1 /* 2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 35 #include <linux/in.h> 36 #include <linux/module.h> 37 #include <net/tcp.h> 38 #include <net/net_namespace.h> 39 #include <net/netns/generic.h> 40 #include <net/addrconf.h> 41 42 #include "rds.h" 43 #include "tcp.h" 44 45 /* only for info exporting */ 46 static DEFINE_SPINLOCK(rds_tcp_tc_list_lock); 47 static LIST_HEAD(rds_tcp_tc_list); 48 49 /* rds_tcp_tc_count counts only IPv4 connections. 50 * rds6_tcp_tc_count counts both IPv4 and IPv6 connections. 51 */ 52 static unsigned int rds_tcp_tc_count; 53 #if IS_ENABLED(CONFIG_IPV6) 54 static unsigned int rds6_tcp_tc_count; 55 #endif 56 57 /* Track rds_tcp_connection structs so they can be cleaned up */ 58 static DEFINE_SPINLOCK(rds_tcp_conn_lock); 59 static LIST_HEAD(rds_tcp_conn_list); 60 static atomic_t rds_tcp_unloading = ATOMIC_INIT(0); 61 62 static struct kmem_cache *rds_tcp_conn_slab; 63 64 static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write, 65 void *buffer, size_t *lenp, loff_t *fpos); 66 67 static int rds_tcp_min_sndbuf = SOCK_MIN_SNDBUF; 68 static int rds_tcp_min_rcvbuf = SOCK_MIN_RCVBUF; 69 70 static struct ctl_table rds_tcp_sysctl_table[] = { 71 #define RDS_TCP_SNDBUF 0 72 { 73 .procname = "rds_tcp_sndbuf", 74 /* data is per-net pointer */ 75 .maxlen = sizeof(int), 76 .mode = 0644, 77 .proc_handler = rds_tcp_skbuf_handler, 78 .extra1 = &rds_tcp_min_sndbuf, 79 }, 80 #define RDS_TCP_RCVBUF 1 81 { 82 .procname = "rds_tcp_rcvbuf", 83 /* data is per-net pointer */ 84 .maxlen = sizeof(int), 85 .mode = 0644, 86 .proc_handler = rds_tcp_skbuf_handler, 87 .extra1 = &rds_tcp_min_rcvbuf, 88 }, 89 { } 90 }; 91 92 u32 rds_tcp_write_seq(struct rds_tcp_connection *tc) 93 { 94 /* seq# of the last byte of data in tcp send buffer */ 95 return tcp_sk(tc->t_sock->sk)->write_seq; 96 } 97 98 u32 rds_tcp_snd_una(struct rds_tcp_connection *tc) 99 { 100 return tcp_sk(tc->t_sock->sk)->snd_una; 101 } 102 103 void rds_tcp_restore_callbacks(struct socket *sock, 104 struct rds_tcp_connection *tc) 105 { 106 rdsdebug("restoring sock %p callbacks from tc %p\n", sock, tc); 107 write_lock_bh(&sock->sk->sk_callback_lock); 108 109 /* done under the callback_lock to serialize with write_space */ 110 spin_lock(&rds_tcp_tc_list_lock); 111 list_del_init(&tc->t_list_item); 112 #if IS_ENABLED(CONFIG_IPV6) 113 rds6_tcp_tc_count--; 114 #endif 115 if (!tc->t_cpath->cp_conn->c_isv6) 116 rds_tcp_tc_count--; 117 spin_unlock(&rds_tcp_tc_list_lock); 118 119 tc->t_sock = NULL; 120 121 sock->sk->sk_write_space = tc->t_orig_write_space; 122 sock->sk->sk_data_ready = tc->t_orig_data_ready; 123 sock->sk->sk_state_change = tc->t_orig_state_change; 124 sock->sk->sk_user_data = NULL; 125 126 write_unlock_bh(&sock->sk->sk_callback_lock); 127 } 128 129 /* 130 * rds_tcp_reset_callbacks() switches the to the new sock and 131 * returns the existing tc->t_sock. 132 * 133 * The only functions that set tc->t_sock are rds_tcp_set_callbacks 134 * and rds_tcp_reset_callbacks. Send and receive trust that 135 * it is set. The absence of RDS_CONN_UP bit protects those paths 136 * from being called while it isn't set. 137 */ 138 void rds_tcp_reset_callbacks(struct socket *sock, 139 struct rds_conn_path *cp) 140 { 141 struct rds_tcp_connection *tc = cp->cp_transport_data; 142 struct socket *osock = tc->t_sock; 143 144 if (!osock) 145 goto newsock; 146 147 /* Need to resolve a duelling SYN between peers. 148 * We have an outstanding SYN to this peer, which may 149 * potentially have transitioned to the RDS_CONN_UP state, 150 * so we must quiesce any send threads before resetting 151 * cp_transport_data. We quiesce these threads by setting 152 * cp_state to something other than RDS_CONN_UP, and then 153 * waiting for any existing threads in rds_send_xmit to 154 * complete release_in_xmit(). (Subsequent threads entering 155 * rds_send_xmit() will bail on !rds_conn_up(). 156 * 157 * However an incoming syn-ack at this point would end up 158 * marking the conn as RDS_CONN_UP, and would again permit 159 * rds_send_xmi() threads through, so ideally we would 160 * synchronize on RDS_CONN_UP after lock_sock(), but cannot 161 * do that: waiting on !RDS_IN_XMIT after lock_sock() may 162 * end up deadlocking with tcp_sendmsg(), and the RDS_IN_XMIT 163 * would not get set. As a result, we set c_state to 164 * RDS_CONN_RESETTTING, to ensure that rds_tcp_state_change 165 * cannot mark rds_conn_path_up() in the window before lock_sock() 166 */ 167 atomic_set(&cp->cp_state, RDS_CONN_RESETTING); 168 wait_event(cp->cp_waitq, !test_bit(RDS_IN_XMIT, &cp->cp_flags)); 169 /* reset receive side state for rds_tcp_data_recv() for osock */ 170 cancel_delayed_work_sync(&cp->cp_send_w); 171 cancel_delayed_work_sync(&cp->cp_recv_w); 172 lock_sock(osock->sk); 173 if (tc->t_tinc) { 174 rds_inc_put(&tc->t_tinc->ti_inc); 175 tc->t_tinc = NULL; 176 } 177 tc->t_tinc_hdr_rem = sizeof(struct rds_header); 178 tc->t_tinc_data_rem = 0; 179 rds_tcp_restore_callbacks(osock, tc); 180 release_sock(osock->sk); 181 sock_release(osock); 182 newsock: 183 rds_send_path_reset(cp); 184 lock_sock(sock->sk); 185 rds_tcp_set_callbacks(sock, cp); 186 release_sock(sock->sk); 187 } 188 189 /* Add tc to rds_tcp_tc_list and set tc->t_sock. See comments 190 * above rds_tcp_reset_callbacks for notes about synchronization 191 * with data path 192 */ 193 void rds_tcp_set_callbacks(struct socket *sock, struct rds_conn_path *cp) 194 { 195 struct rds_tcp_connection *tc = cp->cp_transport_data; 196 197 rdsdebug("setting sock %p callbacks to tc %p\n", sock, tc); 198 write_lock_bh(&sock->sk->sk_callback_lock); 199 200 /* done under the callback_lock to serialize with write_space */ 201 spin_lock(&rds_tcp_tc_list_lock); 202 list_add_tail(&tc->t_list_item, &rds_tcp_tc_list); 203 #if IS_ENABLED(CONFIG_IPV6) 204 rds6_tcp_tc_count++; 205 #endif 206 if (!tc->t_cpath->cp_conn->c_isv6) 207 rds_tcp_tc_count++; 208 spin_unlock(&rds_tcp_tc_list_lock); 209 210 /* accepted sockets need our listen data ready undone */ 211 if (sock->sk->sk_data_ready == rds_tcp_listen_data_ready) 212 sock->sk->sk_data_ready = sock->sk->sk_user_data; 213 214 tc->t_sock = sock; 215 tc->t_cpath = cp; 216 tc->t_orig_data_ready = sock->sk->sk_data_ready; 217 tc->t_orig_write_space = sock->sk->sk_write_space; 218 tc->t_orig_state_change = sock->sk->sk_state_change; 219 220 sock->sk->sk_user_data = cp; 221 sock->sk->sk_data_ready = rds_tcp_data_ready; 222 sock->sk->sk_write_space = rds_tcp_write_space; 223 sock->sk->sk_state_change = rds_tcp_state_change; 224 225 write_unlock_bh(&sock->sk->sk_callback_lock); 226 } 227 228 /* Handle RDS_INFO_TCP_SOCKETS socket option. It only returns IPv4 229 * connections for backward compatibility. 230 */ 231 static void rds_tcp_tc_info(struct socket *rds_sock, unsigned int len, 232 struct rds_info_iterator *iter, 233 struct rds_info_lengths *lens) 234 { 235 struct rds_info_tcp_socket tsinfo; 236 struct rds_tcp_connection *tc; 237 unsigned long flags; 238 239 spin_lock_irqsave(&rds_tcp_tc_list_lock, flags); 240 241 if (len / sizeof(tsinfo) < rds_tcp_tc_count) 242 goto out; 243 244 list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) { 245 struct inet_sock *inet = inet_sk(tc->t_sock->sk); 246 247 if (tc->t_cpath->cp_conn->c_isv6) 248 continue; 249 250 tsinfo.local_addr = inet->inet_saddr; 251 tsinfo.local_port = inet->inet_sport; 252 tsinfo.peer_addr = inet->inet_daddr; 253 tsinfo.peer_port = inet->inet_dport; 254 255 tsinfo.hdr_rem = tc->t_tinc_hdr_rem; 256 tsinfo.data_rem = tc->t_tinc_data_rem; 257 tsinfo.last_sent_nxt = tc->t_last_sent_nxt; 258 tsinfo.last_expected_una = tc->t_last_expected_una; 259 tsinfo.last_seen_una = tc->t_last_seen_una; 260 tsinfo.tos = tc->t_cpath->cp_conn->c_tos; 261 262 rds_info_copy(iter, &tsinfo, sizeof(tsinfo)); 263 } 264 265 out: 266 lens->nr = rds_tcp_tc_count; 267 lens->each = sizeof(tsinfo); 268 269 spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags); 270 } 271 272 #if IS_ENABLED(CONFIG_IPV6) 273 /* Handle RDS6_INFO_TCP_SOCKETS socket option. It returns both IPv4 and 274 * IPv6 connections. IPv4 connection address is returned in an IPv4 mapped 275 * address. 276 */ 277 static void rds6_tcp_tc_info(struct socket *sock, unsigned int len, 278 struct rds_info_iterator *iter, 279 struct rds_info_lengths *lens) 280 { 281 struct rds6_info_tcp_socket tsinfo6; 282 struct rds_tcp_connection *tc; 283 unsigned long flags; 284 285 spin_lock_irqsave(&rds_tcp_tc_list_lock, flags); 286 287 if (len / sizeof(tsinfo6) < rds6_tcp_tc_count) 288 goto out; 289 290 list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) { 291 struct sock *sk = tc->t_sock->sk; 292 struct inet_sock *inet = inet_sk(sk); 293 294 tsinfo6.local_addr = sk->sk_v6_rcv_saddr; 295 tsinfo6.local_port = inet->inet_sport; 296 tsinfo6.peer_addr = sk->sk_v6_daddr; 297 tsinfo6.peer_port = inet->inet_dport; 298 299 tsinfo6.hdr_rem = tc->t_tinc_hdr_rem; 300 tsinfo6.data_rem = tc->t_tinc_data_rem; 301 tsinfo6.last_sent_nxt = tc->t_last_sent_nxt; 302 tsinfo6.last_expected_una = tc->t_last_expected_una; 303 tsinfo6.last_seen_una = tc->t_last_seen_una; 304 305 rds_info_copy(iter, &tsinfo6, sizeof(tsinfo6)); 306 } 307 308 out: 309 lens->nr = rds6_tcp_tc_count; 310 lens->each = sizeof(tsinfo6); 311 312 spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags); 313 } 314 #endif 315 316 int rds_tcp_laddr_check(struct net *net, const struct in6_addr *addr, 317 __u32 scope_id) 318 { 319 struct net_device *dev = NULL; 320 #if IS_ENABLED(CONFIG_IPV6) 321 int ret; 322 #endif 323 324 if (ipv6_addr_v4mapped(addr)) { 325 if (inet_addr_type(net, addr->s6_addr32[3]) == RTN_LOCAL) 326 return 0; 327 return -EADDRNOTAVAIL; 328 } 329 330 /* If the scope_id is specified, check only those addresses 331 * hosted on the specified interface. 332 */ 333 if (scope_id != 0) { 334 rcu_read_lock(); 335 dev = dev_get_by_index_rcu(net, scope_id); 336 /* scope_id is not valid... */ 337 if (!dev) { 338 rcu_read_unlock(); 339 return -EADDRNOTAVAIL; 340 } 341 rcu_read_unlock(); 342 } 343 #if IS_ENABLED(CONFIG_IPV6) 344 ret = ipv6_chk_addr(net, addr, dev, 0); 345 if (ret) 346 return 0; 347 #endif 348 return -EADDRNOTAVAIL; 349 } 350 351 static void rds_tcp_conn_free(void *arg) 352 { 353 struct rds_tcp_connection *tc = arg; 354 unsigned long flags; 355 356 rdsdebug("freeing tc %p\n", tc); 357 358 spin_lock_irqsave(&rds_tcp_conn_lock, flags); 359 if (!tc->t_tcp_node_detached) 360 list_del(&tc->t_tcp_node); 361 spin_unlock_irqrestore(&rds_tcp_conn_lock, flags); 362 363 kmem_cache_free(rds_tcp_conn_slab, tc); 364 } 365 366 static int rds_tcp_conn_alloc(struct rds_connection *conn, gfp_t gfp) 367 { 368 struct rds_tcp_connection *tc; 369 int i, j; 370 int ret = 0; 371 372 for (i = 0; i < RDS_MPATH_WORKERS; i++) { 373 tc = kmem_cache_alloc(rds_tcp_conn_slab, gfp); 374 if (!tc) { 375 ret = -ENOMEM; 376 goto fail; 377 } 378 mutex_init(&tc->t_conn_path_lock); 379 tc->t_sock = NULL; 380 tc->t_tinc = NULL; 381 tc->t_tinc_hdr_rem = sizeof(struct rds_header); 382 tc->t_tinc_data_rem = 0; 383 384 conn->c_path[i].cp_transport_data = tc; 385 tc->t_cpath = &conn->c_path[i]; 386 tc->t_tcp_node_detached = true; 387 388 rdsdebug("rds_conn_path [%d] tc %p\n", i, 389 conn->c_path[i].cp_transport_data); 390 } 391 spin_lock_irq(&rds_tcp_conn_lock); 392 for (i = 0; i < RDS_MPATH_WORKERS; i++) { 393 tc = conn->c_path[i].cp_transport_data; 394 tc->t_tcp_node_detached = false; 395 list_add_tail(&tc->t_tcp_node, &rds_tcp_conn_list); 396 } 397 spin_unlock_irq(&rds_tcp_conn_lock); 398 fail: 399 if (ret) { 400 for (j = 0; j < i; j++) 401 rds_tcp_conn_free(conn->c_path[j].cp_transport_data); 402 } 403 return ret; 404 } 405 406 static bool list_has_conn(struct list_head *list, struct rds_connection *conn) 407 { 408 struct rds_tcp_connection *tc, *_tc; 409 410 list_for_each_entry_safe(tc, _tc, list, t_tcp_node) { 411 if (tc->t_cpath->cp_conn == conn) 412 return true; 413 } 414 return false; 415 } 416 417 static void rds_tcp_set_unloading(void) 418 { 419 atomic_set(&rds_tcp_unloading, 1); 420 } 421 422 static bool rds_tcp_is_unloading(struct rds_connection *conn) 423 { 424 return atomic_read(&rds_tcp_unloading) != 0; 425 } 426 427 static void rds_tcp_destroy_conns(void) 428 { 429 struct rds_tcp_connection *tc, *_tc; 430 LIST_HEAD(tmp_list); 431 432 /* avoid calling conn_destroy with irqs off */ 433 spin_lock_irq(&rds_tcp_conn_lock); 434 list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { 435 if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) 436 list_move_tail(&tc->t_tcp_node, &tmp_list); 437 } 438 spin_unlock_irq(&rds_tcp_conn_lock); 439 440 list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) 441 rds_conn_destroy(tc->t_cpath->cp_conn); 442 } 443 444 static void rds_tcp_exit(void); 445 446 static u8 rds_tcp_get_tos_map(u8 tos) 447 { 448 /* all user tos mapped to default 0 for TCP transport */ 449 return 0; 450 } 451 452 struct rds_transport rds_tcp_transport = { 453 .laddr_check = rds_tcp_laddr_check, 454 .xmit_path_prepare = rds_tcp_xmit_path_prepare, 455 .xmit_path_complete = rds_tcp_xmit_path_complete, 456 .xmit = rds_tcp_xmit, 457 .recv_path = rds_tcp_recv_path, 458 .conn_alloc = rds_tcp_conn_alloc, 459 .conn_free = rds_tcp_conn_free, 460 .conn_path_connect = rds_tcp_conn_path_connect, 461 .conn_path_shutdown = rds_tcp_conn_path_shutdown, 462 .inc_copy_to_user = rds_tcp_inc_copy_to_user, 463 .inc_free = rds_tcp_inc_free, 464 .stats_info_copy = rds_tcp_stats_info_copy, 465 .exit = rds_tcp_exit, 466 .get_tos_map = rds_tcp_get_tos_map, 467 .t_owner = THIS_MODULE, 468 .t_name = "tcp", 469 .t_type = RDS_TRANS_TCP, 470 .t_prefer_loopback = 1, 471 .t_mp_capable = 1, 472 .t_unloading = rds_tcp_is_unloading, 473 }; 474 475 static unsigned int rds_tcp_netid; 476 477 /* per-network namespace private data for this module */ 478 struct rds_tcp_net { 479 struct socket *rds_tcp_listen_sock; 480 struct work_struct rds_tcp_accept_w; 481 struct ctl_table_header *rds_tcp_sysctl; 482 struct ctl_table *ctl_table; 483 int sndbuf_size; 484 int rcvbuf_size; 485 }; 486 487 /* All module specific customizations to the RDS-TCP socket should be done in 488 * rds_tcp_tune() and applied after socket creation. 489 */ 490 bool rds_tcp_tune(struct socket *sock) 491 { 492 struct sock *sk = sock->sk; 493 struct net *net = sock_net(sk); 494 struct rds_tcp_net *rtn; 495 496 tcp_sock_set_nodelay(sock->sk); 497 lock_sock(sk); 498 /* TCP timer functions might access net namespace even after 499 * a process which created this net namespace terminated. 500 */ 501 if (!sk->sk_net_refcnt) { 502 if (!maybe_get_net(net)) { 503 release_sock(sk); 504 return false; 505 } 506 /* Update ns_tracker to current stack trace and refcounted tracker */ 507 __netns_tracker_free(net, &sk->ns_tracker, false); 508 509 sk->sk_net_refcnt = 1; 510 netns_tracker_alloc(net, &sk->ns_tracker, GFP_KERNEL); 511 sock_inuse_add(net, 1); 512 } 513 rtn = net_generic(net, rds_tcp_netid); 514 if (rtn->sndbuf_size > 0) { 515 sk->sk_sndbuf = rtn->sndbuf_size; 516 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 517 } 518 if (rtn->rcvbuf_size > 0) { 519 sk->sk_rcvbuf = rtn->rcvbuf_size; 520 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 521 } 522 release_sock(sk); 523 return true; 524 } 525 526 static void rds_tcp_accept_worker(struct work_struct *work) 527 { 528 struct rds_tcp_net *rtn = container_of(work, 529 struct rds_tcp_net, 530 rds_tcp_accept_w); 531 532 while (rds_tcp_accept_one(rtn->rds_tcp_listen_sock) == 0) 533 cond_resched(); 534 } 535 536 void rds_tcp_accept_work(struct sock *sk) 537 { 538 struct net *net = sock_net(sk); 539 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); 540 541 queue_work(rds_wq, &rtn->rds_tcp_accept_w); 542 } 543 544 static __net_init int rds_tcp_init_net(struct net *net) 545 { 546 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); 547 struct ctl_table *tbl; 548 int err = 0; 549 550 memset(rtn, 0, sizeof(*rtn)); 551 552 /* {snd, rcv}buf_size default to 0, which implies we let the 553 * stack pick the value, and permit auto-tuning of buffer size. 554 */ 555 if (net == &init_net) { 556 tbl = rds_tcp_sysctl_table; 557 } else { 558 tbl = kmemdup(rds_tcp_sysctl_table, 559 sizeof(rds_tcp_sysctl_table), GFP_KERNEL); 560 if (!tbl) { 561 pr_warn("could not set allocate sysctl table\n"); 562 return -ENOMEM; 563 } 564 rtn->ctl_table = tbl; 565 } 566 tbl[RDS_TCP_SNDBUF].data = &rtn->sndbuf_size; 567 tbl[RDS_TCP_RCVBUF].data = &rtn->rcvbuf_size; 568 rtn->rds_tcp_sysctl = register_net_sysctl(net, "net/rds/tcp", tbl); 569 if (!rtn->rds_tcp_sysctl) { 570 pr_warn("could not register sysctl\n"); 571 err = -ENOMEM; 572 goto fail; 573 } 574 575 #if IS_ENABLED(CONFIG_IPV6) 576 rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, true); 577 #else 578 rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false); 579 #endif 580 if (!rtn->rds_tcp_listen_sock) { 581 pr_warn("could not set up IPv6 listen sock\n"); 582 583 #if IS_ENABLED(CONFIG_IPV6) 584 /* Try IPv4 as some systems disable IPv6 */ 585 rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false); 586 if (!rtn->rds_tcp_listen_sock) { 587 #endif 588 unregister_net_sysctl_table(rtn->rds_tcp_sysctl); 589 rtn->rds_tcp_sysctl = NULL; 590 err = -EAFNOSUPPORT; 591 goto fail; 592 #if IS_ENABLED(CONFIG_IPV6) 593 } 594 #endif 595 } 596 INIT_WORK(&rtn->rds_tcp_accept_w, rds_tcp_accept_worker); 597 return 0; 598 599 fail: 600 if (net != &init_net) 601 kfree(tbl); 602 return err; 603 } 604 605 static void rds_tcp_kill_sock(struct net *net) 606 { 607 struct rds_tcp_connection *tc, *_tc; 608 LIST_HEAD(tmp_list); 609 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); 610 struct socket *lsock = rtn->rds_tcp_listen_sock; 611 612 rtn->rds_tcp_listen_sock = NULL; 613 rds_tcp_listen_stop(lsock, &rtn->rds_tcp_accept_w); 614 spin_lock_irq(&rds_tcp_conn_lock); 615 list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { 616 struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net); 617 618 if (net != c_net) 619 continue; 620 if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) { 621 list_move_tail(&tc->t_tcp_node, &tmp_list); 622 } else { 623 list_del(&tc->t_tcp_node); 624 tc->t_tcp_node_detached = true; 625 } 626 } 627 spin_unlock_irq(&rds_tcp_conn_lock); 628 list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) 629 rds_conn_destroy(tc->t_cpath->cp_conn); 630 } 631 632 static void __net_exit rds_tcp_exit_net(struct net *net) 633 { 634 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); 635 636 rds_tcp_kill_sock(net); 637 638 if (rtn->rds_tcp_sysctl) 639 unregister_net_sysctl_table(rtn->rds_tcp_sysctl); 640 641 if (net != &init_net) 642 kfree(rtn->ctl_table); 643 } 644 645 static struct pernet_operations rds_tcp_net_ops = { 646 .init = rds_tcp_init_net, 647 .exit = rds_tcp_exit_net, 648 .id = &rds_tcp_netid, 649 .size = sizeof(struct rds_tcp_net), 650 }; 651 652 void *rds_tcp_listen_sock_def_readable(struct net *net) 653 { 654 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); 655 struct socket *lsock = rtn->rds_tcp_listen_sock; 656 657 if (!lsock) 658 return NULL; 659 660 return lsock->sk->sk_user_data; 661 } 662 663 /* when sysctl is used to modify some kernel socket parameters,this 664 * function resets the RDS connections in that netns so that we can 665 * restart with new parameters. The assumption is that such reset 666 * events are few and far-between. 667 */ 668 static void rds_tcp_sysctl_reset(struct net *net) 669 { 670 struct rds_tcp_connection *tc, *_tc; 671 672 spin_lock_irq(&rds_tcp_conn_lock); 673 list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { 674 struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net); 675 676 if (net != c_net || !tc->t_sock) 677 continue; 678 679 /* reconnect with new parameters */ 680 rds_conn_path_drop(tc->t_cpath, false); 681 } 682 spin_unlock_irq(&rds_tcp_conn_lock); 683 } 684 685 static int rds_tcp_skbuf_handler(struct ctl_table *ctl, int write, 686 void *buffer, size_t *lenp, loff_t *fpos) 687 { 688 struct net *net = current->nsproxy->net_ns; 689 int err; 690 691 err = proc_dointvec_minmax(ctl, write, buffer, lenp, fpos); 692 if (err < 0) { 693 pr_warn("Invalid input. Must be >= %d\n", 694 *(int *)(ctl->extra1)); 695 return err; 696 } 697 if (write) 698 rds_tcp_sysctl_reset(net); 699 return 0; 700 } 701 702 static void rds_tcp_exit(void) 703 { 704 rds_tcp_set_unloading(); 705 synchronize_rcu(); 706 rds_info_deregister_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info); 707 #if IS_ENABLED(CONFIG_IPV6) 708 rds_info_deregister_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info); 709 #endif 710 unregister_pernet_device(&rds_tcp_net_ops); 711 rds_tcp_destroy_conns(); 712 rds_trans_unregister(&rds_tcp_transport); 713 rds_tcp_recv_exit(); 714 kmem_cache_destroy(rds_tcp_conn_slab); 715 } 716 module_exit(rds_tcp_exit); 717 718 static int __init rds_tcp_init(void) 719 { 720 int ret; 721 722 rds_tcp_conn_slab = kmem_cache_create("rds_tcp_connection", 723 sizeof(struct rds_tcp_connection), 724 0, 0, NULL); 725 if (!rds_tcp_conn_slab) { 726 ret = -ENOMEM; 727 goto out; 728 } 729 730 ret = rds_tcp_recv_init(); 731 if (ret) 732 goto out_slab; 733 734 ret = register_pernet_device(&rds_tcp_net_ops); 735 if (ret) 736 goto out_recv; 737 738 rds_trans_register(&rds_tcp_transport); 739 740 rds_info_register_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info); 741 #if IS_ENABLED(CONFIG_IPV6) 742 rds_info_register_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info); 743 #endif 744 745 goto out; 746 out_recv: 747 rds_tcp_recv_exit(); 748 out_slab: 749 kmem_cache_destroy(rds_tcp_conn_slab); 750 out: 751 return ret; 752 } 753 module_init(rds_tcp_init); 754 755 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>"); 756 MODULE_DESCRIPTION("RDS: TCP transport"); 757 MODULE_LICENSE("Dual BSD/GPL"); 758