head	node;
62 
63 	struct delayed_work	poll_work;
64 	struct work_struct	uevent_work;
65 	struct work_struct	sync_work;
66 	char			name[];
67 };
68 #define to_rfkill(d)	container_of(d, struct rfkill, dev)
69 
70 struct rfkill_int_event {
71 	struct list_head	list;
72 	struct rfkill_event_ext	ev;
73 };
74 
75 struct rfkill_data {
76 	struct list_head	list;
77 	struct list_head	events;
78 	struct mutex		mtx;
79 	wait_queue_head_t	read_wait;
80 	bool			input_handler;
81 };
82 
83 
84 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
85 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
86 MODULE_DESCRIPTION("RF switch support");
87 MODULE_LICENSE("GPL");
88 
89 
90 /*
91  * The locking here should be made much smarter, we currently have
92  * a bit of a stupid situation because drivers might want to register
93  * the rfkill struct under their own lock, and take this lock during
94  * rfkill method calls -- which will cause an AB-BA deadlock situation.
95  *
96  * To fix that, we need to rework this code here to be mostly lock-free
97  * and only use the mutex for list manipulations, not to protect the
98  * various other global variables. Then we can avoid holding the mutex
99  * around driver operations, and all is happy.
100  */
101 static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
102 static DEFINE_MUTEX(rfkill_global_mutex);
103 static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
104 
105 static unsigned int rfkill_default_state = 1;
106 module_param_named(default_state, rfkill_default_state, uint, 0444);
107 MODULE_PARM_DESC(default_state,
108 		 "Default initial state for all radio types, 0 = radio off");
109 
110 static struct {
111 	bool cur, sav;
112 } rfkill_global_states[NUM_RFKILL_TYPES];
113 
114 static bool rfkill_epo_lock_active;
115 
116 
117 #ifdef CONFIG_RFKILL_LEDS
118 static void rfkill_led_trigger_event(struct rfkill *rfkill)
119 {
120 	struct led_trigger *trigger;
121 
122 	if (!rfkill->registered)
123 		return;
124 
125 	trigger = &rfkill->led_trigger;
126 
127 	if (rfkill->state & RFKILL_BLOCK_ANY)
128 		led_trigger_event(trigger, LED_OFF);
129 	else
130 		led_trigger_event(trigger, LED_FULL);
131 }
132 
133 static int rfkill_led_trigger_activate(struct led_classdev *led)
134 {
135 	struct rfkill *rfkill;
136 
137 	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
138 
139 	rfkill_led_trigger_event(rfkill);
140 
141 	return 0;
142 }
143 
144 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
145 {
146 	return rfkill->led_trigger.name;
147 }
148 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
149 
150 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
151 {
152 	BUG_ON(!rfkill);
153 
154 	rfkill->ledtrigname = name;
155 }
156 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
157 
158 static int rfkill_led_trigger_register(struct rfkill *rfkill)
159 {
160 	rfkill->led_trigger.name = rfkill->ledtrigname
161 					? : dev_name(&rfkill->dev);
162 	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
163 	return led_trigger_register(&rfkill->led_trigger);
164 }
165 
166 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
167 {
168 	led_trigger_unregister(&rfkill->led_trigger);
169 }
170 
171 static struct led_trigger rfkill_any_led_trigger;
172 static struct led_trigger rfkill_none_led_trigger;
173 static struct work_struct rfkill_global_led_trigger_work;
174 
175 static void rfkill_global_led_trigger_worker(struct work_struct *work)
176 {
177 	enum led_brightness brightness = LED_OFF;
178 	struct rfkill *rfkill;
179 
180 	mutex_lock(&rfkill_global_mutex);
181 	list_for_each_entry(rfkill, &rfkill_list, node) {
182 		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
183 			brightness = LED_FULL;
184 			break;
185 		}
186 	}
187 	mutex_unlock(&rfkill_global_mutex);
188 
189 	led_trigger_event(&rfkill_any_led_trigger, brightness);
190 	led_trigger_event(&rfkill_none_led_trigger,
191 			  brightness == LED_OFF ? LED_FULL : LED_OFF);
192 }
193 
194 static void rfkill_global_led_trigger_event(void)
195 {
196 	schedule_work(&rfkill_global_led_trigger_work);
197 }
198 
199 static int rfkill_global_led_trigger_register(void)
200 {
201 	int ret;
202 
203 	INIT_WORK(&rfkill_global_led_trigger_work,
204 			rfkill_global_led_trigger_worker);
205 
206 	rfkill_any_led_trigger.name = "rfkill-any";
207 	ret = led_trigger_register(&rfkill_any_led_trigger);
208 	if (ret)
209 		return ret;
210 
211 	rfkill_none_led_trigger.name = "rfkill-none";
212 	ret = led_trigger_register(&rfkill_none_led_trigger);
213 	if (ret)
214 		led_trigger_unregister(&rfkill_any_led_trigger);
215 	else
216 		/* Delay activation until all global triggers are registered */
217 		rfkill_global_led_trigger_event();
218 
219 	return ret;
220 }
221 
222 static void rfkill_global_led_trigger_unregister(void)
223 {
224 	led_trigger_unregister(&rfkill_none_led_trigger);
225 	led_trigger_unregister(&rfkill_any_led_trigger);
226 	cancel_work_sync(&rfkill_global_led_trigger_work);
227 }
228 #else
229 static void rfkill_led_trigger_event(struct rfkill *rfkill)
230 {
231 }
232 
233 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
234 {
235 	return 0;
236 }
237 
238 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
239 {
240 }
241 
242 static void rfkill_global_led_trigger_event(void)
243 {
244 }
245 
246 static int rfkill_global_led_trigger_register(void)
247 {
248 	return 0;
249 }
250 
251 static void rfkill_global_led_trigger_unregister(void)
252 {
253 }
254 #endif /* CONFIG_RFKILL_LEDS */
255 
256 static void rfkill_fill_event(struct rfkill_event_ext *ev,
257 			      struct rfkill *rfkill,
258 			      enum rfkill_operation op)
259 {
260 	unsigned long flags;
261 
262 	ev->idx = rfkill->idx;
263 	ev->type = rfkill->type;
264 	ev->op = op;
265 
266 	spin_lock_irqsave(&rfkill->lock, flags);
267 	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
268 	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
269 					RFKILL_BLOCK_SW_PREV));
270 	ev->hard_block_reasons = rfkill->hard_block_reasons;
271 	spin_unlock_irqrestore(&rfkill->lock, flags);
272 }
273 
274 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
275 {
276 	struct rfkill_data *data;
277 	struct rfkill_int_event *ev;
278 
279 	list_for_each_entry(data, &rfkill_fds, list) {
280 		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
281 		if (!ev)
282 			continue;
283 		rfkill_fill_event(&ev->ev, rfkill, op);
284 		mutex_lock(&data->mtx);
285 		list_add_tail(&ev->list, &data->events);
286 		mutex_unlock(&data->mtx);
287 		wake_up_interruptible(&data->read_wait);
288 	}
289 }
290 
291 static void rfkill_event(struct rfkill *rfkill)
292 {
293 	if (!rfkill->registered)
294 		return;
295 
296 	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
297 
298 	/* also send event to /dev/rfkill */
299 	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
300 }
301 
302 /**
303  * rfkill_set_block - wrapper for set_block method
304  *
305  * @rfkill: the rfkill struct to use
306  * @blocked: the new software state
307  *
308  * Calls the set_block method (when applicable) and handles notifications
309  * etc. as well.
310  */
311 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
312 {
313 	unsigned long flags;
314 	bool prev, curr;
315 	int err;
316 
317 	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
318 		return;
319 
320 	/*
321 	 * Some platforms (...!) generate input events which affect the
322 	 * _hard_ kill state -- whenever something tries to change the
323 	 * current software state query the hardware state too.
324 	 */
325 	if (rfkill->ops->query)
326 		rfkill->ops->query(rfkill, rfkill->data);
327 
328 	spin_lock_irqsave(&rfkill->lock, flags);
329 	prev = rfkill->state & RFKILL_BLOCK_SW;
330 
331 	if (prev)
332 		rfkill->state |= RFKILL_BLOCK_SW_PREV;
333 	else
334 		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
335 
336 	if (blocked)
337 		rfkill->state |= RFKILL_BLOCK_SW;
338 	else
339 		rfkill->state &= ~RFKILL_BLOCK_SW;
340 
341 	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
342 	spin_unlock_irqrestore(&rfkill->lock, flags);
343 
344 	err = rfkill->ops->set_block(rfkill->data, blocked);
345 
346 	spin_lock_irqsave(&rfkill->lock, flags);
347 	if (err) {
348 		/*
349 		 * Failed -- reset status to _PREV, which may be different
350 		 * from what we have set _PREV to earlier in this function
351 		 * if rfkill_set_sw_state was invoked.
352 		 */
353 		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
354 			rfkill->state |= RFKILL_BLOCK_SW;
355 		else
356 			rfkill->state &= ~RFKILL_BLOCK_SW;
357 	}
358 	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
359 	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
360 	curr = rfkill->state & RFKILL_BLOCK_SW;
361 	spin_unlock_irqrestore(&rfkill->lock, flags);
362 
363 	rfkill_led_trigger_event(rfkill);
364 	rfkill_global_led_trigger_event();
365 
366 	if (prev != curr)
367 		rfkill_event(rfkill);
368 }
369 
370 static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
371 {
372 	int i;
373 
374 	if (type != RFKILL_TYPE_ALL) {
375 		rfkill_global_states[type].cur = blocked;
376 		return;
377 	}
378 
379 	for (i = 0; i < NUM_RFKILL_TYPES; i++)
380 		rfkill_global_states[i].cur = blocked;
381 }
382 
383 #ifdef CONFIG_RFKILL_INPUT
384 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
385 
386 /**
387  * __rfkill_switch_all - Toggle state of all switches of given type
388  * @type: type of interfaces to be affected
389  * @blocked: the new state
390  *
391  * This function sets the state of all switches of given type,
392  * unless a specific switch is suspended.
393  *
394  * Caller must have acquired rfkill_global_mutex.
395  */
396 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
397 {
398 	struct rfkill *rfkill;
399 
400 	rfkill_update_global_state(type, blocked);
401 	list_for_each_entry(rfkill, &rfkill_list, node) {
402 		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
403 			continue;
404 
405 		rfkill_set_block(rfkill, blocked);
406 	}
407 }
408 
409 /**
410  * rfkill_switch_all - Toggle state of all switches of given type
411  * @type: type of interfaces to be affected
412  * @blocked: the new state
413  *
414  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
415  * Please refer to __rfkill_switch_all() for details.
416  *
417  * Does nothing if the EPO lock is active.
418  */
419 void rfkill_switch_all(enum rfkill_type type, bool blocked)
420 {
421 	if (atomic_read(&rfkill_input_disabled))
422 		return;
423 
424 	mutex_lock(&rfkill_global_mutex);
425 
426 	if (!rfkill_epo_lock_active)
427 		__rfkill_switch_all(type, blocked);
428 
429 	mutex_unlock(&rfkill_global_mutex);
430 }
431 
432 /**
433  * rfkill_epo - emergency power off all transmitters
434  *
435  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
436  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
437  *
438  * The global state before the EPO is saved and can be restored later
439  * using rfkill_restore_states().
440  */
441 void rfkill_epo(void)
442 {
443 	struct rfkill *rfkill;
444 	int i;
445 
446 	if (atomic_read(&rfkill_input_disabled))
447 		return;
448 
449 	mutex_lock(&rfkill_global_mutex);
450 
451 	rfkill_epo_lock_active = true;
452 	list_for_each_entry(rfkill, &rfkill_list, node)
453 		rfkill_set_block(rfkill, true);
454 
455 	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
456 		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
457 		rfkill_global_states[i].cur = true;
458 	}
459 
460 	mutex_unlock(&rfkill_global_mutex);
461 }
462 
463 /**
464  * rfkill_restore_states - restore global states
465  *
466  * Restore (and sync switches to) the global state from the
467  * states in rfkill_default_states.  This can undo the effects of
468  * a call to rfkill_epo().
469  */
470 void rfkill_restore_states(void)
471 {
472 	int i;
473 
474 	if (atomic_read(&rfkill_input_disabled))
475 		return;
476 
477 	mutex_lock(&rfkill_global_mutex);
478 
479 	rfkill_epo_lock_active = false;
480 	for (i = 0; i < NUM_RFKILL_TYPES; i++)
481 		__rfkill_switch_all(i, rfkill_global_states[i].sav);
482 	mutex_unlock(&rfkill_global_mutex);
483 }
484 
485 /**
486  * rfkill_remove_epo_lock - unlock state changes
487  *
488  * Used by rfkill-input manually unlock state changes, when
489  * the EPO switch is deactivated.
490  */
491 void rfkill_remove_epo_lock(void)
492 {
493 	if (atomic_read(&rfkill_input_disabled))
494 		return;
495 
496 	mutex_lock(&rfkill_global_mutex);
497 	rfkill_epo_lock_active = false;
498 	mutex_unlock(&rfkill_global_mutex);
499 }
500 
501 /**
502  * rfkill_is_epo_lock_active - returns true EPO is active
503  *
504  * Returns 0 (false) if there is NOT an active EPO condition,
505  * and 1 (true) if there is an active EPO condition, which
506  * locks all radios in one of the BLOCKED states.
507  *
508  * Can be called in atomic context.
509  */
510 bool rfkill_is_epo_lock_active(void)
511 {
512 	return rfkill_epo_lock_active;
513 }
514 
515 /**
516  * rfkill_get_global_sw_state - returns global state for a type
517  * @type: the type to get the global state of
518  *
519  * Returns the current global state for a given wireless
520  * device type.
521  */
522 bool rfkill_get_global_sw_state(const enum rfkill_type type)
523 {
524 	return rfkill_global_states[type].cur;
525 }
526 #endif
527 
528 bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
529 				bool blocked, unsigned long reason)
530 {
531 	unsigned long flags;
532 	bool ret, prev;
533 
534 	BUG_ON(!rfkill);
535 
536 	if (WARN(reason &
537 	    ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
538 	    "hw_state reason not supported: 0x%lx", reason))
539 		return blocked;
540 
541 	spin_lock_irqsave(&rfkill->lock, flags);
542 	prev = !!(rfkill->hard_block_reasons & reason);
543 	if (blocked) {
544 		rfkill->state |= RFKILL_BLOCK_HW;
545 		rfkill->hard_block_reasons |= reason;
546 	} else {
547 		rfkill->hard_block_reasons &= ~reason;
548 		if (!rfkill->hard_block_reasons)
549 			rfkill->state &= ~RFKILL_BLOCK_HW;
550 	}
551 	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
552 	spin_unlock_irqrestore(&rfkill->lock, flags);
553 
554 	rfkill_led_trigger_event(rfkill);
555 	rfkill_global_led_trigger_event();
556 
557 	if (rfkill->registered && prev != blocked)
558 		schedule_work(&rfkill->uevent_work);
559 
560 	return ret;
561 }
562 EXPORT_SYMBOL(rfkill_set_hw_state_reason);
563 
564 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
565 {
566 	u32 bit = RFKILL_BLOCK_SW;
567 
568 	/* if in a ops->set_block right now, use other bit */
569 	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
570 		bit = RFKILL_BLOCK_SW_PREV;
571 
572 	if (blocked)
573 		rfkill->state |= bit;
574 	else
575 		rfkill->state &= ~bit;
576 }
577 
578 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
579 {
580 	unsigned long flags;
581 	bool prev, hwblock;
582 
583 	BUG_ON(!rfkill);
584 
585 	spin_lock_irqsave(&rfkill->lock, flags);
586 	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
587 	__rfkill_set_sw_state(rfkill, blocked);
588 	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
589 	blocked = blocked || hwblock;
590 	spin_unlock_irqrestore(&rfkill->lock, flags);
591 
592 	if (!rfkill->registered)
593 		return blocked;
594 
595 	if (prev != blocked && !hwblock)
596 		schedule_work(&rfkill->uevent_work);
597 
598 	rfkill_led_trigger_event(rfkill);
599 	rfkill_global_led_trigger_event();
600 
601 	return blocked;
602 }
603 EXPORT_SYMBOL(rfkill_set_sw_state);
604 
605 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
606 {
607 	unsigned long flags;
608 
609 	BUG_ON(!rfkill);
610 	BUG_ON(rfkill->registered);
611 
612 	spin_lock_irqsave(&rfkill->lock, flags);
613 	__rfkill_set_sw_state(rfkill, blocked);
614 	rfkill->persistent = true;
615 	spin_unlock_irqrestore(&rfkill->lock, flags);
616 }
617 EXPORT_SYMBOL(rfkill_init_sw_state);
618 
619 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
620 {
621 	unsigned long flags;
622 	bool swprev, hwprev;
623 
624 	BUG_ON(!rfkill);
625 
626 	spin_lock_irqsave(&rfkill->lock, flags);
627 
628 	/*
629 	 * No need to care about prev/setblock ... this is for uevent only
630 	 * and that will get triggered by rfkill_set_block anyway.
631 	 */
632 	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
633 	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
634 	__rfkill_set_sw_state(rfkill, sw);
635 	if (hw)
636 		rfkill->state |= RFKILL_BLOCK_HW;
637 	else
638 		rfkill->state &= ~RFKILL_BLOCK_HW;
639 
640 	spin_unlock_irqrestore(&rfkill->lock, flags);
641 
642 	if (!rfkill->registered) {
643 		rfkill->persistent = true;
644 	} else {
645 		if (swprev != sw || hwprev != hw)
646 			schedule_work(&rfkill->uevent_work);
647 
648 		rfkill_led_trigger_event(rfkill);
649 		rfkill_global_led_trigger_event();
650 	}
651 }
652 EXPORT_SYMBOL(rfkill_set_states);
653 
654 static const char * const rfkill_types[] = {
655 	NULL, /* RFKILL_TYPE_ALL */
656 	"wlan",
657 	"bluetooth",
658 	"ultrawideband",
659 	"wimax",
660 	"wwan",
661 	"gps",
662 	"fm",
663 	"nfc",
664 };
665 
666 enum rfkill_type rfkill_find_type(const char *name)
667 {
668 	int i;
669 
670 	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
671 
672 	if (!name)
673 		return RFKILL_TYPE_ALL;
674 
675 	for (i = 1; i < NUM_RFKILL_TYPES; i++)
676 		if (!strcmp(name, rfkill_types[i]))
677 			return i;
678 	return RFKILL_TYPE_ALL;
679 }
680 EXPORT_SYMBOL(rfkill_find_type);
681 
682 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
683 			 char *buf)
684 {
685 	struct rfkill *rfkill = to_rfkill(dev);
686 
687 	return sprintf(buf, "%s\n", rfkill->name);
688 }
689 static DEVICE_ATTR_RO(name);
690 
691 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
692 			 char *buf)
693 {
694 	struct rfkill *rfkill = to_rfkill(dev);
695 
696 	return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
697 }
698 static DEVICE_ATTR_RO(type);
699 
700 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
701 			  char *buf)
702 {
703 	struct rfkill *rfkill = to_rfkill(dev);
704 
705 	return sprintf(buf, "%d\n", rfkill->idx);
706 }
707 static DEVICE_ATTR_RO(index);
708 
709 static ssize_t persistent_show(struct device *dev,
710 			       struct device_attribute *attr, char *buf)
711 {
712 	struct rfkill *rfkill = to_rfkill(dev);
713 
714 	return sprintf(buf, "%d\n", rfkill->persistent);
715 }
716 static DEVICE_ATTR_RO(persistent);
717 
718 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
719 			 char *buf)
720 {
721 	struct rfkill *rfkill = to_rfkill(dev);
722 
723 	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
724 }
725 static DEVICE_ATTR_RO(hard);
726 
727 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
728 			 char *buf)
729 {
730 	struct rfkill *rfkill = to_rfkill(dev);
731 
732 	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
733 }
734 
735 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
736 			  const char *buf, size_t count)
737 {
738 	struct rfkill *rfkill = to_rfkill(dev);
739 	unsigned long state;
740 	int err;
741 
742 	if (!capable(CAP_NET_ADMIN))
743 		return -EPERM;
744 
745 	err = kstrtoul(buf, 0, &state);
746 	if (err)
747 		return err;
748 
749 	if (state > 1 )
750 		return -EINVAL;
751 
752 	mutex_lock(&rfkill_global_mutex);
753 	rfkill_set_block(rfkill, state);
754 	mutex_unlock(&rfkill_global_mutex);
755 
756 	return count;
757 }
758 static DEVICE_ATTR_RW(soft);
759 
760 static ssize_t hard_block_reasons_show(struct device *dev,
761 				       struct device_attribute *attr,
762 				       char *buf)
763 {
764 	struct rfkill *rfkill = to_rfkill(dev);
765 
766 	return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
767 }
768 static DEVICE_ATTR_RO(hard_block_reasons);
769 
770 static u8 user_state_from_blocked(unsigned long state)
771 {
772 	if (state & RFKILL_BLOCK_HW)
773 		return RFKILL_USER_STATE_HARD_BLOCKED;
774 	if (state & RFKILL_BLOCK_SW)
775 		return RFKILL_USER_STATE_SOFT_BLOCKED;
776 
777 	return RFKILL_USER_STATE_UNBLOCKED;
778 }
779 
780 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
781 			  char *buf)
782 {
783 	struct rfkill *rfkill = to_rfkill(dev);
784 
785 	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
786 }
787 
788 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
789 			   const char *buf, size_t count)
790 {
791 	struct rfkill *rfkill = to_rfkill(dev);
792 	unsigned long state;
793 	int err;
794 
795 	if (!capable(CAP_NET_ADMIN))
796 		return -EPERM;
797 
798 	err = kstrtoul(buf, 0, &state);
799 	if (err)
800 		return err;
801 
802 	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
803 	    state != RFKILL_USER_STATE_UNBLOCKED)
804 		return -EINVAL;
805 
806 	mutex_lock(&rfkill_global_mutex);
807 	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
808 	mutex_unlock(&rfkill_global_mutex);
809 
810 	return count;
811 }
812 static DEVICE_ATTR_RW(state);
813 
814 static struct attribute *rfkill_dev_attrs[] = {
815 	&dev_attr_name.attr,
816 	&dev_attr_type.attr,
817 	&dev_attr_index.attr,
818 	&dev_attr_persistent.attr,
819 	&dev_attr_state.attr,
820 	&dev_attr_soft.attr,
821 	&dev_attr_hard.attr,
822 	&dev_attr_hard_block_reasons.attr,
823 	NULL,
824 };
825 ATTRIBUTE_GROUPS(rfkill_dev);
826 
827 static void rfkill_release(struct device *dev)
828 {
829 	struct rfkill *rfkill = to_rfkill(dev);
830 
831 	kfree(rfkill);
832 }
833 
834 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
835 {
836 	struct rfkill *rfkill = to_rfkill(dev);
837 	unsigned long flags;
838 	unsigned long reasons;
839 	u32 state;
840 	int error;
841 
842 	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
843 	if (error)
844 		return error;
845 	error = add_uevent_var(env, "RFKILL_TYPE=%s",
846 			       rfkill_types[rfkill->type]);
847 	if (error)
848 		return error;
849 	spin_lock_irqsave(&rfkill->lock, flags);
850 	state = rfkill->state;
851 	reasons = rfkill->hard_block_reasons;
852 	spin_unlock_irqrestore(&rfkill->lock, flags);
853 	error = add_uevent_var(env, "RFKILL_STATE=%d",
854 			       user_state_from_blocked(state));
855 	if (error)
856 		return error;
857 	return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
858 }
859 
860 void rfkill_pause_polling(struct rfkill *rfkill)
861 {
862 	BUG_ON(!rfkill);
863 
864 	if (!rfkill->ops->poll)
865 		return;
866 
867 	rfkill->polling_paused = true;
868 	cancel_delayed_work_sync(&rfkill->poll_work);
869 }
870 EXPORT_SYMBOL(rfkill_pause_polling);
871 
872 void rfkill_resume_polling(struct rfkill *rfkill)
873 {
874 	BUG_ON(!rfkill);
875 
876 	if (!rfkill->ops->poll)
877 		return;
878 
879 	rfkill->polling_paused = false;
880 
881 	if (rfkill->suspended)
882 		return;
883 
884 	queue_delayed_work(system_power_efficient_wq,
885 			   &rfkill->poll_work, 0);
886 }
887 EXPORT_SYMBOL(rfkill_resume_polling);
888 
889 #ifdef CONFIG_PM_SLEEP
890 static int rfkill_suspend(struct device *dev)
891 {
892 	struct rfkill *rfkill = to_rfkill(dev);
893 
894 	rfkill->suspended = true;
895 	cancel_delayed_work_sync(&rfkill->poll_work);
896 
897 	return 0;
898 }
899 
900 static int rfkill_resume(struct device *dev)
901 {
902 	struct rfkill *rfkill = to_rfkill(dev);
903 	bool cur;
904 
905 	rfkill->suspended = false;
906 
907 	if (!rfkill->registered)
908 		return 0;
909 
910 	if (!rfkill->persistent) {
911 		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
912 		rfkill_set_block(rfkill, cur);
913 	}
914 
915 	if (rfkill->ops->poll && !rfkill->polling_paused)
916 		queue_delayed_work(system_power_efficient_wq,
917 				   &rfkill->poll_work, 0);
918 
919 	return 0;
920 }
921 
922 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
923 #define RFKILL_PM_OPS (&rfkill_pm_ops)
924 #else
925 #define RFKILL_PM_OPS NULL
926 #endif
927 
928 static struct class rfkill_class = {
929 	.name		= "rfkill",
930 	.dev_release	= rfkill_release,
931 	.dev_groups	= rfkill_dev_groups,
932 	.dev_uevent	= rfkill_dev_uevent,
933 	.pm		= RFKILL_PM_OPS,
934 };
935 
936 bool rfkill_blocked(struct rfkill *rfkill)
937 {
938 	unsigned long flags;
939 	u32 state;
940 
941 	spin_lock_irqsave(&rfkill->lock, flags);
942 	state = rfkill->state;
943 	spin_unlock_irqrestore(&rfkill->lock, flags);
944 
945 	return !!(state & RFKILL_BLOCK_ANY);
946 }
947 EXPORT_SYMBOL(rfkill_blocked);
948 
949 bool rfkill_soft_blocked(struct rfkill *rfkill)
950 {
951 	unsigned long flags;
952 	u32 state;
953 
954 	spin_lock_irqsave(&rfkill->lock, flags);
955 	state = rfkill->state;
956 	spin_unlock_irqrestore(&rfkill->lock, flags);
957 
958 	return !!(state & RFKILL_BLOCK_SW);
959 }
960 EXPORT_SYMBOL(rfkill_soft_blocked);
961 
962 struct rfkill * __must_check rfkill_alloc(const char *name,
963 					  struct device *parent,
964 					  const enum rfkill_type type,
965 					  const struct rfkill_ops *ops,
966 					  void *ops_data)
967 {
968 	struct rfkill *rfkill;
969 	struct device *dev;
970 
971 	if (WARN_ON(!ops))
972 		return NULL;
973 
974 	if (WARN_ON(!ops->set_block))
975 		return NULL;
976 
977 	if (WARN_ON(!name))
978 		return NULL;
979 
980 	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
981 		return NULL;
982 
983 	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
984 	if (!rfkill)
985 		return NULL;
986 
987 	spin_lock_init(&rfkill->lock);
988 	INIT_LIST_HEAD(&rfkill->node);
989 	rfkill->type = type;
990 	strcpy(rfkill->name, name);
991 	rfkill->ops = ops;
992 	rfkill->data = ops_data;
993 
994 	dev = &rfkill->dev;
995 	dev->class = &rfkill_class;
996 	dev->parent = parent;
997 	device_initialize(dev);
998 
999 	return rfkill;
1000 }
1001 EXPORT_SYMBOL(rfkill_alloc);
1002 
1003 static void rfkill_poll(struct work_struct *work)
1004 {
1005 	struct rfkill *rfkill;
1006 
1007 	rfkill = container_of(work, struct rfkill, poll_work.work);
1008 
1009 	/*
1010 	 * Poll hardware state -- driver will use one of the
1011 	 * rfkill_set{,_hw,_sw}_state functions and use its
1012 	 * return value to update the current status.
1013 	 */
1014 	rfkill->ops->poll(rfkill, rfkill->data);
1015 
1016 	queue_delayed_work(system_power_efficient_wq,
1017 		&rfkill->poll_work,
1018 		round_jiffies_relative(POLL_INTERVAL));
1019 }
1020 
1021 static void rfkill_uevent_work(struct work_struct *work)
1022 {
1023 	struct rfkill *rfkill;
1024 
1025 	rfkill = container_of(work, struct rfkill, uevent_work);
1026 
1027 	mutex_lock(&rfkill_global_mutex);
1028 	rfkill_event(rfkill);
1029 	mutex_unlock(&rfkill_global_mutex);
1030 }
1031 
1032 static void rfkill_sync_work(struct work_struct *work)
1033 {
1034 	struct rfkill *rfkill;
1035 	bool cur;
1036 
1037 	rfkill = container_of(work, struct rfkill, sync_work);
1038 
1039 	mutex_lock(&rfkill_global_mutex);
1040 	cur = rfkill_global_states[rfkill->type].cur;
1041 	rfkill_set_block(rfkill, cur);
1042 	mutex_unlock(&rfkill_global_mutex);
1043 }
1044 
1045 int __must_check rfkill_register(struct rfkill *rfkill)
1046 {
1047 	static unsigned long rfkill_no;
1048 	struct device *dev;
1049 	int error;
1050 
1051 	if (!rfkill)
1052 		return -EINVAL;
1053 
1054 	dev = &rfkill->dev;
1055 
1056 	mutex_lock(&rfkill_global_mutex);
1057 
1058 	if (rfkill->registered) {
1059 		error = -EALREADY;
1060 		goto unlock;
1061 	}
1062 
1063 	rfkill->idx = rfkill_no;
1064 	dev_set_name(dev, "rfkill%lu", rfkill_no);
1065 	rfkill_no++;
1066 
1067 	list_add_tail(&rfkill->node, &rfkill_list);
1068 
1069 	error = device_add(dev);
1070 	if (error)
1071 		goto remove;
1072 
1073 	error = rfkill_led_trigger_register(rfkill);
1074 	if (error)
1075 		goto devdel;
1076 
1077 	rfkill->registered = true;
1078 
1079 	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1080 	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1081 	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1082 
1083 	if (rfkill->ops->poll)
1084 		queue_delayed_work(system_power_efficient_wq,
1085 			&rfkill->poll_work,
1086 			round_jiffies_relative(POLL_INTERVAL));
1087 
1088 	if (!rfkill->persistent || rfkill_epo_lock_active) {
1089 		schedule_work(&rfkill->sync_work);
1090 	} else {
1091 #ifdef CONFIG_RFKILL_INPUT
1092 		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1093 
1094 		if (!atomic_read(&rfkill_input_disabled))
1095 			__rfkill_switch_all(rfkill->type, soft_blocked);
1096 #endif
1097 	}
1098 
1099 	rfkill_global_led_trigger_event();
1100 	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1101 
1102 	mutex_unlock(&rfkill_global_mutex);
1103 	return 0;
1104 
1105  devdel:
1106 	device_del(&rfkill->dev);
1107  remove:
1108 	list_del_init(&rfkill->node);
1109  unlock:
1110 	mutex_unlock(&rfkill_global_mutex);
1111 	return error;
1112 }
1113 EXPORT_SYMBOL(rfkill_register);
1114 
1115 void rfkill_unregister(struct rfkill *rfkill)
1116 {
1117 	BUG_ON(!rfkill);
1118 
1119 	if (rfkill->ops->poll)
1120 		cancel_delayed_work_sync(&rfkill->poll_work);
1121 
1122 	cancel_work_sync(&rfkill->uevent_work);
1123 	cancel_work_sync(&rfkill->sync_work);
1124 
1125 	rfkill->registered = false;
1126 
1127 	device_del(&rfkill->dev);
1128 
1129 	mutex_lock(&rfkill_global_mutex);
1130 	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1131 	list_del_init(&rfkill->node);
1132 	rfkill_global_led_trigger_event();
1133 	mutex_unlock(&rfkill_global_mutex);
1134 
1135 	rfkill_led_trigger_unregister(rfkill);
1136 }
1137 EXPORT_SYMBOL(rfkill_unregister);
1138 
1139 void rfkill_destroy(struct rfkill *rfkill)
1140 {
1141 	if (rfkill)
1142 		put_device(&rfkill->dev);
1143 }
1144 EXPORT_SYMBOL(rfkill_destroy);
1145 
1146 static int rfkill_fop_open(struct inode *inode, struct file *file)
1147 {
1148 	struct rfkill_data *data;
1149 	struct rfkill *rfkill;
1150 	struct rfkill_int_event *ev, *tmp;
1151 
1152 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1153 	if (!data)
1154 		return -ENOMEM;
1155 
1156 	INIT_LIST_HEAD(&data->events);
1157 	mutex_init(&data->mtx);
1158 	init_waitqueue_head(&data->read_wait);
1159 
1160 	mutex_lock(&rfkill_global_mutex);
1161 	mutex_lock(&data->mtx);
1162 	/*
1163 	 * start getting events from elsewhere but hold mtx to get
1164 	 * startup events added first
1165 	 */
1166 
1167 	list_for_each_entry(rfkill, &rfkill_list, node) {
1168 		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1169 		if (!ev)
1170 			goto free;
1171 		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1172 		list_add_tail(&ev->list, &data->events);
1173 	}
1174 	list_add(&data->list, &rfkill_fds);
1175 	mutex_unlock(&data->mtx);
1176 	mutex_unlock(&rfkill_global_mutex);
1177 
1178 	file->private_data = data;
1179 
1180 	return stream_open(inode, file);
1181 
1182  free:
1183 	mutex_unlock(&data->mtx);
1184 	mutex_unlock(&rfkill_global_mutex);
1185 	mutex_destroy(&data->mtx);
1186 	list_for_each_entry_safe(ev, tmp, &data->events, list)
1187 		kfree(ev);
1188 	kfree(data);
1189 	return -ENOMEM;
1190 }
1191 
1192 static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1193 {
1194 	struct rfkill_data *data = file->private_data;
1195 	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1196 
1197 	poll_wait(file, &data->read_wait, wait);
1198 
1199 	mutex_lock(&data->mtx);
1200 	if (!list_empty(&data->events))
1201 		res = EPOLLIN | EPOLLRDNORM;
1202 	mutex_unlock(&data->mtx);
1203 
1204 	return res;
1205 }
1206 
1207 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1208 			       size_t count, loff_t *pos)
1209 {
1210 	struct rfkill_data *data = file->private_data;
1211 	struct rfkill_int_event *ev;
1212 	unsigned long sz;
1213 	int ret;
1214 
1215 	mutex_lock(&data->mtx);
1216 
1217 	while (list_empty(&data->events)) {
1218 		if (file->f_flags & O_NONBLOCK) {
1219 			ret = -EAGAIN;
1220 			goto out;
1221 		}
1222 		mutex_unlock(&data->mtx);
1223 		/* since we re-check and it just compares pointers,
1224 		 * using !list_empty() without locking isn't a problem
1225 		 */
1226 		ret = wait_event_interruptible(data->read_wait,
1227 					       !list_empty(&data->events));
1228 		mutex_lock(&data->mtx);
1229 
1230 		if (ret)
1231 			goto out;
1232 	}
1233 
1234 	ev = list_first_entry(&data->events, struct rfkill_int_event,
1235 				list);
1236 
1237 	sz = min_t(unsigned long, sizeof(ev->ev), count);
1238 	ret = sz;
1239 	if (copy_to_user(buf, &ev->ev, sz))
1240 		ret = -EFAULT;
1241 
1242 	list_del(&ev->list);
1243 	kfree(ev);
1244  out:
1245 	mutex_unlock(&data->mtx);
1246 	return ret;
1247 }
1248 
1249 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1250 				size_t count, loff_t *pos)
1251 {
1252 	struct rfkill *rfkill;
1253 	struct rfkill_event_ext ev;
1254 	int ret;
1255 
1256 	/* we don't need the 'hard' variable but accept it */
1257 	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1258 		return -EINVAL;
1259 
1260 	/*
1261 	 * Copy as much data as we can accept into our 'ev' buffer,
1262 	 * but tell userspace how much we've copied so it can determine
1263 	 * our API version even in a write() call, if it cares.
1264 	 */
1265 	count = min(count, sizeof(ev));
1266 	if (copy_from_user(&ev, buf, count))
1267 		return -EFAULT;
1268 
1269 	if (ev.type >= NUM_RFKILL_TYPES)
1270 		return -EINVAL;
1271 
1272 	mutex_lock(&rfkill_global_mutex);
1273 
1274 	switch (ev.op) {
1275 	case RFKILL_OP_CHANGE_ALL:
1276 		rfkill_update_global_state(ev.type, ev.soft);
1277 		list_for_each_entry(rfkill, &rfkill_list, node)
1278 			if (rfkill->type == ev.type ||
1279 			    ev.type == RFKILL_TYPE_ALL)
1280 				rfkill_set_block(rfkill, ev.soft);
1281 		ret = 0;
1282 		break;
1283 	case RFKILL_OP_CHANGE:
1284 		list_for_each_entry(rfkill, &rfkill_list, node)
1285 			if (rfkill->idx == ev.idx &&
1286 			    (rfkill->type == ev.type ||
1287 			     ev.type == RFKILL_TYPE_ALL))
1288 				rfkill_set_block(rfkill, ev.soft);
1289 		ret = 0;
1290 		break;
1291 	default:
1292 		ret = -EINVAL;
1293 		break;
1294 	}
1295 
1296 	mutex_unlock(&rfkill_global_mutex);
1297 
1298 	return ret ?: count;
1299 }
1300 
1301 static int rfkill_fop_release(struct inode *inode, struct file *file)
1302 {
1303 	struct rfkill_data *data = file->private_data;
1304 	struct rfkill_int_event *ev, *tmp;
1305 
1306 	mutex_lock(&rfkill_global_mutex);
1307 	list_del(&data->list);
1308 	mutex_unlock(&rfkill_global_mutex);
1309 
1310 	mutex_destroy(&data->mtx);
1311 	list_for_each_entry_safe(ev, tmp, &data->events, list)
1312 		kfree(ev);
1313 
1314 #ifdef CONFIG_RFKILL_INPUT
1315 	if (data->input_handler)
1316 		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1317 			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1318 #endif
1319 
1320 	kfree(data);
1321 
1322 	return 0;
1323 }
1324 
1325 #ifdef CONFIG_RFKILL_INPUT
1326 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1327 			     unsigned long arg)
1328 {
1329 	struct rfkill_data *data = file->private_data;
1330 
1331 	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1332 		return -ENOSYS;
1333 
1334 	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1335 		return -ENOSYS;
1336 
1337 	mutex_lock(&data->mtx);
1338 
1339 	if (!data->input_handler) {
1340 		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1341 			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1342 		data->input_handler = true;
1343 	}
1344 
1345 	mutex_unlock(&data->mtx);
1346 
1347 	return 0;
1348 }
1349 #endif
1350 
1351 static const struct file_operations rfkill_fops = {
1352 	.owner		= THIS_MODULE,
1353 	.open		= rfkill_fop_open,
1354 	.read		= rfkill_fop_read,
1355 	.write		= rfkill_fop_write,
1356 	.poll		= rfkill_fop_poll,
1357 	.release	= rfkill_fop_release,
1358 #ifdef CONFIG_RFKILL_INPUT
1359 	.unlocked_ioctl	= rfkill_fop_ioctl,
1360 	.compat_ioctl	= compat_ptr_ioctl,
1361 #endif
1362 	.llseek		= no_llseek,
1363 };
1364 
1365 #define RFKILL_NAME "rfkill"
1366 
1367 static struct miscdevice rfkill_miscdev = {
1368 	.fops	= &rfkill_fops,
1369 	.name	= RFKILL_NAME,
1370 	.minor	= RFKILL_MINOR,
1371 };
1372 
1373 static int __init rfkill_init(void)
1374 {
1375 	int error;
1376 
1377 	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1378 
1379 	error = class_register(&rfkill_class);
1380 	if (error)
1381 		goto error_class;
1382 
1383 	error = misc_register(&rfkill_miscdev);
1384 	if (error)
1385 		goto error_misc;
1386 
1387 	error = rfkill_global_led_trigger_register();
1388 	if (error)
1389 		goto error_led_trigger;
1390 
1391 #ifdef CONFIG_RFKILL_INPUT
1392 	error = rfkill_handler_init();
1393 	if (error)
1394 		goto error_input;
1395 #endif
1396 
1397 	return 0;
1398 
1399 #ifdef CONFIG_RFKILL_INPUT
1400 error_input:
1401 	rfkill_global_led_trigger_unregister();
1402 #endif
1403 error_led_trigger:
1404 	misc_deregister(&rfkill_miscdev);
1405 error_misc:
1406 	class_unregister(&rfkill_class);
1407 error_class:
1408 	return error;
1409 }
1410 subsys_initcall(rfkill_init);
1411 
1412 static void __exit rfkill_exit(void)
1413 {
1414 #ifdef CONFIG_RFKILL_INPUT
1415 	rfkill_handler_exit();
1416 #endif
1417 	rfkill_global_led_trigger_unregister();
1418 	misc_deregister(&rfkill_miscdev);
1419 	class_unregister(&rfkill_class);
1420 }
1421 module_exit(rfkill_exit);
1422 
1423 MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1424 MODULE_ALIAS("devname:" RFKILL_NAME);
1425