1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2006 - 2007 Ivo van Doorn 4 * Copyright (C) 2007 Dmitry Torokhov 5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/workqueue.h> 12 #include <linux/capability.h> 13 #include <linux/list.h> 14 #include <linux/mutex.h> 15 #include <linux/rfkill.h> 16 #include <linux/sched.h> 17 #include <linux/spinlock.h> 18 #include <linux/device.h> 19 #include <linux/miscdevice.h> 20 #include <linux/wait.h> 21 #include <linux/poll.h> 22 #include <linux/fs.h> 23 #include <linux/slab.h> 24 25 #include "rfkill.h" 26 27 #define POLL_INTERVAL (5 * HZ) 28 29 #define RFKILL_BLOCK_HW BIT(0) 30 #define RFKILL_BLOCK_SW BIT(1) 31 #define RFKILL_BLOCK_SW_PREV BIT(2) 32 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\ 33 RFKILL_BLOCK_SW |\ 34 RFKILL_BLOCK_SW_PREV) 35 #define RFKILL_BLOCK_SW_SETCALL BIT(31) 36 37 struct rfkill { 38 spinlock_t lock; 39 40 enum rfkill_type type; 41 42 unsigned long state; 43 unsigned long hard_block_reasons; 44 45 u32 idx; 46 47 bool registered; 48 bool persistent; 49 bool polling_paused; 50 bool suspended; 51 52 const struct rfkill_ops *ops; 53 void *data; 54 55 #ifdef CONFIG_RFKILL_LEDS 56 struct led_trigger led_trigger; 57 const char *ledtrigname; 58 #endif 59 60 struct device dev; 61 struct list_head node; 62 63 struct delayed_work poll_work; 64 struct work_struct uevent_work; 65 struct work_struct sync_work; 66 char name[]; 67 }; 68 #define to_rfkill(d) container_of(d, struct rfkill, dev) 69 70 struct rfkill_int_event { 71 struct list_head list; 72 struct rfkill_event_ext ev; 73 }; 74 75 struct rfkill_data { 76 struct list_head list; 77 struct list_head events; 78 struct mutex mtx; 79 wait_queue_head_t read_wait; 80 bool input_handler; 81 }; 82 83 84 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>"); 85 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); 86 MODULE_DESCRIPTION("RF switch support"); 87 MODULE_LICENSE("GPL"); 88 89 90 /* 91 * The locking here should be made much smarter, we currently have 92 * a bit of a stupid situation because drivers might want to register 93 * the rfkill struct under their own lock, and take this lock during 94 * rfkill method calls -- which will cause an AB-BA deadlock situation. 95 * 96 * To fix that, we need to rework this code here to be mostly lock-free 97 * and only use the mutex for list manipulations, not to protect the 98 * various other global variables. Then we can avoid holding the mutex 99 * around driver operations, and all is happy. 100 */ 101 static LIST_HEAD(rfkill_list); /* list of registered rf switches */ 102 static DEFINE_MUTEX(rfkill_global_mutex); 103 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */ 104 105 static unsigned int rfkill_default_state = 1; 106 module_param_named(default_state, rfkill_default_state, uint, 0444); 107 MODULE_PARM_DESC(default_state, 108 "Default initial state for all radio types, 0 = radio off"); 109 110 static struct { 111 bool cur, sav; 112 } rfkill_global_states[NUM_RFKILL_TYPES]; 113 114 static bool rfkill_epo_lock_active; 115 116 117 #ifdef CONFIG_RFKILL_LEDS 118 static void rfkill_led_trigger_event(struct rfkill *rfkill) 119 { 120 struct led_trigger *trigger; 121 122 if (!rfkill->registered) 123 return; 124 125 trigger = &rfkill->led_trigger; 126 127 if (rfkill->state & RFKILL_BLOCK_ANY) 128 led_trigger_event(trigger, LED_OFF); 129 else 130 led_trigger_event(trigger, LED_FULL); 131 } 132 133 static int rfkill_led_trigger_activate(struct led_classdev *led) 134 { 135 struct rfkill *rfkill; 136 137 rfkill = container_of(led->trigger, struct rfkill, led_trigger); 138 139 rfkill_led_trigger_event(rfkill); 140 141 return 0; 142 } 143 144 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill) 145 { 146 return rfkill->led_trigger.name; 147 } 148 EXPORT_SYMBOL(rfkill_get_led_trigger_name); 149 150 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name) 151 { 152 BUG_ON(!rfkill); 153 154 rfkill->ledtrigname = name; 155 } 156 EXPORT_SYMBOL(rfkill_set_led_trigger_name); 157 158 static int rfkill_led_trigger_register(struct rfkill *rfkill) 159 { 160 rfkill->led_trigger.name = rfkill->ledtrigname 161 ? : dev_name(&rfkill->dev); 162 rfkill->led_trigger.activate = rfkill_led_trigger_activate; 163 return led_trigger_register(&rfkill->led_trigger); 164 } 165 166 static void rfkill_led_trigger_unregister(struct rfkill *rfkill) 167 { 168 led_trigger_unregister(&rfkill->led_trigger); 169 } 170 171 static struct led_trigger rfkill_any_led_trigger; 172 static struct led_trigger rfkill_none_led_trigger; 173 static struct work_struct rfkill_global_led_trigger_work; 174 175 static void rfkill_global_led_trigger_worker(struct work_struct *work) 176 { 177 enum led_brightness brightness = LED_OFF; 178 struct rfkill *rfkill; 179 180 mutex_lock(&rfkill_global_mutex); 181 list_for_each_entry(rfkill, &rfkill_list, node) { 182 if (!(rfkill->state & RFKILL_BLOCK_ANY)) { 183 brightness = LED_FULL; 184 break; 185 } 186 } 187 mutex_unlock(&rfkill_global_mutex); 188 189 led_trigger_event(&rfkill_any_led_trigger, brightness); 190 led_trigger_event(&rfkill_none_led_trigger, 191 brightness == LED_OFF ? LED_FULL : LED_OFF); 192 } 193 194 static void rfkill_global_led_trigger_event(void) 195 { 196 schedule_work(&rfkill_global_led_trigger_work); 197 } 198 199 static int rfkill_global_led_trigger_register(void) 200 { 201 int ret; 202 203 INIT_WORK(&rfkill_global_led_trigger_work, 204 rfkill_global_led_trigger_worker); 205 206 rfkill_any_led_trigger.name = "rfkill-any"; 207 ret = led_trigger_register(&rfkill_any_led_trigger); 208 if (ret) 209 return ret; 210 211 rfkill_none_led_trigger.name = "rfkill-none"; 212 ret = led_trigger_register(&rfkill_none_led_trigger); 213 if (ret) 214 led_trigger_unregister(&rfkill_any_led_trigger); 215 else 216 /* Delay activation until all global triggers are registered */ 217 rfkill_global_led_trigger_event(); 218 219 return ret; 220 } 221 222 static void rfkill_global_led_trigger_unregister(void) 223 { 224 led_trigger_unregister(&rfkill_none_led_trigger); 225 led_trigger_unregister(&rfkill_any_led_trigger); 226 cancel_work_sync(&rfkill_global_led_trigger_work); 227 } 228 #else 229 static void rfkill_led_trigger_event(struct rfkill *rfkill) 230 { 231 } 232 233 static inline int rfkill_led_trigger_register(struct rfkill *rfkill) 234 { 235 return 0; 236 } 237 238 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill) 239 { 240 } 241 242 static void rfkill_global_led_trigger_event(void) 243 { 244 } 245 246 static int rfkill_global_led_trigger_register(void) 247 { 248 return 0; 249 } 250 251 static void rfkill_global_led_trigger_unregister(void) 252 { 253 } 254 #endif /* CONFIG_RFKILL_LEDS */ 255 256 static void rfkill_fill_event(struct rfkill_event_ext *ev, 257 struct rfkill *rfkill, 258 enum rfkill_operation op) 259 { 260 unsigned long flags; 261 262 ev->idx = rfkill->idx; 263 ev->type = rfkill->type; 264 ev->op = op; 265 266 spin_lock_irqsave(&rfkill->lock, flags); 267 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW); 268 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW | 269 RFKILL_BLOCK_SW_PREV)); 270 ev->hard_block_reasons = rfkill->hard_block_reasons; 271 spin_unlock_irqrestore(&rfkill->lock, flags); 272 } 273 274 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op) 275 { 276 struct rfkill_data *data; 277 struct rfkill_int_event *ev; 278 279 list_for_each_entry(data, &rfkill_fds, list) { 280 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 281 if (!ev) 282 continue; 283 rfkill_fill_event(&ev->ev, rfkill, op); 284 mutex_lock(&data->mtx); 285 list_add_tail(&ev->list, &data->events); 286 mutex_unlock(&data->mtx); 287 wake_up_interruptible(&data->read_wait); 288 } 289 } 290 291 static void rfkill_event(struct rfkill *rfkill) 292 { 293 if (!rfkill->registered) 294 return; 295 296 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE); 297 298 /* also send event to /dev/rfkill */ 299 rfkill_send_events(rfkill, RFKILL_OP_CHANGE); 300 } 301 302 /** 303 * rfkill_set_block - wrapper for set_block method 304 * 305 * @rfkill: the rfkill struct to use 306 * @blocked: the new software state 307 * 308 * Calls the set_block method (when applicable) and handles notifications 309 * etc. as well. 310 */ 311 static void rfkill_set_block(struct rfkill *rfkill, bool blocked) 312 { 313 unsigned long flags; 314 bool prev, curr; 315 int err; 316 317 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP)) 318 return; 319 320 /* 321 * Some platforms (...!) generate input events which affect the 322 * _hard_ kill state -- whenever something tries to change the 323 * current software state query the hardware state too. 324 */ 325 if (rfkill->ops->query) 326 rfkill->ops->query(rfkill, rfkill->data); 327 328 spin_lock_irqsave(&rfkill->lock, flags); 329 prev = rfkill->state & RFKILL_BLOCK_SW; 330 331 if (prev) 332 rfkill->state |= RFKILL_BLOCK_SW_PREV; 333 else 334 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 335 336 if (blocked) 337 rfkill->state |= RFKILL_BLOCK_SW; 338 else 339 rfkill->state &= ~RFKILL_BLOCK_SW; 340 341 rfkill->state |= RFKILL_BLOCK_SW_SETCALL; 342 spin_unlock_irqrestore(&rfkill->lock, flags); 343 344 err = rfkill->ops->set_block(rfkill->data, blocked); 345 346 spin_lock_irqsave(&rfkill->lock, flags); 347 if (err) { 348 /* 349 * Failed -- reset status to _PREV, which may be different 350 * from what we have set _PREV to earlier in this function 351 * if rfkill_set_sw_state was invoked. 352 */ 353 if (rfkill->state & RFKILL_BLOCK_SW_PREV) 354 rfkill->state |= RFKILL_BLOCK_SW; 355 else 356 rfkill->state &= ~RFKILL_BLOCK_SW; 357 } 358 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL; 359 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 360 curr = rfkill->state & RFKILL_BLOCK_SW; 361 spin_unlock_irqrestore(&rfkill->lock, flags); 362 363 rfkill_led_trigger_event(rfkill); 364 rfkill_global_led_trigger_event(); 365 366 if (prev != curr) 367 rfkill_event(rfkill); 368 } 369 370 static void rfkill_update_global_state(enum rfkill_type type, bool blocked) 371 { 372 int i; 373 374 if (type != RFKILL_TYPE_ALL) { 375 rfkill_global_states[type].cur = blocked; 376 return; 377 } 378 379 for (i = 0; i < NUM_RFKILL_TYPES; i++) 380 rfkill_global_states[i].cur = blocked; 381 } 382 383 #ifdef CONFIG_RFKILL_INPUT 384 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0); 385 386 /** 387 * __rfkill_switch_all - Toggle state of all switches of given type 388 * @type: type of interfaces to be affected 389 * @blocked: the new state 390 * 391 * This function sets the state of all switches of given type, 392 * unless a specific switch is suspended. 393 * 394 * Caller must have acquired rfkill_global_mutex. 395 */ 396 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked) 397 { 398 struct rfkill *rfkill; 399 400 rfkill_update_global_state(type, blocked); 401 list_for_each_entry(rfkill, &rfkill_list, node) { 402 if (rfkill->type != type && type != RFKILL_TYPE_ALL) 403 continue; 404 405 rfkill_set_block(rfkill, blocked); 406 } 407 } 408 409 /** 410 * rfkill_switch_all - Toggle state of all switches of given type 411 * @type: type of interfaces to be affected 412 * @blocked: the new state 413 * 414 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state). 415 * Please refer to __rfkill_switch_all() for details. 416 * 417 * Does nothing if the EPO lock is active. 418 */ 419 void rfkill_switch_all(enum rfkill_type type, bool blocked) 420 { 421 if (atomic_read(&rfkill_input_disabled)) 422 return; 423 424 mutex_lock(&rfkill_global_mutex); 425 426 if (!rfkill_epo_lock_active) 427 __rfkill_switch_all(type, blocked); 428 429 mutex_unlock(&rfkill_global_mutex); 430 } 431 432 /** 433 * rfkill_epo - emergency power off all transmitters 434 * 435 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED, 436 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex. 437 * 438 * The global state before the EPO is saved and can be restored later 439 * using rfkill_restore_states(). 440 */ 441 void rfkill_epo(void) 442 { 443 struct rfkill *rfkill; 444 int i; 445 446 if (atomic_read(&rfkill_input_disabled)) 447 return; 448 449 mutex_lock(&rfkill_global_mutex); 450 451 rfkill_epo_lock_active = true; 452 list_for_each_entry(rfkill, &rfkill_list, node) 453 rfkill_set_block(rfkill, true); 454 455 for (i = 0; i < NUM_RFKILL_TYPES; i++) { 456 rfkill_global_states[i].sav = rfkill_global_states[i].cur; 457 rfkill_global_states[i].cur = true; 458 } 459 460 mutex_unlock(&rfkill_global_mutex); 461 } 462 463 /** 464 * rfkill_restore_states - restore global states 465 * 466 * Restore (and sync switches to) the global state from the 467 * states in rfkill_default_states. This can undo the effects of 468 * a call to rfkill_epo(). 469 */ 470 void rfkill_restore_states(void) 471 { 472 int i; 473 474 if (atomic_read(&rfkill_input_disabled)) 475 return; 476 477 mutex_lock(&rfkill_global_mutex); 478 479 rfkill_epo_lock_active = false; 480 for (i = 0; i < NUM_RFKILL_TYPES; i++) 481 __rfkill_switch_all(i, rfkill_global_states[i].sav); 482 mutex_unlock(&rfkill_global_mutex); 483 } 484 485 /** 486 * rfkill_remove_epo_lock - unlock state changes 487 * 488 * Used by rfkill-input manually unlock state changes, when 489 * the EPO switch is deactivated. 490 */ 491 void rfkill_remove_epo_lock(void) 492 { 493 if (atomic_read(&rfkill_input_disabled)) 494 return; 495 496 mutex_lock(&rfkill_global_mutex); 497 rfkill_epo_lock_active = false; 498 mutex_unlock(&rfkill_global_mutex); 499 } 500 501 /** 502 * rfkill_is_epo_lock_active - returns true EPO is active 503 * 504 * Returns 0 (false) if there is NOT an active EPO condition, 505 * and 1 (true) if there is an active EPO condition, which 506 * locks all radios in one of the BLOCKED states. 507 * 508 * Can be called in atomic context. 509 */ 510 bool rfkill_is_epo_lock_active(void) 511 { 512 return rfkill_epo_lock_active; 513 } 514 515 /** 516 * rfkill_get_global_sw_state - returns global state for a type 517 * @type: the type to get the global state of 518 * 519 * Returns the current global state for a given wireless 520 * device type. 521 */ 522 bool rfkill_get_global_sw_state(const enum rfkill_type type) 523 { 524 return rfkill_global_states[type].cur; 525 } 526 #endif 527 528 bool rfkill_set_hw_state_reason(struct rfkill *rfkill, 529 bool blocked, unsigned long reason) 530 { 531 unsigned long flags; 532 bool ret, prev; 533 534 BUG_ON(!rfkill); 535 536 if (WARN(reason & 537 ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER), 538 "hw_state reason not supported: 0x%lx", reason)) 539 return blocked; 540 541 spin_lock_irqsave(&rfkill->lock, flags); 542 prev = !!(rfkill->hard_block_reasons & reason); 543 if (blocked) { 544 rfkill->state |= RFKILL_BLOCK_HW; 545 rfkill->hard_block_reasons |= reason; 546 } else { 547 rfkill->hard_block_reasons &= ~reason; 548 if (!rfkill->hard_block_reasons) 549 rfkill->state &= ~RFKILL_BLOCK_HW; 550 } 551 ret = !!(rfkill->state & RFKILL_BLOCK_ANY); 552 spin_unlock_irqrestore(&rfkill->lock, flags); 553 554 rfkill_led_trigger_event(rfkill); 555 rfkill_global_led_trigger_event(); 556 557 if (rfkill->registered && prev != blocked) 558 schedule_work(&rfkill->uevent_work); 559 560 return ret; 561 } 562 EXPORT_SYMBOL(rfkill_set_hw_state_reason); 563 564 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 565 { 566 u32 bit = RFKILL_BLOCK_SW; 567 568 /* if in a ops->set_block right now, use other bit */ 569 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL) 570 bit = RFKILL_BLOCK_SW_PREV; 571 572 if (blocked) 573 rfkill->state |= bit; 574 else 575 rfkill->state &= ~bit; 576 } 577 578 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 579 { 580 unsigned long flags; 581 bool prev, hwblock; 582 583 BUG_ON(!rfkill); 584 585 spin_lock_irqsave(&rfkill->lock, flags); 586 prev = !!(rfkill->state & RFKILL_BLOCK_SW); 587 __rfkill_set_sw_state(rfkill, blocked); 588 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW); 589 blocked = blocked || hwblock; 590 spin_unlock_irqrestore(&rfkill->lock, flags); 591 592 if (!rfkill->registered) 593 return blocked; 594 595 if (prev != blocked && !hwblock) 596 schedule_work(&rfkill->uevent_work); 597 598 rfkill_led_trigger_event(rfkill); 599 rfkill_global_led_trigger_event(); 600 601 return blocked; 602 } 603 EXPORT_SYMBOL(rfkill_set_sw_state); 604 605 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked) 606 { 607 unsigned long flags; 608 609 BUG_ON(!rfkill); 610 BUG_ON(rfkill->registered); 611 612 spin_lock_irqsave(&rfkill->lock, flags); 613 __rfkill_set_sw_state(rfkill, blocked); 614 rfkill->persistent = true; 615 spin_unlock_irqrestore(&rfkill->lock, flags); 616 } 617 EXPORT_SYMBOL(rfkill_init_sw_state); 618 619 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw) 620 { 621 unsigned long flags; 622 bool swprev, hwprev; 623 624 BUG_ON(!rfkill); 625 626 spin_lock_irqsave(&rfkill->lock, flags); 627 628 /* 629 * No need to care about prev/setblock ... this is for uevent only 630 * and that will get triggered by rfkill_set_block anyway. 631 */ 632 swprev = !!(rfkill->state & RFKILL_BLOCK_SW); 633 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW); 634 __rfkill_set_sw_state(rfkill, sw); 635 if (hw) 636 rfkill->state |= RFKILL_BLOCK_HW; 637 else 638 rfkill->state &= ~RFKILL_BLOCK_HW; 639 640 spin_unlock_irqrestore(&rfkill->lock, flags); 641 642 if (!rfkill->registered) { 643 rfkill->persistent = true; 644 } else { 645 if (swprev != sw || hwprev != hw) 646 schedule_work(&rfkill->uevent_work); 647 648 rfkill_led_trigger_event(rfkill); 649 rfkill_global_led_trigger_event(); 650 } 651 } 652 EXPORT_SYMBOL(rfkill_set_states); 653 654 static const char * const rfkill_types[] = { 655 NULL, /* RFKILL_TYPE_ALL */ 656 "wlan", 657 "bluetooth", 658 "ultrawideband", 659 "wimax", 660 "wwan", 661 "gps", 662 "fm", 663 "nfc", 664 }; 665 666 enum rfkill_type rfkill_find_type(const char *name) 667 { 668 int i; 669 670 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES); 671 672 if (!name) 673 return RFKILL_TYPE_ALL; 674 675 for (i = 1; i < NUM_RFKILL_TYPES; i++) 676 if (!strcmp(name, rfkill_types[i])) 677 return i; 678 return RFKILL_TYPE_ALL; 679 } 680 EXPORT_SYMBOL(rfkill_find_type); 681 682 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 683 char *buf) 684 { 685 struct rfkill *rfkill = to_rfkill(dev); 686 687 return sprintf(buf, "%s\n", rfkill->name); 688 } 689 static DEVICE_ATTR_RO(name); 690 691 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 692 char *buf) 693 { 694 struct rfkill *rfkill = to_rfkill(dev); 695 696 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]); 697 } 698 static DEVICE_ATTR_RO(type); 699 700 static ssize_t index_show(struct device *dev, struct device_attribute *attr, 701 char *buf) 702 { 703 struct rfkill *rfkill = to_rfkill(dev); 704 705 return sprintf(buf, "%d\n", rfkill->idx); 706 } 707 static DEVICE_ATTR_RO(index); 708 709 static ssize_t persistent_show(struct device *dev, 710 struct device_attribute *attr, char *buf) 711 { 712 struct rfkill *rfkill = to_rfkill(dev); 713 714 return sprintf(buf, "%d\n", rfkill->persistent); 715 } 716 static DEVICE_ATTR_RO(persistent); 717 718 static ssize_t hard_show(struct device *dev, struct device_attribute *attr, 719 char *buf) 720 { 721 struct rfkill *rfkill = to_rfkill(dev); 722 723 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 ); 724 } 725 static DEVICE_ATTR_RO(hard); 726 727 static ssize_t soft_show(struct device *dev, struct device_attribute *attr, 728 char *buf) 729 { 730 struct rfkill *rfkill = to_rfkill(dev); 731 732 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 ); 733 } 734 735 static ssize_t soft_store(struct device *dev, struct device_attribute *attr, 736 const char *buf, size_t count) 737 { 738 struct rfkill *rfkill = to_rfkill(dev); 739 unsigned long state; 740 int err; 741 742 if (!capable(CAP_NET_ADMIN)) 743 return -EPERM; 744 745 err = kstrtoul(buf, 0, &state); 746 if (err) 747 return err; 748 749 if (state > 1 ) 750 return -EINVAL; 751 752 mutex_lock(&rfkill_global_mutex); 753 rfkill_set_block(rfkill, state); 754 mutex_unlock(&rfkill_global_mutex); 755 756 return count; 757 } 758 static DEVICE_ATTR_RW(soft); 759 760 static ssize_t hard_block_reasons_show(struct device *dev, 761 struct device_attribute *attr, 762 char *buf) 763 { 764 struct rfkill *rfkill = to_rfkill(dev); 765 766 return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons); 767 } 768 static DEVICE_ATTR_RO(hard_block_reasons); 769 770 static u8 user_state_from_blocked(unsigned long state) 771 { 772 if (state & RFKILL_BLOCK_HW) 773 return RFKILL_USER_STATE_HARD_BLOCKED; 774 if (state & RFKILL_BLOCK_SW) 775 return RFKILL_USER_STATE_SOFT_BLOCKED; 776 777 return RFKILL_USER_STATE_UNBLOCKED; 778 } 779 780 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 781 char *buf) 782 { 783 struct rfkill *rfkill = to_rfkill(dev); 784 785 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state)); 786 } 787 788 static ssize_t state_store(struct device *dev, struct device_attribute *attr, 789 const char *buf, size_t count) 790 { 791 struct rfkill *rfkill = to_rfkill(dev); 792 unsigned long state; 793 int err; 794 795 if (!capable(CAP_NET_ADMIN)) 796 return -EPERM; 797 798 err = kstrtoul(buf, 0, &state); 799 if (err) 800 return err; 801 802 if (state != RFKILL_USER_STATE_SOFT_BLOCKED && 803 state != RFKILL_USER_STATE_UNBLOCKED) 804 return -EINVAL; 805 806 mutex_lock(&rfkill_global_mutex); 807 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED); 808 mutex_unlock(&rfkill_global_mutex); 809 810 return count; 811 } 812 static DEVICE_ATTR_RW(state); 813 814 static struct attribute *rfkill_dev_attrs[] = { 815 &dev_attr_name.attr, 816 &dev_attr_type.attr, 817 &dev_attr_index.attr, 818 &dev_attr_persistent.attr, 819 &dev_attr_state.attr, 820 &dev_attr_soft.attr, 821 &dev_attr_hard.attr, 822 &dev_attr_hard_block_reasons.attr, 823 NULL, 824 }; 825 ATTRIBUTE_GROUPS(rfkill_dev); 826 827 static void rfkill_release(struct device *dev) 828 { 829 struct rfkill *rfkill = to_rfkill(dev); 830 831 kfree(rfkill); 832 } 833 834 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 835 { 836 struct rfkill *rfkill = to_rfkill(dev); 837 unsigned long flags; 838 unsigned long reasons; 839 u32 state; 840 int error; 841 842 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name); 843 if (error) 844 return error; 845 error = add_uevent_var(env, "RFKILL_TYPE=%s", 846 rfkill_types[rfkill->type]); 847 if (error) 848 return error; 849 spin_lock_irqsave(&rfkill->lock, flags); 850 state = rfkill->state; 851 reasons = rfkill->hard_block_reasons; 852 spin_unlock_irqrestore(&rfkill->lock, flags); 853 error = add_uevent_var(env, "RFKILL_STATE=%d", 854 user_state_from_blocked(state)); 855 if (error) 856 return error; 857 return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons); 858 } 859 860 void rfkill_pause_polling(struct rfkill *rfkill) 861 { 862 BUG_ON(!rfkill); 863 864 if (!rfkill->ops->poll) 865 return; 866 867 rfkill->polling_paused = true; 868 cancel_delayed_work_sync(&rfkill->poll_work); 869 } 870 EXPORT_SYMBOL(rfkill_pause_polling); 871 872 void rfkill_resume_polling(struct rfkill *rfkill) 873 { 874 BUG_ON(!rfkill); 875 876 if (!rfkill->ops->poll) 877 return; 878 879 rfkill->polling_paused = false; 880 881 if (rfkill->suspended) 882 return; 883 884 queue_delayed_work(system_power_efficient_wq, 885 &rfkill->poll_work, 0); 886 } 887 EXPORT_SYMBOL(rfkill_resume_polling); 888 889 #ifdef CONFIG_PM_SLEEP 890 static int rfkill_suspend(struct device *dev) 891 { 892 struct rfkill *rfkill = to_rfkill(dev); 893 894 rfkill->suspended = true; 895 cancel_delayed_work_sync(&rfkill->poll_work); 896 897 return 0; 898 } 899 900 static int rfkill_resume(struct device *dev) 901 { 902 struct rfkill *rfkill = to_rfkill(dev); 903 bool cur; 904 905 rfkill->suspended = false; 906 907 if (!rfkill->registered) 908 return 0; 909 910 if (!rfkill->persistent) { 911 cur = !!(rfkill->state & RFKILL_BLOCK_SW); 912 rfkill_set_block(rfkill, cur); 913 } 914 915 if (rfkill->ops->poll && !rfkill->polling_paused) 916 queue_delayed_work(system_power_efficient_wq, 917 &rfkill->poll_work, 0); 918 919 return 0; 920 } 921 922 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume); 923 #define RFKILL_PM_OPS (&rfkill_pm_ops) 924 #else 925 #define RFKILL_PM_OPS NULL 926 #endif 927 928 static struct class rfkill_class = { 929 .name = "rfkill", 930 .dev_release = rfkill_release, 931 .dev_groups = rfkill_dev_groups, 932 .dev_uevent = rfkill_dev_uevent, 933 .pm = RFKILL_PM_OPS, 934 }; 935 936 bool rfkill_blocked(struct rfkill *rfkill) 937 { 938 unsigned long flags; 939 u32 state; 940 941 spin_lock_irqsave(&rfkill->lock, flags); 942 state = rfkill->state; 943 spin_unlock_irqrestore(&rfkill->lock, flags); 944 945 return !!(state & RFKILL_BLOCK_ANY); 946 } 947 EXPORT_SYMBOL(rfkill_blocked); 948 949 950 struct rfkill * __must_check rfkill_alloc(const char *name, 951 struct device *parent, 952 const enum rfkill_type type, 953 const struct rfkill_ops *ops, 954 void *ops_data) 955 { 956 struct rfkill *rfkill; 957 struct device *dev; 958 959 if (WARN_ON(!ops)) 960 return NULL; 961 962 if (WARN_ON(!ops->set_block)) 963 return NULL; 964 965 if (WARN_ON(!name)) 966 return NULL; 967 968 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES)) 969 return NULL; 970 971 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL); 972 if (!rfkill) 973 return NULL; 974 975 spin_lock_init(&rfkill->lock); 976 INIT_LIST_HEAD(&rfkill->node); 977 rfkill->type = type; 978 strcpy(rfkill->name, name); 979 rfkill->ops = ops; 980 rfkill->data = ops_data; 981 982 dev = &rfkill->dev; 983 dev->class = &rfkill_class; 984 dev->parent = parent; 985 device_initialize(dev); 986 987 return rfkill; 988 } 989 EXPORT_SYMBOL(rfkill_alloc); 990 991 static void rfkill_poll(struct work_struct *work) 992 { 993 struct rfkill *rfkill; 994 995 rfkill = container_of(work, struct rfkill, poll_work.work); 996 997 /* 998 * Poll hardware state -- driver will use one of the 999 * rfkill_set{,_hw,_sw}_state functions and use its 1000 * return value to update the current status. 1001 */ 1002 rfkill->ops->poll(rfkill, rfkill->data); 1003 1004 queue_delayed_work(system_power_efficient_wq, 1005 &rfkill->poll_work, 1006 round_jiffies_relative(POLL_INTERVAL)); 1007 } 1008 1009 static void rfkill_uevent_work(struct work_struct *work) 1010 { 1011 struct rfkill *rfkill; 1012 1013 rfkill = container_of(work, struct rfkill, uevent_work); 1014 1015 mutex_lock(&rfkill_global_mutex); 1016 rfkill_event(rfkill); 1017 mutex_unlock(&rfkill_global_mutex); 1018 } 1019 1020 static void rfkill_sync_work(struct work_struct *work) 1021 { 1022 struct rfkill *rfkill; 1023 bool cur; 1024 1025 rfkill = container_of(work, struct rfkill, sync_work); 1026 1027 mutex_lock(&rfkill_global_mutex); 1028 cur = rfkill_global_states[rfkill->type].cur; 1029 rfkill_set_block(rfkill, cur); 1030 mutex_unlock(&rfkill_global_mutex); 1031 } 1032 1033 int __must_check rfkill_register(struct rfkill *rfkill) 1034 { 1035 static unsigned long rfkill_no; 1036 struct device *dev; 1037 int error; 1038 1039 if (!rfkill) 1040 return -EINVAL; 1041 1042 dev = &rfkill->dev; 1043 1044 mutex_lock(&rfkill_global_mutex); 1045 1046 if (rfkill->registered) { 1047 error = -EALREADY; 1048 goto unlock; 1049 } 1050 1051 rfkill->idx = rfkill_no; 1052 dev_set_name(dev, "rfkill%lu", rfkill_no); 1053 rfkill_no++; 1054 1055 list_add_tail(&rfkill->node, &rfkill_list); 1056 1057 error = device_add(dev); 1058 if (error) 1059 goto remove; 1060 1061 error = rfkill_led_trigger_register(rfkill); 1062 if (error) 1063 goto devdel; 1064 1065 rfkill->registered = true; 1066 1067 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll); 1068 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work); 1069 INIT_WORK(&rfkill->sync_work, rfkill_sync_work); 1070 1071 if (rfkill->ops->poll) 1072 queue_delayed_work(system_power_efficient_wq, 1073 &rfkill->poll_work, 1074 round_jiffies_relative(POLL_INTERVAL)); 1075 1076 if (!rfkill->persistent || rfkill_epo_lock_active) { 1077 schedule_work(&rfkill->sync_work); 1078 } else { 1079 #ifdef CONFIG_RFKILL_INPUT 1080 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW); 1081 1082 if (!atomic_read(&rfkill_input_disabled)) 1083 __rfkill_switch_all(rfkill->type, soft_blocked); 1084 #endif 1085 } 1086 1087 rfkill_global_led_trigger_event(); 1088 rfkill_send_events(rfkill, RFKILL_OP_ADD); 1089 1090 mutex_unlock(&rfkill_global_mutex); 1091 return 0; 1092 1093 devdel: 1094 device_del(&rfkill->dev); 1095 remove: 1096 list_del_init(&rfkill->node); 1097 unlock: 1098 mutex_unlock(&rfkill_global_mutex); 1099 return error; 1100 } 1101 EXPORT_SYMBOL(rfkill_register); 1102 1103 void rfkill_unregister(struct rfkill *rfkill) 1104 { 1105 BUG_ON(!rfkill); 1106 1107 if (rfkill->ops->poll) 1108 cancel_delayed_work_sync(&rfkill->poll_work); 1109 1110 cancel_work_sync(&rfkill->uevent_work); 1111 cancel_work_sync(&rfkill->sync_work); 1112 1113 rfkill->registered = false; 1114 1115 device_del(&rfkill->dev); 1116 1117 mutex_lock(&rfkill_global_mutex); 1118 rfkill_send_events(rfkill, RFKILL_OP_DEL); 1119 list_del_init(&rfkill->node); 1120 rfkill_global_led_trigger_event(); 1121 mutex_unlock(&rfkill_global_mutex); 1122 1123 rfkill_led_trigger_unregister(rfkill); 1124 } 1125 EXPORT_SYMBOL(rfkill_unregister); 1126 1127 void rfkill_destroy(struct rfkill *rfkill) 1128 { 1129 if (rfkill) 1130 put_device(&rfkill->dev); 1131 } 1132 EXPORT_SYMBOL(rfkill_destroy); 1133 1134 static int rfkill_fop_open(struct inode *inode, struct file *file) 1135 { 1136 struct rfkill_data *data; 1137 struct rfkill *rfkill; 1138 struct rfkill_int_event *ev, *tmp; 1139 1140 data = kzalloc(sizeof(*data), GFP_KERNEL); 1141 if (!data) 1142 return -ENOMEM; 1143 1144 INIT_LIST_HEAD(&data->events); 1145 mutex_init(&data->mtx); 1146 init_waitqueue_head(&data->read_wait); 1147 1148 mutex_lock(&rfkill_global_mutex); 1149 mutex_lock(&data->mtx); 1150 /* 1151 * start getting events from elsewhere but hold mtx to get 1152 * startup events added first 1153 */ 1154 1155 list_for_each_entry(rfkill, &rfkill_list, node) { 1156 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1157 if (!ev) 1158 goto free; 1159 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD); 1160 list_add_tail(&ev->list, &data->events); 1161 } 1162 list_add(&data->list, &rfkill_fds); 1163 mutex_unlock(&data->mtx); 1164 mutex_unlock(&rfkill_global_mutex); 1165 1166 file->private_data = data; 1167 1168 return stream_open(inode, file); 1169 1170 free: 1171 mutex_unlock(&data->mtx); 1172 mutex_unlock(&rfkill_global_mutex); 1173 mutex_destroy(&data->mtx); 1174 list_for_each_entry_safe(ev, tmp, &data->events, list) 1175 kfree(ev); 1176 kfree(data); 1177 return -ENOMEM; 1178 } 1179 1180 static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait) 1181 { 1182 struct rfkill_data *data = file->private_data; 1183 __poll_t res = EPOLLOUT | EPOLLWRNORM; 1184 1185 poll_wait(file, &data->read_wait, wait); 1186 1187 mutex_lock(&data->mtx); 1188 if (!list_empty(&data->events)) 1189 res = EPOLLIN | EPOLLRDNORM; 1190 mutex_unlock(&data->mtx); 1191 1192 return res; 1193 } 1194 1195 static ssize_t rfkill_fop_read(struct file *file, char __user *buf, 1196 size_t count, loff_t *pos) 1197 { 1198 struct rfkill_data *data = file->private_data; 1199 struct rfkill_int_event *ev; 1200 unsigned long sz; 1201 int ret; 1202 1203 mutex_lock(&data->mtx); 1204 1205 while (list_empty(&data->events)) { 1206 if (file->f_flags & O_NONBLOCK) { 1207 ret = -EAGAIN; 1208 goto out; 1209 } 1210 mutex_unlock(&data->mtx); 1211 /* since we re-check and it just compares pointers, 1212 * using !list_empty() without locking isn't a problem 1213 */ 1214 ret = wait_event_interruptible(data->read_wait, 1215 !list_empty(&data->events)); 1216 mutex_lock(&data->mtx); 1217 1218 if (ret) 1219 goto out; 1220 } 1221 1222 ev = list_first_entry(&data->events, struct rfkill_int_event, 1223 list); 1224 1225 sz = min_t(unsigned long, sizeof(ev->ev), count); 1226 ret = sz; 1227 if (copy_to_user(buf, &ev->ev, sz)) 1228 ret = -EFAULT; 1229 1230 list_del(&ev->list); 1231 kfree(ev); 1232 out: 1233 mutex_unlock(&data->mtx); 1234 return ret; 1235 } 1236 1237 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf, 1238 size_t count, loff_t *pos) 1239 { 1240 struct rfkill *rfkill; 1241 struct rfkill_event_ext ev; 1242 int ret; 1243 1244 /* we don't need the 'hard' variable but accept it */ 1245 if (count < RFKILL_EVENT_SIZE_V1 - 1) 1246 return -EINVAL; 1247 1248 /* 1249 * Copy as much data as we can accept into our 'ev' buffer, 1250 * but tell userspace how much we've copied so it can determine 1251 * our API version even in a write() call, if it cares. 1252 */ 1253 count = min(count, sizeof(ev)); 1254 if (copy_from_user(&ev, buf, count)) 1255 return -EFAULT; 1256 1257 if (ev.type >= NUM_RFKILL_TYPES) 1258 return -EINVAL; 1259 1260 mutex_lock(&rfkill_global_mutex); 1261 1262 switch (ev.op) { 1263 case RFKILL_OP_CHANGE_ALL: 1264 rfkill_update_global_state(ev.type, ev.soft); 1265 list_for_each_entry(rfkill, &rfkill_list, node) 1266 if (rfkill->type == ev.type || 1267 ev.type == RFKILL_TYPE_ALL) 1268 rfkill_set_block(rfkill, ev.soft); 1269 ret = 0; 1270 break; 1271 case RFKILL_OP_CHANGE: 1272 list_for_each_entry(rfkill, &rfkill_list, node) 1273 if (rfkill->idx == ev.idx && 1274 (rfkill->type == ev.type || 1275 ev.type == RFKILL_TYPE_ALL)) 1276 rfkill_set_block(rfkill, ev.soft); 1277 ret = 0; 1278 break; 1279 default: 1280 ret = -EINVAL; 1281 break; 1282 } 1283 1284 mutex_unlock(&rfkill_global_mutex); 1285 1286 return ret ?: count; 1287 } 1288 1289 static int rfkill_fop_release(struct inode *inode, struct file *file) 1290 { 1291 struct rfkill_data *data = file->private_data; 1292 struct rfkill_int_event *ev, *tmp; 1293 1294 mutex_lock(&rfkill_global_mutex); 1295 list_del(&data->list); 1296 mutex_unlock(&rfkill_global_mutex); 1297 1298 mutex_destroy(&data->mtx); 1299 list_for_each_entry_safe(ev, tmp, &data->events, list) 1300 kfree(ev); 1301 1302 #ifdef CONFIG_RFKILL_INPUT 1303 if (data->input_handler) 1304 if (atomic_dec_return(&rfkill_input_disabled) == 0) 1305 printk(KERN_DEBUG "rfkill: input handler enabled\n"); 1306 #endif 1307 1308 kfree(data); 1309 1310 return 0; 1311 } 1312 1313 #ifdef CONFIG_RFKILL_INPUT 1314 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd, 1315 unsigned long arg) 1316 { 1317 struct rfkill_data *data = file->private_data; 1318 1319 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC) 1320 return -ENOSYS; 1321 1322 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT) 1323 return -ENOSYS; 1324 1325 mutex_lock(&data->mtx); 1326 1327 if (!data->input_handler) { 1328 if (atomic_inc_return(&rfkill_input_disabled) == 1) 1329 printk(KERN_DEBUG "rfkill: input handler disabled\n"); 1330 data->input_handler = true; 1331 } 1332 1333 mutex_unlock(&data->mtx); 1334 1335 return 0; 1336 } 1337 #endif 1338 1339 static const struct file_operations rfkill_fops = { 1340 .owner = THIS_MODULE, 1341 .open = rfkill_fop_open, 1342 .read = rfkill_fop_read, 1343 .write = rfkill_fop_write, 1344 .poll = rfkill_fop_poll, 1345 .release = rfkill_fop_release, 1346 #ifdef CONFIG_RFKILL_INPUT 1347 .unlocked_ioctl = rfkill_fop_ioctl, 1348 .compat_ioctl = compat_ptr_ioctl, 1349 #endif 1350 .llseek = no_llseek, 1351 }; 1352 1353 #define RFKILL_NAME "rfkill" 1354 1355 static struct miscdevice rfkill_miscdev = { 1356 .fops = &rfkill_fops, 1357 .name = RFKILL_NAME, 1358 .minor = RFKILL_MINOR, 1359 }; 1360 1361 static int __init rfkill_init(void) 1362 { 1363 int error; 1364 1365 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state); 1366 1367 error = class_register(&rfkill_class); 1368 if (error) 1369 goto error_class; 1370 1371 error = misc_register(&rfkill_miscdev); 1372 if (error) 1373 goto error_misc; 1374 1375 error = rfkill_global_led_trigger_register(); 1376 if (error) 1377 goto error_led_trigger; 1378 1379 #ifdef CONFIG_RFKILL_INPUT 1380 error = rfkill_handler_init(); 1381 if (error) 1382 goto error_input; 1383 #endif 1384 1385 return 0; 1386 1387 #ifdef CONFIG_RFKILL_INPUT 1388 error_input: 1389 rfkill_global_led_trigger_unregister(); 1390 #endif 1391 error_led_trigger: 1392 misc_deregister(&rfkill_miscdev); 1393 error_misc: 1394 class_unregister(&rfkill_class); 1395 error_class: 1396 return error; 1397 } 1398 subsys_initcall(rfkill_init); 1399 1400 static void __exit rfkill_exit(void) 1401 { 1402 #ifdef CONFIG_RFKILL_INPUT 1403 rfkill_handler_exit(); 1404 #endif 1405 rfkill_global_led_trigger_unregister(); 1406 misc_deregister(&rfkill_miscdev); 1407 class_unregister(&rfkill_class); 1408 } 1409 module_exit(rfkill_exit); 1410 1411 MODULE_ALIAS_MISCDEV(RFKILL_MINOR); 1412 MODULE_ALIAS("devname:" RFKILL_NAME); 1413