xref: /linux/net/rfkill/core.c (revision 18ca45f5ba1e31704bcca038b8b612e9b1f52b4f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2006 - 2007 Ivo van Doorn
4  * Copyright (C) 2007 Dmitry Torokhov
5  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/workqueue.h>
12 #include <linux/capability.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/rfkill.h>
16 #include <linux/sched.h>
17 #include <linux/spinlock.h>
18 #include <linux/device.h>
19 #include <linux/miscdevice.h>
20 #include <linux/wait.h>
21 #include <linux/poll.h>
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 
25 #include "rfkill.h"
26 
27 #define POLL_INTERVAL		(5 * HZ)
28 
29 #define RFKILL_BLOCK_HW		BIT(0)
30 #define RFKILL_BLOCK_SW		BIT(1)
31 #define RFKILL_BLOCK_SW_PREV	BIT(2)
32 #define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
33 				 RFKILL_BLOCK_SW |\
34 				 RFKILL_BLOCK_SW_PREV)
35 #define RFKILL_BLOCK_SW_SETCALL	BIT(31)
36 
37 struct rfkill {
38 	spinlock_t		lock;
39 
40 	enum rfkill_type	type;
41 
42 	unsigned long		state;
43 	unsigned long		hard_block_reasons;
44 
45 	u32			idx;
46 
47 	bool			registered;
48 	bool			persistent;
49 	bool			polling_paused;
50 	bool			suspended;
51 
52 	const struct rfkill_ops	*ops;
53 	void			*data;
54 
55 #ifdef CONFIG_RFKILL_LEDS
56 	struct led_trigger	led_trigger;
57 	const char		*ledtrigname;
58 #endif
59 
60 	struct device		dev;
61 	struct list_head	node;
62 
63 	struct delayed_work	poll_work;
64 	struct work_struct	uevent_work;
65 	struct work_struct	sync_work;
66 	char			name[];
67 };
68 #define to_rfkill(d)	container_of(d, struct rfkill, dev)
69 
70 struct rfkill_int_event {
71 	struct list_head	list;
72 	struct rfkill_event_ext	ev;
73 };
74 
75 struct rfkill_data {
76 	struct list_head	list;
77 	struct list_head	events;
78 	struct mutex		mtx;
79 	wait_queue_head_t	read_wait;
80 	bool			input_handler;
81 };
82 
83 
84 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
85 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
86 MODULE_DESCRIPTION("RF switch support");
87 MODULE_LICENSE("GPL");
88 
89 
90 /*
91  * The locking here should be made much smarter, we currently have
92  * a bit of a stupid situation because drivers might want to register
93  * the rfkill struct under their own lock, and take this lock during
94  * rfkill method calls -- which will cause an AB-BA deadlock situation.
95  *
96  * To fix that, we need to rework this code here to be mostly lock-free
97  * and only use the mutex for list manipulations, not to protect the
98  * various other global variables. Then we can avoid holding the mutex
99  * around driver operations, and all is happy.
100  */
101 static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
102 static DEFINE_MUTEX(rfkill_global_mutex);
103 static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
104 
105 static unsigned int rfkill_default_state = 1;
106 module_param_named(default_state, rfkill_default_state, uint, 0444);
107 MODULE_PARM_DESC(default_state,
108 		 "Default initial state for all radio types, 0 = radio off");
109 
110 static struct {
111 	bool cur, sav;
112 } rfkill_global_states[NUM_RFKILL_TYPES];
113 
114 static bool rfkill_epo_lock_active;
115 
116 
117 #ifdef CONFIG_RFKILL_LEDS
118 static void rfkill_led_trigger_event(struct rfkill *rfkill)
119 {
120 	struct led_trigger *trigger;
121 
122 	if (!rfkill->registered)
123 		return;
124 
125 	trigger = &rfkill->led_trigger;
126 
127 	if (rfkill->state & RFKILL_BLOCK_ANY)
128 		led_trigger_event(trigger, LED_OFF);
129 	else
130 		led_trigger_event(trigger, LED_FULL);
131 }
132 
133 static int rfkill_led_trigger_activate(struct led_classdev *led)
134 {
135 	struct rfkill *rfkill;
136 
137 	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
138 
139 	rfkill_led_trigger_event(rfkill);
140 
141 	return 0;
142 }
143 
144 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
145 {
146 	return rfkill->led_trigger.name;
147 }
148 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
149 
150 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
151 {
152 	BUG_ON(!rfkill);
153 
154 	rfkill->ledtrigname = name;
155 }
156 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
157 
158 static int rfkill_led_trigger_register(struct rfkill *rfkill)
159 {
160 	rfkill->led_trigger.name = rfkill->ledtrigname
161 					? : dev_name(&rfkill->dev);
162 	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
163 	return led_trigger_register(&rfkill->led_trigger);
164 }
165 
166 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
167 {
168 	led_trigger_unregister(&rfkill->led_trigger);
169 }
170 
171 static struct led_trigger rfkill_any_led_trigger;
172 static struct led_trigger rfkill_none_led_trigger;
173 static struct work_struct rfkill_global_led_trigger_work;
174 
175 static void rfkill_global_led_trigger_worker(struct work_struct *work)
176 {
177 	enum led_brightness brightness = LED_OFF;
178 	struct rfkill *rfkill;
179 
180 	mutex_lock(&rfkill_global_mutex);
181 	list_for_each_entry(rfkill, &rfkill_list, node) {
182 		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
183 			brightness = LED_FULL;
184 			break;
185 		}
186 	}
187 	mutex_unlock(&rfkill_global_mutex);
188 
189 	led_trigger_event(&rfkill_any_led_trigger, brightness);
190 	led_trigger_event(&rfkill_none_led_trigger,
191 			  brightness == LED_OFF ? LED_FULL : LED_OFF);
192 }
193 
194 static void rfkill_global_led_trigger_event(void)
195 {
196 	schedule_work(&rfkill_global_led_trigger_work);
197 }
198 
199 static int rfkill_global_led_trigger_register(void)
200 {
201 	int ret;
202 
203 	INIT_WORK(&rfkill_global_led_trigger_work,
204 			rfkill_global_led_trigger_worker);
205 
206 	rfkill_any_led_trigger.name = "rfkill-any";
207 	ret = led_trigger_register(&rfkill_any_led_trigger);
208 	if (ret)
209 		return ret;
210 
211 	rfkill_none_led_trigger.name = "rfkill-none";
212 	ret = led_trigger_register(&rfkill_none_led_trigger);
213 	if (ret)
214 		led_trigger_unregister(&rfkill_any_led_trigger);
215 	else
216 		/* Delay activation until all global triggers are registered */
217 		rfkill_global_led_trigger_event();
218 
219 	return ret;
220 }
221 
222 static void rfkill_global_led_trigger_unregister(void)
223 {
224 	led_trigger_unregister(&rfkill_none_led_trigger);
225 	led_trigger_unregister(&rfkill_any_led_trigger);
226 	cancel_work_sync(&rfkill_global_led_trigger_work);
227 }
228 #else
229 static void rfkill_led_trigger_event(struct rfkill *rfkill)
230 {
231 }
232 
233 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
234 {
235 	return 0;
236 }
237 
238 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
239 {
240 }
241 
242 static void rfkill_global_led_trigger_event(void)
243 {
244 }
245 
246 static int rfkill_global_led_trigger_register(void)
247 {
248 	return 0;
249 }
250 
251 static void rfkill_global_led_trigger_unregister(void)
252 {
253 }
254 #endif /* CONFIG_RFKILL_LEDS */
255 
256 static void rfkill_fill_event(struct rfkill_event_ext *ev,
257 			      struct rfkill *rfkill,
258 			      enum rfkill_operation op)
259 {
260 	unsigned long flags;
261 
262 	ev->idx = rfkill->idx;
263 	ev->type = rfkill->type;
264 	ev->op = op;
265 
266 	spin_lock_irqsave(&rfkill->lock, flags);
267 	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
268 	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
269 					RFKILL_BLOCK_SW_PREV));
270 	ev->hard_block_reasons = rfkill->hard_block_reasons;
271 	spin_unlock_irqrestore(&rfkill->lock, flags);
272 }
273 
274 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
275 {
276 	struct rfkill_data *data;
277 	struct rfkill_int_event *ev;
278 
279 	list_for_each_entry(data, &rfkill_fds, list) {
280 		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
281 		if (!ev)
282 			continue;
283 		rfkill_fill_event(&ev->ev, rfkill, op);
284 		mutex_lock(&data->mtx);
285 		list_add_tail(&ev->list, &data->events);
286 		mutex_unlock(&data->mtx);
287 		wake_up_interruptible(&data->read_wait);
288 	}
289 }
290 
291 static void rfkill_event(struct rfkill *rfkill)
292 {
293 	if (!rfkill->registered)
294 		return;
295 
296 	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
297 
298 	/* also send event to /dev/rfkill */
299 	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
300 }
301 
302 /**
303  * rfkill_set_block - wrapper for set_block method
304  *
305  * @rfkill: the rfkill struct to use
306  * @blocked: the new software state
307  *
308  * Calls the set_block method (when applicable) and handles notifications
309  * etc. as well.
310  */
311 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
312 {
313 	unsigned long flags;
314 	bool prev, curr;
315 	int err;
316 
317 	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
318 		return;
319 
320 	/*
321 	 * Some platforms (...!) generate input events which affect the
322 	 * _hard_ kill state -- whenever something tries to change the
323 	 * current software state query the hardware state too.
324 	 */
325 	if (rfkill->ops->query)
326 		rfkill->ops->query(rfkill, rfkill->data);
327 
328 	spin_lock_irqsave(&rfkill->lock, flags);
329 	prev = rfkill->state & RFKILL_BLOCK_SW;
330 
331 	if (prev)
332 		rfkill->state |= RFKILL_BLOCK_SW_PREV;
333 	else
334 		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
335 
336 	if (blocked)
337 		rfkill->state |= RFKILL_BLOCK_SW;
338 	else
339 		rfkill->state &= ~RFKILL_BLOCK_SW;
340 
341 	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
342 	spin_unlock_irqrestore(&rfkill->lock, flags);
343 
344 	err = rfkill->ops->set_block(rfkill->data, blocked);
345 
346 	spin_lock_irqsave(&rfkill->lock, flags);
347 	if (err) {
348 		/*
349 		 * Failed -- reset status to _PREV, which may be different
350 		 * from what we have set _PREV to earlier in this function
351 		 * if rfkill_set_sw_state was invoked.
352 		 */
353 		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
354 			rfkill->state |= RFKILL_BLOCK_SW;
355 		else
356 			rfkill->state &= ~RFKILL_BLOCK_SW;
357 	}
358 	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
359 	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
360 	curr = rfkill->state & RFKILL_BLOCK_SW;
361 	spin_unlock_irqrestore(&rfkill->lock, flags);
362 
363 	rfkill_led_trigger_event(rfkill);
364 	rfkill_global_led_trigger_event();
365 
366 	if (prev != curr)
367 		rfkill_event(rfkill);
368 }
369 
370 static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
371 {
372 	int i;
373 
374 	if (type != RFKILL_TYPE_ALL) {
375 		rfkill_global_states[type].cur = blocked;
376 		return;
377 	}
378 
379 	for (i = 0; i < NUM_RFKILL_TYPES; i++)
380 		rfkill_global_states[i].cur = blocked;
381 }
382 
383 #ifdef CONFIG_RFKILL_INPUT
384 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
385 
386 /**
387  * __rfkill_switch_all - Toggle state of all switches of given type
388  * @type: type of interfaces to be affected
389  * @blocked: the new state
390  *
391  * This function sets the state of all switches of given type,
392  * unless a specific switch is suspended.
393  *
394  * Caller must have acquired rfkill_global_mutex.
395  */
396 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
397 {
398 	struct rfkill *rfkill;
399 
400 	rfkill_update_global_state(type, blocked);
401 	list_for_each_entry(rfkill, &rfkill_list, node) {
402 		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
403 			continue;
404 
405 		rfkill_set_block(rfkill, blocked);
406 	}
407 }
408 
409 /**
410  * rfkill_switch_all - Toggle state of all switches of given type
411  * @type: type of interfaces to be affected
412  * @blocked: the new state
413  *
414  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
415  * Please refer to __rfkill_switch_all() for details.
416  *
417  * Does nothing if the EPO lock is active.
418  */
419 void rfkill_switch_all(enum rfkill_type type, bool blocked)
420 {
421 	if (atomic_read(&rfkill_input_disabled))
422 		return;
423 
424 	mutex_lock(&rfkill_global_mutex);
425 
426 	if (!rfkill_epo_lock_active)
427 		__rfkill_switch_all(type, blocked);
428 
429 	mutex_unlock(&rfkill_global_mutex);
430 }
431 
432 /**
433  * rfkill_epo - emergency power off all transmitters
434  *
435  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
436  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
437  *
438  * The global state before the EPO is saved and can be restored later
439  * using rfkill_restore_states().
440  */
441 void rfkill_epo(void)
442 {
443 	struct rfkill *rfkill;
444 	int i;
445 
446 	if (atomic_read(&rfkill_input_disabled))
447 		return;
448 
449 	mutex_lock(&rfkill_global_mutex);
450 
451 	rfkill_epo_lock_active = true;
452 	list_for_each_entry(rfkill, &rfkill_list, node)
453 		rfkill_set_block(rfkill, true);
454 
455 	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
456 		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
457 		rfkill_global_states[i].cur = true;
458 	}
459 
460 	mutex_unlock(&rfkill_global_mutex);
461 }
462 
463 /**
464  * rfkill_restore_states - restore global states
465  *
466  * Restore (and sync switches to) the global state from the
467  * states in rfkill_default_states.  This can undo the effects of
468  * a call to rfkill_epo().
469  */
470 void rfkill_restore_states(void)
471 {
472 	int i;
473 
474 	if (atomic_read(&rfkill_input_disabled))
475 		return;
476 
477 	mutex_lock(&rfkill_global_mutex);
478 
479 	rfkill_epo_lock_active = false;
480 	for (i = 0; i < NUM_RFKILL_TYPES; i++)
481 		__rfkill_switch_all(i, rfkill_global_states[i].sav);
482 	mutex_unlock(&rfkill_global_mutex);
483 }
484 
485 /**
486  * rfkill_remove_epo_lock - unlock state changes
487  *
488  * Used by rfkill-input manually unlock state changes, when
489  * the EPO switch is deactivated.
490  */
491 void rfkill_remove_epo_lock(void)
492 {
493 	if (atomic_read(&rfkill_input_disabled))
494 		return;
495 
496 	mutex_lock(&rfkill_global_mutex);
497 	rfkill_epo_lock_active = false;
498 	mutex_unlock(&rfkill_global_mutex);
499 }
500 
501 /**
502  * rfkill_is_epo_lock_active - returns true EPO is active
503  *
504  * Returns 0 (false) if there is NOT an active EPO condition,
505  * and 1 (true) if there is an active EPO condition, which
506  * locks all radios in one of the BLOCKED states.
507  *
508  * Can be called in atomic context.
509  */
510 bool rfkill_is_epo_lock_active(void)
511 {
512 	return rfkill_epo_lock_active;
513 }
514 
515 /**
516  * rfkill_get_global_sw_state - returns global state for a type
517  * @type: the type to get the global state of
518  *
519  * Returns the current global state for a given wireless
520  * device type.
521  */
522 bool rfkill_get_global_sw_state(const enum rfkill_type type)
523 {
524 	return rfkill_global_states[type].cur;
525 }
526 #endif
527 
528 bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
529 				bool blocked, unsigned long reason)
530 {
531 	unsigned long flags;
532 	bool ret, prev;
533 
534 	BUG_ON(!rfkill);
535 
536 	if (WARN(reason &
537 	    ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
538 	    "hw_state reason not supported: 0x%lx", reason))
539 		return blocked;
540 
541 	spin_lock_irqsave(&rfkill->lock, flags);
542 	prev = !!(rfkill->hard_block_reasons & reason);
543 	if (blocked) {
544 		rfkill->state |= RFKILL_BLOCK_HW;
545 		rfkill->hard_block_reasons |= reason;
546 	} else {
547 		rfkill->hard_block_reasons &= ~reason;
548 		if (!rfkill->hard_block_reasons)
549 			rfkill->state &= ~RFKILL_BLOCK_HW;
550 	}
551 	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
552 	spin_unlock_irqrestore(&rfkill->lock, flags);
553 
554 	rfkill_led_trigger_event(rfkill);
555 	rfkill_global_led_trigger_event();
556 
557 	if (rfkill->registered && prev != blocked)
558 		schedule_work(&rfkill->uevent_work);
559 
560 	return ret;
561 }
562 EXPORT_SYMBOL(rfkill_set_hw_state_reason);
563 
564 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
565 {
566 	u32 bit = RFKILL_BLOCK_SW;
567 
568 	/* if in a ops->set_block right now, use other bit */
569 	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
570 		bit = RFKILL_BLOCK_SW_PREV;
571 
572 	if (blocked)
573 		rfkill->state |= bit;
574 	else
575 		rfkill->state &= ~bit;
576 }
577 
578 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
579 {
580 	unsigned long flags;
581 	bool prev, hwblock;
582 
583 	BUG_ON(!rfkill);
584 
585 	spin_lock_irqsave(&rfkill->lock, flags);
586 	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
587 	__rfkill_set_sw_state(rfkill, blocked);
588 	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
589 	blocked = blocked || hwblock;
590 	spin_unlock_irqrestore(&rfkill->lock, flags);
591 
592 	if (!rfkill->registered)
593 		return blocked;
594 
595 	if (prev != blocked && !hwblock)
596 		schedule_work(&rfkill->uevent_work);
597 
598 	rfkill_led_trigger_event(rfkill);
599 	rfkill_global_led_trigger_event();
600 
601 	return blocked;
602 }
603 EXPORT_SYMBOL(rfkill_set_sw_state);
604 
605 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
606 {
607 	unsigned long flags;
608 
609 	BUG_ON(!rfkill);
610 	BUG_ON(rfkill->registered);
611 
612 	spin_lock_irqsave(&rfkill->lock, flags);
613 	__rfkill_set_sw_state(rfkill, blocked);
614 	rfkill->persistent = true;
615 	spin_unlock_irqrestore(&rfkill->lock, flags);
616 }
617 EXPORT_SYMBOL(rfkill_init_sw_state);
618 
619 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
620 {
621 	unsigned long flags;
622 	bool swprev, hwprev;
623 
624 	BUG_ON(!rfkill);
625 
626 	spin_lock_irqsave(&rfkill->lock, flags);
627 
628 	/*
629 	 * No need to care about prev/setblock ... this is for uevent only
630 	 * and that will get triggered by rfkill_set_block anyway.
631 	 */
632 	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
633 	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
634 	__rfkill_set_sw_state(rfkill, sw);
635 	if (hw)
636 		rfkill->state |= RFKILL_BLOCK_HW;
637 	else
638 		rfkill->state &= ~RFKILL_BLOCK_HW;
639 
640 	spin_unlock_irqrestore(&rfkill->lock, flags);
641 
642 	if (!rfkill->registered) {
643 		rfkill->persistent = true;
644 	} else {
645 		if (swprev != sw || hwprev != hw)
646 			schedule_work(&rfkill->uevent_work);
647 
648 		rfkill_led_trigger_event(rfkill);
649 		rfkill_global_led_trigger_event();
650 	}
651 }
652 EXPORT_SYMBOL(rfkill_set_states);
653 
654 static const char * const rfkill_types[] = {
655 	NULL, /* RFKILL_TYPE_ALL */
656 	"wlan",
657 	"bluetooth",
658 	"ultrawideband",
659 	"wimax",
660 	"wwan",
661 	"gps",
662 	"fm",
663 	"nfc",
664 };
665 
666 enum rfkill_type rfkill_find_type(const char *name)
667 {
668 	int i;
669 
670 	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
671 
672 	if (!name)
673 		return RFKILL_TYPE_ALL;
674 
675 	for (i = 1; i < NUM_RFKILL_TYPES; i++)
676 		if (!strcmp(name, rfkill_types[i]))
677 			return i;
678 	return RFKILL_TYPE_ALL;
679 }
680 EXPORT_SYMBOL(rfkill_find_type);
681 
682 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
683 			 char *buf)
684 {
685 	struct rfkill *rfkill = to_rfkill(dev);
686 
687 	return sprintf(buf, "%s\n", rfkill->name);
688 }
689 static DEVICE_ATTR_RO(name);
690 
691 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
692 			 char *buf)
693 {
694 	struct rfkill *rfkill = to_rfkill(dev);
695 
696 	return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
697 }
698 static DEVICE_ATTR_RO(type);
699 
700 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
701 			  char *buf)
702 {
703 	struct rfkill *rfkill = to_rfkill(dev);
704 
705 	return sprintf(buf, "%d\n", rfkill->idx);
706 }
707 static DEVICE_ATTR_RO(index);
708 
709 static ssize_t persistent_show(struct device *dev,
710 			       struct device_attribute *attr, char *buf)
711 {
712 	struct rfkill *rfkill = to_rfkill(dev);
713 
714 	return sprintf(buf, "%d\n", rfkill->persistent);
715 }
716 static DEVICE_ATTR_RO(persistent);
717 
718 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
719 			 char *buf)
720 {
721 	struct rfkill *rfkill = to_rfkill(dev);
722 
723 	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
724 }
725 static DEVICE_ATTR_RO(hard);
726 
727 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
728 			 char *buf)
729 {
730 	struct rfkill *rfkill = to_rfkill(dev);
731 
732 	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
733 }
734 
735 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
736 			  const char *buf, size_t count)
737 {
738 	struct rfkill *rfkill = to_rfkill(dev);
739 	unsigned long state;
740 	int err;
741 
742 	if (!capable(CAP_NET_ADMIN))
743 		return -EPERM;
744 
745 	err = kstrtoul(buf, 0, &state);
746 	if (err)
747 		return err;
748 
749 	if (state > 1 )
750 		return -EINVAL;
751 
752 	mutex_lock(&rfkill_global_mutex);
753 	rfkill_set_block(rfkill, state);
754 	mutex_unlock(&rfkill_global_mutex);
755 
756 	return count;
757 }
758 static DEVICE_ATTR_RW(soft);
759 
760 static ssize_t hard_block_reasons_show(struct device *dev,
761 				       struct device_attribute *attr,
762 				       char *buf)
763 {
764 	struct rfkill *rfkill = to_rfkill(dev);
765 
766 	return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
767 }
768 static DEVICE_ATTR_RO(hard_block_reasons);
769 
770 static u8 user_state_from_blocked(unsigned long state)
771 {
772 	if (state & RFKILL_BLOCK_HW)
773 		return RFKILL_USER_STATE_HARD_BLOCKED;
774 	if (state & RFKILL_BLOCK_SW)
775 		return RFKILL_USER_STATE_SOFT_BLOCKED;
776 
777 	return RFKILL_USER_STATE_UNBLOCKED;
778 }
779 
780 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
781 			  char *buf)
782 {
783 	struct rfkill *rfkill = to_rfkill(dev);
784 
785 	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
786 }
787 
788 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
789 			   const char *buf, size_t count)
790 {
791 	struct rfkill *rfkill = to_rfkill(dev);
792 	unsigned long state;
793 	int err;
794 
795 	if (!capable(CAP_NET_ADMIN))
796 		return -EPERM;
797 
798 	err = kstrtoul(buf, 0, &state);
799 	if (err)
800 		return err;
801 
802 	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
803 	    state != RFKILL_USER_STATE_UNBLOCKED)
804 		return -EINVAL;
805 
806 	mutex_lock(&rfkill_global_mutex);
807 	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
808 	mutex_unlock(&rfkill_global_mutex);
809 
810 	return count;
811 }
812 static DEVICE_ATTR_RW(state);
813 
814 static struct attribute *rfkill_dev_attrs[] = {
815 	&dev_attr_name.attr,
816 	&dev_attr_type.attr,
817 	&dev_attr_index.attr,
818 	&dev_attr_persistent.attr,
819 	&dev_attr_state.attr,
820 	&dev_attr_soft.attr,
821 	&dev_attr_hard.attr,
822 	&dev_attr_hard_block_reasons.attr,
823 	NULL,
824 };
825 ATTRIBUTE_GROUPS(rfkill_dev);
826 
827 static void rfkill_release(struct device *dev)
828 {
829 	struct rfkill *rfkill = to_rfkill(dev);
830 
831 	kfree(rfkill);
832 }
833 
834 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
835 {
836 	struct rfkill *rfkill = to_rfkill(dev);
837 	unsigned long flags;
838 	unsigned long reasons;
839 	u32 state;
840 	int error;
841 
842 	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
843 	if (error)
844 		return error;
845 	error = add_uevent_var(env, "RFKILL_TYPE=%s",
846 			       rfkill_types[rfkill->type]);
847 	if (error)
848 		return error;
849 	spin_lock_irqsave(&rfkill->lock, flags);
850 	state = rfkill->state;
851 	reasons = rfkill->hard_block_reasons;
852 	spin_unlock_irqrestore(&rfkill->lock, flags);
853 	error = add_uevent_var(env, "RFKILL_STATE=%d",
854 			       user_state_from_blocked(state));
855 	if (error)
856 		return error;
857 	return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
858 }
859 
860 void rfkill_pause_polling(struct rfkill *rfkill)
861 {
862 	BUG_ON(!rfkill);
863 
864 	if (!rfkill->ops->poll)
865 		return;
866 
867 	rfkill->polling_paused = true;
868 	cancel_delayed_work_sync(&rfkill->poll_work);
869 }
870 EXPORT_SYMBOL(rfkill_pause_polling);
871 
872 void rfkill_resume_polling(struct rfkill *rfkill)
873 {
874 	BUG_ON(!rfkill);
875 
876 	if (!rfkill->ops->poll)
877 		return;
878 
879 	rfkill->polling_paused = false;
880 
881 	if (rfkill->suspended)
882 		return;
883 
884 	queue_delayed_work(system_power_efficient_wq,
885 			   &rfkill->poll_work, 0);
886 }
887 EXPORT_SYMBOL(rfkill_resume_polling);
888 
889 #ifdef CONFIG_PM_SLEEP
890 static int rfkill_suspend(struct device *dev)
891 {
892 	struct rfkill *rfkill = to_rfkill(dev);
893 
894 	rfkill->suspended = true;
895 	cancel_delayed_work_sync(&rfkill->poll_work);
896 
897 	return 0;
898 }
899 
900 static int rfkill_resume(struct device *dev)
901 {
902 	struct rfkill *rfkill = to_rfkill(dev);
903 	bool cur;
904 
905 	rfkill->suspended = false;
906 
907 	if (!rfkill->registered)
908 		return 0;
909 
910 	if (!rfkill->persistent) {
911 		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
912 		rfkill_set_block(rfkill, cur);
913 	}
914 
915 	if (rfkill->ops->poll && !rfkill->polling_paused)
916 		queue_delayed_work(system_power_efficient_wq,
917 				   &rfkill->poll_work, 0);
918 
919 	return 0;
920 }
921 
922 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
923 #define RFKILL_PM_OPS (&rfkill_pm_ops)
924 #else
925 #define RFKILL_PM_OPS NULL
926 #endif
927 
928 static struct class rfkill_class = {
929 	.name		= "rfkill",
930 	.dev_release	= rfkill_release,
931 	.dev_groups	= rfkill_dev_groups,
932 	.dev_uevent	= rfkill_dev_uevent,
933 	.pm		= RFKILL_PM_OPS,
934 };
935 
936 bool rfkill_blocked(struct rfkill *rfkill)
937 {
938 	unsigned long flags;
939 	u32 state;
940 
941 	spin_lock_irqsave(&rfkill->lock, flags);
942 	state = rfkill->state;
943 	spin_unlock_irqrestore(&rfkill->lock, flags);
944 
945 	return !!(state & RFKILL_BLOCK_ANY);
946 }
947 EXPORT_SYMBOL(rfkill_blocked);
948 
949 
950 struct rfkill * __must_check rfkill_alloc(const char *name,
951 					  struct device *parent,
952 					  const enum rfkill_type type,
953 					  const struct rfkill_ops *ops,
954 					  void *ops_data)
955 {
956 	struct rfkill *rfkill;
957 	struct device *dev;
958 
959 	if (WARN_ON(!ops))
960 		return NULL;
961 
962 	if (WARN_ON(!ops->set_block))
963 		return NULL;
964 
965 	if (WARN_ON(!name))
966 		return NULL;
967 
968 	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
969 		return NULL;
970 
971 	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
972 	if (!rfkill)
973 		return NULL;
974 
975 	spin_lock_init(&rfkill->lock);
976 	INIT_LIST_HEAD(&rfkill->node);
977 	rfkill->type = type;
978 	strcpy(rfkill->name, name);
979 	rfkill->ops = ops;
980 	rfkill->data = ops_data;
981 
982 	dev = &rfkill->dev;
983 	dev->class = &rfkill_class;
984 	dev->parent = parent;
985 	device_initialize(dev);
986 
987 	return rfkill;
988 }
989 EXPORT_SYMBOL(rfkill_alloc);
990 
991 static void rfkill_poll(struct work_struct *work)
992 {
993 	struct rfkill *rfkill;
994 
995 	rfkill = container_of(work, struct rfkill, poll_work.work);
996 
997 	/*
998 	 * Poll hardware state -- driver will use one of the
999 	 * rfkill_set{,_hw,_sw}_state functions and use its
1000 	 * return value to update the current status.
1001 	 */
1002 	rfkill->ops->poll(rfkill, rfkill->data);
1003 
1004 	queue_delayed_work(system_power_efficient_wq,
1005 		&rfkill->poll_work,
1006 		round_jiffies_relative(POLL_INTERVAL));
1007 }
1008 
1009 static void rfkill_uevent_work(struct work_struct *work)
1010 {
1011 	struct rfkill *rfkill;
1012 
1013 	rfkill = container_of(work, struct rfkill, uevent_work);
1014 
1015 	mutex_lock(&rfkill_global_mutex);
1016 	rfkill_event(rfkill);
1017 	mutex_unlock(&rfkill_global_mutex);
1018 }
1019 
1020 static void rfkill_sync_work(struct work_struct *work)
1021 {
1022 	struct rfkill *rfkill;
1023 	bool cur;
1024 
1025 	rfkill = container_of(work, struct rfkill, sync_work);
1026 
1027 	mutex_lock(&rfkill_global_mutex);
1028 	cur = rfkill_global_states[rfkill->type].cur;
1029 	rfkill_set_block(rfkill, cur);
1030 	mutex_unlock(&rfkill_global_mutex);
1031 }
1032 
1033 int __must_check rfkill_register(struct rfkill *rfkill)
1034 {
1035 	static unsigned long rfkill_no;
1036 	struct device *dev;
1037 	int error;
1038 
1039 	if (!rfkill)
1040 		return -EINVAL;
1041 
1042 	dev = &rfkill->dev;
1043 
1044 	mutex_lock(&rfkill_global_mutex);
1045 
1046 	if (rfkill->registered) {
1047 		error = -EALREADY;
1048 		goto unlock;
1049 	}
1050 
1051 	rfkill->idx = rfkill_no;
1052 	dev_set_name(dev, "rfkill%lu", rfkill_no);
1053 	rfkill_no++;
1054 
1055 	list_add_tail(&rfkill->node, &rfkill_list);
1056 
1057 	error = device_add(dev);
1058 	if (error)
1059 		goto remove;
1060 
1061 	error = rfkill_led_trigger_register(rfkill);
1062 	if (error)
1063 		goto devdel;
1064 
1065 	rfkill->registered = true;
1066 
1067 	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1068 	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1069 	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1070 
1071 	if (rfkill->ops->poll)
1072 		queue_delayed_work(system_power_efficient_wq,
1073 			&rfkill->poll_work,
1074 			round_jiffies_relative(POLL_INTERVAL));
1075 
1076 	if (!rfkill->persistent || rfkill_epo_lock_active) {
1077 		schedule_work(&rfkill->sync_work);
1078 	} else {
1079 #ifdef CONFIG_RFKILL_INPUT
1080 		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1081 
1082 		if (!atomic_read(&rfkill_input_disabled))
1083 			__rfkill_switch_all(rfkill->type, soft_blocked);
1084 #endif
1085 	}
1086 
1087 	rfkill_global_led_trigger_event();
1088 	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1089 
1090 	mutex_unlock(&rfkill_global_mutex);
1091 	return 0;
1092 
1093  devdel:
1094 	device_del(&rfkill->dev);
1095  remove:
1096 	list_del_init(&rfkill->node);
1097  unlock:
1098 	mutex_unlock(&rfkill_global_mutex);
1099 	return error;
1100 }
1101 EXPORT_SYMBOL(rfkill_register);
1102 
1103 void rfkill_unregister(struct rfkill *rfkill)
1104 {
1105 	BUG_ON(!rfkill);
1106 
1107 	if (rfkill->ops->poll)
1108 		cancel_delayed_work_sync(&rfkill->poll_work);
1109 
1110 	cancel_work_sync(&rfkill->uevent_work);
1111 	cancel_work_sync(&rfkill->sync_work);
1112 
1113 	rfkill->registered = false;
1114 
1115 	device_del(&rfkill->dev);
1116 
1117 	mutex_lock(&rfkill_global_mutex);
1118 	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1119 	list_del_init(&rfkill->node);
1120 	rfkill_global_led_trigger_event();
1121 	mutex_unlock(&rfkill_global_mutex);
1122 
1123 	rfkill_led_trigger_unregister(rfkill);
1124 }
1125 EXPORT_SYMBOL(rfkill_unregister);
1126 
1127 void rfkill_destroy(struct rfkill *rfkill)
1128 {
1129 	if (rfkill)
1130 		put_device(&rfkill->dev);
1131 }
1132 EXPORT_SYMBOL(rfkill_destroy);
1133 
1134 static int rfkill_fop_open(struct inode *inode, struct file *file)
1135 {
1136 	struct rfkill_data *data;
1137 	struct rfkill *rfkill;
1138 	struct rfkill_int_event *ev, *tmp;
1139 
1140 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1141 	if (!data)
1142 		return -ENOMEM;
1143 
1144 	INIT_LIST_HEAD(&data->events);
1145 	mutex_init(&data->mtx);
1146 	init_waitqueue_head(&data->read_wait);
1147 
1148 	mutex_lock(&rfkill_global_mutex);
1149 	mutex_lock(&data->mtx);
1150 	/*
1151 	 * start getting events from elsewhere but hold mtx to get
1152 	 * startup events added first
1153 	 */
1154 
1155 	list_for_each_entry(rfkill, &rfkill_list, node) {
1156 		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1157 		if (!ev)
1158 			goto free;
1159 		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1160 		list_add_tail(&ev->list, &data->events);
1161 	}
1162 	list_add(&data->list, &rfkill_fds);
1163 	mutex_unlock(&data->mtx);
1164 	mutex_unlock(&rfkill_global_mutex);
1165 
1166 	file->private_data = data;
1167 
1168 	return stream_open(inode, file);
1169 
1170  free:
1171 	mutex_unlock(&data->mtx);
1172 	mutex_unlock(&rfkill_global_mutex);
1173 	mutex_destroy(&data->mtx);
1174 	list_for_each_entry_safe(ev, tmp, &data->events, list)
1175 		kfree(ev);
1176 	kfree(data);
1177 	return -ENOMEM;
1178 }
1179 
1180 static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1181 {
1182 	struct rfkill_data *data = file->private_data;
1183 	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1184 
1185 	poll_wait(file, &data->read_wait, wait);
1186 
1187 	mutex_lock(&data->mtx);
1188 	if (!list_empty(&data->events))
1189 		res = EPOLLIN | EPOLLRDNORM;
1190 	mutex_unlock(&data->mtx);
1191 
1192 	return res;
1193 }
1194 
1195 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1196 			       size_t count, loff_t *pos)
1197 {
1198 	struct rfkill_data *data = file->private_data;
1199 	struct rfkill_int_event *ev;
1200 	unsigned long sz;
1201 	int ret;
1202 
1203 	mutex_lock(&data->mtx);
1204 
1205 	while (list_empty(&data->events)) {
1206 		if (file->f_flags & O_NONBLOCK) {
1207 			ret = -EAGAIN;
1208 			goto out;
1209 		}
1210 		mutex_unlock(&data->mtx);
1211 		/* since we re-check and it just compares pointers,
1212 		 * using !list_empty() without locking isn't a problem
1213 		 */
1214 		ret = wait_event_interruptible(data->read_wait,
1215 					       !list_empty(&data->events));
1216 		mutex_lock(&data->mtx);
1217 
1218 		if (ret)
1219 			goto out;
1220 	}
1221 
1222 	ev = list_first_entry(&data->events, struct rfkill_int_event,
1223 				list);
1224 
1225 	sz = min_t(unsigned long, sizeof(ev->ev), count);
1226 	ret = sz;
1227 	if (copy_to_user(buf, &ev->ev, sz))
1228 		ret = -EFAULT;
1229 
1230 	list_del(&ev->list);
1231 	kfree(ev);
1232  out:
1233 	mutex_unlock(&data->mtx);
1234 	return ret;
1235 }
1236 
1237 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1238 				size_t count, loff_t *pos)
1239 {
1240 	struct rfkill *rfkill;
1241 	struct rfkill_event_ext ev;
1242 	int ret;
1243 
1244 	/* we don't need the 'hard' variable but accept it */
1245 	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1246 		return -EINVAL;
1247 
1248 	/*
1249 	 * Copy as much data as we can accept into our 'ev' buffer,
1250 	 * but tell userspace how much we've copied so it can determine
1251 	 * our API version even in a write() call, if it cares.
1252 	 */
1253 	count = min(count, sizeof(ev));
1254 	if (copy_from_user(&ev, buf, count))
1255 		return -EFAULT;
1256 
1257 	if (ev.type >= NUM_RFKILL_TYPES)
1258 		return -EINVAL;
1259 
1260 	mutex_lock(&rfkill_global_mutex);
1261 
1262 	switch (ev.op) {
1263 	case RFKILL_OP_CHANGE_ALL:
1264 		rfkill_update_global_state(ev.type, ev.soft);
1265 		list_for_each_entry(rfkill, &rfkill_list, node)
1266 			if (rfkill->type == ev.type ||
1267 			    ev.type == RFKILL_TYPE_ALL)
1268 				rfkill_set_block(rfkill, ev.soft);
1269 		ret = 0;
1270 		break;
1271 	case RFKILL_OP_CHANGE:
1272 		list_for_each_entry(rfkill, &rfkill_list, node)
1273 			if (rfkill->idx == ev.idx &&
1274 			    (rfkill->type == ev.type ||
1275 			     ev.type == RFKILL_TYPE_ALL))
1276 				rfkill_set_block(rfkill, ev.soft);
1277 		ret = 0;
1278 		break;
1279 	default:
1280 		ret = -EINVAL;
1281 		break;
1282 	}
1283 
1284 	mutex_unlock(&rfkill_global_mutex);
1285 
1286 	return ret ?: count;
1287 }
1288 
1289 static int rfkill_fop_release(struct inode *inode, struct file *file)
1290 {
1291 	struct rfkill_data *data = file->private_data;
1292 	struct rfkill_int_event *ev, *tmp;
1293 
1294 	mutex_lock(&rfkill_global_mutex);
1295 	list_del(&data->list);
1296 	mutex_unlock(&rfkill_global_mutex);
1297 
1298 	mutex_destroy(&data->mtx);
1299 	list_for_each_entry_safe(ev, tmp, &data->events, list)
1300 		kfree(ev);
1301 
1302 #ifdef CONFIG_RFKILL_INPUT
1303 	if (data->input_handler)
1304 		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1305 			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1306 #endif
1307 
1308 	kfree(data);
1309 
1310 	return 0;
1311 }
1312 
1313 #ifdef CONFIG_RFKILL_INPUT
1314 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1315 			     unsigned long arg)
1316 {
1317 	struct rfkill_data *data = file->private_data;
1318 
1319 	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1320 		return -ENOSYS;
1321 
1322 	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1323 		return -ENOSYS;
1324 
1325 	mutex_lock(&data->mtx);
1326 
1327 	if (!data->input_handler) {
1328 		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1329 			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1330 		data->input_handler = true;
1331 	}
1332 
1333 	mutex_unlock(&data->mtx);
1334 
1335 	return 0;
1336 }
1337 #endif
1338 
1339 static const struct file_operations rfkill_fops = {
1340 	.owner		= THIS_MODULE,
1341 	.open		= rfkill_fop_open,
1342 	.read		= rfkill_fop_read,
1343 	.write		= rfkill_fop_write,
1344 	.poll		= rfkill_fop_poll,
1345 	.release	= rfkill_fop_release,
1346 #ifdef CONFIG_RFKILL_INPUT
1347 	.unlocked_ioctl	= rfkill_fop_ioctl,
1348 	.compat_ioctl	= compat_ptr_ioctl,
1349 #endif
1350 	.llseek		= no_llseek,
1351 };
1352 
1353 #define RFKILL_NAME "rfkill"
1354 
1355 static struct miscdevice rfkill_miscdev = {
1356 	.fops	= &rfkill_fops,
1357 	.name	= RFKILL_NAME,
1358 	.minor	= RFKILL_MINOR,
1359 };
1360 
1361 static int __init rfkill_init(void)
1362 {
1363 	int error;
1364 
1365 	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1366 
1367 	error = class_register(&rfkill_class);
1368 	if (error)
1369 		goto error_class;
1370 
1371 	error = misc_register(&rfkill_miscdev);
1372 	if (error)
1373 		goto error_misc;
1374 
1375 	error = rfkill_global_led_trigger_register();
1376 	if (error)
1377 		goto error_led_trigger;
1378 
1379 #ifdef CONFIG_RFKILL_INPUT
1380 	error = rfkill_handler_init();
1381 	if (error)
1382 		goto error_input;
1383 #endif
1384 
1385 	return 0;
1386 
1387 #ifdef CONFIG_RFKILL_INPUT
1388 error_input:
1389 	rfkill_global_led_trigger_unregister();
1390 #endif
1391 error_led_trigger:
1392 	misc_deregister(&rfkill_miscdev);
1393 error_misc:
1394 	class_unregister(&rfkill_class);
1395 error_class:
1396 	return error;
1397 }
1398 subsys_initcall(rfkill_init);
1399 
1400 static void __exit rfkill_exit(void)
1401 {
1402 #ifdef CONFIG_RFKILL_INPUT
1403 	rfkill_handler_exit();
1404 #endif
1405 	rfkill_global_led_trigger_unregister();
1406 	misc_deregister(&rfkill_miscdev);
1407 	class_unregister(&rfkill_class);
1408 }
1409 module_exit(rfkill_exit);
1410 
1411 MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1412 MODULE_ALIAS("devname:" RFKILL_NAME);
1413