xref: /linux/net/rds/send.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
42 
43 #include "rds.h"
44 
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46  * time to time and briefly release the CPU. Otherwise the softlock watchdog
47  * will kick our shin.
48  * Also, it seems fairer to not let one busy connection stall all the
49  * others.
50  *
51  * send_batch_count is the number of times we'll loop in send_xmit. Setting
52  * it to 0 will restore the old behavior (where we looped until we had
53  * drained the queue).
54  */
55 static int send_batch_count = SZ_1K;
56 module_param(send_batch_count, int, 0444);
57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58 
59 static void rds_send_remove_from_sock(struct list_head *messages, int status);
60 
61 /*
62  * Reset the send state.  Callers must ensure that this doesn't race with
63  * rds_send_xmit().
64  */
65 void rds_send_path_reset(struct rds_conn_path *cp)
66 {
67 	struct rds_message *rm, *tmp;
68 	unsigned long flags;
69 
70 	if (cp->cp_xmit_rm) {
71 		rm = cp->cp_xmit_rm;
72 		cp->cp_xmit_rm = NULL;
73 		/* Tell the user the RDMA op is no longer mapped by the
74 		 * transport. This isn't entirely true (it's flushed out
75 		 * independently) but as the connection is down, there's
76 		 * no ongoing RDMA to/from that memory */
77 		rds_message_unmapped(rm);
78 		rds_message_put(rm);
79 	}
80 
81 	cp->cp_xmit_sg = 0;
82 	cp->cp_xmit_hdr_off = 0;
83 	cp->cp_xmit_data_off = 0;
84 	cp->cp_xmit_atomic_sent = 0;
85 	cp->cp_xmit_rdma_sent = 0;
86 	cp->cp_xmit_data_sent = 0;
87 
88 	cp->cp_conn->c_map_queued = 0;
89 
90 	cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
91 	cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
92 
93 	/* Mark messages as retransmissions, and move them to the send q */
94 	spin_lock_irqsave(&cp->cp_lock, flags);
95 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
96 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98 	}
99 	list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
100 	spin_unlock_irqrestore(&cp->cp_lock, flags);
101 }
102 EXPORT_SYMBOL_GPL(rds_send_path_reset);
103 
104 static int acquire_in_xmit(struct rds_conn_path *cp)
105 {
106 	return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
107 }
108 
109 static void release_in_xmit(struct rds_conn_path *cp)
110 {
111 	clear_bit(RDS_IN_XMIT, &cp->cp_flags);
112 	smp_mb__after_atomic();
113 	/*
114 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 	 * hot path and finding waiters is very rare.  We don't want to walk
116 	 * the system-wide hashed waitqueue buckets in the fast path only to
117 	 * almost never find waiters.
118 	 */
119 	if (waitqueue_active(&cp->cp_waitq))
120 		wake_up_all(&cp->cp_waitq);
121 }
122 
123 /*
124  * We're making the conscious trade-off here to only send one message
125  * down the connection at a time.
126  *   Pro:
127  *      - tx queueing is a simple fifo list
128  *   	- reassembly is optional and easily done by transports per conn
129  *      - no per flow rx lookup at all, straight to the socket
130  *   	- less per-frag memory and wire overhead
131  *   Con:
132  *      - queued acks can be delayed behind large messages
133  *   Depends:
134  *      - small message latency is higher behind queued large messages
135  *      - large message latency isn't starved by intervening small sends
136  */
137 int rds_send_xmit(struct rds_conn_path *cp)
138 {
139 	struct rds_connection *conn = cp->cp_conn;
140 	struct rds_message *rm;
141 	unsigned long flags;
142 	unsigned int tmp;
143 	struct scatterlist *sg;
144 	int ret = 0;
145 	LIST_HEAD(to_be_dropped);
146 	int batch_count;
147 	unsigned long send_gen = 0;
148 
149 restart:
150 	batch_count = 0;
151 
152 	/*
153 	 * sendmsg calls here after having queued its message on the send
154 	 * queue.  We only have one task feeding the connection at a time.  If
155 	 * another thread is already feeding the queue then we back off.  This
156 	 * avoids blocking the caller and trading per-connection data between
157 	 * caches per message.
158 	 */
159 	if (!acquire_in_xmit(cp)) {
160 		rds_stats_inc(s_send_lock_contention);
161 		ret = -ENOMEM;
162 		goto out;
163 	}
164 
165 	if (rds_destroy_pending(cp->cp_conn)) {
166 		release_in_xmit(cp);
167 		ret = -ENETUNREACH; /* dont requeue send work */
168 		goto out;
169 	}
170 
171 	/*
172 	 * we record the send generation after doing the xmit acquire.
173 	 * if someone else manages to jump in and do some work, we'll use
174 	 * this to avoid a goto restart farther down.
175 	 *
176 	 * The acquire_in_xmit() check above ensures that only one
177 	 * caller can increment c_send_gen at any time.
178 	 */
179 	send_gen = READ_ONCE(cp->cp_send_gen) + 1;
180 	WRITE_ONCE(cp->cp_send_gen, send_gen);
181 
182 	/*
183 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
184 	 * we do the opposite to avoid races.
185 	 */
186 	if (!rds_conn_path_up(cp)) {
187 		release_in_xmit(cp);
188 		ret = 0;
189 		goto out;
190 	}
191 
192 	if (conn->c_trans->xmit_path_prepare)
193 		conn->c_trans->xmit_path_prepare(cp);
194 
195 	/*
196 	 * spin trying to push headers and data down the connection until
197 	 * the connection doesn't make forward progress.
198 	 */
199 	while (1) {
200 
201 		rm = cp->cp_xmit_rm;
202 
203 		/*
204 		 * If between sending messages, we can send a pending congestion
205 		 * map update.
206 		 */
207 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
208 			rm = rds_cong_update_alloc(conn);
209 			if (IS_ERR(rm)) {
210 				ret = PTR_ERR(rm);
211 				break;
212 			}
213 			rm->data.op_active = 1;
214 			rm->m_inc.i_conn_path = cp;
215 			rm->m_inc.i_conn = cp->cp_conn;
216 
217 			cp->cp_xmit_rm = rm;
218 		}
219 
220 		/*
221 		 * If not already working on one, grab the next message.
222 		 *
223 		 * cp_xmit_rm holds a ref while we're sending this message down
224 		 * the connction.  We can use this ref while holding the
225 		 * send_sem.. rds_send_reset() is serialized with it.
226 		 */
227 		if (!rm) {
228 			unsigned int len;
229 
230 			batch_count++;
231 
232 			/* we want to process as big a batch as we can, but
233 			 * we also want to avoid softlockups.  If we've been
234 			 * through a lot of messages, lets back off and see
235 			 * if anyone else jumps in
236 			 */
237 			if (batch_count >= send_batch_count)
238 				goto over_batch;
239 
240 			spin_lock_irqsave(&cp->cp_lock, flags);
241 
242 			if (!list_empty(&cp->cp_send_queue)) {
243 				rm = list_entry(cp->cp_send_queue.next,
244 						struct rds_message,
245 						m_conn_item);
246 				rds_message_addref(rm);
247 
248 				/*
249 				 * Move the message from the send queue to the retransmit
250 				 * list right away.
251 				 */
252 				list_move_tail(&rm->m_conn_item,
253 					       &cp->cp_retrans);
254 			}
255 
256 			spin_unlock_irqrestore(&cp->cp_lock, flags);
257 
258 			if (!rm)
259 				break;
260 
261 			/* Unfortunately, the way Infiniband deals with
262 			 * RDMA to a bad MR key is by moving the entire
263 			 * queue pair to error state. We cold possibly
264 			 * recover from that, but right now we drop the
265 			 * connection.
266 			 * Therefore, we never retransmit messages with RDMA ops.
267 			 */
268 			if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
269 			    (rm->rdma.op_active &&
270 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
271 				spin_lock_irqsave(&cp->cp_lock, flags);
272 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
273 					list_move(&rm->m_conn_item, &to_be_dropped);
274 				spin_unlock_irqrestore(&cp->cp_lock, flags);
275 				continue;
276 			}
277 
278 			/* Require an ACK every once in a while */
279 			len = ntohl(rm->m_inc.i_hdr.h_len);
280 			if (cp->cp_unacked_packets == 0 ||
281 			    cp->cp_unacked_bytes < len) {
282 				set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
283 
284 				cp->cp_unacked_packets =
285 					rds_sysctl_max_unacked_packets;
286 				cp->cp_unacked_bytes =
287 					rds_sysctl_max_unacked_bytes;
288 				rds_stats_inc(s_send_ack_required);
289 			} else {
290 				cp->cp_unacked_bytes -= len;
291 				cp->cp_unacked_packets--;
292 			}
293 
294 			cp->cp_xmit_rm = rm;
295 		}
296 
297 		/* The transport either sends the whole rdma or none of it */
298 		if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
299 			rm->m_final_op = &rm->rdma;
300 			/* The transport owns the mapped memory for now.
301 			 * You can't unmap it while it's on the send queue
302 			 */
303 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
304 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
305 			if (ret) {
306 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
307 				wake_up_interruptible(&rm->m_flush_wait);
308 				break;
309 			}
310 			cp->cp_xmit_rdma_sent = 1;
311 
312 		}
313 
314 		if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
315 			rm->m_final_op = &rm->atomic;
316 			/* The transport owns the mapped memory for now.
317 			 * You can't unmap it while it's on the send queue
318 			 */
319 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
320 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
321 			if (ret) {
322 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
323 				wake_up_interruptible(&rm->m_flush_wait);
324 				break;
325 			}
326 			cp->cp_xmit_atomic_sent = 1;
327 
328 		}
329 
330 		/*
331 		 * A number of cases require an RDS header to be sent
332 		 * even if there is no data.
333 		 * We permit 0-byte sends; rds-ping depends on this.
334 		 * However, if there are exclusively attached silent ops,
335 		 * we skip the hdr/data send, to enable silent operation.
336 		 */
337 		if (rm->data.op_nents == 0) {
338 			int ops_present;
339 			int all_ops_are_silent = 1;
340 
341 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
342 			if (rm->atomic.op_active && !rm->atomic.op_silent)
343 				all_ops_are_silent = 0;
344 			if (rm->rdma.op_active && !rm->rdma.op_silent)
345 				all_ops_are_silent = 0;
346 
347 			if (ops_present && all_ops_are_silent
348 			    && !rm->m_rdma_cookie)
349 				rm->data.op_active = 0;
350 		}
351 
352 		if (rm->data.op_active && !cp->cp_xmit_data_sent) {
353 			rm->m_final_op = &rm->data;
354 
355 			ret = conn->c_trans->xmit(conn, rm,
356 						  cp->cp_xmit_hdr_off,
357 						  cp->cp_xmit_sg,
358 						  cp->cp_xmit_data_off);
359 			if (ret <= 0)
360 				break;
361 
362 			if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
363 				tmp = min_t(int, ret,
364 					    sizeof(struct rds_header) -
365 					    cp->cp_xmit_hdr_off);
366 				cp->cp_xmit_hdr_off += tmp;
367 				ret -= tmp;
368 			}
369 
370 			sg = &rm->data.op_sg[cp->cp_xmit_sg];
371 			while (ret) {
372 				tmp = min_t(int, ret, sg->length -
373 						      cp->cp_xmit_data_off);
374 				cp->cp_xmit_data_off += tmp;
375 				ret -= tmp;
376 				if (cp->cp_xmit_data_off == sg->length) {
377 					cp->cp_xmit_data_off = 0;
378 					sg++;
379 					cp->cp_xmit_sg++;
380 					BUG_ON(ret != 0 && cp->cp_xmit_sg ==
381 					       rm->data.op_nents);
382 				}
383 			}
384 
385 			if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
386 			    (cp->cp_xmit_sg == rm->data.op_nents))
387 				cp->cp_xmit_data_sent = 1;
388 		}
389 
390 		/*
391 		 * A rm will only take multiple times through this loop
392 		 * if there is a data op. Thus, if the data is sent (or there was
393 		 * none), then we're done with the rm.
394 		 */
395 		if (!rm->data.op_active || cp->cp_xmit_data_sent) {
396 			cp->cp_xmit_rm = NULL;
397 			cp->cp_xmit_sg = 0;
398 			cp->cp_xmit_hdr_off = 0;
399 			cp->cp_xmit_data_off = 0;
400 			cp->cp_xmit_rdma_sent = 0;
401 			cp->cp_xmit_atomic_sent = 0;
402 			cp->cp_xmit_data_sent = 0;
403 
404 			rds_message_put(rm);
405 		}
406 	}
407 
408 over_batch:
409 	if (conn->c_trans->xmit_path_complete)
410 		conn->c_trans->xmit_path_complete(cp);
411 	release_in_xmit(cp);
412 
413 	/* Nuke any messages we decided not to retransmit. */
414 	if (!list_empty(&to_be_dropped)) {
415 		/* irqs on here, so we can put(), unlike above */
416 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
417 			rds_message_put(rm);
418 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
419 	}
420 
421 	/*
422 	 * Other senders can queue a message after we last test the send queue
423 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
424 	 * not try and send their newly queued message.  We need to check the
425 	 * send queue after having cleared RDS_IN_XMIT so that their message
426 	 * doesn't get stuck on the send queue.
427 	 *
428 	 * If the transport cannot continue (i.e ret != 0), then it must
429 	 * call us when more room is available, such as from the tx
430 	 * completion handler.
431 	 *
432 	 * We have an extra generation check here so that if someone manages
433 	 * to jump in after our release_in_xmit, we'll see that they have done
434 	 * some work and we will skip our goto
435 	 */
436 	if (ret == 0) {
437 		bool raced;
438 
439 		smp_mb();
440 		raced = send_gen != READ_ONCE(cp->cp_send_gen);
441 
442 		if ((test_bit(0, &conn->c_map_queued) ||
443 		    !list_empty(&cp->cp_send_queue)) && !raced) {
444 			if (batch_count < send_batch_count)
445 				goto restart;
446 			rcu_read_lock();
447 			if (rds_destroy_pending(cp->cp_conn))
448 				ret = -ENETUNREACH;
449 			else
450 				queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
451 			rcu_read_unlock();
452 		} else if (raced) {
453 			rds_stats_inc(s_send_lock_queue_raced);
454 		}
455 	}
456 out:
457 	return ret;
458 }
459 EXPORT_SYMBOL_GPL(rds_send_xmit);
460 
461 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
462 {
463 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
464 
465 	assert_spin_locked(&rs->rs_lock);
466 
467 	BUG_ON(rs->rs_snd_bytes < len);
468 	rs->rs_snd_bytes -= len;
469 
470 	if (rs->rs_snd_bytes == 0)
471 		rds_stats_inc(s_send_queue_empty);
472 }
473 
474 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
475 				    is_acked_func is_acked)
476 {
477 	if (is_acked)
478 		return is_acked(rm, ack);
479 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
480 }
481 
482 /*
483  * This is pretty similar to what happens below in the ACK
484  * handling code - except that we call here as soon as we get
485  * the IB send completion on the RDMA op and the accompanying
486  * message.
487  */
488 void rds_rdma_send_complete(struct rds_message *rm, int status)
489 {
490 	struct rds_sock *rs = NULL;
491 	struct rm_rdma_op *ro;
492 	struct rds_notifier *notifier;
493 	unsigned long flags;
494 	unsigned int notify = 0;
495 
496 	spin_lock_irqsave(&rm->m_rs_lock, flags);
497 
498 	notify =  rm->rdma.op_notify | rm->data.op_notify;
499 	ro = &rm->rdma;
500 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
501 	    ro->op_active && notify && ro->op_notifier) {
502 		notifier = ro->op_notifier;
503 		rs = rm->m_rs;
504 		sock_hold(rds_rs_to_sk(rs));
505 
506 		notifier->n_status = status;
507 		spin_lock(&rs->rs_lock);
508 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
509 		spin_unlock(&rs->rs_lock);
510 
511 		ro->op_notifier = NULL;
512 	}
513 
514 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
515 
516 	if (rs) {
517 		rds_wake_sk_sleep(rs);
518 		sock_put(rds_rs_to_sk(rs));
519 	}
520 }
521 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
522 
523 /*
524  * Just like above, except looks at atomic op
525  */
526 void rds_atomic_send_complete(struct rds_message *rm, int status)
527 {
528 	struct rds_sock *rs = NULL;
529 	struct rm_atomic_op *ao;
530 	struct rds_notifier *notifier;
531 	unsigned long flags;
532 
533 	spin_lock_irqsave(&rm->m_rs_lock, flags);
534 
535 	ao = &rm->atomic;
536 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
537 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
538 		notifier = ao->op_notifier;
539 		rs = rm->m_rs;
540 		sock_hold(rds_rs_to_sk(rs));
541 
542 		notifier->n_status = status;
543 		spin_lock(&rs->rs_lock);
544 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
545 		spin_unlock(&rs->rs_lock);
546 
547 		ao->op_notifier = NULL;
548 	}
549 
550 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
551 
552 	if (rs) {
553 		rds_wake_sk_sleep(rs);
554 		sock_put(rds_rs_to_sk(rs));
555 	}
556 }
557 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
558 
559 /*
560  * This is the same as rds_rdma_send_complete except we
561  * don't do any locking - we have all the ingredients (message,
562  * socket, socket lock) and can just move the notifier.
563  */
564 static inline void
565 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
566 {
567 	struct rm_rdma_op *ro;
568 	struct rm_atomic_op *ao;
569 
570 	ro = &rm->rdma;
571 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
572 		ro->op_notifier->n_status = status;
573 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
574 		ro->op_notifier = NULL;
575 	}
576 
577 	ao = &rm->atomic;
578 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
579 		ao->op_notifier->n_status = status;
580 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
581 		ao->op_notifier = NULL;
582 	}
583 
584 	/* No need to wake the app - caller does this */
585 }
586 
587 /*
588  * This removes messages from the socket's list if they're on it.  The list
589  * argument must be private to the caller, we must be able to modify it
590  * without locks.  The messages must have a reference held for their
591  * position on the list.  This function will drop that reference after
592  * removing the messages from the 'messages' list regardless of if it found
593  * the messages on the socket list or not.
594  */
595 static void rds_send_remove_from_sock(struct list_head *messages, int status)
596 {
597 	unsigned long flags;
598 	struct rds_sock *rs = NULL;
599 	struct rds_message *rm;
600 
601 	while (!list_empty(messages)) {
602 		int was_on_sock = 0;
603 
604 		rm = list_entry(messages->next, struct rds_message,
605 				m_conn_item);
606 		list_del_init(&rm->m_conn_item);
607 
608 		/*
609 		 * If we see this flag cleared then we're *sure* that someone
610 		 * else beat us to removing it from the sock.  If we race
611 		 * with their flag update we'll get the lock and then really
612 		 * see that the flag has been cleared.
613 		 *
614 		 * The message spinlock makes sure nobody clears rm->m_rs
615 		 * while we're messing with it. It does not prevent the
616 		 * message from being removed from the socket, though.
617 		 */
618 		spin_lock_irqsave(&rm->m_rs_lock, flags);
619 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
620 			goto unlock_and_drop;
621 
622 		if (rs != rm->m_rs) {
623 			if (rs) {
624 				rds_wake_sk_sleep(rs);
625 				sock_put(rds_rs_to_sk(rs));
626 			}
627 			rs = rm->m_rs;
628 			if (rs)
629 				sock_hold(rds_rs_to_sk(rs));
630 		}
631 		if (!rs)
632 			goto unlock_and_drop;
633 		spin_lock(&rs->rs_lock);
634 
635 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
636 			struct rm_rdma_op *ro = &rm->rdma;
637 			struct rds_notifier *notifier;
638 
639 			list_del_init(&rm->m_sock_item);
640 			rds_send_sndbuf_remove(rs, rm);
641 
642 			if (ro->op_active && ro->op_notifier &&
643 			       (ro->op_notify || (ro->op_recverr && status))) {
644 				notifier = ro->op_notifier;
645 				list_add_tail(&notifier->n_list,
646 						&rs->rs_notify_queue);
647 				if (!notifier->n_status)
648 					notifier->n_status = status;
649 				rm->rdma.op_notifier = NULL;
650 			}
651 			was_on_sock = 1;
652 		}
653 		spin_unlock(&rs->rs_lock);
654 
655 unlock_and_drop:
656 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
657 		rds_message_put(rm);
658 		if (was_on_sock)
659 			rds_message_put(rm);
660 	}
661 
662 	if (rs) {
663 		rds_wake_sk_sleep(rs);
664 		sock_put(rds_rs_to_sk(rs));
665 	}
666 }
667 
668 /*
669  * Transports call here when they've determined that the receiver queued
670  * messages up to, and including, the given sequence number.  Messages are
671  * moved to the retrans queue when rds_send_xmit picks them off the send
672  * queue. This means that in the TCP case, the message may not have been
673  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
674  * checks the RDS_MSG_HAS_ACK_SEQ bit.
675  */
676 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
677 			      is_acked_func is_acked)
678 {
679 	struct rds_message *rm, *tmp;
680 	unsigned long flags;
681 	LIST_HEAD(list);
682 
683 	spin_lock_irqsave(&cp->cp_lock, flags);
684 
685 	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
686 		if (!rds_send_is_acked(rm, ack, is_acked))
687 			break;
688 
689 		list_move(&rm->m_conn_item, &list);
690 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
691 	}
692 
693 	/* order flag updates with spin locks */
694 	if (!list_empty(&list))
695 		smp_mb__after_atomic();
696 
697 	spin_unlock_irqrestore(&cp->cp_lock, flags);
698 
699 	/* now remove the messages from the sock list as needed */
700 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
701 }
702 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
703 
704 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
705 			 is_acked_func is_acked)
706 {
707 	WARN_ON(conn->c_trans->t_mp_capable);
708 	rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
709 }
710 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
711 
712 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
713 {
714 	struct rds_message *rm, *tmp;
715 	struct rds_connection *conn;
716 	struct rds_conn_path *cp;
717 	unsigned long flags;
718 	LIST_HEAD(list);
719 
720 	/* get all the messages we're dropping under the rs lock */
721 	spin_lock_irqsave(&rs->rs_lock, flags);
722 
723 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
724 		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
725 			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
726 			continue;
727 
728 		list_move(&rm->m_sock_item, &list);
729 		rds_send_sndbuf_remove(rs, rm);
730 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
731 	}
732 
733 	/* order flag updates with the rs lock */
734 	smp_mb__after_atomic();
735 
736 	spin_unlock_irqrestore(&rs->rs_lock, flags);
737 
738 	if (list_empty(&list))
739 		return;
740 
741 	/* Remove the messages from the conn */
742 	list_for_each_entry(rm, &list, m_sock_item) {
743 
744 		conn = rm->m_inc.i_conn;
745 		if (conn->c_trans->t_mp_capable)
746 			cp = rm->m_inc.i_conn_path;
747 		else
748 			cp = &conn->c_path[0];
749 
750 		spin_lock_irqsave(&cp->cp_lock, flags);
751 		/*
752 		 * Maybe someone else beat us to removing rm from the conn.
753 		 * If we race with their flag update we'll get the lock and
754 		 * then really see that the flag has been cleared.
755 		 */
756 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
757 			spin_unlock_irqrestore(&cp->cp_lock, flags);
758 			continue;
759 		}
760 		list_del_init(&rm->m_conn_item);
761 		spin_unlock_irqrestore(&cp->cp_lock, flags);
762 
763 		/*
764 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
765 		 * but we can now.
766 		 */
767 		spin_lock_irqsave(&rm->m_rs_lock, flags);
768 
769 		spin_lock(&rs->rs_lock);
770 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
771 		spin_unlock(&rs->rs_lock);
772 
773 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
774 
775 		rds_message_put(rm);
776 	}
777 
778 	rds_wake_sk_sleep(rs);
779 
780 	while (!list_empty(&list)) {
781 		rm = list_entry(list.next, struct rds_message, m_sock_item);
782 		list_del_init(&rm->m_sock_item);
783 		rds_message_wait(rm);
784 
785 		/* just in case the code above skipped this message
786 		 * because RDS_MSG_ON_CONN wasn't set, run it again here
787 		 * taking m_rs_lock is the only thing that keeps us
788 		 * from racing with ack processing.
789 		 */
790 		spin_lock_irqsave(&rm->m_rs_lock, flags);
791 
792 		spin_lock(&rs->rs_lock);
793 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
794 		spin_unlock(&rs->rs_lock);
795 
796 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
797 
798 		rds_message_put(rm);
799 	}
800 }
801 
802 /*
803  * we only want this to fire once so we use the callers 'queued'.  It's
804  * possible that another thread can race with us and remove the
805  * message from the flow with RDS_CANCEL_SENT_TO.
806  */
807 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
808 			     struct rds_conn_path *cp,
809 			     struct rds_message *rm, __be16 sport,
810 			     __be16 dport, int *queued)
811 {
812 	unsigned long flags;
813 	u32 len;
814 
815 	if (*queued)
816 		goto out;
817 
818 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
819 
820 	/* this is the only place which holds both the socket's rs_lock
821 	 * and the connection's c_lock */
822 	spin_lock_irqsave(&rs->rs_lock, flags);
823 
824 	/*
825 	 * If there is a little space in sndbuf, we don't queue anything,
826 	 * and userspace gets -EAGAIN. But poll() indicates there's send
827 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
828 	 * freed up by incoming acks. So we check the *old* value of
829 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
830 	 * and poll() now knows no more data can be sent.
831 	 */
832 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
833 		rs->rs_snd_bytes += len;
834 
835 		/* let recv side know we are close to send space exhaustion.
836 		 * This is probably not the optimal way to do it, as this
837 		 * means we set the flag on *all* messages as soon as our
838 		 * throughput hits a certain threshold.
839 		 */
840 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
841 			set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
842 
843 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
844 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
845 		rds_message_addref(rm);
846 		sock_hold(rds_rs_to_sk(rs));
847 		rm->m_rs = rs;
848 
849 		/* The code ordering is a little weird, but we're
850 		   trying to minimize the time we hold c_lock */
851 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
852 		rm->m_inc.i_conn = conn;
853 		rm->m_inc.i_conn_path = cp;
854 		rds_message_addref(rm);
855 
856 		spin_lock(&cp->cp_lock);
857 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
858 		list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
859 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
860 		spin_unlock(&cp->cp_lock);
861 
862 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
863 			 rm, len, rs, rs->rs_snd_bytes,
864 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
865 
866 		*queued = 1;
867 	}
868 
869 	spin_unlock_irqrestore(&rs->rs_lock, flags);
870 out:
871 	return *queued;
872 }
873 
874 /*
875  * rds_message is getting to be quite complicated, and we'd like to allocate
876  * it all in one go. This figures out how big it needs to be up front.
877  */
878 static int rds_rm_size(struct msghdr *msg, int num_sgs)
879 {
880 	struct cmsghdr *cmsg;
881 	int size = 0;
882 	int cmsg_groups = 0;
883 	int retval;
884 	bool zcopy_cookie = false;
885 
886 	for_each_cmsghdr(cmsg, msg) {
887 		if (!CMSG_OK(msg, cmsg))
888 			return -EINVAL;
889 
890 		if (cmsg->cmsg_level != SOL_RDS)
891 			continue;
892 
893 		switch (cmsg->cmsg_type) {
894 		case RDS_CMSG_RDMA_ARGS:
895 			cmsg_groups |= 1;
896 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
897 			if (retval < 0)
898 				return retval;
899 			size += retval;
900 
901 			break;
902 
903 		case RDS_CMSG_ZCOPY_COOKIE:
904 			zcopy_cookie = true;
905 			/* fall through */
906 
907 		case RDS_CMSG_RDMA_DEST:
908 		case RDS_CMSG_RDMA_MAP:
909 			cmsg_groups |= 2;
910 			/* these are valid but do no add any size */
911 			break;
912 
913 		case RDS_CMSG_ATOMIC_CSWP:
914 		case RDS_CMSG_ATOMIC_FADD:
915 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
916 		case RDS_CMSG_MASKED_ATOMIC_FADD:
917 			cmsg_groups |= 1;
918 			size += sizeof(struct scatterlist);
919 			break;
920 
921 		default:
922 			return -EINVAL;
923 		}
924 
925 	}
926 
927 	if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie)
928 		return -EINVAL;
929 
930 	size += num_sgs * sizeof(struct scatterlist);
931 
932 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
933 	if (cmsg_groups == 3)
934 		return -EINVAL;
935 
936 	return size;
937 }
938 
939 static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm,
940 			  struct cmsghdr *cmsg)
941 {
942 	u32 *cookie;
943 
944 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) ||
945 	    !rm->data.op_mmp_znotifier)
946 		return -EINVAL;
947 	cookie = CMSG_DATA(cmsg);
948 	rm->data.op_mmp_znotifier->z_cookie = *cookie;
949 	return 0;
950 }
951 
952 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
953 			 struct msghdr *msg, int *allocated_mr)
954 {
955 	struct cmsghdr *cmsg;
956 	int ret = 0;
957 
958 	for_each_cmsghdr(cmsg, msg) {
959 		if (!CMSG_OK(msg, cmsg))
960 			return -EINVAL;
961 
962 		if (cmsg->cmsg_level != SOL_RDS)
963 			continue;
964 
965 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
966 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
967 		 */
968 		switch (cmsg->cmsg_type) {
969 		case RDS_CMSG_RDMA_ARGS:
970 			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
971 			break;
972 
973 		case RDS_CMSG_RDMA_DEST:
974 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
975 			break;
976 
977 		case RDS_CMSG_RDMA_MAP:
978 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
979 			if (!ret)
980 				*allocated_mr = 1;
981 			else if (ret == -ENODEV)
982 				/* Accommodate the get_mr() case which can fail
983 				 * if connection isn't established yet.
984 				 */
985 				ret = -EAGAIN;
986 			break;
987 		case RDS_CMSG_ATOMIC_CSWP:
988 		case RDS_CMSG_ATOMIC_FADD:
989 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
990 		case RDS_CMSG_MASKED_ATOMIC_FADD:
991 			ret = rds_cmsg_atomic(rs, rm, cmsg);
992 			break;
993 
994 		case RDS_CMSG_ZCOPY_COOKIE:
995 			ret = rds_cmsg_zcopy(rs, rm, cmsg);
996 			break;
997 
998 		default:
999 			return -EINVAL;
1000 		}
1001 
1002 		if (ret)
1003 			break;
1004 	}
1005 
1006 	return ret;
1007 }
1008 
1009 static int rds_send_mprds_hash(struct rds_sock *rs, struct rds_connection *conn)
1010 {
1011 	int hash;
1012 
1013 	if (conn->c_npaths == 0)
1014 		hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
1015 	else
1016 		hash = RDS_MPATH_HASH(rs, conn->c_npaths);
1017 	if (conn->c_npaths == 0 && hash != 0) {
1018 		rds_send_ping(conn, 0);
1019 
1020 		/* The underlying connection is not up yet.  Need to wait
1021 		 * until it is up to be sure that the non-zero c_path can be
1022 		 * used.  But if we are interrupted, we have to use the zero
1023 		 * c_path in case the connection ends up being non-MP capable.
1024 		 */
1025 		if (conn->c_npaths == 0)
1026 			if (wait_event_interruptible(conn->c_hs_waitq,
1027 						     conn->c_npaths != 0))
1028 				hash = 0;
1029 		if (conn->c_npaths == 1)
1030 			hash = 0;
1031 	}
1032 	return hash;
1033 }
1034 
1035 static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
1036 {
1037 	struct rds_rdma_args *args;
1038 	struct cmsghdr *cmsg;
1039 
1040 	for_each_cmsghdr(cmsg, msg) {
1041 		if (!CMSG_OK(msg, cmsg))
1042 			return -EINVAL;
1043 
1044 		if (cmsg->cmsg_level != SOL_RDS)
1045 			continue;
1046 
1047 		if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
1048 			if (cmsg->cmsg_len <
1049 			    CMSG_LEN(sizeof(struct rds_rdma_args)))
1050 				return -EINVAL;
1051 			args = CMSG_DATA(cmsg);
1052 			*rdma_bytes += args->remote_vec.bytes;
1053 		}
1054 	}
1055 	return 0;
1056 }
1057 
1058 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
1059 {
1060 	struct sock *sk = sock->sk;
1061 	struct rds_sock *rs = rds_sk_to_rs(sk);
1062 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1063 	__be32 daddr;
1064 	__be16 dport;
1065 	struct rds_message *rm = NULL;
1066 	struct rds_connection *conn;
1067 	int ret = 0;
1068 	int queued = 0, allocated_mr = 0;
1069 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
1070 	long timeo = sock_sndtimeo(sk, nonblock);
1071 	struct rds_conn_path *cpath;
1072 	size_t total_payload_len = payload_len, rdma_payload_len = 0;
1073 	bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) &&
1074 		      sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY));
1075 	int num_sgs = ceil(payload_len, PAGE_SIZE);
1076 
1077 	/* Mirror Linux UDP mirror of BSD error message compatibility */
1078 	/* XXX: Perhaps MSG_MORE someday */
1079 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) {
1080 		ret = -EOPNOTSUPP;
1081 		goto out;
1082 	}
1083 
1084 	if (msg->msg_namelen) {
1085 		/* XXX fail non-unicast destination IPs? */
1086 		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
1087 			ret = -EINVAL;
1088 			goto out;
1089 		}
1090 		daddr = usin->sin_addr.s_addr;
1091 		dport = usin->sin_port;
1092 	} else {
1093 		/* We only care about consistency with ->connect() */
1094 		lock_sock(sk);
1095 		daddr = rs->rs_conn_addr;
1096 		dport = rs->rs_conn_port;
1097 		release_sock(sk);
1098 	}
1099 
1100 	lock_sock(sk);
1101 	if (daddr == 0 || rs->rs_bound_addr == 0) {
1102 		release_sock(sk);
1103 		ret = -ENOTCONN; /* XXX not a great errno */
1104 		goto out;
1105 	}
1106 	release_sock(sk);
1107 
1108 	ret = rds_rdma_bytes(msg, &rdma_payload_len);
1109 	if (ret)
1110 		goto out;
1111 
1112 	total_payload_len += rdma_payload_len;
1113 	if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
1114 		ret = -EMSGSIZE;
1115 		goto out;
1116 	}
1117 
1118 	if (payload_len > rds_sk_sndbuf(rs)) {
1119 		ret = -EMSGSIZE;
1120 		goto out;
1121 	}
1122 
1123 	if (zcopy) {
1124 		if (rs->rs_transport->t_type != RDS_TRANS_TCP) {
1125 			ret = -EOPNOTSUPP;
1126 			goto out;
1127 		}
1128 		num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX);
1129 	}
1130 	/* size of rm including all sgs */
1131 	ret = rds_rm_size(msg, num_sgs);
1132 	if (ret < 0)
1133 		goto out;
1134 
1135 	rm = rds_message_alloc(ret, GFP_KERNEL);
1136 	if (!rm) {
1137 		ret = -ENOMEM;
1138 		goto out;
1139 	}
1140 
1141 	/* Attach data to the rm */
1142 	if (payload_len) {
1143 		rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs);
1144 		if (!rm->data.op_sg) {
1145 			ret = -ENOMEM;
1146 			goto out;
1147 		}
1148 		ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy);
1149 		if (ret)
1150 			goto out;
1151 	}
1152 	rm->data.op_active = 1;
1153 
1154 	rm->m_daddr = daddr;
1155 
1156 	/* rds_conn_create has a spinlock that runs with IRQ off.
1157 	 * Caching the conn in the socket helps a lot. */
1158 	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1159 		conn = rs->rs_conn;
1160 	else {
1161 		conn = rds_conn_create_outgoing(sock_net(sock->sk),
1162 						rs->rs_bound_addr, daddr,
1163 					rs->rs_transport,
1164 					sock->sk->sk_allocation);
1165 		if (IS_ERR(conn)) {
1166 			ret = PTR_ERR(conn);
1167 			goto out;
1168 		}
1169 		rs->rs_conn = conn;
1170 	}
1171 
1172 	if (conn->c_trans->t_mp_capable)
1173 		cpath = &conn->c_path[rds_send_mprds_hash(rs, conn)];
1174 	else
1175 		cpath = &conn->c_path[0];
1176 
1177 	rm->m_conn_path = cpath;
1178 
1179 	/* Parse any control messages the user may have included. */
1180 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1181 	if (ret) {
1182 		/* Trigger connection so that its ready for the next retry */
1183 		if (ret ==  -EAGAIN)
1184 			rds_conn_connect_if_down(conn);
1185 		goto out;
1186 	}
1187 
1188 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1189 		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1190 			       &rm->rdma, conn->c_trans->xmit_rdma);
1191 		ret = -EOPNOTSUPP;
1192 		goto out;
1193 	}
1194 
1195 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1196 		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1197 			       &rm->atomic, conn->c_trans->xmit_atomic);
1198 		ret = -EOPNOTSUPP;
1199 		goto out;
1200 	}
1201 
1202 	if (rds_destroy_pending(conn)) {
1203 		ret = -EAGAIN;
1204 		goto out;
1205 	}
1206 
1207 	rds_conn_path_connect_if_down(cpath);
1208 
1209 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1210 	if (ret) {
1211 		rs->rs_seen_congestion = 1;
1212 		goto out;
1213 	}
1214 	while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
1215 				  dport, &queued)) {
1216 		rds_stats_inc(s_send_queue_full);
1217 
1218 		if (nonblock) {
1219 			ret = -EAGAIN;
1220 			goto out;
1221 		}
1222 
1223 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1224 					rds_send_queue_rm(rs, conn, cpath, rm,
1225 							  rs->rs_bound_port,
1226 							  dport,
1227 							  &queued),
1228 					timeo);
1229 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1230 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1231 			continue;
1232 
1233 		ret = timeo;
1234 		if (ret == 0)
1235 			ret = -ETIMEDOUT;
1236 		goto out;
1237 	}
1238 
1239 	/*
1240 	 * By now we've committed to the send.  We reuse rds_send_worker()
1241 	 * to retry sends in the rds thread if the transport asks us to.
1242 	 */
1243 	rds_stats_inc(s_send_queued);
1244 
1245 	ret = rds_send_xmit(cpath);
1246 	if (ret == -ENOMEM || ret == -EAGAIN) {
1247 		ret = 0;
1248 		rcu_read_lock();
1249 		if (rds_destroy_pending(cpath->cp_conn))
1250 			ret = -ENETUNREACH;
1251 		else
1252 			queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1253 		rcu_read_unlock();
1254 	}
1255 	if (ret)
1256 		goto out;
1257 	rds_message_put(rm);
1258 	return payload_len;
1259 
1260 out:
1261 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1262 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1263 	 * or in any other way, we need to destroy the MR again */
1264 	if (allocated_mr)
1265 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1266 
1267 	if (rm)
1268 		rds_message_put(rm);
1269 	return ret;
1270 }
1271 
1272 /*
1273  * send out a probe. Can be shared by rds_send_ping,
1274  * rds_send_pong, rds_send_hb.
1275  * rds_send_hb should use h_flags
1276  *   RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1277  * or
1278  *   RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1279  */
1280 static int
1281 rds_send_probe(struct rds_conn_path *cp, __be16 sport,
1282 	       __be16 dport, u8 h_flags)
1283 {
1284 	struct rds_message *rm;
1285 	unsigned long flags;
1286 	int ret = 0;
1287 
1288 	rm = rds_message_alloc(0, GFP_ATOMIC);
1289 	if (!rm) {
1290 		ret = -ENOMEM;
1291 		goto out;
1292 	}
1293 
1294 	rm->m_daddr = cp->cp_conn->c_faddr;
1295 	rm->data.op_active = 1;
1296 
1297 	rds_conn_path_connect_if_down(cp);
1298 
1299 	ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
1300 	if (ret)
1301 		goto out;
1302 
1303 	spin_lock_irqsave(&cp->cp_lock, flags);
1304 	list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
1305 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1306 	rds_message_addref(rm);
1307 	rm->m_inc.i_conn = cp->cp_conn;
1308 	rm->m_inc.i_conn_path = cp;
1309 
1310 	rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
1311 				    cp->cp_next_tx_seq);
1312 	rm->m_inc.i_hdr.h_flags |= h_flags;
1313 	cp->cp_next_tx_seq++;
1314 
1315 	if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
1316 	    cp->cp_conn->c_trans->t_mp_capable) {
1317 		u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
1318 		u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
1319 
1320 		rds_message_add_extension(&rm->m_inc.i_hdr,
1321 					  RDS_EXTHDR_NPATHS, &npaths,
1322 					  sizeof(npaths));
1323 		rds_message_add_extension(&rm->m_inc.i_hdr,
1324 					  RDS_EXTHDR_GEN_NUM,
1325 					  &my_gen_num,
1326 					  sizeof(u32));
1327 	}
1328 	spin_unlock_irqrestore(&cp->cp_lock, flags);
1329 
1330 	rds_stats_inc(s_send_queued);
1331 	rds_stats_inc(s_send_pong);
1332 
1333 	/* schedule the send work on rds_wq */
1334 	rcu_read_lock();
1335 	if (!rds_destroy_pending(cp->cp_conn))
1336 		queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1337 	rcu_read_unlock();
1338 
1339 	rds_message_put(rm);
1340 	return 0;
1341 
1342 out:
1343 	if (rm)
1344 		rds_message_put(rm);
1345 	return ret;
1346 }
1347 
1348 int
1349 rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1350 {
1351 	return rds_send_probe(cp, 0, dport, 0);
1352 }
1353 
1354 void
1355 rds_send_ping(struct rds_connection *conn, int cp_index)
1356 {
1357 	unsigned long flags;
1358 	struct rds_conn_path *cp = &conn->c_path[cp_index];
1359 
1360 	spin_lock_irqsave(&cp->cp_lock, flags);
1361 	if (conn->c_ping_triggered) {
1362 		spin_unlock_irqrestore(&cp->cp_lock, flags);
1363 		return;
1364 	}
1365 	conn->c_ping_triggered = 1;
1366 	spin_unlock_irqrestore(&cp->cp_lock, flags);
1367 	rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
1368 }
1369 EXPORT_SYMBOL_GPL(rds_send_ping);
1370