1 /* 2 * Copyright (C) 2006 - 2007 Ivo van Doorn 3 * Copyright (C) 2007 Dmitry Torokhov 4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the 18 * Free Software Foundation, Inc., 19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/init.h> 25 #include <linux/workqueue.h> 26 #include <linux/capability.h> 27 #include <linux/list.h> 28 #include <linux/mutex.h> 29 #include <linux/rfkill.h> 30 #include <linux/spinlock.h> 31 #include <linux/miscdevice.h> 32 #include <linux/wait.h> 33 #include <linux/poll.h> 34 #include <linux/fs.h> 35 36 #include "rfkill.h" 37 38 #define POLL_INTERVAL (5 * HZ) 39 40 #define RFKILL_BLOCK_HW BIT(0) 41 #define RFKILL_BLOCK_SW BIT(1) 42 #define RFKILL_BLOCK_SW_PREV BIT(2) 43 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\ 44 RFKILL_BLOCK_SW |\ 45 RFKILL_BLOCK_SW_PREV) 46 #define RFKILL_BLOCK_SW_SETCALL BIT(31) 47 48 struct rfkill { 49 spinlock_t lock; 50 51 const char *name; 52 enum rfkill_type type; 53 54 unsigned long state; 55 56 u32 idx; 57 58 bool registered; 59 bool persistent; 60 61 const struct rfkill_ops *ops; 62 void *data; 63 64 #ifdef CONFIG_RFKILL_LEDS 65 struct led_trigger led_trigger; 66 const char *ledtrigname; 67 #endif 68 69 struct device dev; 70 struct list_head node; 71 72 struct delayed_work poll_work; 73 struct work_struct uevent_work; 74 struct work_struct sync_work; 75 }; 76 #define to_rfkill(d) container_of(d, struct rfkill, dev) 77 78 struct rfkill_int_event { 79 struct list_head list; 80 struct rfkill_event ev; 81 }; 82 83 struct rfkill_data { 84 struct list_head list; 85 struct list_head events; 86 struct mutex mtx; 87 wait_queue_head_t read_wait; 88 bool input_handler; 89 }; 90 91 92 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>"); 93 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); 94 MODULE_DESCRIPTION("RF switch support"); 95 MODULE_LICENSE("GPL"); 96 97 98 /* 99 * The locking here should be made much smarter, we currently have 100 * a bit of a stupid situation because drivers might want to register 101 * the rfkill struct under their own lock, and take this lock during 102 * rfkill method calls -- which will cause an AB-BA deadlock situation. 103 * 104 * To fix that, we need to rework this code here to be mostly lock-free 105 * and only use the mutex for list manipulations, not to protect the 106 * various other global variables. Then we can avoid holding the mutex 107 * around driver operations, and all is happy. 108 */ 109 static LIST_HEAD(rfkill_list); /* list of registered rf switches */ 110 static DEFINE_MUTEX(rfkill_global_mutex); 111 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */ 112 113 static unsigned int rfkill_default_state = 1; 114 module_param_named(default_state, rfkill_default_state, uint, 0444); 115 MODULE_PARM_DESC(default_state, 116 "Default initial state for all radio types, 0 = radio off"); 117 118 static struct { 119 bool cur, sav; 120 } rfkill_global_states[NUM_RFKILL_TYPES]; 121 122 static bool rfkill_epo_lock_active; 123 124 125 #ifdef CONFIG_RFKILL_LEDS 126 static void rfkill_led_trigger_event(struct rfkill *rfkill) 127 { 128 struct led_trigger *trigger; 129 130 if (!rfkill->registered) 131 return; 132 133 trigger = &rfkill->led_trigger; 134 135 if (rfkill->state & RFKILL_BLOCK_ANY) 136 led_trigger_event(trigger, LED_OFF); 137 else 138 led_trigger_event(trigger, LED_FULL); 139 } 140 141 static void rfkill_led_trigger_activate(struct led_classdev *led) 142 { 143 struct rfkill *rfkill; 144 145 rfkill = container_of(led->trigger, struct rfkill, led_trigger); 146 147 rfkill_led_trigger_event(rfkill); 148 } 149 150 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill) 151 { 152 return rfkill->led_trigger.name; 153 } 154 EXPORT_SYMBOL(rfkill_get_led_trigger_name); 155 156 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name) 157 { 158 BUG_ON(!rfkill); 159 160 rfkill->ledtrigname = name; 161 } 162 EXPORT_SYMBOL(rfkill_set_led_trigger_name); 163 164 static int rfkill_led_trigger_register(struct rfkill *rfkill) 165 { 166 rfkill->led_trigger.name = rfkill->ledtrigname 167 ? : dev_name(&rfkill->dev); 168 rfkill->led_trigger.activate = rfkill_led_trigger_activate; 169 return led_trigger_register(&rfkill->led_trigger); 170 } 171 172 static void rfkill_led_trigger_unregister(struct rfkill *rfkill) 173 { 174 led_trigger_unregister(&rfkill->led_trigger); 175 } 176 #else 177 static void rfkill_led_trigger_event(struct rfkill *rfkill) 178 { 179 } 180 181 static inline int rfkill_led_trigger_register(struct rfkill *rfkill) 182 { 183 return 0; 184 } 185 186 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill) 187 { 188 } 189 #endif /* CONFIG_RFKILL_LEDS */ 190 191 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill, 192 enum rfkill_operation op) 193 { 194 unsigned long flags; 195 196 ev->idx = rfkill->idx; 197 ev->type = rfkill->type; 198 ev->op = op; 199 200 spin_lock_irqsave(&rfkill->lock, flags); 201 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW); 202 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW | 203 RFKILL_BLOCK_SW_PREV)); 204 spin_unlock_irqrestore(&rfkill->lock, flags); 205 } 206 207 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op) 208 { 209 struct rfkill_data *data; 210 struct rfkill_int_event *ev; 211 212 list_for_each_entry(data, &rfkill_fds, list) { 213 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 214 if (!ev) 215 continue; 216 rfkill_fill_event(&ev->ev, rfkill, op); 217 mutex_lock(&data->mtx); 218 list_add_tail(&ev->list, &data->events); 219 mutex_unlock(&data->mtx); 220 wake_up_interruptible(&data->read_wait); 221 } 222 } 223 224 static void rfkill_event(struct rfkill *rfkill) 225 { 226 if (!rfkill->registered) 227 return; 228 229 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE); 230 231 /* also send event to /dev/rfkill */ 232 rfkill_send_events(rfkill, RFKILL_OP_CHANGE); 233 } 234 235 static bool __rfkill_set_hw_state(struct rfkill *rfkill, 236 bool blocked, bool *change) 237 { 238 unsigned long flags; 239 bool prev, any; 240 241 BUG_ON(!rfkill); 242 243 spin_lock_irqsave(&rfkill->lock, flags); 244 prev = !!(rfkill->state & RFKILL_BLOCK_HW); 245 if (blocked) 246 rfkill->state |= RFKILL_BLOCK_HW; 247 else 248 rfkill->state &= ~RFKILL_BLOCK_HW; 249 *change = prev != blocked; 250 any = rfkill->state & RFKILL_BLOCK_ANY; 251 spin_unlock_irqrestore(&rfkill->lock, flags); 252 253 rfkill_led_trigger_event(rfkill); 254 255 return any; 256 } 257 258 /** 259 * rfkill_set_block - wrapper for set_block method 260 * 261 * @rfkill: the rfkill struct to use 262 * @blocked: the new software state 263 * 264 * Calls the set_block method (when applicable) and handles notifications 265 * etc. as well. 266 */ 267 static void rfkill_set_block(struct rfkill *rfkill, bool blocked) 268 { 269 unsigned long flags; 270 int err; 271 272 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP)) 273 return; 274 275 /* 276 * Some platforms (...!) generate input events which affect the 277 * _hard_ kill state -- whenever something tries to change the 278 * current software state query the hardware state too. 279 */ 280 if (rfkill->ops->query) 281 rfkill->ops->query(rfkill, rfkill->data); 282 283 spin_lock_irqsave(&rfkill->lock, flags); 284 if (rfkill->state & RFKILL_BLOCK_SW) 285 rfkill->state |= RFKILL_BLOCK_SW_PREV; 286 else 287 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 288 289 if (blocked) 290 rfkill->state |= RFKILL_BLOCK_SW; 291 else 292 rfkill->state &= ~RFKILL_BLOCK_SW; 293 294 rfkill->state |= RFKILL_BLOCK_SW_SETCALL; 295 spin_unlock_irqrestore(&rfkill->lock, flags); 296 297 err = rfkill->ops->set_block(rfkill->data, blocked); 298 299 spin_lock_irqsave(&rfkill->lock, flags); 300 if (err) { 301 /* 302 * Failed -- reset status to _prev, this may be different 303 * from what set set _PREV to earlier in this function 304 * if rfkill_set_sw_state was invoked. 305 */ 306 if (rfkill->state & RFKILL_BLOCK_SW_PREV) 307 rfkill->state |= RFKILL_BLOCK_SW; 308 else 309 rfkill->state &= ~RFKILL_BLOCK_SW; 310 } 311 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL; 312 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 313 spin_unlock_irqrestore(&rfkill->lock, flags); 314 315 rfkill_led_trigger_event(rfkill); 316 rfkill_event(rfkill); 317 } 318 319 #ifdef CONFIG_RFKILL_INPUT 320 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0); 321 322 /** 323 * __rfkill_switch_all - Toggle state of all switches of given type 324 * @type: type of interfaces to be affected 325 * @state: the new state 326 * 327 * This function sets the state of all switches of given type, 328 * unless a specific switch is claimed by userspace (in which case, 329 * that switch is left alone) or suspended. 330 * 331 * Caller must have acquired rfkill_global_mutex. 332 */ 333 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked) 334 { 335 struct rfkill *rfkill; 336 337 rfkill_global_states[type].cur = blocked; 338 list_for_each_entry(rfkill, &rfkill_list, node) { 339 if (rfkill->type != type) 340 continue; 341 342 rfkill_set_block(rfkill, blocked); 343 } 344 } 345 346 /** 347 * rfkill_switch_all - Toggle state of all switches of given type 348 * @type: type of interfaces to be affected 349 * @state: the new state 350 * 351 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state). 352 * Please refer to __rfkill_switch_all() for details. 353 * 354 * Does nothing if the EPO lock is active. 355 */ 356 void rfkill_switch_all(enum rfkill_type type, bool blocked) 357 { 358 if (atomic_read(&rfkill_input_disabled)) 359 return; 360 361 mutex_lock(&rfkill_global_mutex); 362 363 if (!rfkill_epo_lock_active) 364 __rfkill_switch_all(type, blocked); 365 366 mutex_unlock(&rfkill_global_mutex); 367 } 368 369 /** 370 * rfkill_epo - emergency power off all transmitters 371 * 372 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED, 373 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex. 374 * 375 * The global state before the EPO is saved and can be restored later 376 * using rfkill_restore_states(). 377 */ 378 void rfkill_epo(void) 379 { 380 struct rfkill *rfkill; 381 int i; 382 383 if (atomic_read(&rfkill_input_disabled)) 384 return; 385 386 mutex_lock(&rfkill_global_mutex); 387 388 rfkill_epo_lock_active = true; 389 list_for_each_entry(rfkill, &rfkill_list, node) 390 rfkill_set_block(rfkill, true); 391 392 for (i = 0; i < NUM_RFKILL_TYPES; i++) { 393 rfkill_global_states[i].sav = rfkill_global_states[i].cur; 394 rfkill_global_states[i].cur = true; 395 } 396 397 mutex_unlock(&rfkill_global_mutex); 398 } 399 400 /** 401 * rfkill_restore_states - restore global states 402 * 403 * Restore (and sync switches to) the global state from the 404 * states in rfkill_default_states. This can undo the effects of 405 * a call to rfkill_epo(). 406 */ 407 void rfkill_restore_states(void) 408 { 409 int i; 410 411 if (atomic_read(&rfkill_input_disabled)) 412 return; 413 414 mutex_lock(&rfkill_global_mutex); 415 416 rfkill_epo_lock_active = false; 417 for (i = 0; i < NUM_RFKILL_TYPES; i++) 418 __rfkill_switch_all(i, rfkill_global_states[i].sav); 419 mutex_unlock(&rfkill_global_mutex); 420 } 421 422 /** 423 * rfkill_remove_epo_lock - unlock state changes 424 * 425 * Used by rfkill-input manually unlock state changes, when 426 * the EPO switch is deactivated. 427 */ 428 void rfkill_remove_epo_lock(void) 429 { 430 if (atomic_read(&rfkill_input_disabled)) 431 return; 432 433 mutex_lock(&rfkill_global_mutex); 434 rfkill_epo_lock_active = false; 435 mutex_unlock(&rfkill_global_mutex); 436 } 437 438 /** 439 * rfkill_is_epo_lock_active - returns true EPO is active 440 * 441 * Returns 0 (false) if there is NOT an active EPO contidion, 442 * and 1 (true) if there is an active EPO contition, which 443 * locks all radios in one of the BLOCKED states. 444 * 445 * Can be called in atomic context. 446 */ 447 bool rfkill_is_epo_lock_active(void) 448 { 449 return rfkill_epo_lock_active; 450 } 451 452 /** 453 * rfkill_get_global_sw_state - returns global state for a type 454 * @type: the type to get the global state of 455 * 456 * Returns the current global state for a given wireless 457 * device type. 458 */ 459 bool rfkill_get_global_sw_state(const enum rfkill_type type) 460 { 461 return rfkill_global_states[type].cur; 462 } 463 #endif 464 465 466 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked) 467 { 468 bool ret, change; 469 470 ret = __rfkill_set_hw_state(rfkill, blocked, &change); 471 472 if (!rfkill->registered) 473 return ret; 474 475 if (change) 476 schedule_work(&rfkill->uevent_work); 477 478 return ret; 479 } 480 EXPORT_SYMBOL(rfkill_set_hw_state); 481 482 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 483 { 484 u32 bit = RFKILL_BLOCK_SW; 485 486 /* if in a ops->set_block right now, use other bit */ 487 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL) 488 bit = RFKILL_BLOCK_SW_PREV; 489 490 if (blocked) 491 rfkill->state |= bit; 492 else 493 rfkill->state &= ~bit; 494 } 495 496 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 497 { 498 unsigned long flags; 499 bool prev, hwblock; 500 501 BUG_ON(!rfkill); 502 503 spin_lock_irqsave(&rfkill->lock, flags); 504 prev = !!(rfkill->state & RFKILL_BLOCK_SW); 505 __rfkill_set_sw_state(rfkill, blocked); 506 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW); 507 blocked = blocked || hwblock; 508 spin_unlock_irqrestore(&rfkill->lock, flags); 509 510 if (!rfkill->registered) 511 return blocked; 512 513 if (prev != blocked && !hwblock) 514 schedule_work(&rfkill->uevent_work); 515 516 rfkill_led_trigger_event(rfkill); 517 518 return blocked; 519 } 520 EXPORT_SYMBOL(rfkill_set_sw_state); 521 522 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked) 523 { 524 unsigned long flags; 525 526 BUG_ON(!rfkill); 527 BUG_ON(rfkill->registered); 528 529 spin_lock_irqsave(&rfkill->lock, flags); 530 __rfkill_set_sw_state(rfkill, blocked); 531 rfkill->persistent = true; 532 spin_unlock_irqrestore(&rfkill->lock, flags); 533 } 534 EXPORT_SYMBOL(rfkill_init_sw_state); 535 536 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw) 537 { 538 unsigned long flags; 539 bool swprev, hwprev; 540 541 BUG_ON(!rfkill); 542 543 spin_lock_irqsave(&rfkill->lock, flags); 544 545 /* 546 * No need to care about prev/setblock ... this is for uevent only 547 * and that will get triggered by rfkill_set_block anyway. 548 */ 549 swprev = !!(rfkill->state & RFKILL_BLOCK_SW); 550 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW); 551 __rfkill_set_sw_state(rfkill, sw); 552 553 spin_unlock_irqrestore(&rfkill->lock, flags); 554 555 if (!rfkill->registered) { 556 rfkill->persistent = true; 557 } else { 558 if (swprev != sw || hwprev != hw) 559 schedule_work(&rfkill->uevent_work); 560 561 rfkill_led_trigger_event(rfkill); 562 } 563 } 564 EXPORT_SYMBOL(rfkill_set_states); 565 566 static ssize_t rfkill_name_show(struct device *dev, 567 struct device_attribute *attr, 568 char *buf) 569 { 570 struct rfkill *rfkill = to_rfkill(dev); 571 572 return sprintf(buf, "%s\n", rfkill->name); 573 } 574 575 static const char *rfkill_get_type_str(enum rfkill_type type) 576 { 577 switch (type) { 578 case RFKILL_TYPE_WLAN: 579 return "wlan"; 580 case RFKILL_TYPE_BLUETOOTH: 581 return "bluetooth"; 582 case RFKILL_TYPE_UWB: 583 return "ultrawideband"; 584 case RFKILL_TYPE_WIMAX: 585 return "wimax"; 586 case RFKILL_TYPE_WWAN: 587 return "wwan"; 588 default: 589 BUG(); 590 } 591 592 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_WWAN + 1); 593 } 594 595 static ssize_t rfkill_type_show(struct device *dev, 596 struct device_attribute *attr, 597 char *buf) 598 { 599 struct rfkill *rfkill = to_rfkill(dev); 600 601 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type)); 602 } 603 604 static ssize_t rfkill_idx_show(struct device *dev, 605 struct device_attribute *attr, 606 char *buf) 607 { 608 struct rfkill *rfkill = to_rfkill(dev); 609 610 return sprintf(buf, "%d\n", rfkill->idx); 611 } 612 613 static ssize_t rfkill_persistent_show(struct device *dev, 614 struct device_attribute *attr, 615 char *buf) 616 { 617 struct rfkill *rfkill = to_rfkill(dev); 618 619 return sprintf(buf, "%d\n", rfkill->persistent); 620 } 621 622 static u8 user_state_from_blocked(unsigned long state) 623 { 624 if (state & RFKILL_BLOCK_HW) 625 return RFKILL_USER_STATE_HARD_BLOCKED; 626 if (state & RFKILL_BLOCK_SW) 627 return RFKILL_USER_STATE_SOFT_BLOCKED; 628 629 return RFKILL_USER_STATE_UNBLOCKED; 630 } 631 632 static ssize_t rfkill_state_show(struct device *dev, 633 struct device_attribute *attr, 634 char *buf) 635 { 636 struct rfkill *rfkill = to_rfkill(dev); 637 unsigned long flags; 638 u32 state; 639 640 spin_lock_irqsave(&rfkill->lock, flags); 641 state = rfkill->state; 642 spin_unlock_irqrestore(&rfkill->lock, flags); 643 644 return sprintf(buf, "%d\n", user_state_from_blocked(state)); 645 } 646 647 static ssize_t rfkill_state_store(struct device *dev, 648 struct device_attribute *attr, 649 const char *buf, size_t count) 650 { 651 /* 652 * The intention was that userspace can only take control over 653 * a given device when/if rfkill-input doesn't control it due 654 * to user_claim. Since user_claim is currently unsupported, 655 * we never support changing the state from userspace -- this 656 * can be implemented again later. 657 */ 658 659 return -EPERM; 660 } 661 662 static ssize_t rfkill_claim_show(struct device *dev, 663 struct device_attribute *attr, 664 char *buf) 665 { 666 return sprintf(buf, "%d\n", 0); 667 } 668 669 static ssize_t rfkill_claim_store(struct device *dev, 670 struct device_attribute *attr, 671 const char *buf, size_t count) 672 { 673 return -EOPNOTSUPP; 674 } 675 676 static struct device_attribute rfkill_dev_attrs[] = { 677 __ATTR(name, S_IRUGO, rfkill_name_show, NULL), 678 __ATTR(type, S_IRUGO, rfkill_type_show, NULL), 679 __ATTR(index, S_IRUGO, rfkill_idx_show, NULL), 680 __ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL), 681 __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store), 682 __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store), 683 __ATTR_NULL 684 }; 685 686 static void rfkill_release(struct device *dev) 687 { 688 struct rfkill *rfkill = to_rfkill(dev); 689 690 kfree(rfkill); 691 } 692 693 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 694 { 695 struct rfkill *rfkill = to_rfkill(dev); 696 unsigned long flags; 697 u32 state; 698 int error; 699 700 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name); 701 if (error) 702 return error; 703 error = add_uevent_var(env, "RFKILL_TYPE=%s", 704 rfkill_get_type_str(rfkill->type)); 705 if (error) 706 return error; 707 spin_lock_irqsave(&rfkill->lock, flags); 708 state = rfkill->state; 709 spin_unlock_irqrestore(&rfkill->lock, flags); 710 error = add_uevent_var(env, "RFKILL_STATE=%d", 711 user_state_from_blocked(state)); 712 return error; 713 } 714 715 void rfkill_pause_polling(struct rfkill *rfkill) 716 { 717 BUG_ON(!rfkill); 718 719 if (!rfkill->ops->poll) 720 return; 721 722 cancel_delayed_work_sync(&rfkill->poll_work); 723 } 724 EXPORT_SYMBOL(rfkill_pause_polling); 725 726 void rfkill_resume_polling(struct rfkill *rfkill) 727 { 728 BUG_ON(!rfkill); 729 730 if (!rfkill->ops->poll) 731 return; 732 733 schedule_work(&rfkill->poll_work.work); 734 } 735 EXPORT_SYMBOL(rfkill_resume_polling); 736 737 static int rfkill_suspend(struct device *dev, pm_message_t state) 738 { 739 struct rfkill *rfkill = to_rfkill(dev); 740 741 rfkill_pause_polling(rfkill); 742 743 return 0; 744 } 745 746 static int rfkill_resume(struct device *dev) 747 { 748 struct rfkill *rfkill = to_rfkill(dev); 749 bool cur; 750 751 if (!rfkill->persistent) { 752 cur = !!(rfkill->state & RFKILL_BLOCK_SW); 753 rfkill_set_block(rfkill, cur); 754 } 755 756 rfkill_resume_polling(rfkill); 757 758 return 0; 759 } 760 761 static struct class rfkill_class = { 762 .name = "rfkill", 763 .dev_release = rfkill_release, 764 .dev_attrs = rfkill_dev_attrs, 765 .dev_uevent = rfkill_dev_uevent, 766 .suspend = rfkill_suspend, 767 .resume = rfkill_resume, 768 }; 769 770 bool rfkill_blocked(struct rfkill *rfkill) 771 { 772 unsigned long flags; 773 u32 state; 774 775 spin_lock_irqsave(&rfkill->lock, flags); 776 state = rfkill->state; 777 spin_unlock_irqrestore(&rfkill->lock, flags); 778 779 return !!(state & RFKILL_BLOCK_ANY); 780 } 781 EXPORT_SYMBOL(rfkill_blocked); 782 783 784 struct rfkill * __must_check rfkill_alloc(const char *name, 785 struct device *parent, 786 const enum rfkill_type type, 787 const struct rfkill_ops *ops, 788 void *ops_data) 789 { 790 struct rfkill *rfkill; 791 struct device *dev; 792 793 if (WARN_ON(!ops)) 794 return NULL; 795 796 if (WARN_ON(!ops->set_block)) 797 return NULL; 798 799 if (WARN_ON(!name)) 800 return NULL; 801 802 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES)) 803 return NULL; 804 805 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL); 806 if (!rfkill) 807 return NULL; 808 809 spin_lock_init(&rfkill->lock); 810 INIT_LIST_HEAD(&rfkill->node); 811 rfkill->type = type; 812 rfkill->name = name; 813 rfkill->ops = ops; 814 rfkill->data = ops_data; 815 816 dev = &rfkill->dev; 817 dev->class = &rfkill_class; 818 dev->parent = parent; 819 device_initialize(dev); 820 821 return rfkill; 822 } 823 EXPORT_SYMBOL(rfkill_alloc); 824 825 static void rfkill_poll(struct work_struct *work) 826 { 827 struct rfkill *rfkill; 828 829 rfkill = container_of(work, struct rfkill, poll_work.work); 830 831 /* 832 * Poll hardware state -- driver will use one of the 833 * rfkill_set{,_hw,_sw}_state functions and use its 834 * return value to update the current status. 835 */ 836 rfkill->ops->poll(rfkill, rfkill->data); 837 838 schedule_delayed_work(&rfkill->poll_work, 839 round_jiffies_relative(POLL_INTERVAL)); 840 } 841 842 static void rfkill_uevent_work(struct work_struct *work) 843 { 844 struct rfkill *rfkill; 845 846 rfkill = container_of(work, struct rfkill, uevent_work); 847 848 mutex_lock(&rfkill_global_mutex); 849 rfkill_event(rfkill); 850 mutex_unlock(&rfkill_global_mutex); 851 } 852 853 static void rfkill_sync_work(struct work_struct *work) 854 { 855 struct rfkill *rfkill; 856 bool cur; 857 858 rfkill = container_of(work, struct rfkill, sync_work); 859 860 mutex_lock(&rfkill_global_mutex); 861 cur = rfkill_global_states[rfkill->type].cur; 862 rfkill_set_block(rfkill, cur); 863 mutex_unlock(&rfkill_global_mutex); 864 } 865 866 int __must_check rfkill_register(struct rfkill *rfkill) 867 { 868 static unsigned long rfkill_no; 869 struct device *dev = &rfkill->dev; 870 int error; 871 872 BUG_ON(!rfkill); 873 874 mutex_lock(&rfkill_global_mutex); 875 876 if (rfkill->registered) { 877 error = -EALREADY; 878 goto unlock; 879 } 880 881 rfkill->idx = rfkill_no; 882 dev_set_name(dev, "rfkill%lu", rfkill_no); 883 rfkill_no++; 884 885 list_add_tail(&rfkill->node, &rfkill_list); 886 887 error = device_add(dev); 888 if (error) 889 goto remove; 890 891 error = rfkill_led_trigger_register(rfkill); 892 if (error) 893 goto devdel; 894 895 rfkill->registered = true; 896 897 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll); 898 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work); 899 INIT_WORK(&rfkill->sync_work, rfkill_sync_work); 900 901 if (rfkill->ops->poll) 902 schedule_delayed_work(&rfkill->poll_work, 903 round_jiffies_relative(POLL_INTERVAL)); 904 905 if (!rfkill->persistent || rfkill_epo_lock_active) { 906 schedule_work(&rfkill->sync_work); 907 } else { 908 #ifdef CONFIG_RFKILL_INPUT 909 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW); 910 911 if (!atomic_read(&rfkill_input_disabled)) 912 __rfkill_switch_all(rfkill->type, soft_blocked); 913 #endif 914 } 915 916 rfkill_send_events(rfkill, RFKILL_OP_ADD); 917 918 mutex_unlock(&rfkill_global_mutex); 919 return 0; 920 921 devdel: 922 device_del(&rfkill->dev); 923 remove: 924 list_del_init(&rfkill->node); 925 unlock: 926 mutex_unlock(&rfkill_global_mutex); 927 return error; 928 } 929 EXPORT_SYMBOL(rfkill_register); 930 931 void rfkill_unregister(struct rfkill *rfkill) 932 { 933 BUG_ON(!rfkill); 934 935 if (rfkill->ops->poll) 936 cancel_delayed_work_sync(&rfkill->poll_work); 937 938 cancel_work_sync(&rfkill->uevent_work); 939 cancel_work_sync(&rfkill->sync_work); 940 941 rfkill->registered = false; 942 943 device_del(&rfkill->dev); 944 945 mutex_lock(&rfkill_global_mutex); 946 rfkill_send_events(rfkill, RFKILL_OP_DEL); 947 list_del_init(&rfkill->node); 948 mutex_unlock(&rfkill_global_mutex); 949 950 rfkill_led_trigger_unregister(rfkill); 951 } 952 EXPORT_SYMBOL(rfkill_unregister); 953 954 void rfkill_destroy(struct rfkill *rfkill) 955 { 956 if (rfkill) 957 put_device(&rfkill->dev); 958 } 959 EXPORT_SYMBOL(rfkill_destroy); 960 961 static int rfkill_fop_open(struct inode *inode, struct file *file) 962 { 963 struct rfkill_data *data; 964 struct rfkill *rfkill; 965 struct rfkill_int_event *ev, *tmp; 966 967 data = kzalloc(sizeof(*data), GFP_KERNEL); 968 if (!data) 969 return -ENOMEM; 970 971 INIT_LIST_HEAD(&data->events); 972 mutex_init(&data->mtx); 973 init_waitqueue_head(&data->read_wait); 974 975 mutex_lock(&rfkill_global_mutex); 976 mutex_lock(&data->mtx); 977 /* 978 * start getting events from elsewhere but hold mtx to get 979 * startup events added first 980 */ 981 list_add(&data->list, &rfkill_fds); 982 983 list_for_each_entry(rfkill, &rfkill_list, node) { 984 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 985 if (!ev) 986 goto free; 987 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD); 988 list_add_tail(&ev->list, &data->events); 989 } 990 mutex_unlock(&data->mtx); 991 mutex_unlock(&rfkill_global_mutex); 992 993 file->private_data = data; 994 995 return nonseekable_open(inode, file); 996 997 free: 998 mutex_unlock(&data->mtx); 999 mutex_unlock(&rfkill_global_mutex); 1000 mutex_destroy(&data->mtx); 1001 list_for_each_entry_safe(ev, tmp, &data->events, list) 1002 kfree(ev); 1003 kfree(data); 1004 return -ENOMEM; 1005 } 1006 1007 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait) 1008 { 1009 struct rfkill_data *data = file->private_data; 1010 unsigned int res = POLLOUT | POLLWRNORM; 1011 1012 poll_wait(file, &data->read_wait, wait); 1013 1014 mutex_lock(&data->mtx); 1015 if (!list_empty(&data->events)) 1016 res = POLLIN | POLLRDNORM; 1017 mutex_unlock(&data->mtx); 1018 1019 return res; 1020 } 1021 1022 static bool rfkill_readable(struct rfkill_data *data) 1023 { 1024 bool r; 1025 1026 mutex_lock(&data->mtx); 1027 r = !list_empty(&data->events); 1028 mutex_unlock(&data->mtx); 1029 1030 return r; 1031 } 1032 1033 static ssize_t rfkill_fop_read(struct file *file, char __user *buf, 1034 size_t count, loff_t *pos) 1035 { 1036 struct rfkill_data *data = file->private_data; 1037 struct rfkill_int_event *ev; 1038 unsigned long sz; 1039 int ret; 1040 1041 mutex_lock(&data->mtx); 1042 1043 while (list_empty(&data->events)) { 1044 if (file->f_flags & O_NONBLOCK) { 1045 ret = -EAGAIN; 1046 goto out; 1047 } 1048 mutex_unlock(&data->mtx); 1049 ret = wait_event_interruptible(data->read_wait, 1050 rfkill_readable(data)); 1051 mutex_lock(&data->mtx); 1052 1053 if (ret) 1054 goto out; 1055 } 1056 1057 ev = list_first_entry(&data->events, struct rfkill_int_event, 1058 list); 1059 1060 sz = min_t(unsigned long, sizeof(ev->ev), count); 1061 ret = sz; 1062 if (copy_to_user(buf, &ev->ev, sz)) 1063 ret = -EFAULT; 1064 1065 list_del(&ev->list); 1066 kfree(ev); 1067 out: 1068 mutex_unlock(&data->mtx); 1069 return ret; 1070 } 1071 1072 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf, 1073 size_t count, loff_t *pos) 1074 { 1075 struct rfkill *rfkill; 1076 struct rfkill_event ev; 1077 1078 /* we don't need the 'hard' variable but accept it */ 1079 if (count < sizeof(ev) - 1) 1080 return -EINVAL; 1081 1082 if (copy_from_user(&ev, buf, sizeof(ev) - 1)) 1083 return -EFAULT; 1084 1085 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL) 1086 return -EINVAL; 1087 1088 if (ev.type >= NUM_RFKILL_TYPES) 1089 return -EINVAL; 1090 1091 mutex_lock(&rfkill_global_mutex); 1092 1093 if (ev.op == RFKILL_OP_CHANGE_ALL) { 1094 if (ev.type == RFKILL_TYPE_ALL) { 1095 enum rfkill_type i; 1096 for (i = 0; i < NUM_RFKILL_TYPES; i++) 1097 rfkill_global_states[i].cur = ev.soft; 1098 } else { 1099 rfkill_global_states[ev.type].cur = ev.soft; 1100 } 1101 } 1102 1103 list_for_each_entry(rfkill, &rfkill_list, node) { 1104 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL) 1105 continue; 1106 1107 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL) 1108 continue; 1109 1110 rfkill_set_block(rfkill, ev.soft); 1111 } 1112 mutex_unlock(&rfkill_global_mutex); 1113 1114 return count; 1115 } 1116 1117 static int rfkill_fop_release(struct inode *inode, struct file *file) 1118 { 1119 struct rfkill_data *data = file->private_data; 1120 struct rfkill_int_event *ev, *tmp; 1121 1122 mutex_lock(&rfkill_global_mutex); 1123 list_del(&data->list); 1124 mutex_unlock(&rfkill_global_mutex); 1125 1126 mutex_destroy(&data->mtx); 1127 list_for_each_entry_safe(ev, tmp, &data->events, list) 1128 kfree(ev); 1129 1130 #ifdef CONFIG_RFKILL_INPUT 1131 if (data->input_handler) 1132 if (atomic_dec_return(&rfkill_input_disabled) == 0) 1133 printk(KERN_DEBUG "rfkill: input handler enabled\n"); 1134 #endif 1135 1136 kfree(data); 1137 1138 return 0; 1139 } 1140 1141 #ifdef CONFIG_RFKILL_INPUT 1142 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd, 1143 unsigned long arg) 1144 { 1145 struct rfkill_data *data = file->private_data; 1146 1147 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC) 1148 return -ENOSYS; 1149 1150 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT) 1151 return -ENOSYS; 1152 1153 mutex_lock(&data->mtx); 1154 1155 if (!data->input_handler) { 1156 if (atomic_inc_return(&rfkill_input_disabled) == 1) 1157 printk(KERN_DEBUG "rfkill: input handler disabled\n"); 1158 data->input_handler = true; 1159 } 1160 1161 mutex_unlock(&data->mtx); 1162 1163 return 0; 1164 } 1165 #endif 1166 1167 static const struct file_operations rfkill_fops = { 1168 .open = rfkill_fop_open, 1169 .read = rfkill_fop_read, 1170 .write = rfkill_fop_write, 1171 .poll = rfkill_fop_poll, 1172 .release = rfkill_fop_release, 1173 #ifdef CONFIG_RFKILL_INPUT 1174 .unlocked_ioctl = rfkill_fop_ioctl, 1175 .compat_ioctl = rfkill_fop_ioctl, 1176 #endif 1177 }; 1178 1179 static struct miscdevice rfkill_miscdev = { 1180 .name = "rfkill", 1181 .fops = &rfkill_fops, 1182 .minor = MISC_DYNAMIC_MINOR, 1183 }; 1184 1185 static int __init rfkill_init(void) 1186 { 1187 int error; 1188 int i; 1189 1190 for (i = 0; i < NUM_RFKILL_TYPES; i++) 1191 rfkill_global_states[i].cur = !rfkill_default_state; 1192 1193 error = class_register(&rfkill_class); 1194 if (error) 1195 goto out; 1196 1197 error = misc_register(&rfkill_miscdev); 1198 if (error) { 1199 class_unregister(&rfkill_class); 1200 goto out; 1201 } 1202 1203 #ifdef CONFIG_RFKILL_INPUT 1204 error = rfkill_handler_init(); 1205 if (error) { 1206 misc_deregister(&rfkill_miscdev); 1207 class_unregister(&rfkill_class); 1208 goto out; 1209 } 1210 #endif 1211 1212 out: 1213 return error; 1214 } 1215 subsys_initcall(rfkill_init); 1216 1217 static void __exit rfkill_exit(void) 1218 { 1219 #ifdef CONFIG_RFKILL_INPUT 1220 rfkill_handler_exit(); 1221 #endif 1222 misc_deregister(&rfkill_miscdev); 1223 class_unregister(&rfkill_class); 1224 } 1225 module_exit(rfkill_exit); 1226