1 /* 2 * Copyright (C) 2006 - 2007 Ivo van Doorn 3 * Copyright (C) 2007 Dmitry Torokhov 4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 #include <linux/workqueue.h> 24 #include <linux/capability.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/rfkill.h> 28 #include <linux/sched.h> 29 #include <linux/spinlock.h> 30 #include <linux/device.h> 31 #include <linux/miscdevice.h> 32 #include <linux/wait.h> 33 #include <linux/poll.h> 34 #include <linux/fs.h> 35 #include <linux/slab.h> 36 37 #include "rfkill.h" 38 39 #define POLL_INTERVAL (5 * HZ) 40 41 #define RFKILL_BLOCK_HW BIT(0) 42 #define RFKILL_BLOCK_SW BIT(1) 43 #define RFKILL_BLOCK_SW_PREV BIT(2) 44 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\ 45 RFKILL_BLOCK_SW |\ 46 RFKILL_BLOCK_SW_PREV) 47 #define RFKILL_BLOCK_SW_SETCALL BIT(31) 48 49 struct rfkill { 50 spinlock_t lock; 51 52 const char *name; 53 enum rfkill_type type; 54 55 unsigned long state; 56 57 u32 idx; 58 59 bool registered; 60 bool persistent; 61 62 const struct rfkill_ops *ops; 63 void *data; 64 65 #ifdef CONFIG_RFKILL_LEDS 66 struct led_trigger led_trigger; 67 const char *ledtrigname; 68 #endif 69 70 struct device dev; 71 struct list_head node; 72 73 struct delayed_work poll_work; 74 struct work_struct uevent_work; 75 struct work_struct sync_work; 76 }; 77 #define to_rfkill(d) container_of(d, struct rfkill, dev) 78 79 struct rfkill_int_event { 80 struct list_head list; 81 struct rfkill_event ev; 82 }; 83 84 struct rfkill_data { 85 struct list_head list; 86 struct list_head events; 87 struct mutex mtx; 88 wait_queue_head_t read_wait; 89 bool input_handler; 90 }; 91 92 93 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>"); 94 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); 95 MODULE_DESCRIPTION("RF switch support"); 96 MODULE_LICENSE("GPL"); 97 98 99 /* 100 * The locking here should be made much smarter, we currently have 101 * a bit of a stupid situation because drivers might want to register 102 * the rfkill struct under their own lock, and take this lock during 103 * rfkill method calls -- which will cause an AB-BA deadlock situation. 104 * 105 * To fix that, we need to rework this code here to be mostly lock-free 106 * and only use the mutex for list manipulations, not to protect the 107 * various other global variables. Then we can avoid holding the mutex 108 * around driver operations, and all is happy. 109 */ 110 static LIST_HEAD(rfkill_list); /* list of registered rf switches */ 111 static DEFINE_MUTEX(rfkill_global_mutex); 112 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */ 113 114 static unsigned int rfkill_default_state = 1; 115 module_param_named(default_state, rfkill_default_state, uint, 0444); 116 MODULE_PARM_DESC(default_state, 117 "Default initial state for all radio types, 0 = radio off"); 118 119 static struct { 120 bool cur, sav; 121 } rfkill_global_states[NUM_RFKILL_TYPES]; 122 123 static bool rfkill_epo_lock_active; 124 125 126 #ifdef CONFIG_RFKILL_LEDS 127 static void rfkill_led_trigger_event(struct rfkill *rfkill) 128 { 129 struct led_trigger *trigger; 130 131 if (!rfkill->registered) 132 return; 133 134 trigger = &rfkill->led_trigger; 135 136 if (rfkill->state & RFKILL_BLOCK_ANY) 137 led_trigger_event(trigger, LED_OFF); 138 else 139 led_trigger_event(trigger, LED_FULL); 140 } 141 142 static void rfkill_led_trigger_activate(struct led_classdev *led) 143 { 144 struct rfkill *rfkill; 145 146 rfkill = container_of(led->trigger, struct rfkill, led_trigger); 147 148 rfkill_led_trigger_event(rfkill); 149 } 150 151 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill) 152 { 153 return rfkill->led_trigger.name; 154 } 155 EXPORT_SYMBOL(rfkill_get_led_trigger_name); 156 157 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name) 158 { 159 BUG_ON(!rfkill); 160 161 rfkill->ledtrigname = name; 162 } 163 EXPORT_SYMBOL(rfkill_set_led_trigger_name); 164 165 static int rfkill_led_trigger_register(struct rfkill *rfkill) 166 { 167 rfkill->led_trigger.name = rfkill->ledtrigname 168 ? : dev_name(&rfkill->dev); 169 rfkill->led_trigger.activate = rfkill_led_trigger_activate; 170 return led_trigger_register(&rfkill->led_trigger); 171 } 172 173 static void rfkill_led_trigger_unregister(struct rfkill *rfkill) 174 { 175 led_trigger_unregister(&rfkill->led_trigger); 176 } 177 #else 178 static void rfkill_led_trigger_event(struct rfkill *rfkill) 179 { 180 } 181 182 static inline int rfkill_led_trigger_register(struct rfkill *rfkill) 183 { 184 return 0; 185 } 186 187 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill) 188 { 189 } 190 #endif /* CONFIG_RFKILL_LEDS */ 191 192 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill, 193 enum rfkill_operation op) 194 { 195 unsigned long flags; 196 197 ev->idx = rfkill->idx; 198 ev->type = rfkill->type; 199 ev->op = op; 200 201 spin_lock_irqsave(&rfkill->lock, flags); 202 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW); 203 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW | 204 RFKILL_BLOCK_SW_PREV)); 205 spin_unlock_irqrestore(&rfkill->lock, flags); 206 } 207 208 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op) 209 { 210 struct rfkill_data *data; 211 struct rfkill_int_event *ev; 212 213 list_for_each_entry(data, &rfkill_fds, list) { 214 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 215 if (!ev) 216 continue; 217 rfkill_fill_event(&ev->ev, rfkill, op); 218 mutex_lock(&data->mtx); 219 list_add_tail(&ev->list, &data->events); 220 mutex_unlock(&data->mtx); 221 wake_up_interruptible(&data->read_wait); 222 } 223 } 224 225 static void rfkill_event(struct rfkill *rfkill) 226 { 227 if (!rfkill->registered) 228 return; 229 230 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE); 231 232 /* also send event to /dev/rfkill */ 233 rfkill_send_events(rfkill, RFKILL_OP_CHANGE); 234 } 235 236 static bool __rfkill_set_hw_state(struct rfkill *rfkill, 237 bool blocked, bool *change) 238 { 239 unsigned long flags; 240 bool prev, any; 241 242 BUG_ON(!rfkill); 243 244 spin_lock_irqsave(&rfkill->lock, flags); 245 prev = !!(rfkill->state & RFKILL_BLOCK_HW); 246 if (blocked) 247 rfkill->state |= RFKILL_BLOCK_HW; 248 else 249 rfkill->state &= ~RFKILL_BLOCK_HW; 250 *change = prev != blocked; 251 any = !!(rfkill->state & RFKILL_BLOCK_ANY); 252 spin_unlock_irqrestore(&rfkill->lock, flags); 253 254 rfkill_led_trigger_event(rfkill); 255 256 return any; 257 } 258 259 /** 260 * rfkill_set_block - wrapper for set_block method 261 * 262 * @rfkill: the rfkill struct to use 263 * @blocked: the new software state 264 * 265 * Calls the set_block method (when applicable) and handles notifications 266 * etc. as well. 267 */ 268 static void rfkill_set_block(struct rfkill *rfkill, bool blocked) 269 { 270 unsigned long flags; 271 bool prev, curr; 272 int err; 273 274 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP)) 275 return; 276 277 /* 278 * Some platforms (...!) generate input events which affect the 279 * _hard_ kill state -- whenever something tries to change the 280 * current software state query the hardware state too. 281 */ 282 if (rfkill->ops->query) 283 rfkill->ops->query(rfkill, rfkill->data); 284 285 spin_lock_irqsave(&rfkill->lock, flags); 286 prev = rfkill->state & RFKILL_BLOCK_SW; 287 288 if (rfkill->state & RFKILL_BLOCK_SW) 289 rfkill->state |= RFKILL_BLOCK_SW_PREV; 290 else 291 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 292 293 if (blocked) 294 rfkill->state |= RFKILL_BLOCK_SW; 295 else 296 rfkill->state &= ~RFKILL_BLOCK_SW; 297 298 rfkill->state |= RFKILL_BLOCK_SW_SETCALL; 299 spin_unlock_irqrestore(&rfkill->lock, flags); 300 301 err = rfkill->ops->set_block(rfkill->data, blocked); 302 303 spin_lock_irqsave(&rfkill->lock, flags); 304 if (err) { 305 /* 306 * Failed -- reset status to _prev, this may be different 307 * from what set set _PREV to earlier in this function 308 * if rfkill_set_sw_state was invoked. 309 */ 310 if (rfkill->state & RFKILL_BLOCK_SW_PREV) 311 rfkill->state |= RFKILL_BLOCK_SW; 312 else 313 rfkill->state &= ~RFKILL_BLOCK_SW; 314 } 315 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL; 316 rfkill->state &= ~RFKILL_BLOCK_SW_PREV; 317 curr = rfkill->state & RFKILL_BLOCK_SW; 318 spin_unlock_irqrestore(&rfkill->lock, flags); 319 320 rfkill_led_trigger_event(rfkill); 321 322 if (prev != curr) 323 rfkill_event(rfkill); 324 } 325 326 #ifdef CONFIG_RFKILL_INPUT 327 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0); 328 329 /** 330 * __rfkill_switch_all - Toggle state of all switches of given type 331 * @type: type of interfaces to be affected 332 * @blocked: the new state 333 * 334 * This function sets the state of all switches of given type, 335 * unless a specific switch is claimed by userspace (in which case, 336 * that switch is left alone) or suspended. 337 * 338 * Caller must have acquired rfkill_global_mutex. 339 */ 340 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked) 341 { 342 struct rfkill *rfkill; 343 344 rfkill_global_states[type].cur = blocked; 345 list_for_each_entry(rfkill, &rfkill_list, node) { 346 if (rfkill->type != type && type != RFKILL_TYPE_ALL) 347 continue; 348 349 rfkill_set_block(rfkill, blocked); 350 } 351 } 352 353 /** 354 * rfkill_switch_all - Toggle state of all switches of given type 355 * @type: type of interfaces to be affected 356 * @blocked: the new state 357 * 358 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state). 359 * Please refer to __rfkill_switch_all() for details. 360 * 361 * Does nothing if the EPO lock is active. 362 */ 363 void rfkill_switch_all(enum rfkill_type type, bool blocked) 364 { 365 if (atomic_read(&rfkill_input_disabled)) 366 return; 367 368 mutex_lock(&rfkill_global_mutex); 369 370 if (!rfkill_epo_lock_active) 371 __rfkill_switch_all(type, blocked); 372 373 mutex_unlock(&rfkill_global_mutex); 374 } 375 376 /** 377 * rfkill_epo - emergency power off all transmitters 378 * 379 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED, 380 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex. 381 * 382 * The global state before the EPO is saved and can be restored later 383 * using rfkill_restore_states(). 384 */ 385 void rfkill_epo(void) 386 { 387 struct rfkill *rfkill; 388 int i; 389 390 if (atomic_read(&rfkill_input_disabled)) 391 return; 392 393 mutex_lock(&rfkill_global_mutex); 394 395 rfkill_epo_lock_active = true; 396 list_for_each_entry(rfkill, &rfkill_list, node) 397 rfkill_set_block(rfkill, true); 398 399 for (i = 0; i < NUM_RFKILL_TYPES; i++) { 400 rfkill_global_states[i].sav = rfkill_global_states[i].cur; 401 rfkill_global_states[i].cur = true; 402 } 403 404 mutex_unlock(&rfkill_global_mutex); 405 } 406 407 /** 408 * rfkill_restore_states - restore global states 409 * 410 * Restore (and sync switches to) the global state from the 411 * states in rfkill_default_states. This can undo the effects of 412 * a call to rfkill_epo(). 413 */ 414 void rfkill_restore_states(void) 415 { 416 int i; 417 418 if (atomic_read(&rfkill_input_disabled)) 419 return; 420 421 mutex_lock(&rfkill_global_mutex); 422 423 rfkill_epo_lock_active = false; 424 for (i = 0; i < NUM_RFKILL_TYPES; i++) 425 __rfkill_switch_all(i, rfkill_global_states[i].sav); 426 mutex_unlock(&rfkill_global_mutex); 427 } 428 429 /** 430 * rfkill_remove_epo_lock - unlock state changes 431 * 432 * Used by rfkill-input manually unlock state changes, when 433 * the EPO switch is deactivated. 434 */ 435 void rfkill_remove_epo_lock(void) 436 { 437 if (atomic_read(&rfkill_input_disabled)) 438 return; 439 440 mutex_lock(&rfkill_global_mutex); 441 rfkill_epo_lock_active = false; 442 mutex_unlock(&rfkill_global_mutex); 443 } 444 445 /** 446 * rfkill_is_epo_lock_active - returns true EPO is active 447 * 448 * Returns 0 (false) if there is NOT an active EPO contidion, 449 * and 1 (true) if there is an active EPO contition, which 450 * locks all radios in one of the BLOCKED states. 451 * 452 * Can be called in atomic context. 453 */ 454 bool rfkill_is_epo_lock_active(void) 455 { 456 return rfkill_epo_lock_active; 457 } 458 459 /** 460 * rfkill_get_global_sw_state - returns global state for a type 461 * @type: the type to get the global state of 462 * 463 * Returns the current global state for a given wireless 464 * device type. 465 */ 466 bool rfkill_get_global_sw_state(const enum rfkill_type type) 467 { 468 return rfkill_global_states[type].cur; 469 } 470 #endif 471 472 473 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked) 474 { 475 bool ret, change; 476 477 ret = __rfkill_set_hw_state(rfkill, blocked, &change); 478 479 if (!rfkill->registered) 480 return ret; 481 482 if (change) 483 schedule_work(&rfkill->uevent_work); 484 485 return ret; 486 } 487 EXPORT_SYMBOL(rfkill_set_hw_state); 488 489 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 490 { 491 u32 bit = RFKILL_BLOCK_SW; 492 493 /* if in a ops->set_block right now, use other bit */ 494 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL) 495 bit = RFKILL_BLOCK_SW_PREV; 496 497 if (blocked) 498 rfkill->state |= bit; 499 else 500 rfkill->state &= ~bit; 501 } 502 503 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) 504 { 505 unsigned long flags; 506 bool prev, hwblock; 507 508 BUG_ON(!rfkill); 509 510 spin_lock_irqsave(&rfkill->lock, flags); 511 prev = !!(rfkill->state & RFKILL_BLOCK_SW); 512 __rfkill_set_sw_state(rfkill, blocked); 513 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW); 514 blocked = blocked || hwblock; 515 spin_unlock_irqrestore(&rfkill->lock, flags); 516 517 if (!rfkill->registered) 518 return blocked; 519 520 if (prev != blocked && !hwblock) 521 schedule_work(&rfkill->uevent_work); 522 523 rfkill_led_trigger_event(rfkill); 524 525 return blocked; 526 } 527 EXPORT_SYMBOL(rfkill_set_sw_state); 528 529 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked) 530 { 531 unsigned long flags; 532 533 BUG_ON(!rfkill); 534 BUG_ON(rfkill->registered); 535 536 spin_lock_irqsave(&rfkill->lock, flags); 537 __rfkill_set_sw_state(rfkill, blocked); 538 rfkill->persistent = true; 539 spin_unlock_irqrestore(&rfkill->lock, flags); 540 } 541 EXPORT_SYMBOL(rfkill_init_sw_state); 542 543 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw) 544 { 545 unsigned long flags; 546 bool swprev, hwprev; 547 548 BUG_ON(!rfkill); 549 550 spin_lock_irqsave(&rfkill->lock, flags); 551 552 /* 553 * No need to care about prev/setblock ... this is for uevent only 554 * and that will get triggered by rfkill_set_block anyway. 555 */ 556 swprev = !!(rfkill->state & RFKILL_BLOCK_SW); 557 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW); 558 __rfkill_set_sw_state(rfkill, sw); 559 if (hw) 560 rfkill->state |= RFKILL_BLOCK_HW; 561 else 562 rfkill->state &= ~RFKILL_BLOCK_HW; 563 564 spin_unlock_irqrestore(&rfkill->lock, flags); 565 566 if (!rfkill->registered) { 567 rfkill->persistent = true; 568 } else { 569 if (swprev != sw || hwprev != hw) 570 schedule_work(&rfkill->uevent_work); 571 572 rfkill_led_trigger_event(rfkill); 573 } 574 } 575 EXPORT_SYMBOL(rfkill_set_states); 576 577 static ssize_t name_show(struct device *dev, struct device_attribute *attr, 578 char *buf) 579 { 580 struct rfkill *rfkill = to_rfkill(dev); 581 582 return sprintf(buf, "%s\n", rfkill->name); 583 } 584 static DEVICE_ATTR_RO(name); 585 586 static const char *rfkill_get_type_str(enum rfkill_type type) 587 { 588 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_NFC + 1); 589 590 switch (type) { 591 case RFKILL_TYPE_WLAN: 592 return "wlan"; 593 case RFKILL_TYPE_BLUETOOTH: 594 return "bluetooth"; 595 case RFKILL_TYPE_UWB: 596 return "ultrawideband"; 597 case RFKILL_TYPE_WIMAX: 598 return "wimax"; 599 case RFKILL_TYPE_WWAN: 600 return "wwan"; 601 case RFKILL_TYPE_GPS: 602 return "gps"; 603 case RFKILL_TYPE_FM: 604 return "fm"; 605 case RFKILL_TYPE_NFC: 606 return "nfc"; 607 default: 608 BUG(); 609 } 610 } 611 612 static ssize_t type_show(struct device *dev, struct device_attribute *attr, 613 char *buf) 614 { 615 struct rfkill *rfkill = to_rfkill(dev); 616 617 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type)); 618 } 619 static DEVICE_ATTR_RO(type); 620 621 static ssize_t index_show(struct device *dev, struct device_attribute *attr, 622 char *buf) 623 { 624 struct rfkill *rfkill = to_rfkill(dev); 625 626 return sprintf(buf, "%d\n", rfkill->idx); 627 } 628 static DEVICE_ATTR_RO(index); 629 630 static ssize_t persistent_show(struct device *dev, 631 struct device_attribute *attr, char *buf) 632 { 633 struct rfkill *rfkill = to_rfkill(dev); 634 635 return sprintf(buf, "%d\n", rfkill->persistent); 636 } 637 static DEVICE_ATTR_RO(persistent); 638 639 static ssize_t hard_show(struct device *dev, struct device_attribute *attr, 640 char *buf) 641 { 642 struct rfkill *rfkill = to_rfkill(dev); 643 644 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 ); 645 } 646 static DEVICE_ATTR_RO(hard); 647 648 static ssize_t soft_show(struct device *dev, struct device_attribute *attr, 649 char *buf) 650 { 651 struct rfkill *rfkill = to_rfkill(dev); 652 653 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 ); 654 } 655 656 static ssize_t soft_store(struct device *dev, struct device_attribute *attr, 657 const char *buf, size_t count) 658 { 659 struct rfkill *rfkill = to_rfkill(dev); 660 unsigned long state; 661 int err; 662 663 if (!capable(CAP_NET_ADMIN)) 664 return -EPERM; 665 666 err = kstrtoul(buf, 0, &state); 667 if (err) 668 return err; 669 670 if (state > 1 ) 671 return -EINVAL; 672 673 mutex_lock(&rfkill_global_mutex); 674 rfkill_set_block(rfkill, state); 675 mutex_unlock(&rfkill_global_mutex); 676 677 return count; 678 } 679 static DEVICE_ATTR_RW(soft); 680 681 static u8 user_state_from_blocked(unsigned long state) 682 { 683 if (state & RFKILL_BLOCK_HW) 684 return RFKILL_USER_STATE_HARD_BLOCKED; 685 if (state & RFKILL_BLOCK_SW) 686 return RFKILL_USER_STATE_SOFT_BLOCKED; 687 688 return RFKILL_USER_STATE_UNBLOCKED; 689 } 690 691 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 692 char *buf) 693 { 694 struct rfkill *rfkill = to_rfkill(dev); 695 696 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state)); 697 } 698 699 static ssize_t state_store(struct device *dev, struct device_attribute *attr, 700 const char *buf, size_t count) 701 { 702 struct rfkill *rfkill = to_rfkill(dev); 703 unsigned long state; 704 int err; 705 706 if (!capable(CAP_NET_ADMIN)) 707 return -EPERM; 708 709 err = kstrtoul(buf, 0, &state); 710 if (err) 711 return err; 712 713 if (state != RFKILL_USER_STATE_SOFT_BLOCKED && 714 state != RFKILL_USER_STATE_UNBLOCKED) 715 return -EINVAL; 716 717 mutex_lock(&rfkill_global_mutex); 718 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED); 719 mutex_unlock(&rfkill_global_mutex); 720 721 return count; 722 } 723 static DEVICE_ATTR_RW(state); 724 725 static ssize_t claim_show(struct device *dev, struct device_attribute *attr, 726 char *buf) 727 { 728 return sprintf(buf, "%d\n", 0); 729 } 730 static DEVICE_ATTR_RO(claim); 731 732 static struct attribute *rfkill_dev_attrs[] = { 733 &dev_attr_name.attr, 734 &dev_attr_type.attr, 735 &dev_attr_index.attr, 736 &dev_attr_persistent.attr, 737 &dev_attr_state.attr, 738 &dev_attr_claim.attr, 739 &dev_attr_soft.attr, 740 &dev_attr_hard.attr, 741 NULL, 742 }; 743 ATTRIBUTE_GROUPS(rfkill_dev); 744 745 static void rfkill_release(struct device *dev) 746 { 747 struct rfkill *rfkill = to_rfkill(dev); 748 749 kfree(rfkill); 750 } 751 752 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env) 753 { 754 struct rfkill *rfkill = to_rfkill(dev); 755 unsigned long flags; 756 u32 state; 757 int error; 758 759 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name); 760 if (error) 761 return error; 762 error = add_uevent_var(env, "RFKILL_TYPE=%s", 763 rfkill_get_type_str(rfkill->type)); 764 if (error) 765 return error; 766 spin_lock_irqsave(&rfkill->lock, flags); 767 state = rfkill->state; 768 spin_unlock_irqrestore(&rfkill->lock, flags); 769 error = add_uevent_var(env, "RFKILL_STATE=%d", 770 user_state_from_blocked(state)); 771 return error; 772 } 773 774 void rfkill_pause_polling(struct rfkill *rfkill) 775 { 776 BUG_ON(!rfkill); 777 778 if (!rfkill->ops->poll) 779 return; 780 781 cancel_delayed_work_sync(&rfkill->poll_work); 782 } 783 EXPORT_SYMBOL(rfkill_pause_polling); 784 785 void rfkill_resume_polling(struct rfkill *rfkill) 786 { 787 BUG_ON(!rfkill); 788 789 if (!rfkill->ops->poll) 790 return; 791 792 queue_delayed_work(system_power_efficient_wq, 793 &rfkill->poll_work, 0); 794 } 795 EXPORT_SYMBOL(rfkill_resume_polling); 796 797 #ifdef CONFIG_PM_SLEEP 798 static int rfkill_suspend(struct device *dev) 799 { 800 struct rfkill *rfkill = to_rfkill(dev); 801 802 rfkill_pause_polling(rfkill); 803 804 return 0; 805 } 806 807 static int rfkill_resume(struct device *dev) 808 { 809 struct rfkill *rfkill = to_rfkill(dev); 810 bool cur; 811 812 if (!rfkill->persistent) { 813 cur = !!(rfkill->state & RFKILL_BLOCK_SW); 814 rfkill_set_block(rfkill, cur); 815 } 816 817 rfkill_resume_polling(rfkill); 818 819 return 0; 820 } 821 822 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume); 823 #define RFKILL_PM_OPS (&rfkill_pm_ops) 824 #else 825 #define RFKILL_PM_OPS NULL 826 #endif 827 828 static struct class rfkill_class = { 829 .name = "rfkill", 830 .dev_release = rfkill_release, 831 .dev_groups = rfkill_dev_groups, 832 .dev_uevent = rfkill_dev_uevent, 833 .pm = RFKILL_PM_OPS, 834 }; 835 836 bool rfkill_blocked(struct rfkill *rfkill) 837 { 838 unsigned long flags; 839 u32 state; 840 841 spin_lock_irqsave(&rfkill->lock, flags); 842 state = rfkill->state; 843 spin_unlock_irqrestore(&rfkill->lock, flags); 844 845 return !!(state & RFKILL_BLOCK_ANY); 846 } 847 EXPORT_SYMBOL(rfkill_blocked); 848 849 850 struct rfkill * __must_check rfkill_alloc(const char *name, 851 struct device *parent, 852 const enum rfkill_type type, 853 const struct rfkill_ops *ops, 854 void *ops_data) 855 { 856 struct rfkill *rfkill; 857 struct device *dev; 858 859 if (WARN_ON(!ops)) 860 return NULL; 861 862 if (WARN_ON(!ops->set_block)) 863 return NULL; 864 865 if (WARN_ON(!name)) 866 return NULL; 867 868 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES)) 869 return NULL; 870 871 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL); 872 if (!rfkill) 873 return NULL; 874 875 spin_lock_init(&rfkill->lock); 876 INIT_LIST_HEAD(&rfkill->node); 877 rfkill->type = type; 878 rfkill->name = name; 879 rfkill->ops = ops; 880 rfkill->data = ops_data; 881 882 dev = &rfkill->dev; 883 dev->class = &rfkill_class; 884 dev->parent = parent; 885 device_initialize(dev); 886 887 return rfkill; 888 } 889 EXPORT_SYMBOL(rfkill_alloc); 890 891 static void rfkill_poll(struct work_struct *work) 892 { 893 struct rfkill *rfkill; 894 895 rfkill = container_of(work, struct rfkill, poll_work.work); 896 897 /* 898 * Poll hardware state -- driver will use one of the 899 * rfkill_set{,_hw,_sw}_state functions and use its 900 * return value to update the current status. 901 */ 902 rfkill->ops->poll(rfkill, rfkill->data); 903 904 queue_delayed_work(system_power_efficient_wq, 905 &rfkill->poll_work, 906 round_jiffies_relative(POLL_INTERVAL)); 907 } 908 909 static void rfkill_uevent_work(struct work_struct *work) 910 { 911 struct rfkill *rfkill; 912 913 rfkill = container_of(work, struct rfkill, uevent_work); 914 915 mutex_lock(&rfkill_global_mutex); 916 rfkill_event(rfkill); 917 mutex_unlock(&rfkill_global_mutex); 918 } 919 920 static void rfkill_sync_work(struct work_struct *work) 921 { 922 struct rfkill *rfkill; 923 bool cur; 924 925 rfkill = container_of(work, struct rfkill, sync_work); 926 927 mutex_lock(&rfkill_global_mutex); 928 cur = rfkill_global_states[rfkill->type].cur; 929 rfkill_set_block(rfkill, cur); 930 mutex_unlock(&rfkill_global_mutex); 931 } 932 933 int __must_check rfkill_register(struct rfkill *rfkill) 934 { 935 static unsigned long rfkill_no; 936 struct device *dev = &rfkill->dev; 937 int error; 938 939 BUG_ON(!rfkill); 940 941 mutex_lock(&rfkill_global_mutex); 942 943 if (rfkill->registered) { 944 error = -EALREADY; 945 goto unlock; 946 } 947 948 rfkill->idx = rfkill_no; 949 dev_set_name(dev, "rfkill%lu", rfkill_no); 950 rfkill_no++; 951 952 list_add_tail(&rfkill->node, &rfkill_list); 953 954 error = device_add(dev); 955 if (error) 956 goto remove; 957 958 error = rfkill_led_trigger_register(rfkill); 959 if (error) 960 goto devdel; 961 962 rfkill->registered = true; 963 964 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll); 965 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work); 966 INIT_WORK(&rfkill->sync_work, rfkill_sync_work); 967 968 if (rfkill->ops->poll) 969 queue_delayed_work(system_power_efficient_wq, 970 &rfkill->poll_work, 971 round_jiffies_relative(POLL_INTERVAL)); 972 973 if (!rfkill->persistent || rfkill_epo_lock_active) { 974 schedule_work(&rfkill->sync_work); 975 } else { 976 #ifdef CONFIG_RFKILL_INPUT 977 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW); 978 979 if (!atomic_read(&rfkill_input_disabled)) 980 __rfkill_switch_all(rfkill->type, soft_blocked); 981 #endif 982 } 983 984 rfkill_send_events(rfkill, RFKILL_OP_ADD); 985 986 mutex_unlock(&rfkill_global_mutex); 987 return 0; 988 989 devdel: 990 device_del(&rfkill->dev); 991 remove: 992 list_del_init(&rfkill->node); 993 unlock: 994 mutex_unlock(&rfkill_global_mutex); 995 return error; 996 } 997 EXPORT_SYMBOL(rfkill_register); 998 999 void rfkill_unregister(struct rfkill *rfkill) 1000 { 1001 BUG_ON(!rfkill); 1002 1003 if (rfkill->ops->poll) 1004 cancel_delayed_work_sync(&rfkill->poll_work); 1005 1006 cancel_work_sync(&rfkill->uevent_work); 1007 cancel_work_sync(&rfkill->sync_work); 1008 1009 rfkill->registered = false; 1010 1011 device_del(&rfkill->dev); 1012 1013 mutex_lock(&rfkill_global_mutex); 1014 rfkill_send_events(rfkill, RFKILL_OP_DEL); 1015 list_del_init(&rfkill->node); 1016 mutex_unlock(&rfkill_global_mutex); 1017 1018 rfkill_led_trigger_unregister(rfkill); 1019 } 1020 EXPORT_SYMBOL(rfkill_unregister); 1021 1022 void rfkill_destroy(struct rfkill *rfkill) 1023 { 1024 if (rfkill) 1025 put_device(&rfkill->dev); 1026 } 1027 EXPORT_SYMBOL(rfkill_destroy); 1028 1029 static int rfkill_fop_open(struct inode *inode, struct file *file) 1030 { 1031 struct rfkill_data *data; 1032 struct rfkill *rfkill; 1033 struct rfkill_int_event *ev, *tmp; 1034 1035 data = kzalloc(sizeof(*data), GFP_KERNEL); 1036 if (!data) 1037 return -ENOMEM; 1038 1039 INIT_LIST_HEAD(&data->events); 1040 mutex_init(&data->mtx); 1041 init_waitqueue_head(&data->read_wait); 1042 1043 mutex_lock(&rfkill_global_mutex); 1044 mutex_lock(&data->mtx); 1045 /* 1046 * start getting events from elsewhere but hold mtx to get 1047 * startup events added first 1048 */ 1049 1050 list_for_each_entry(rfkill, &rfkill_list, node) { 1051 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1052 if (!ev) 1053 goto free; 1054 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD); 1055 list_add_tail(&ev->list, &data->events); 1056 } 1057 list_add(&data->list, &rfkill_fds); 1058 mutex_unlock(&data->mtx); 1059 mutex_unlock(&rfkill_global_mutex); 1060 1061 file->private_data = data; 1062 1063 return nonseekable_open(inode, file); 1064 1065 free: 1066 mutex_unlock(&data->mtx); 1067 mutex_unlock(&rfkill_global_mutex); 1068 mutex_destroy(&data->mtx); 1069 list_for_each_entry_safe(ev, tmp, &data->events, list) 1070 kfree(ev); 1071 kfree(data); 1072 return -ENOMEM; 1073 } 1074 1075 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait) 1076 { 1077 struct rfkill_data *data = file->private_data; 1078 unsigned int res = POLLOUT | POLLWRNORM; 1079 1080 poll_wait(file, &data->read_wait, wait); 1081 1082 mutex_lock(&data->mtx); 1083 if (!list_empty(&data->events)) 1084 res = POLLIN | POLLRDNORM; 1085 mutex_unlock(&data->mtx); 1086 1087 return res; 1088 } 1089 1090 static bool rfkill_readable(struct rfkill_data *data) 1091 { 1092 bool r; 1093 1094 mutex_lock(&data->mtx); 1095 r = !list_empty(&data->events); 1096 mutex_unlock(&data->mtx); 1097 1098 return r; 1099 } 1100 1101 static ssize_t rfkill_fop_read(struct file *file, char __user *buf, 1102 size_t count, loff_t *pos) 1103 { 1104 struct rfkill_data *data = file->private_data; 1105 struct rfkill_int_event *ev; 1106 unsigned long sz; 1107 int ret; 1108 1109 mutex_lock(&data->mtx); 1110 1111 while (list_empty(&data->events)) { 1112 if (file->f_flags & O_NONBLOCK) { 1113 ret = -EAGAIN; 1114 goto out; 1115 } 1116 mutex_unlock(&data->mtx); 1117 ret = wait_event_interruptible(data->read_wait, 1118 rfkill_readable(data)); 1119 mutex_lock(&data->mtx); 1120 1121 if (ret) 1122 goto out; 1123 } 1124 1125 ev = list_first_entry(&data->events, struct rfkill_int_event, 1126 list); 1127 1128 sz = min_t(unsigned long, sizeof(ev->ev), count); 1129 ret = sz; 1130 if (copy_to_user(buf, &ev->ev, sz)) 1131 ret = -EFAULT; 1132 1133 list_del(&ev->list); 1134 kfree(ev); 1135 out: 1136 mutex_unlock(&data->mtx); 1137 return ret; 1138 } 1139 1140 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf, 1141 size_t count, loff_t *pos) 1142 { 1143 struct rfkill *rfkill; 1144 struct rfkill_event ev; 1145 1146 /* we don't need the 'hard' variable but accept it */ 1147 if (count < RFKILL_EVENT_SIZE_V1 - 1) 1148 return -EINVAL; 1149 1150 /* 1151 * Copy as much data as we can accept into our 'ev' buffer, 1152 * but tell userspace how much we've copied so it can determine 1153 * our API version even in a write() call, if it cares. 1154 */ 1155 count = min(count, sizeof(ev)); 1156 if (copy_from_user(&ev, buf, count)) 1157 return -EFAULT; 1158 1159 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL) 1160 return -EINVAL; 1161 1162 if (ev.type >= NUM_RFKILL_TYPES) 1163 return -EINVAL; 1164 1165 mutex_lock(&rfkill_global_mutex); 1166 1167 if (ev.op == RFKILL_OP_CHANGE_ALL) { 1168 if (ev.type == RFKILL_TYPE_ALL) { 1169 enum rfkill_type i; 1170 for (i = 0; i < NUM_RFKILL_TYPES; i++) 1171 rfkill_global_states[i].cur = ev.soft; 1172 } else { 1173 rfkill_global_states[ev.type].cur = ev.soft; 1174 } 1175 } 1176 1177 list_for_each_entry(rfkill, &rfkill_list, node) { 1178 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL) 1179 continue; 1180 1181 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL) 1182 continue; 1183 1184 rfkill_set_block(rfkill, ev.soft); 1185 } 1186 mutex_unlock(&rfkill_global_mutex); 1187 1188 return count; 1189 } 1190 1191 static int rfkill_fop_release(struct inode *inode, struct file *file) 1192 { 1193 struct rfkill_data *data = file->private_data; 1194 struct rfkill_int_event *ev, *tmp; 1195 1196 mutex_lock(&rfkill_global_mutex); 1197 list_del(&data->list); 1198 mutex_unlock(&rfkill_global_mutex); 1199 1200 mutex_destroy(&data->mtx); 1201 list_for_each_entry_safe(ev, tmp, &data->events, list) 1202 kfree(ev); 1203 1204 #ifdef CONFIG_RFKILL_INPUT 1205 if (data->input_handler) 1206 if (atomic_dec_return(&rfkill_input_disabled) == 0) 1207 printk(KERN_DEBUG "rfkill: input handler enabled\n"); 1208 #endif 1209 1210 kfree(data); 1211 1212 return 0; 1213 } 1214 1215 #ifdef CONFIG_RFKILL_INPUT 1216 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd, 1217 unsigned long arg) 1218 { 1219 struct rfkill_data *data = file->private_data; 1220 1221 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC) 1222 return -ENOSYS; 1223 1224 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT) 1225 return -ENOSYS; 1226 1227 mutex_lock(&data->mtx); 1228 1229 if (!data->input_handler) { 1230 if (atomic_inc_return(&rfkill_input_disabled) == 1) 1231 printk(KERN_DEBUG "rfkill: input handler disabled\n"); 1232 data->input_handler = true; 1233 } 1234 1235 mutex_unlock(&data->mtx); 1236 1237 return 0; 1238 } 1239 #endif 1240 1241 static const struct file_operations rfkill_fops = { 1242 .owner = THIS_MODULE, 1243 .open = rfkill_fop_open, 1244 .read = rfkill_fop_read, 1245 .write = rfkill_fop_write, 1246 .poll = rfkill_fop_poll, 1247 .release = rfkill_fop_release, 1248 #ifdef CONFIG_RFKILL_INPUT 1249 .unlocked_ioctl = rfkill_fop_ioctl, 1250 .compat_ioctl = rfkill_fop_ioctl, 1251 #endif 1252 .llseek = no_llseek, 1253 }; 1254 1255 static struct miscdevice rfkill_miscdev = { 1256 .name = "rfkill", 1257 .fops = &rfkill_fops, 1258 .minor = MISC_DYNAMIC_MINOR, 1259 }; 1260 1261 static int __init rfkill_init(void) 1262 { 1263 int error; 1264 int i; 1265 1266 for (i = 0; i < NUM_RFKILL_TYPES; i++) 1267 rfkill_global_states[i].cur = !rfkill_default_state; 1268 1269 error = class_register(&rfkill_class); 1270 if (error) 1271 goto out; 1272 1273 error = misc_register(&rfkill_miscdev); 1274 if (error) { 1275 class_unregister(&rfkill_class); 1276 goto out; 1277 } 1278 1279 #ifdef CONFIG_RFKILL_INPUT 1280 error = rfkill_handler_init(); 1281 if (error) { 1282 misc_deregister(&rfkill_miscdev); 1283 class_unregister(&rfkill_class); 1284 goto out; 1285 } 1286 #endif 1287 1288 out: 1289 return error; 1290 } 1291 subsys_initcall(rfkill_init); 1292 1293 static void __exit rfkill_exit(void) 1294 { 1295 #ifdef CONFIG_RFKILL_INPUT 1296 rfkill_handler_exit(); 1297 #endif 1298 misc_deregister(&rfkill_miscdev); 1299 class_unregister(&rfkill_class); 1300 } 1301 module_exit(rfkill_exit); 1302