1 /* 2 * Copyright (C) 2006 - 2007 Ivo van Doorn 3 * Copyright (C) 2007 Dmitry Torokhov 4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the 18 * Free Software Foundation, Inc., 19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/init.h> 25 #include <linux/workqueue.h> 26 #include <linux/capability.h> 27 #include <linux/list.h> 28 #include <linux/mutex.h> 29 #include <linux/rfkill.h> 30 #include <linux/spinlock.h> 31 #include <linux/miscdevice.h> 32 #include <linux/wait.h> 33 #include <linux/poll.h> 34 #include <linux/fs.h> 35 36 #include "rfkill.h" 37 38 #define POLL_INTERVAL (5 * HZ) 39 40 #define RFKILL_BLOCK_HW BIT(0) 41 #define RFKILL_BLOCK_SW BIT(1) 42 #define RFKILL_BLOCK_SW_PREV BIT(2) 43 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\ 44 RFKILL_BLOCK_SW |\ 45 RFKILL_BLOCK_SW_PREV) 46 #define RFKILL_BLOCK_SW_SETCALL BIT(31) 47 48 struct rfkill { 49 spinlock_t lock; 50 51 const char *name; 52 enum rfkill_type type; 53 54 unsigned long state; 55 56 u32 idx; 57 58 bool registered; 59 bool persistent; 60 61 const struct rfkill_ops *ops; 62 void *data; 63 64 #ifdef CONFIG_RFKILL_LEDS 65 struct led_trigger led_trigger; 66 const char *ledtrigname; 67 #endif 68 69 struct device dev; 70 struct list_head node; 71 72 struct delayed_work poll_work; 73 struct work_struct uevent_work; 74 struct work_struct sync_work; 75 }; 76 #define to_rfkill(d) container_of(d, struct rfkill, dev) 77 78 struct rfkill_int_event { 79 struct list_head list; 80 struct rfkill_event ev; 81 }; 82 83 struct rfkill_data { 84 struct list_head list; 85 struct list_head events; 86 struct mutex mtx; 87 wait_queue_head_t read_wait; 88 bool input_handler; 89 }; 90 91 92 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>"); 93 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); 94 MODULE_DESCRIPTION("RF switch support"); 95 MODULE_LICENSE("GPL"); 96 97 98 /* 99 * The locking here should be made much smarter, we currently have 100 * a bit of a stupid situation because drivers might want to register 101 * the rfkill struct under their own lock, and take this lock during 102 * rfkill method calls -- which will cause an AB-BA deadlock situation. 103 * 104 * To fix that, we need to rework this code here to be mostly lock-free 105 * and only use the mutex for list manipulations, not to protect the 106 * various other global variables. Then we can avoid holding the mutex 107 * around driver operations, and all is happy. 108 */ 109 static LIST_HEAD(rfkill_list); /* list of registered rf switches */ 110 static DEFINE_MUTEX(rfkill_global_mutex); 111 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */ 112 113 static unsigned int rfkill_default_state = 1; 114 module_param_named(default_state, rfkill_default_state, uint, 0444); 115 MODULE_PARM_DESC(default_state, 116 "Default initial state for all radio types, 0 = radio off"); 117 118 static struct { 119 bool cur, sav; 120 } rfkill_global_states[NUM_RFKILL_TYPES]; 121 122 static bool rfkill_epo_lock_active; 123 124 125 #ifdef CONFIG_RFKILL_LEDS 126 static void rfkill_led_trigger_event(struct rfkill *rfkill) 127 { 128 struct led_trigger *trigger; 129 130 if (!rfkill->registered) 131 return; 132 133 trigger = &rfkill->led_trigger; 134 135 if (rfkill->state & RFKILL_BLOCK_ANY) 136 led_trigger_event(trigger, LED_OFF); 137 else 138 led_trigger_event(trigger, LED_FULL); 139 } 140 141 static void rfkill_led_trigger_activate(struct led_classdev *led) 142 { 143 struct rfkill *rfkill; 144 145 rfkill = container_of(led->trigger, struct rfkill, led_trigger); 146 147 rfkill_led_trigger_event(rfkill); 148 } 149 150 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill) 151 { 152 return rfkill->led_trigger.name; 153 } 154 EXPORT_SYMBOL(rfkill_get_led_trigger_name); 155 156 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name) 157 { 158 BUG_ON(!rfkill); 159 160 rfkill->ledtrigname = name; 161 } 162 EXPORT_SYMBOL(rfkill_set_led_trigger_name); 163 164 static int rfkill_led_trigger_register(struct rfkill *rfkill) 165 { 166 rfkill->led_trigger.name = rfkill->ledtrigname 167 ? : dev_name(&rfkill->dev); 168 rfkill->led_trigger.activate = rfkill_led_trigger_activate; 169 return led_trigger_register(&rfkill->led_trigger); 170 } 171 172 static void rfkill_led_trigger_unregister(struct rfkill *rfkill) 173 { 174 led_trigger_unregister(&rfkill->led_trigger); 175 } 176 #else 177 static void rfkill_led_trigger_event(struct rfkill *rfkill) 178 { 179 } 180 181 static inline int rfkill_led_trigger_register(struct rfkill *rfkill) 182 { 183 return 0; 184 } 185 186 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill) 187 { 188 } 189 #endif /* CONFIG_RFKILL_LEDS */ 190 191 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill, 192 enum rfkill_operation op) 193 { 194 unsigned long flags; 195 196 ev->idx = rfkill->idx; 197 ev->type = rfkill->type; 198 ev->op = op; 199 200 spin_lock_irqsave(&rfkill->lock, flags); 201 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW); 202 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW | 203 RFKILL_BLOCK_SW_PREV)); 204 spin_unlock_irqrestore(&rfkill->lock, flags); 205 } 206 207 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op) 208 { 209 struct rfkill_data *data; 210 struct rfkill_int_event *ev; 211 212 list_for_each_entry(data, &rfkill_fds, list) { 213 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 214 if (!ev) 215 continue; 216 rfkill_fill_event(&ev->ev, rfkill, op); 217 mutex_lock(&data->mtx); 218 list_add_tail(&ev->list, &data->events); 219 mutex_unlock(&data->mtx); 220 wake_up_interruptible(&data->read_wait); 221 } 222 } 223 224 static void rfkill_event(struct rfkill *rfkill) 225 { 226 if (!rfkill->registered) 227 return; 228 229 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE); 230 231 /* also send event to /dev/rfkill */ 232 rfkill_send_events(rfkill, RFKILL_OP_CHANGE); 233 } 234 235 static bool __rfkill_set_hw_state(struct rfkill *rfkill, 236 bool blocked, bool *change) 237 { 238 unsigned long flags; 239 bool prev, any; 240 241 BUG_ON(!rfkill); 242 243 spin_lock_irqsave(&rfkill->lock, flags); 244 prev = !!(rfkill->state & RFKILL_BLOCK_HW); 245 if (blocked) 246 rfkill->state |= RFKILL_BLOCK_HW; 247 else 248 rfkill->state &= ~RFKILL_BLOCK_HW; 249 *change = prev != blocked; 250 any = rfkill->state & RFKILL_BLOCK_ANY; 251 spin_unlock_irqrestore(&rfkill->lock, flags); 252 253 rfkill_led_trigger_event(rfkill); 254 255 return any; 256 } 257 258 /** 259 * rfkill_set_block - wrapper for set_block method 260 * 261 * @rfkill: the rfkill struct to use 262 * @blocked: the new software state 263 * 264 * Calls the set_block method (when applicable) and handles notifications 265 * etc. as well. 266 */ 267 static void rfkill_set_block(struct rfkill *rfkill, bool blocked) 268 { 269 unsigned long flags; 270 int err; 271 272 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP)) 273 return; 274 275 /* 276 * Some platforms (...!) generate input events which affect the 277 * _hard_ kill state -- whenever something tries to change the 278 * current software state query the hardware state too. 279 */ 280 if (rfkill->ops->query) 281 rfkill->ops->query(rfkill, rfkill->data); 282 283 spin_lock_irqsave(&rfkill->lock, flags); 284 if (rfkill->state & RFKILL_BLOCK_SW) 285 rfkill->state |= RFKILL_BLOCK_SW_PREV; 286 else 287 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 288 289 if (blocked) 290 rfkill->state |= RFKILL_BLOCK_SW; 291 else 292 rfkill->state &= ~RFKILL_BLOCK_SW; 293 294 rfkill->state |= RFKILL_BLOCK_SW_SETCALL; 295 spin_unlock_irqrestore(&rfkill->lock, flags); 296 297 err = rfkill->ops->set_block(rfkill->data, blocked); 298 299 spin_lock_irqsave(&rfkill->lock, flags); 300 if (err) { 301 /* 302 * Failed -- reset status to _prev, this may be different 303 * from what set set _PREV to earlier in this function 304 * if rfkill_set_sw_state was invoked. 305 */ 306 if (rfkill->state & RFKILL_BLOCK_SW_PREV) 307 rfkill->state |= RFKILL_BLOCK_SW; 308 else 309 rfkill->state &= ~RFKILL_BLOCK_SW; 310 } 311 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL; 312 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 313 spin_unlock_irqrestore(&rfkill->lock, flags); 314 315 rfkill_led_trigger_event(rfkill); 316 rfkill_event(rfkill); 317 } 318 319 #ifdef CONFIG_RFKILL_INPUT 320 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0); 321 322 /** 323 * __rfkill_switch_all - Toggle state of all switches of given type 324 * @type: type of interfaces to be affected 325 * @state: the new state 326 * 327 * This function sets the state of all switches of given type, 328 * unless a specific switch is claimed by userspace (in which case, 329 * that switch is left alone) or suspended. 330 * 331 * Caller must have acquired rfkill_global_mutex. 332 */ 333 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked) 334 { 335 struct rfkill *rfkill; 336 337 rfkill_global_states[type].cur = blocked; 338 list_for_each_entry(rfkill, &rfkill_list, node) { 339 if (rfkill->type != type) 340 continue; 341 342 rfkill_set_block(rfkill, blocked); 343 } 344 } 345 346 /** 347 * rfkill_switch_all - Toggle state of all switches of given type 348 * @type: type of interfaces to be affected 349 * @state: the new state 350 * 351 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state). 352 * Please refer to __rfkill_switch_all() for details. 353 * 354 * Does nothing if the EPO lock is active. 355 */ 356 void rfkill_switch_all(enum rfkill_type type, bool blocked) 357 { 358 if (atomic_read(&rfkill_input_disabled)) 359 return; 360 361 mutex_lock(&rfkill_global_mutex); 362 363 if (!rfkill_epo_lock_active) 364 __rfkill_switch_all(type, blocked); 365 366 mutex_unlock(&rfkill_global_mutex); 367 } 368 369 /** 370 * rfkill_epo - emergency power off all transmitters 371 * 372 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED, 373 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex. 374 * 375 * The global state before the EPO is saved and can be restored later 376 * using rfkill_restore_states(). 377 */ 378 void rfkill_epo(void) 379 { 380 struct rfkill *rfkill; 381 int i; 382 383 if (atomic_read(&rfkill_input_disabled)) 384 return; 385 386 mutex_lock(&rfkill_global_mutex); 387 388 rfkill_epo_lock_active = true; 389 list_for_each_entry(rfkill, &rfkill_list, node) 390 rfkill_set_block(rfkill, true); 391 392 for (i = 0; i < NUM_RFKILL_TYPES; i++) { 393 rfkill_global_states[i].sav = rfkill_global_states[i].cur; 394 rfkill_global_states[i].cur = true; 395 } 396 397 mutex_unlock(&rfkill_global_mutex); 398 } 399 400 /** 401 * rfkill_restore_states - restore global states 402 * 403 * Restore (and sync switches to) the global state from the 404 * states in rfkill_default_states. This can undo the effects of 405 * a call to rfkill_epo(). 406 */ 407 void rfkill_restore_states(void) 408 { 409 int i; 410 411 if (atomic_read(&rfkill_input_disabled)) 412 return; 413 414 mutex_lock(&rfkill_global_mutex); 415 416 rfkill_epo_lock_active = false; 417 for (i = 0; i < NUM_RFKILL_TYPES; i++) 418 __rfkill_switch_all(i, rfkill_global_states[i].sav); 419 mutex_unlock(&rfkill_global_mutex); 420 } 421 422 /** 423 * rfkill_remove_epo_lock - unlock state changes 424 * 425 * Used by rfkill-input manually unlock state changes, when 426 * the EPO switch is deactivated. 427 */ 428 void rfkill_remove_epo_lock(void) 429 { 430 if (atomic_read(&rfkill_input_disabled)) 431 return; 432 433 mutex_lock(&rfkill_global_mutex); 434 rfkill_epo_lock_active = false; 435 mutex_unlock(&rfkill_global_mutex); 436 } 437 438 /** 439 * rfkill_is_epo_lock_active - returns true EPO is active 440 * 441 * Returns 0 (false) if there is NOT an active EPO contidion, 442 * and 1 (true) if there is an active EPO contition, which 443 * locks all radios in one of the BLOCKED states. 444 * 445 * Can be called in atomic context. 446 */ 447 bool rfkill_is_epo_lock_active(void) 448 { 449 return rfkill_epo_lock_active; 450 } 451 452 /** 453 * rfkill_get_global_sw_state - returns global state for a type 454 * @type: the type to get the global state of 455 * 456 * Returns the current global state for a given wireless 457 * device type. 458 */ 459 bool rfkill_get_global_sw_state(const enum rfkill_type type) 460 { 461 return rfkill_global_states[type].cur; 462 } 463 #endif 464 465 466 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked) 467 { 468 bool ret, change; 469 470 ret = __rfkill_set_hw_state(rfkill, blocked, &change); 471 472 if (!rfkill->registered) 473 return ret; 474 475 if (change) 476 schedule_work(&rfkill->uevent_work); 477 478 return ret; 479 } 480 EXPORT_SYMBOL(rfkill_set_hw_state); 481 482 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 483 { 484 u32 bit = RFKILL_BLOCK_SW; 485 486 /* if in a ops->set_block right now, use other bit */ 487 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL) 488 bit = RFKILL_BLOCK_SW_PREV; 489 490 if (blocked) 491 rfkill->state |= bit; 492 else 493 rfkill->state &= ~bit; 494 } 495 496 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 497 { 498 unsigned long flags; 499 bool prev, hwblock; 500 501 BUG_ON(!rfkill); 502 503 spin_lock_irqsave(&rfkill->lock, flags); 504 prev = !!(rfkill->state & RFKILL_BLOCK_SW); 505 __rfkill_set_sw_state(rfkill, blocked); 506 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW); 507 blocked = blocked || hwblock; 508 spin_unlock_irqrestore(&rfkill->lock, flags); 509 510 if (!rfkill->registered) 511 return blocked; 512 513 if (prev != blocked && !hwblock) 514 schedule_work(&rfkill->uevent_work); 515 516 rfkill_led_trigger_event(rfkill); 517 518 return blocked; 519 } 520 EXPORT_SYMBOL(rfkill_set_sw_state); 521 522 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked) 523 { 524 unsigned long flags; 525 526 BUG_ON(!rfkill); 527 BUG_ON(rfkill->registered); 528 529 spin_lock_irqsave(&rfkill->lock, flags); 530 __rfkill_set_sw_state(rfkill, blocked); 531 rfkill->persistent = true; 532 spin_unlock_irqrestore(&rfkill->lock, flags); 533 } 534 EXPORT_SYMBOL(rfkill_init_sw_state); 535 536 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw) 537 { 538 unsigned long flags; 539 bool swprev, hwprev; 540 541 BUG_ON(!rfkill); 542 543 spin_lock_irqsave(&rfkill->lock, flags); 544 545 /* 546 * No need to care about prev/setblock ... this is for uevent only 547 * and that will get triggered by rfkill_set_block anyway. 548 */ 549 swprev = !!(rfkill->state & RFKILL_BLOCK_SW); 550 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW); 551 __rfkill_set_sw_state(rfkill, sw); 552 if (hw) 553 rfkill->state |= RFKILL_BLOCK_HW; 554 else 555 rfkill->state &= ~RFKILL_BLOCK_HW; 556 557 spin_unlock_irqrestore(&rfkill->lock, flags); 558 559 if (!rfkill->registered) { 560 rfkill->persistent = true; 561 } else { 562 if (swprev != sw || hwprev != hw) 563 schedule_work(&rfkill->uevent_work); 564 565 rfkill_led_trigger_event(rfkill); 566 } 567 } 568 EXPORT_SYMBOL(rfkill_set_states); 569 570 static ssize_t rfkill_name_show(struct device *dev, 571 struct device_attribute *attr, 572 char *buf) 573 { 574 struct rfkill *rfkill = to_rfkill(dev); 575 576 return sprintf(buf, "%s\n", rfkill->name); 577 } 578 579 static const char *rfkill_get_type_str(enum rfkill_type type) 580 { 581 switch (type) { 582 case RFKILL_TYPE_WLAN: 583 return "wlan"; 584 case RFKILL_TYPE_BLUETOOTH: 585 return "bluetooth"; 586 case RFKILL_TYPE_UWB: 587 return "ultrawideband"; 588 case RFKILL_TYPE_WIMAX: 589 return "wimax"; 590 case RFKILL_TYPE_WWAN: 591 return "wwan"; 592 case RFKILL_TYPE_GPS: 593 return "gps"; 594 default: 595 BUG(); 596 } 597 598 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_GPS + 1); 599 } 600 601 static ssize_t rfkill_type_show(struct device *dev, 602 struct device_attribute *attr, 603 char *buf) 604 { 605 struct rfkill *rfkill = to_rfkill(dev); 606 607 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type)); 608 } 609 610 static ssize_t rfkill_idx_show(struct device *dev, 611 struct device_attribute *attr, 612 char *buf) 613 { 614 struct rfkill *rfkill = to_rfkill(dev); 615 616 return sprintf(buf, "%d\n", rfkill->idx); 617 } 618 619 static ssize_t rfkill_persistent_show(struct device *dev, 620 struct device_attribute *attr, 621 char *buf) 622 { 623 struct rfkill *rfkill = to_rfkill(dev); 624 625 return sprintf(buf, "%d\n", rfkill->persistent); 626 } 627 628 static u8 user_state_from_blocked(unsigned long state) 629 { 630 if (state & RFKILL_BLOCK_HW) 631 return RFKILL_USER_STATE_HARD_BLOCKED; 632 if (state & RFKILL_BLOCK_SW) 633 return RFKILL_USER_STATE_SOFT_BLOCKED; 634 635 return RFKILL_USER_STATE_UNBLOCKED; 636 } 637 638 static ssize_t rfkill_state_show(struct device *dev, 639 struct device_attribute *attr, 640 char *buf) 641 { 642 struct rfkill *rfkill = to_rfkill(dev); 643 unsigned long flags; 644 u32 state; 645 646 spin_lock_irqsave(&rfkill->lock, flags); 647 state = rfkill->state; 648 spin_unlock_irqrestore(&rfkill->lock, flags); 649 650 return sprintf(buf, "%d\n", user_state_from_blocked(state)); 651 } 652 653 static ssize_t rfkill_state_store(struct device *dev, 654 struct device_attribute *attr, 655 const char *buf, size_t count) 656 { 657 struct rfkill *rfkill = to_rfkill(dev); 658 unsigned long state; 659 int err; 660 661 if (!capable(CAP_NET_ADMIN)) 662 return -EPERM; 663 664 err = strict_strtoul(buf, 0, &state); 665 if (err) 666 return err; 667 668 if (state != RFKILL_USER_STATE_SOFT_BLOCKED && 669 state != RFKILL_USER_STATE_UNBLOCKED) 670 return -EINVAL; 671 672 mutex_lock(&rfkill_global_mutex); 673 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED); 674 mutex_unlock(&rfkill_global_mutex); 675 676 return err ?: count; 677 } 678 679 static ssize_t rfkill_claim_show(struct device *dev, 680 struct device_attribute *attr, 681 char *buf) 682 { 683 return sprintf(buf, "%d\n", 0); 684 } 685 686 static ssize_t rfkill_claim_store(struct device *dev, 687 struct device_attribute *attr, 688 const char *buf, size_t count) 689 { 690 return -EOPNOTSUPP; 691 } 692 693 static struct device_attribute rfkill_dev_attrs[] = { 694 __ATTR(name, S_IRUGO, rfkill_name_show, NULL), 695 __ATTR(type, S_IRUGO, rfkill_type_show, NULL), 696 __ATTR(index, S_IRUGO, rfkill_idx_show, NULL), 697 __ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL), 698 __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store), 699 __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store), 700 __ATTR_NULL 701 }; 702 703 static void rfkill_release(struct device *dev) 704 { 705 struct rfkill *rfkill = to_rfkill(dev); 706 707 kfree(rfkill); 708 } 709 710 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 711 { 712 struct rfkill *rfkill = to_rfkill(dev); 713 unsigned long flags; 714 u32 state; 715 int error; 716 717 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name); 718 if (error) 719 return error; 720 error = add_uevent_var(env, "RFKILL_TYPE=%s", 721 rfkill_get_type_str(rfkill->type)); 722 if (error) 723 return error; 724 spin_lock_irqsave(&rfkill->lock, flags); 725 state = rfkill->state; 726 spin_unlock_irqrestore(&rfkill->lock, flags); 727 error = add_uevent_var(env, "RFKILL_STATE=%d", 728 user_state_from_blocked(state)); 729 return error; 730 } 731 732 void rfkill_pause_polling(struct rfkill *rfkill) 733 { 734 BUG_ON(!rfkill); 735 736 if (!rfkill->ops->poll) 737 return; 738 739 cancel_delayed_work_sync(&rfkill->poll_work); 740 } 741 EXPORT_SYMBOL(rfkill_pause_polling); 742 743 void rfkill_resume_polling(struct rfkill *rfkill) 744 { 745 BUG_ON(!rfkill); 746 747 if (!rfkill->ops->poll) 748 return; 749 750 schedule_work(&rfkill->poll_work.work); 751 } 752 EXPORT_SYMBOL(rfkill_resume_polling); 753 754 static int rfkill_suspend(struct device *dev, pm_message_t state) 755 { 756 struct rfkill *rfkill = to_rfkill(dev); 757 758 rfkill_pause_polling(rfkill); 759 760 return 0; 761 } 762 763 static int rfkill_resume(struct device *dev) 764 { 765 struct rfkill *rfkill = to_rfkill(dev); 766 bool cur; 767 768 if (!rfkill->persistent) { 769 cur = !!(rfkill->state & RFKILL_BLOCK_SW); 770 rfkill_set_block(rfkill, cur); 771 } 772 773 rfkill_resume_polling(rfkill); 774 775 return 0; 776 } 777 778 static struct class rfkill_class = { 779 .name = "rfkill", 780 .dev_release = rfkill_release, 781 .dev_attrs = rfkill_dev_attrs, 782 .dev_uevent = rfkill_dev_uevent, 783 .suspend = rfkill_suspend, 784 .resume = rfkill_resume, 785 }; 786 787 bool rfkill_blocked(struct rfkill *rfkill) 788 { 789 unsigned long flags; 790 u32 state; 791 792 spin_lock_irqsave(&rfkill->lock, flags); 793 state = rfkill->state; 794 spin_unlock_irqrestore(&rfkill->lock, flags); 795 796 return !!(state & RFKILL_BLOCK_ANY); 797 } 798 EXPORT_SYMBOL(rfkill_blocked); 799 800 801 struct rfkill * __must_check rfkill_alloc(const char *name, 802 struct device *parent, 803 const enum rfkill_type type, 804 const struct rfkill_ops *ops, 805 void *ops_data) 806 { 807 struct rfkill *rfkill; 808 struct device *dev; 809 810 if (WARN_ON(!ops)) 811 return NULL; 812 813 if (WARN_ON(!ops->set_block)) 814 return NULL; 815 816 if (WARN_ON(!name)) 817 return NULL; 818 819 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES)) 820 return NULL; 821 822 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL); 823 if (!rfkill) 824 return NULL; 825 826 spin_lock_init(&rfkill->lock); 827 INIT_LIST_HEAD(&rfkill->node); 828 rfkill->type = type; 829 rfkill->name = name; 830 rfkill->ops = ops; 831 rfkill->data = ops_data; 832 833 dev = &rfkill->dev; 834 dev->class = &rfkill_class; 835 dev->parent = parent; 836 device_initialize(dev); 837 838 return rfkill; 839 } 840 EXPORT_SYMBOL(rfkill_alloc); 841 842 static void rfkill_poll(struct work_struct *work) 843 { 844 struct rfkill *rfkill; 845 846 rfkill = container_of(work, struct rfkill, poll_work.work); 847 848 /* 849 * Poll hardware state -- driver will use one of the 850 * rfkill_set{,_hw,_sw}_state functions and use its 851 * return value to update the current status. 852 */ 853 rfkill->ops->poll(rfkill, rfkill->data); 854 855 schedule_delayed_work(&rfkill->poll_work, 856 round_jiffies_relative(POLL_INTERVAL)); 857 } 858 859 static void rfkill_uevent_work(struct work_struct *work) 860 { 861 struct rfkill *rfkill; 862 863 rfkill = container_of(work, struct rfkill, uevent_work); 864 865 mutex_lock(&rfkill_global_mutex); 866 rfkill_event(rfkill); 867 mutex_unlock(&rfkill_global_mutex); 868 } 869 870 static void rfkill_sync_work(struct work_struct *work) 871 { 872 struct rfkill *rfkill; 873 bool cur; 874 875 rfkill = container_of(work, struct rfkill, sync_work); 876 877 mutex_lock(&rfkill_global_mutex); 878 cur = rfkill_global_states[rfkill->type].cur; 879 rfkill_set_block(rfkill, cur); 880 mutex_unlock(&rfkill_global_mutex); 881 } 882 883 int __must_check rfkill_register(struct rfkill *rfkill) 884 { 885 static unsigned long rfkill_no; 886 struct device *dev = &rfkill->dev; 887 int error; 888 889 BUG_ON(!rfkill); 890 891 mutex_lock(&rfkill_global_mutex); 892 893 if (rfkill->registered) { 894 error = -EALREADY; 895 goto unlock; 896 } 897 898 rfkill->idx = rfkill_no; 899 dev_set_name(dev, "rfkill%lu", rfkill_no); 900 rfkill_no++; 901 902 list_add_tail(&rfkill->node, &rfkill_list); 903 904 error = device_add(dev); 905 if (error) 906 goto remove; 907 908 error = rfkill_led_trigger_register(rfkill); 909 if (error) 910 goto devdel; 911 912 rfkill->registered = true; 913 914 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll); 915 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work); 916 INIT_WORK(&rfkill->sync_work, rfkill_sync_work); 917 918 if (rfkill->ops->poll) 919 schedule_delayed_work(&rfkill->poll_work, 920 round_jiffies_relative(POLL_INTERVAL)); 921 922 if (!rfkill->persistent || rfkill_epo_lock_active) { 923 schedule_work(&rfkill->sync_work); 924 } else { 925 #ifdef CONFIG_RFKILL_INPUT 926 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW); 927 928 if (!atomic_read(&rfkill_input_disabled)) 929 __rfkill_switch_all(rfkill->type, soft_blocked); 930 #endif 931 } 932 933 rfkill_send_events(rfkill, RFKILL_OP_ADD); 934 935 mutex_unlock(&rfkill_global_mutex); 936 return 0; 937 938 devdel: 939 device_del(&rfkill->dev); 940 remove: 941 list_del_init(&rfkill->node); 942 unlock: 943 mutex_unlock(&rfkill_global_mutex); 944 return error; 945 } 946 EXPORT_SYMBOL(rfkill_register); 947 948 void rfkill_unregister(struct rfkill *rfkill) 949 { 950 BUG_ON(!rfkill); 951 952 if (rfkill->ops->poll) 953 cancel_delayed_work_sync(&rfkill->poll_work); 954 955 cancel_work_sync(&rfkill->uevent_work); 956 cancel_work_sync(&rfkill->sync_work); 957 958 rfkill->registered = false; 959 960 device_del(&rfkill->dev); 961 962 mutex_lock(&rfkill_global_mutex); 963 rfkill_send_events(rfkill, RFKILL_OP_DEL); 964 list_del_init(&rfkill->node); 965 mutex_unlock(&rfkill_global_mutex); 966 967 rfkill_led_trigger_unregister(rfkill); 968 } 969 EXPORT_SYMBOL(rfkill_unregister); 970 971 void rfkill_destroy(struct rfkill *rfkill) 972 { 973 if (rfkill) 974 put_device(&rfkill->dev); 975 } 976 EXPORT_SYMBOL(rfkill_destroy); 977 978 static int rfkill_fop_open(struct inode *inode, struct file *file) 979 { 980 struct rfkill_data *data; 981 struct rfkill *rfkill; 982 struct rfkill_int_event *ev, *tmp; 983 984 data = kzalloc(sizeof(*data), GFP_KERNEL); 985 if (!data) 986 return -ENOMEM; 987 988 INIT_LIST_HEAD(&data->events); 989 mutex_init(&data->mtx); 990 init_waitqueue_head(&data->read_wait); 991 992 mutex_lock(&rfkill_global_mutex); 993 mutex_lock(&data->mtx); 994 /* 995 * start getting events from elsewhere but hold mtx to get 996 * startup events added first 997 */ 998 list_add(&data->list, &rfkill_fds); 999 1000 list_for_each_entry(rfkill, &rfkill_list, node) { 1001 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1002 if (!ev) 1003 goto free; 1004 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD); 1005 list_add_tail(&ev->list, &data->events); 1006 } 1007 mutex_unlock(&data->mtx); 1008 mutex_unlock(&rfkill_global_mutex); 1009 1010 file->private_data = data; 1011 1012 return nonseekable_open(inode, file); 1013 1014 free: 1015 mutex_unlock(&data->mtx); 1016 mutex_unlock(&rfkill_global_mutex); 1017 mutex_destroy(&data->mtx); 1018 list_for_each_entry_safe(ev, tmp, &data->events, list) 1019 kfree(ev); 1020 kfree(data); 1021 return -ENOMEM; 1022 } 1023 1024 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait) 1025 { 1026 struct rfkill_data *data = file->private_data; 1027 unsigned int res = POLLOUT | POLLWRNORM; 1028 1029 poll_wait(file, &data->read_wait, wait); 1030 1031 mutex_lock(&data->mtx); 1032 if (!list_empty(&data->events)) 1033 res = POLLIN | POLLRDNORM; 1034 mutex_unlock(&data->mtx); 1035 1036 return res; 1037 } 1038 1039 static bool rfkill_readable(struct rfkill_data *data) 1040 { 1041 bool r; 1042 1043 mutex_lock(&data->mtx); 1044 r = !list_empty(&data->events); 1045 mutex_unlock(&data->mtx); 1046 1047 return r; 1048 } 1049 1050 static ssize_t rfkill_fop_read(struct file *file, char __user *buf, 1051 size_t count, loff_t *pos) 1052 { 1053 struct rfkill_data *data = file->private_data; 1054 struct rfkill_int_event *ev; 1055 unsigned long sz; 1056 int ret; 1057 1058 mutex_lock(&data->mtx); 1059 1060 while (list_empty(&data->events)) { 1061 if (file->f_flags & O_NONBLOCK) { 1062 ret = -EAGAIN; 1063 goto out; 1064 } 1065 mutex_unlock(&data->mtx); 1066 ret = wait_event_interruptible(data->read_wait, 1067 rfkill_readable(data)); 1068 mutex_lock(&data->mtx); 1069 1070 if (ret) 1071 goto out; 1072 } 1073 1074 ev = list_first_entry(&data->events, struct rfkill_int_event, 1075 list); 1076 1077 sz = min_t(unsigned long, sizeof(ev->ev), count); 1078 ret = sz; 1079 if (copy_to_user(buf, &ev->ev, sz)) 1080 ret = -EFAULT; 1081 1082 list_del(&ev->list); 1083 kfree(ev); 1084 out: 1085 mutex_unlock(&data->mtx); 1086 return ret; 1087 } 1088 1089 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf, 1090 size_t count, loff_t *pos) 1091 { 1092 struct rfkill *rfkill; 1093 struct rfkill_event ev; 1094 1095 /* we don't need the 'hard' variable but accept it */ 1096 if (count < RFKILL_EVENT_SIZE_V1 - 1) 1097 return -EINVAL; 1098 1099 /* 1100 * Copy as much data as we can accept into our 'ev' buffer, 1101 * but tell userspace how much we've copied so it can determine 1102 * our API version even in a write() call, if it cares. 1103 */ 1104 count = min(count, sizeof(ev)); 1105 if (copy_from_user(&ev, buf, count)) 1106 return -EFAULT; 1107 1108 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL) 1109 return -EINVAL; 1110 1111 if (ev.type >= NUM_RFKILL_TYPES) 1112 return -EINVAL; 1113 1114 mutex_lock(&rfkill_global_mutex); 1115 1116 if (ev.op == RFKILL_OP_CHANGE_ALL) { 1117 if (ev.type == RFKILL_TYPE_ALL) { 1118 enum rfkill_type i; 1119 for (i = 0; i < NUM_RFKILL_TYPES; i++) 1120 rfkill_global_states[i].cur = ev.soft; 1121 } else { 1122 rfkill_global_states[ev.type].cur = ev.soft; 1123 } 1124 } 1125 1126 list_for_each_entry(rfkill, &rfkill_list, node) { 1127 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL) 1128 continue; 1129 1130 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL) 1131 continue; 1132 1133 rfkill_set_block(rfkill, ev.soft); 1134 } 1135 mutex_unlock(&rfkill_global_mutex); 1136 1137 return count; 1138 } 1139 1140 static int rfkill_fop_release(struct inode *inode, struct file *file) 1141 { 1142 struct rfkill_data *data = file->private_data; 1143 struct rfkill_int_event *ev, *tmp; 1144 1145 mutex_lock(&rfkill_global_mutex); 1146 list_del(&data->list); 1147 mutex_unlock(&rfkill_global_mutex); 1148 1149 mutex_destroy(&data->mtx); 1150 list_for_each_entry_safe(ev, tmp, &data->events, list) 1151 kfree(ev); 1152 1153 #ifdef CONFIG_RFKILL_INPUT 1154 if (data->input_handler) 1155 if (atomic_dec_return(&rfkill_input_disabled) == 0) 1156 printk(KERN_DEBUG "rfkill: input handler enabled\n"); 1157 #endif 1158 1159 kfree(data); 1160 1161 return 0; 1162 } 1163 1164 #ifdef CONFIG_RFKILL_INPUT 1165 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd, 1166 unsigned long arg) 1167 { 1168 struct rfkill_data *data = file->private_data; 1169 1170 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC) 1171 return -ENOSYS; 1172 1173 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT) 1174 return -ENOSYS; 1175 1176 mutex_lock(&data->mtx); 1177 1178 if (!data->input_handler) { 1179 if (atomic_inc_return(&rfkill_input_disabled) == 1) 1180 printk(KERN_DEBUG "rfkill: input handler disabled\n"); 1181 data->input_handler = true; 1182 } 1183 1184 mutex_unlock(&data->mtx); 1185 1186 return 0; 1187 } 1188 #endif 1189 1190 static const struct file_operations rfkill_fops = { 1191 .open = rfkill_fop_open, 1192 .read = rfkill_fop_read, 1193 .write = rfkill_fop_write, 1194 .poll = rfkill_fop_poll, 1195 .release = rfkill_fop_release, 1196 #ifdef CONFIG_RFKILL_INPUT 1197 .unlocked_ioctl = rfkill_fop_ioctl, 1198 .compat_ioctl = rfkill_fop_ioctl, 1199 #endif 1200 }; 1201 1202 static struct miscdevice rfkill_miscdev = { 1203 .name = "rfkill", 1204 .fops = &rfkill_fops, 1205 .minor = MISC_DYNAMIC_MINOR, 1206 }; 1207 1208 static int __init rfkill_init(void) 1209 { 1210 int error; 1211 int i; 1212 1213 for (i = 0; i < NUM_RFKILL_TYPES; i++) 1214 rfkill_global_states[i].cur = !rfkill_default_state; 1215 1216 error = class_register(&rfkill_class); 1217 if (error) 1218 goto out; 1219 1220 error = misc_register(&rfkill_miscdev); 1221 if (error) { 1222 class_unregister(&rfkill_class); 1223 goto out; 1224 } 1225 1226 #ifdef CONFIG_RFKILL_INPUT 1227 error = rfkill_handler_init(); 1228 if (error) { 1229 misc_deregister(&rfkill_miscdev); 1230 class_unregister(&rfkill_class); 1231 goto out; 1232 } 1233 #endif 1234 1235 out: 1236 return error; 1237 } 1238 subsys_initcall(rfkill_init); 1239 1240 static void __exit rfkill_exit(void) 1241 { 1242 #ifdef CONFIG_RFKILL_INPUT 1243 rfkill_handler_exit(); 1244 #endif 1245 misc_deregister(&rfkill_miscdev); 1246 class_unregister(&rfkill_class); 1247 } 1248 module_exit(rfkill_exit); 1249