xref: /linux/net/rfkill/core.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  * Copyright (C) 2006 - 2007 Ivo van Doorn
3  * Copyright (C) 2007 Dmitry Torokhov
4  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the
18  * Free Software Foundation, Inc.,
19  * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/workqueue.h>
26 #include <linux/capability.h>
27 #include <linux/list.h>
28 #include <linux/mutex.h>
29 #include <linux/rfkill.h>
30 #include <linux/spinlock.h>
31 #include <linux/miscdevice.h>
32 #include <linux/wait.h>
33 #include <linux/poll.h>
34 #include <linux/fs.h>
35 
36 #include "rfkill.h"
37 
38 #define POLL_INTERVAL		(5 * HZ)
39 
40 #define RFKILL_BLOCK_HW		BIT(0)
41 #define RFKILL_BLOCK_SW		BIT(1)
42 #define RFKILL_BLOCK_SW_PREV	BIT(2)
43 #define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
44 				 RFKILL_BLOCK_SW |\
45 				 RFKILL_BLOCK_SW_PREV)
46 #define RFKILL_BLOCK_SW_SETCALL	BIT(31)
47 
48 struct rfkill {
49 	spinlock_t		lock;
50 
51 	const char		*name;
52 	enum rfkill_type	type;
53 
54 	unsigned long		state;
55 
56 	u32			idx;
57 
58 	bool			registered;
59 	bool			persistent;
60 
61 	const struct rfkill_ops	*ops;
62 	void			*data;
63 
64 #ifdef CONFIG_RFKILL_LEDS
65 	struct led_trigger	led_trigger;
66 	const char		*ledtrigname;
67 #endif
68 
69 	struct device		dev;
70 	struct list_head	node;
71 
72 	struct delayed_work	poll_work;
73 	struct work_struct	uevent_work;
74 	struct work_struct	sync_work;
75 };
76 #define to_rfkill(d)	container_of(d, struct rfkill, dev)
77 
78 struct rfkill_int_event {
79 	struct list_head	list;
80 	struct rfkill_event	ev;
81 };
82 
83 struct rfkill_data {
84 	struct list_head	list;
85 	struct list_head	events;
86 	struct mutex		mtx;
87 	wait_queue_head_t	read_wait;
88 	bool			input_handler;
89 };
90 
91 
92 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
93 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
94 MODULE_DESCRIPTION("RF switch support");
95 MODULE_LICENSE("GPL");
96 
97 
98 /*
99  * The locking here should be made much smarter, we currently have
100  * a bit of a stupid situation because drivers might want to register
101  * the rfkill struct under their own lock, and take this lock during
102  * rfkill method calls -- which will cause an AB-BA deadlock situation.
103  *
104  * To fix that, we need to rework this code here to be mostly lock-free
105  * and only use the mutex for list manipulations, not to protect the
106  * various other global variables. Then we can avoid holding the mutex
107  * around driver operations, and all is happy.
108  */
109 static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
110 static DEFINE_MUTEX(rfkill_global_mutex);
111 static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
112 
113 static unsigned int rfkill_default_state = 1;
114 module_param_named(default_state, rfkill_default_state, uint, 0444);
115 MODULE_PARM_DESC(default_state,
116 		 "Default initial state for all radio types, 0 = radio off");
117 
118 static struct {
119 	bool cur, sav;
120 } rfkill_global_states[NUM_RFKILL_TYPES];
121 
122 static bool rfkill_epo_lock_active;
123 
124 
125 #ifdef CONFIG_RFKILL_LEDS
126 static void rfkill_led_trigger_event(struct rfkill *rfkill)
127 {
128 	struct led_trigger *trigger;
129 
130 	if (!rfkill->registered)
131 		return;
132 
133 	trigger = &rfkill->led_trigger;
134 
135 	if (rfkill->state & RFKILL_BLOCK_ANY)
136 		led_trigger_event(trigger, LED_OFF);
137 	else
138 		led_trigger_event(trigger, LED_FULL);
139 }
140 
141 static void rfkill_led_trigger_activate(struct led_classdev *led)
142 {
143 	struct rfkill *rfkill;
144 
145 	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
146 
147 	rfkill_led_trigger_event(rfkill);
148 }
149 
150 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
151 {
152 	return rfkill->led_trigger.name;
153 }
154 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
155 
156 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
157 {
158 	BUG_ON(!rfkill);
159 
160 	rfkill->ledtrigname = name;
161 }
162 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
163 
164 static int rfkill_led_trigger_register(struct rfkill *rfkill)
165 {
166 	rfkill->led_trigger.name = rfkill->ledtrigname
167 					? : dev_name(&rfkill->dev);
168 	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
169 	return led_trigger_register(&rfkill->led_trigger);
170 }
171 
172 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
173 {
174 	led_trigger_unregister(&rfkill->led_trigger);
175 }
176 #else
177 static void rfkill_led_trigger_event(struct rfkill *rfkill)
178 {
179 }
180 
181 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
182 {
183 	return 0;
184 }
185 
186 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
187 {
188 }
189 #endif /* CONFIG_RFKILL_LEDS */
190 
191 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
192 			      enum rfkill_operation op)
193 {
194 	unsigned long flags;
195 
196 	ev->idx = rfkill->idx;
197 	ev->type = rfkill->type;
198 	ev->op = op;
199 
200 	spin_lock_irqsave(&rfkill->lock, flags);
201 	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
202 	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
203 					RFKILL_BLOCK_SW_PREV));
204 	spin_unlock_irqrestore(&rfkill->lock, flags);
205 }
206 
207 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
208 {
209 	struct rfkill_data *data;
210 	struct rfkill_int_event *ev;
211 
212 	list_for_each_entry(data, &rfkill_fds, list) {
213 		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
214 		if (!ev)
215 			continue;
216 		rfkill_fill_event(&ev->ev, rfkill, op);
217 		mutex_lock(&data->mtx);
218 		list_add_tail(&ev->list, &data->events);
219 		mutex_unlock(&data->mtx);
220 		wake_up_interruptible(&data->read_wait);
221 	}
222 }
223 
224 static void rfkill_event(struct rfkill *rfkill)
225 {
226 	if (!rfkill->registered)
227 		return;
228 
229 	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
230 
231 	/* also send event to /dev/rfkill */
232 	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
233 }
234 
235 static bool __rfkill_set_hw_state(struct rfkill *rfkill,
236 				  bool blocked, bool *change)
237 {
238 	unsigned long flags;
239 	bool prev, any;
240 
241 	BUG_ON(!rfkill);
242 
243 	spin_lock_irqsave(&rfkill->lock, flags);
244 	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
245 	if (blocked)
246 		rfkill->state |= RFKILL_BLOCK_HW;
247 	else
248 		rfkill->state &= ~RFKILL_BLOCK_HW;
249 	*change = prev != blocked;
250 	any = rfkill->state & RFKILL_BLOCK_ANY;
251 	spin_unlock_irqrestore(&rfkill->lock, flags);
252 
253 	rfkill_led_trigger_event(rfkill);
254 
255 	return any;
256 }
257 
258 /**
259  * rfkill_set_block - wrapper for set_block method
260  *
261  * @rfkill: the rfkill struct to use
262  * @blocked: the new software state
263  *
264  * Calls the set_block method (when applicable) and handles notifications
265  * etc. as well.
266  */
267 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
268 {
269 	unsigned long flags;
270 	int err;
271 
272 	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
273 		return;
274 
275 	/*
276 	 * Some platforms (...!) generate input events which affect the
277 	 * _hard_ kill state -- whenever something tries to change the
278 	 * current software state query the hardware state too.
279 	 */
280 	if (rfkill->ops->query)
281 		rfkill->ops->query(rfkill, rfkill->data);
282 
283 	spin_lock_irqsave(&rfkill->lock, flags);
284 	if (rfkill->state & RFKILL_BLOCK_SW)
285 		rfkill->state |= RFKILL_BLOCK_SW_PREV;
286 	else
287 		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
288 
289 	if (blocked)
290 		rfkill->state |= RFKILL_BLOCK_SW;
291 	else
292 		rfkill->state &= ~RFKILL_BLOCK_SW;
293 
294 	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
295 	spin_unlock_irqrestore(&rfkill->lock, flags);
296 
297 	err = rfkill->ops->set_block(rfkill->data, blocked);
298 
299 	spin_lock_irqsave(&rfkill->lock, flags);
300 	if (err) {
301 		/*
302 		 * Failed -- reset status to _prev, this may be different
303 		 * from what set set _PREV to earlier in this function
304 		 * if rfkill_set_sw_state was invoked.
305 		 */
306 		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
307 			rfkill->state |= RFKILL_BLOCK_SW;
308 		else
309 			rfkill->state &= ~RFKILL_BLOCK_SW;
310 	}
311 	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
312 	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
313 	spin_unlock_irqrestore(&rfkill->lock, flags);
314 
315 	rfkill_led_trigger_event(rfkill);
316 	rfkill_event(rfkill);
317 }
318 
319 #ifdef CONFIG_RFKILL_INPUT
320 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
321 
322 /**
323  * __rfkill_switch_all - Toggle state of all switches of given type
324  * @type: type of interfaces to be affected
325  * @state: the new state
326  *
327  * This function sets the state of all switches of given type,
328  * unless a specific switch is claimed by userspace (in which case,
329  * that switch is left alone) or suspended.
330  *
331  * Caller must have acquired rfkill_global_mutex.
332  */
333 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
334 {
335 	struct rfkill *rfkill;
336 
337 	rfkill_global_states[type].cur = blocked;
338 	list_for_each_entry(rfkill, &rfkill_list, node) {
339 		if (rfkill->type != type)
340 			continue;
341 
342 		rfkill_set_block(rfkill, blocked);
343 	}
344 }
345 
346 /**
347  * rfkill_switch_all - Toggle state of all switches of given type
348  * @type: type of interfaces to be affected
349  * @state: the new state
350  *
351  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
352  * Please refer to __rfkill_switch_all() for details.
353  *
354  * Does nothing if the EPO lock is active.
355  */
356 void rfkill_switch_all(enum rfkill_type type, bool blocked)
357 {
358 	if (atomic_read(&rfkill_input_disabled))
359 		return;
360 
361 	mutex_lock(&rfkill_global_mutex);
362 
363 	if (!rfkill_epo_lock_active)
364 		__rfkill_switch_all(type, blocked);
365 
366 	mutex_unlock(&rfkill_global_mutex);
367 }
368 
369 /**
370  * rfkill_epo - emergency power off all transmitters
371  *
372  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
373  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
374  *
375  * The global state before the EPO is saved and can be restored later
376  * using rfkill_restore_states().
377  */
378 void rfkill_epo(void)
379 {
380 	struct rfkill *rfkill;
381 	int i;
382 
383 	if (atomic_read(&rfkill_input_disabled))
384 		return;
385 
386 	mutex_lock(&rfkill_global_mutex);
387 
388 	rfkill_epo_lock_active = true;
389 	list_for_each_entry(rfkill, &rfkill_list, node)
390 		rfkill_set_block(rfkill, true);
391 
392 	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
393 		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
394 		rfkill_global_states[i].cur = true;
395 	}
396 
397 	mutex_unlock(&rfkill_global_mutex);
398 }
399 
400 /**
401  * rfkill_restore_states - restore global states
402  *
403  * Restore (and sync switches to) the global state from the
404  * states in rfkill_default_states.  This can undo the effects of
405  * a call to rfkill_epo().
406  */
407 void rfkill_restore_states(void)
408 {
409 	int i;
410 
411 	if (atomic_read(&rfkill_input_disabled))
412 		return;
413 
414 	mutex_lock(&rfkill_global_mutex);
415 
416 	rfkill_epo_lock_active = false;
417 	for (i = 0; i < NUM_RFKILL_TYPES; i++)
418 		__rfkill_switch_all(i, rfkill_global_states[i].sav);
419 	mutex_unlock(&rfkill_global_mutex);
420 }
421 
422 /**
423  * rfkill_remove_epo_lock - unlock state changes
424  *
425  * Used by rfkill-input manually unlock state changes, when
426  * the EPO switch is deactivated.
427  */
428 void rfkill_remove_epo_lock(void)
429 {
430 	if (atomic_read(&rfkill_input_disabled))
431 		return;
432 
433 	mutex_lock(&rfkill_global_mutex);
434 	rfkill_epo_lock_active = false;
435 	mutex_unlock(&rfkill_global_mutex);
436 }
437 
438 /**
439  * rfkill_is_epo_lock_active - returns true EPO is active
440  *
441  * Returns 0 (false) if there is NOT an active EPO contidion,
442  * and 1 (true) if there is an active EPO contition, which
443  * locks all radios in one of the BLOCKED states.
444  *
445  * Can be called in atomic context.
446  */
447 bool rfkill_is_epo_lock_active(void)
448 {
449 	return rfkill_epo_lock_active;
450 }
451 
452 /**
453  * rfkill_get_global_sw_state - returns global state for a type
454  * @type: the type to get the global state of
455  *
456  * Returns the current global state for a given wireless
457  * device type.
458  */
459 bool rfkill_get_global_sw_state(const enum rfkill_type type)
460 {
461 	return rfkill_global_states[type].cur;
462 }
463 #endif
464 
465 
466 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
467 {
468 	bool ret, change;
469 
470 	ret = __rfkill_set_hw_state(rfkill, blocked, &change);
471 
472 	if (!rfkill->registered)
473 		return ret;
474 
475 	if (change)
476 		schedule_work(&rfkill->uevent_work);
477 
478 	return ret;
479 }
480 EXPORT_SYMBOL(rfkill_set_hw_state);
481 
482 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
483 {
484 	u32 bit = RFKILL_BLOCK_SW;
485 
486 	/* if in a ops->set_block right now, use other bit */
487 	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
488 		bit = RFKILL_BLOCK_SW_PREV;
489 
490 	if (blocked)
491 		rfkill->state |= bit;
492 	else
493 		rfkill->state &= ~bit;
494 }
495 
496 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
497 {
498 	unsigned long flags;
499 	bool prev, hwblock;
500 
501 	BUG_ON(!rfkill);
502 
503 	spin_lock_irqsave(&rfkill->lock, flags);
504 	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
505 	__rfkill_set_sw_state(rfkill, blocked);
506 	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
507 	blocked = blocked || hwblock;
508 	spin_unlock_irqrestore(&rfkill->lock, flags);
509 
510 	if (!rfkill->registered)
511 		return blocked;
512 
513 	if (prev != blocked && !hwblock)
514 		schedule_work(&rfkill->uevent_work);
515 
516 	rfkill_led_trigger_event(rfkill);
517 
518 	return blocked;
519 }
520 EXPORT_SYMBOL(rfkill_set_sw_state);
521 
522 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
523 {
524 	unsigned long flags;
525 
526 	BUG_ON(!rfkill);
527 	BUG_ON(rfkill->registered);
528 
529 	spin_lock_irqsave(&rfkill->lock, flags);
530 	__rfkill_set_sw_state(rfkill, blocked);
531 	rfkill->persistent = true;
532 	spin_unlock_irqrestore(&rfkill->lock, flags);
533 }
534 EXPORT_SYMBOL(rfkill_init_sw_state);
535 
536 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
537 {
538 	unsigned long flags;
539 	bool swprev, hwprev;
540 
541 	BUG_ON(!rfkill);
542 
543 	spin_lock_irqsave(&rfkill->lock, flags);
544 
545 	/*
546 	 * No need to care about prev/setblock ... this is for uevent only
547 	 * and that will get triggered by rfkill_set_block anyway.
548 	 */
549 	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
550 	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
551 	__rfkill_set_sw_state(rfkill, sw);
552 	if (hw)
553 		rfkill->state |= RFKILL_BLOCK_HW;
554 	else
555 		rfkill->state &= ~RFKILL_BLOCK_HW;
556 
557 	spin_unlock_irqrestore(&rfkill->lock, flags);
558 
559 	if (!rfkill->registered) {
560 		rfkill->persistent = true;
561 	} else {
562 		if (swprev != sw || hwprev != hw)
563 			schedule_work(&rfkill->uevent_work);
564 
565 		rfkill_led_trigger_event(rfkill);
566 	}
567 }
568 EXPORT_SYMBOL(rfkill_set_states);
569 
570 static ssize_t rfkill_name_show(struct device *dev,
571 				struct device_attribute *attr,
572 				char *buf)
573 {
574 	struct rfkill *rfkill = to_rfkill(dev);
575 
576 	return sprintf(buf, "%s\n", rfkill->name);
577 }
578 
579 static const char *rfkill_get_type_str(enum rfkill_type type)
580 {
581 	switch (type) {
582 	case RFKILL_TYPE_WLAN:
583 		return "wlan";
584 	case RFKILL_TYPE_BLUETOOTH:
585 		return "bluetooth";
586 	case RFKILL_TYPE_UWB:
587 		return "ultrawideband";
588 	case RFKILL_TYPE_WIMAX:
589 		return "wimax";
590 	case RFKILL_TYPE_WWAN:
591 		return "wwan";
592 	case RFKILL_TYPE_GPS:
593 		return "gps";
594 	default:
595 		BUG();
596 	}
597 
598 	BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_GPS + 1);
599 }
600 
601 static ssize_t rfkill_type_show(struct device *dev,
602 				struct device_attribute *attr,
603 				char *buf)
604 {
605 	struct rfkill *rfkill = to_rfkill(dev);
606 
607 	return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
608 }
609 
610 static ssize_t rfkill_idx_show(struct device *dev,
611 			       struct device_attribute *attr,
612 			       char *buf)
613 {
614 	struct rfkill *rfkill = to_rfkill(dev);
615 
616 	return sprintf(buf, "%d\n", rfkill->idx);
617 }
618 
619 static ssize_t rfkill_persistent_show(struct device *dev,
620 			       struct device_attribute *attr,
621 			       char *buf)
622 {
623 	struct rfkill *rfkill = to_rfkill(dev);
624 
625 	return sprintf(buf, "%d\n", rfkill->persistent);
626 }
627 
628 static u8 user_state_from_blocked(unsigned long state)
629 {
630 	if (state & RFKILL_BLOCK_HW)
631 		return RFKILL_USER_STATE_HARD_BLOCKED;
632 	if (state & RFKILL_BLOCK_SW)
633 		return RFKILL_USER_STATE_SOFT_BLOCKED;
634 
635 	return RFKILL_USER_STATE_UNBLOCKED;
636 }
637 
638 static ssize_t rfkill_state_show(struct device *dev,
639 				 struct device_attribute *attr,
640 				 char *buf)
641 {
642 	struct rfkill *rfkill = to_rfkill(dev);
643 	unsigned long flags;
644 	u32 state;
645 
646 	spin_lock_irqsave(&rfkill->lock, flags);
647 	state = rfkill->state;
648 	spin_unlock_irqrestore(&rfkill->lock, flags);
649 
650 	return sprintf(buf, "%d\n", user_state_from_blocked(state));
651 }
652 
653 static ssize_t rfkill_state_store(struct device *dev,
654 				  struct device_attribute *attr,
655 				  const char *buf, size_t count)
656 {
657 	struct rfkill *rfkill = to_rfkill(dev);
658 	unsigned long state;
659 	int err;
660 
661 	if (!capable(CAP_NET_ADMIN))
662 		return -EPERM;
663 
664 	err = strict_strtoul(buf, 0, &state);
665 	if (err)
666 		return err;
667 
668 	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
669 	    state != RFKILL_USER_STATE_UNBLOCKED)
670 		return -EINVAL;
671 
672 	mutex_lock(&rfkill_global_mutex);
673 	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
674 	mutex_unlock(&rfkill_global_mutex);
675 
676 	return err ?: count;
677 }
678 
679 static ssize_t rfkill_claim_show(struct device *dev,
680 				 struct device_attribute *attr,
681 				 char *buf)
682 {
683 	return sprintf(buf, "%d\n", 0);
684 }
685 
686 static ssize_t rfkill_claim_store(struct device *dev,
687 				  struct device_attribute *attr,
688 				  const char *buf, size_t count)
689 {
690 	return -EOPNOTSUPP;
691 }
692 
693 static struct device_attribute rfkill_dev_attrs[] = {
694 	__ATTR(name, S_IRUGO, rfkill_name_show, NULL),
695 	__ATTR(type, S_IRUGO, rfkill_type_show, NULL),
696 	__ATTR(index, S_IRUGO, rfkill_idx_show, NULL),
697 	__ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL),
698 	__ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store),
699 	__ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store),
700 	__ATTR_NULL
701 };
702 
703 static void rfkill_release(struct device *dev)
704 {
705 	struct rfkill *rfkill = to_rfkill(dev);
706 
707 	kfree(rfkill);
708 }
709 
710 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
711 {
712 	struct rfkill *rfkill = to_rfkill(dev);
713 	unsigned long flags;
714 	u32 state;
715 	int error;
716 
717 	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
718 	if (error)
719 		return error;
720 	error = add_uevent_var(env, "RFKILL_TYPE=%s",
721 			       rfkill_get_type_str(rfkill->type));
722 	if (error)
723 		return error;
724 	spin_lock_irqsave(&rfkill->lock, flags);
725 	state = rfkill->state;
726 	spin_unlock_irqrestore(&rfkill->lock, flags);
727 	error = add_uevent_var(env, "RFKILL_STATE=%d",
728 			       user_state_from_blocked(state));
729 	return error;
730 }
731 
732 void rfkill_pause_polling(struct rfkill *rfkill)
733 {
734 	BUG_ON(!rfkill);
735 
736 	if (!rfkill->ops->poll)
737 		return;
738 
739 	cancel_delayed_work_sync(&rfkill->poll_work);
740 }
741 EXPORT_SYMBOL(rfkill_pause_polling);
742 
743 void rfkill_resume_polling(struct rfkill *rfkill)
744 {
745 	BUG_ON(!rfkill);
746 
747 	if (!rfkill->ops->poll)
748 		return;
749 
750 	schedule_work(&rfkill->poll_work.work);
751 }
752 EXPORT_SYMBOL(rfkill_resume_polling);
753 
754 static int rfkill_suspend(struct device *dev, pm_message_t state)
755 {
756 	struct rfkill *rfkill = to_rfkill(dev);
757 
758 	rfkill_pause_polling(rfkill);
759 
760 	return 0;
761 }
762 
763 static int rfkill_resume(struct device *dev)
764 {
765 	struct rfkill *rfkill = to_rfkill(dev);
766 	bool cur;
767 
768 	if (!rfkill->persistent) {
769 		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
770 		rfkill_set_block(rfkill, cur);
771 	}
772 
773 	rfkill_resume_polling(rfkill);
774 
775 	return 0;
776 }
777 
778 static struct class rfkill_class = {
779 	.name		= "rfkill",
780 	.dev_release	= rfkill_release,
781 	.dev_attrs	= rfkill_dev_attrs,
782 	.dev_uevent	= rfkill_dev_uevent,
783 	.suspend	= rfkill_suspend,
784 	.resume		= rfkill_resume,
785 };
786 
787 bool rfkill_blocked(struct rfkill *rfkill)
788 {
789 	unsigned long flags;
790 	u32 state;
791 
792 	spin_lock_irqsave(&rfkill->lock, flags);
793 	state = rfkill->state;
794 	spin_unlock_irqrestore(&rfkill->lock, flags);
795 
796 	return !!(state & RFKILL_BLOCK_ANY);
797 }
798 EXPORT_SYMBOL(rfkill_blocked);
799 
800 
801 struct rfkill * __must_check rfkill_alloc(const char *name,
802 					  struct device *parent,
803 					  const enum rfkill_type type,
804 					  const struct rfkill_ops *ops,
805 					  void *ops_data)
806 {
807 	struct rfkill *rfkill;
808 	struct device *dev;
809 
810 	if (WARN_ON(!ops))
811 		return NULL;
812 
813 	if (WARN_ON(!ops->set_block))
814 		return NULL;
815 
816 	if (WARN_ON(!name))
817 		return NULL;
818 
819 	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
820 		return NULL;
821 
822 	rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
823 	if (!rfkill)
824 		return NULL;
825 
826 	spin_lock_init(&rfkill->lock);
827 	INIT_LIST_HEAD(&rfkill->node);
828 	rfkill->type = type;
829 	rfkill->name = name;
830 	rfkill->ops = ops;
831 	rfkill->data = ops_data;
832 
833 	dev = &rfkill->dev;
834 	dev->class = &rfkill_class;
835 	dev->parent = parent;
836 	device_initialize(dev);
837 
838 	return rfkill;
839 }
840 EXPORT_SYMBOL(rfkill_alloc);
841 
842 static void rfkill_poll(struct work_struct *work)
843 {
844 	struct rfkill *rfkill;
845 
846 	rfkill = container_of(work, struct rfkill, poll_work.work);
847 
848 	/*
849 	 * Poll hardware state -- driver will use one of the
850 	 * rfkill_set{,_hw,_sw}_state functions and use its
851 	 * return value to update the current status.
852 	 */
853 	rfkill->ops->poll(rfkill, rfkill->data);
854 
855 	schedule_delayed_work(&rfkill->poll_work,
856 		round_jiffies_relative(POLL_INTERVAL));
857 }
858 
859 static void rfkill_uevent_work(struct work_struct *work)
860 {
861 	struct rfkill *rfkill;
862 
863 	rfkill = container_of(work, struct rfkill, uevent_work);
864 
865 	mutex_lock(&rfkill_global_mutex);
866 	rfkill_event(rfkill);
867 	mutex_unlock(&rfkill_global_mutex);
868 }
869 
870 static void rfkill_sync_work(struct work_struct *work)
871 {
872 	struct rfkill *rfkill;
873 	bool cur;
874 
875 	rfkill = container_of(work, struct rfkill, sync_work);
876 
877 	mutex_lock(&rfkill_global_mutex);
878 	cur = rfkill_global_states[rfkill->type].cur;
879 	rfkill_set_block(rfkill, cur);
880 	mutex_unlock(&rfkill_global_mutex);
881 }
882 
883 int __must_check rfkill_register(struct rfkill *rfkill)
884 {
885 	static unsigned long rfkill_no;
886 	struct device *dev = &rfkill->dev;
887 	int error;
888 
889 	BUG_ON(!rfkill);
890 
891 	mutex_lock(&rfkill_global_mutex);
892 
893 	if (rfkill->registered) {
894 		error = -EALREADY;
895 		goto unlock;
896 	}
897 
898 	rfkill->idx = rfkill_no;
899 	dev_set_name(dev, "rfkill%lu", rfkill_no);
900 	rfkill_no++;
901 
902 	list_add_tail(&rfkill->node, &rfkill_list);
903 
904 	error = device_add(dev);
905 	if (error)
906 		goto remove;
907 
908 	error = rfkill_led_trigger_register(rfkill);
909 	if (error)
910 		goto devdel;
911 
912 	rfkill->registered = true;
913 
914 	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
915 	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
916 	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
917 
918 	if (rfkill->ops->poll)
919 		schedule_delayed_work(&rfkill->poll_work,
920 			round_jiffies_relative(POLL_INTERVAL));
921 
922 	if (!rfkill->persistent || rfkill_epo_lock_active) {
923 		schedule_work(&rfkill->sync_work);
924 	} else {
925 #ifdef CONFIG_RFKILL_INPUT
926 		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
927 
928 		if (!atomic_read(&rfkill_input_disabled))
929 			__rfkill_switch_all(rfkill->type, soft_blocked);
930 #endif
931 	}
932 
933 	rfkill_send_events(rfkill, RFKILL_OP_ADD);
934 
935 	mutex_unlock(&rfkill_global_mutex);
936 	return 0;
937 
938  devdel:
939 	device_del(&rfkill->dev);
940  remove:
941 	list_del_init(&rfkill->node);
942  unlock:
943 	mutex_unlock(&rfkill_global_mutex);
944 	return error;
945 }
946 EXPORT_SYMBOL(rfkill_register);
947 
948 void rfkill_unregister(struct rfkill *rfkill)
949 {
950 	BUG_ON(!rfkill);
951 
952 	if (rfkill->ops->poll)
953 		cancel_delayed_work_sync(&rfkill->poll_work);
954 
955 	cancel_work_sync(&rfkill->uevent_work);
956 	cancel_work_sync(&rfkill->sync_work);
957 
958 	rfkill->registered = false;
959 
960 	device_del(&rfkill->dev);
961 
962 	mutex_lock(&rfkill_global_mutex);
963 	rfkill_send_events(rfkill, RFKILL_OP_DEL);
964 	list_del_init(&rfkill->node);
965 	mutex_unlock(&rfkill_global_mutex);
966 
967 	rfkill_led_trigger_unregister(rfkill);
968 }
969 EXPORT_SYMBOL(rfkill_unregister);
970 
971 void rfkill_destroy(struct rfkill *rfkill)
972 {
973 	if (rfkill)
974 		put_device(&rfkill->dev);
975 }
976 EXPORT_SYMBOL(rfkill_destroy);
977 
978 static int rfkill_fop_open(struct inode *inode, struct file *file)
979 {
980 	struct rfkill_data *data;
981 	struct rfkill *rfkill;
982 	struct rfkill_int_event *ev, *tmp;
983 
984 	data = kzalloc(sizeof(*data), GFP_KERNEL);
985 	if (!data)
986 		return -ENOMEM;
987 
988 	INIT_LIST_HEAD(&data->events);
989 	mutex_init(&data->mtx);
990 	init_waitqueue_head(&data->read_wait);
991 
992 	mutex_lock(&rfkill_global_mutex);
993 	mutex_lock(&data->mtx);
994 	/*
995 	 * start getting events from elsewhere but hold mtx to get
996 	 * startup events added first
997 	 */
998 	list_add(&data->list, &rfkill_fds);
999 
1000 	list_for_each_entry(rfkill, &rfkill_list, node) {
1001 		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1002 		if (!ev)
1003 			goto free;
1004 		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1005 		list_add_tail(&ev->list, &data->events);
1006 	}
1007 	mutex_unlock(&data->mtx);
1008 	mutex_unlock(&rfkill_global_mutex);
1009 
1010 	file->private_data = data;
1011 
1012 	return nonseekable_open(inode, file);
1013 
1014  free:
1015 	mutex_unlock(&data->mtx);
1016 	mutex_unlock(&rfkill_global_mutex);
1017 	mutex_destroy(&data->mtx);
1018 	list_for_each_entry_safe(ev, tmp, &data->events, list)
1019 		kfree(ev);
1020 	kfree(data);
1021 	return -ENOMEM;
1022 }
1023 
1024 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1025 {
1026 	struct rfkill_data *data = file->private_data;
1027 	unsigned int res = POLLOUT | POLLWRNORM;
1028 
1029 	poll_wait(file, &data->read_wait, wait);
1030 
1031 	mutex_lock(&data->mtx);
1032 	if (!list_empty(&data->events))
1033 		res = POLLIN | POLLRDNORM;
1034 	mutex_unlock(&data->mtx);
1035 
1036 	return res;
1037 }
1038 
1039 static bool rfkill_readable(struct rfkill_data *data)
1040 {
1041 	bool r;
1042 
1043 	mutex_lock(&data->mtx);
1044 	r = !list_empty(&data->events);
1045 	mutex_unlock(&data->mtx);
1046 
1047 	return r;
1048 }
1049 
1050 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1051 			       size_t count, loff_t *pos)
1052 {
1053 	struct rfkill_data *data = file->private_data;
1054 	struct rfkill_int_event *ev;
1055 	unsigned long sz;
1056 	int ret;
1057 
1058 	mutex_lock(&data->mtx);
1059 
1060 	while (list_empty(&data->events)) {
1061 		if (file->f_flags & O_NONBLOCK) {
1062 			ret = -EAGAIN;
1063 			goto out;
1064 		}
1065 		mutex_unlock(&data->mtx);
1066 		ret = wait_event_interruptible(data->read_wait,
1067 					       rfkill_readable(data));
1068 		mutex_lock(&data->mtx);
1069 
1070 		if (ret)
1071 			goto out;
1072 	}
1073 
1074 	ev = list_first_entry(&data->events, struct rfkill_int_event,
1075 				list);
1076 
1077 	sz = min_t(unsigned long, sizeof(ev->ev), count);
1078 	ret = sz;
1079 	if (copy_to_user(buf, &ev->ev, sz))
1080 		ret = -EFAULT;
1081 
1082 	list_del(&ev->list);
1083 	kfree(ev);
1084  out:
1085 	mutex_unlock(&data->mtx);
1086 	return ret;
1087 }
1088 
1089 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1090 				size_t count, loff_t *pos)
1091 {
1092 	struct rfkill *rfkill;
1093 	struct rfkill_event ev;
1094 
1095 	/* we don't need the 'hard' variable but accept it */
1096 	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1097 		return -EINVAL;
1098 
1099 	/*
1100 	 * Copy as much data as we can accept into our 'ev' buffer,
1101 	 * but tell userspace how much we've copied so it can determine
1102 	 * our API version even in a write() call, if it cares.
1103 	 */
1104 	count = min(count, sizeof(ev));
1105 	if (copy_from_user(&ev, buf, count))
1106 		return -EFAULT;
1107 
1108 	if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1109 		return -EINVAL;
1110 
1111 	if (ev.type >= NUM_RFKILL_TYPES)
1112 		return -EINVAL;
1113 
1114 	mutex_lock(&rfkill_global_mutex);
1115 
1116 	if (ev.op == RFKILL_OP_CHANGE_ALL) {
1117 		if (ev.type == RFKILL_TYPE_ALL) {
1118 			enum rfkill_type i;
1119 			for (i = 0; i < NUM_RFKILL_TYPES; i++)
1120 				rfkill_global_states[i].cur = ev.soft;
1121 		} else {
1122 			rfkill_global_states[ev.type].cur = ev.soft;
1123 		}
1124 	}
1125 
1126 	list_for_each_entry(rfkill, &rfkill_list, node) {
1127 		if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1128 			continue;
1129 
1130 		if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1131 			continue;
1132 
1133 		rfkill_set_block(rfkill, ev.soft);
1134 	}
1135 	mutex_unlock(&rfkill_global_mutex);
1136 
1137 	return count;
1138 }
1139 
1140 static int rfkill_fop_release(struct inode *inode, struct file *file)
1141 {
1142 	struct rfkill_data *data = file->private_data;
1143 	struct rfkill_int_event *ev, *tmp;
1144 
1145 	mutex_lock(&rfkill_global_mutex);
1146 	list_del(&data->list);
1147 	mutex_unlock(&rfkill_global_mutex);
1148 
1149 	mutex_destroy(&data->mtx);
1150 	list_for_each_entry_safe(ev, tmp, &data->events, list)
1151 		kfree(ev);
1152 
1153 #ifdef CONFIG_RFKILL_INPUT
1154 	if (data->input_handler)
1155 		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1156 			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1157 #endif
1158 
1159 	kfree(data);
1160 
1161 	return 0;
1162 }
1163 
1164 #ifdef CONFIG_RFKILL_INPUT
1165 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1166 			     unsigned long arg)
1167 {
1168 	struct rfkill_data *data = file->private_data;
1169 
1170 	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1171 		return -ENOSYS;
1172 
1173 	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1174 		return -ENOSYS;
1175 
1176 	mutex_lock(&data->mtx);
1177 
1178 	if (!data->input_handler) {
1179 		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1180 			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1181 		data->input_handler = true;
1182 	}
1183 
1184 	mutex_unlock(&data->mtx);
1185 
1186 	return 0;
1187 }
1188 #endif
1189 
1190 static const struct file_operations rfkill_fops = {
1191 	.open		= rfkill_fop_open,
1192 	.read		= rfkill_fop_read,
1193 	.write		= rfkill_fop_write,
1194 	.poll		= rfkill_fop_poll,
1195 	.release	= rfkill_fop_release,
1196 #ifdef CONFIG_RFKILL_INPUT
1197 	.unlocked_ioctl	= rfkill_fop_ioctl,
1198 	.compat_ioctl	= rfkill_fop_ioctl,
1199 #endif
1200 };
1201 
1202 static struct miscdevice rfkill_miscdev = {
1203 	.name	= "rfkill",
1204 	.fops	= &rfkill_fops,
1205 	.minor	= MISC_DYNAMIC_MINOR,
1206 };
1207 
1208 static int __init rfkill_init(void)
1209 {
1210 	int error;
1211 	int i;
1212 
1213 	for (i = 0; i < NUM_RFKILL_TYPES; i++)
1214 		rfkill_global_states[i].cur = !rfkill_default_state;
1215 
1216 	error = class_register(&rfkill_class);
1217 	if (error)
1218 		goto out;
1219 
1220 	error = misc_register(&rfkill_miscdev);
1221 	if (error) {
1222 		class_unregister(&rfkill_class);
1223 		goto out;
1224 	}
1225 
1226 #ifdef CONFIG_RFKILL_INPUT
1227 	error = rfkill_handler_init();
1228 	if (error) {
1229 		misc_deregister(&rfkill_miscdev);
1230 		class_unregister(&rfkill_class);
1231 		goto out;
1232 	}
1233 #endif
1234 
1235  out:
1236 	return error;
1237 }
1238 subsys_initcall(rfkill_init);
1239 
1240 static void __exit rfkill_exit(void)
1241 {
1242 #ifdef CONFIG_RFKILL_INPUT
1243 	rfkill_handler_exit();
1244 #endif
1245 	misc_deregister(&rfkill_miscdev);
1246 	class_unregister(&rfkill_class);
1247 }
1248 module_exit(rfkill_exit);
1249