1 /* 2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/moduleparam.h> 35 #include <linux/gfp.h> 36 #include <net/sock.h> 37 #include <linux/in.h> 38 #include <linux/list.h> 39 #include <linux/ratelimit.h> 40 #include <linux/export.h> 41 #include <linux/sizes.h> 42 43 #include "rds.h" 44 45 /* When transmitting messages in rds_send_xmit, we need to emerge from 46 * time to time and briefly release the CPU. Otherwise the softlock watchdog 47 * will kick our shin. 48 * Also, it seems fairer to not let one busy connection stall all the 49 * others. 50 * 51 * send_batch_count is the number of times we'll loop in send_xmit. Setting 52 * it to 0 will restore the old behavior (where we looped until we had 53 * drained the queue). 54 */ 55 static int send_batch_count = SZ_1K; 56 module_param(send_batch_count, int, 0444); 57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue"); 58 59 static void rds_send_remove_from_sock(struct list_head *messages, int status); 60 61 /* 62 * Reset the send state. Callers must ensure that this doesn't race with 63 * rds_send_xmit(). 64 */ 65 void rds_send_path_reset(struct rds_conn_path *cp) 66 { 67 struct rds_message *rm, *tmp; 68 unsigned long flags; 69 70 if (cp->cp_xmit_rm) { 71 rm = cp->cp_xmit_rm; 72 cp->cp_xmit_rm = NULL; 73 /* Tell the user the RDMA op is no longer mapped by the 74 * transport. This isn't entirely true (it's flushed out 75 * independently) but as the connection is down, there's 76 * no ongoing RDMA to/from that memory */ 77 rds_message_unmapped(rm); 78 rds_message_put(rm); 79 } 80 81 cp->cp_xmit_sg = 0; 82 cp->cp_xmit_hdr_off = 0; 83 cp->cp_xmit_data_off = 0; 84 cp->cp_xmit_atomic_sent = 0; 85 cp->cp_xmit_rdma_sent = 0; 86 cp->cp_xmit_data_sent = 0; 87 88 cp->cp_conn->c_map_queued = 0; 89 90 cp->cp_unacked_packets = rds_sysctl_max_unacked_packets; 91 cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes; 92 93 /* Mark messages as retransmissions, and move them to the send q */ 94 spin_lock_irqsave(&cp->cp_lock, flags); 95 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { 96 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 97 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags); 98 } 99 list_splice_init(&cp->cp_retrans, &cp->cp_send_queue); 100 spin_unlock_irqrestore(&cp->cp_lock, flags); 101 } 102 EXPORT_SYMBOL_GPL(rds_send_path_reset); 103 104 static int acquire_in_xmit(struct rds_conn_path *cp) 105 { 106 return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0; 107 } 108 109 static void release_in_xmit(struct rds_conn_path *cp) 110 { 111 clear_bit(RDS_IN_XMIT, &cp->cp_flags); 112 smp_mb__after_atomic(); 113 /* 114 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a 115 * hot path and finding waiters is very rare. We don't want to walk 116 * the system-wide hashed waitqueue buckets in the fast path only to 117 * almost never find waiters. 118 */ 119 if (waitqueue_active(&cp->cp_waitq)) 120 wake_up_all(&cp->cp_waitq); 121 } 122 123 /* 124 * We're making the conscious trade-off here to only send one message 125 * down the connection at a time. 126 * Pro: 127 * - tx queueing is a simple fifo list 128 * - reassembly is optional and easily done by transports per conn 129 * - no per flow rx lookup at all, straight to the socket 130 * - less per-frag memory and wire overhead 131 * Con: 132 * - queued acks can be delayed behind large messages 133 * Depends: 134 * - small message latency is higher behind queued large messages 135 * - large message latency isn't starved by intervening small sends 136 */ 137 int rds_send_xmit(struct rds_conn_path *cp) 138 { 139 struct rds_connection *conn = cp->cp_conn; 140 struct rds_message *rm; 141 unsigned long flags; 142 unsigned int tmp; 143 struct scatterlist *sg; 144 int ret = 0; 145 LIST_HEAD(to_be_dropped); 146 int batch_count; 147 unsigned long send_gen = 0; 148 149 restart: 150 batch_count = 0; 151 152 /* 153 * sendmsg calls here after having queued its message on the send 154 * queue. We only have one task feeding the connection at a time. If 155 * another thread is already feeding the queue then we back off. This 156 * avoids blocking the caller and trading per-connection data between 157 * caches per message. 158 */ 159 if (!acquire_in_xmit(cp)) { 160 rds_stats_inc(s_send_lock_contention); 161 ret = -ENOMEM; 162 goto out; 163 } 164 165 if (rds_destroy_pending(cp->cp_conn)) { 166 release_in_xmit(cp); 167 ret = -ENETUNREACH; /* dont requeue send work */ 168 goto out; 169 } 170 171 /* 172 * we record the send generation after doing the xmit acquire. 173 * if someone else manages to jump in and do some work, we'll use 174 * this to avoid a goto restart farther down. 175 * 176 * The acquire_in_xmit() check above ensures that only one 177 * caller can increment c_send_gen at any time. 178 */ 179 send_gen = READ_ONCE(cp->cp_send_gen) + 1; 180 WRITE_ONCE(cp->cp_send_gen, send_gen); 181 182 /* 183 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT, 184 * we do the opposite to avoid races. 185 */ 186 if (!rds_conn_path_up(cp)) { 187 release_in_xmit(cp); 188 ret = 0; 189 goto out; 190 } 191 192 if (conn->c_trans->xmit_path_prepare) 193 conn->c_trans->xmit_path_prepare(cp); 194 195 /* 196 * spin trying to push headers and data down the connection until 197 * the connection doesn't make forward progress. 198 */ 199 while (1) { 200 201 rm = cp->cp_xmit_rm; 202 203 /* 204 * If between sending messages, we can send a pending congestion 205 * map update. 206 */ 207 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) { 208 rm = rds_cong_update_alloc(conn); 209 if (IS_ERR(rm)) { 210 ret = PTR_ERR(rm); 211 break; 212 } 213 rm->data.op_active = 1; 214 rm->m_inc.i_conn_path = cp; 215 rm->m_inc.i_conn = cp->cp_conn; 216 217 cp->cp_xmit_rm = rm; 218 } 219 220 /* 221 * If not already working on one, grab the next message. 222 * 223 * cp_xmit_rm holds a ref while we're sending this message down 224 * the connction. We can use this ref while holding the 225 * send_sem.. rds_send_reset() is serialized with it. 226 */ 227 if (!rm) { 228 unsigned int len; 229 230 batch_count++; 231 232 /* we want to process as big a batch as we can, but 233 * we also want to avoid softlockups. If we've been 234 * through a lot of messages, lets back off and see 235 * if anyone else jumps in 236 */ 237 if (batch_count >= send_batch_count) 238 goto over_batch; 239 240 spin_lock_irqsave(&cp->cp_lock, flags); 241 242 if (!list_empty(&cp->cp_send_queue)) { 243 rm = list_entry(cp->cp_send_queue.next, 244 struct rds_message, 245 m_conn_item); 246 rds_message_addref(rm); 247 248 /* 249 * Move the message from the send queue to the retransmit 250 * list right away. 251 */ 252 list_move_tail(&rm->m_conn_item, 253 &cp->cp_retrans); 254 } 255 256 spin_unlock_irqrestore(&cp->cp_lock, flags); 257 258 if (!rm) 259 break; 260 261 /* Unfortunately, the way Infiniband deals with 262 * RDMA to a bad MR key is by moving the entire 263 * queue pair to error state. We cold possibly 264 * recover from that, but right now we drop the 265 * connection. 266 * Therefore, we never retransmit messages with RDMA ops. 267 */ 268 if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) || 269 (rm->rdma.op_active && 270 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) { 271 spin_lock_irqsave(&cp->cp_lock, flags); 272 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) 273 list_move(&rm->m_conn_item, &to_be_dropped); 274 spin_unlock_irqrestore(&cp->cp_lock, flags); 275 continue; 276 } 277 278 /* Require an ACK every once in a while */ 279 len = ntohl(rm->m_inc.i_hdr.h_len); 280 if (cp->cp_unacked_packets == 0 || 281 cp->cp_unacked_bytes < len) { 282 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 283 284 cp->cp_unacked_packets = 285 rds_sysctl_max_unacked_packets; 286 cp->cp_unacked_bytes = 287 rds_sysctl_max_unacked_bytes; 288 rds_stats_inc(s_send_ack_required); 289 } else { 290 cp->cp_unacked_bytes -= len; 291 cp->cp_unacked_packets--; 292 } 293 294 cp->cp_xmit_rm = rm; 295 } 296 297 /* The transport either sends the whole rdma or none of it */ 298 if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) { 299 rm->m_final_op = &rm->rdma; 300 /* The transport owns the mapped memory for now. 301 * You can't unmap it while it's on the send queue 302 */ 303 set_bit(RDS_MSG_MAPPED, &rm->m_flags); 304 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma); 305 if (ret) { 306 clear_bit(RDS_MSG_MAPPED, &rm->m_flags); 307 wake_up_interruptible(&rm->m_flush_wait); 308 break; 309 } 310 cp->cp_xmit_rdma_sent = 1; 311 312 } 313 314 if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) { 315 rm->m_final_op = &rm->atomic; 316 /* The transport owns the mapped memory for now. 317 * You can't unmap it while it's on the send queue 318 */ 319 set_bit(RDS_MSG_MAPPED, &rm->m_flags); 320 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic); 321 if (ret) { 322 clear_bit(RDS_MSG_MAPPED, &rm->m_flags); 323 wake_up_interruptible(&rm->m_flush_wait); 324 break; 325 } 326 cp->cp_xmit_atomic_sent = 1; 327 328 } 329 330 /* 331 * A number of cases require an RDS header to be sent 332 * even if there is no data. 333 * We permit 0-byte sends; rds-ping depends on this. 334 * However, if there are exclusively attached silent ops, 335 * we skip the hdr/data send, to enable silent operation. 336 */ 337 if (rm->data.op_nents == 0) { 338 int ops_present; 339 int all_ops_are_silent = 1; 340 341 ops_present = (rm->atomic.op_active || rm->rdma.op_active); 342 if (rm->atomic.op_active && !rm->atomic.op_silent) 343 all_ops_are_silent = 0; 344 if (rm->rdma.op_active && !rm->rdma.op_silent) 345 all_ops_are_silent = 0; 346 347 if (ops_present && all_ops_are_silent 348 && !rm->m_rdma_cookie) 349 rm->data.op_active = 0; 350 } 351 352 if (rm->data.op_active && !cp->cp_xmit_data_sent) { 353 rm->m_final_op = &rm->data; 354 355 ret = conn->c_trans->xmit(conn, rm, 356 cp->cp_xmit_hdr_off, 357 cp->cp_xmit_sg, 358 cp->cp_xmit_data_off); 359 if (ret <= 0) 360 break; 361 362 if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) { 363 tmp = min_t(int, ret, 364 sizeof(struct rds_header) - 365 cp->cp_xmit_hdr_off); 366 cp->cp_xmit_hdr_off += tmp; 367 ret -= tmp; 368 } 369 370 sg = &rm->data.op_sg[cp->cp_xmit_sg]; 371 while (ret) { 372 tmp = min_t(int, ret, sg->length - 373 cp->cp_xmit_data_off); 374 cp->cp_xmit_data_off += tmp; 375 ret -= tmp; 376 if (cp->cp_xmit_data_off == sg->length) { 377 cp->cp_xmit_data_off = 0; 378 sg++; 379 cp->cp_xmit_sg++; 380 BUG_ON(ret != 0 && cp->cp_xmit_sg == 381 rm->data.op_nents); 382 } 383 } 384 385 if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) && 386 (cp->cp_xmit_sg == rm->data.op_nents)) 387 cp->cp_xmit_data_sent = 1; 388 } 389 390 /* 391 * A rm will only take multiple times through this loop 392 * if there is a data op. Thus, if the data is sent (or there was 393 * none), then we're done with the rm. 394 */ 395 if (!rm->data.op_active || cp->cp_xmit_data_sent) { 396 cp->cp_xmit_rm = NULL; 397 cp->cp_xmit_sg = 0; 398 cp->cp_xmit_hdr_off = 0; 399 cp->cp_xmit_data_off = 0; 400 cp->cp_xmit_rdma_sent = 0; 401 cp->cp_xmit_atomic_sent = 0; 402 cp->cp_xmit_data_sent = 0; 403 404 rds_message_put(rm); 405 } 406 } 407 408 over_batch: 409 if (conn->c_trans->xmit_path_complete) 410 conn->c_trans->xmit_path_complete(cp); 411 release_in_xmit(cp); 412 413 /* Nuke any messages we decided not to retransmit. */ 414 if (!list_empty(&to_be_dropped)) { 415 /* irqs on here, so we can put(), unlike above */ 416 list_for_each_entry(rm, &to_be_dropped, m_conn_item) 417 rds_message_put(rm); 418 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED); 419 } 420 421 /* 422 * Other senders can queue a message after we last test the send queue 423 * but before we clear RDS_IN_XMIT. In that case they'd back off and 424 * not try and send their newly queued message. We need to check the 425 * send queue after having cleared RDS_IN_XMIT so that their message 426 * doesn't get stuck on the send queue. 427 * 428 * If the transport cannot continue (i.e ret != 0), then it must 429 * call us when more room is available, such as from the tx 430 * completion handler. 431 * 432 * We have an extra generation check here so that if someone manages 433 * to jump in after our release_in_xmit, we'll see that they have done 434 * some work and we will skip our goto 435 */ 436 if (ret == 0) { 437 bool raced; 438 439 smp_mb(); 440 raced = send_gen != READ_ONCE(cp->cp_send_gen); 441 442 if ((test_bit(0, &conn->c_map_queued) || 443 !list_empty(&cp->cp_send_queue)) && !raced) { 444 if (batch_count < send_batch_count) 445 goto restart; 446 rcu_read_lock(); 447 if (rds_destroy_pending(cp->cp_conn)) 448 ret = -ENETUNREACH; 449 else 450 queue_delayed_work(rds_wq, &cp->cp_send_w, 1); 451 rcu_read_unlock(); 452 } else if (raced) { 453 rds_stats_inc(s_send_lock_queue_raced); 454 } 455 } 456 out: 457 return ret; 458 } 459 EXPORT_SYMBOL_GPL(rds_send_xmit); 460 461 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm) 462 { 463 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); 464 465 assert_spin_locked(&rs->rs_lock); 466 467 BUG_ON(rs->rs_snd_bytes < len); 468 rs->rs_snd_bytes -= len; 469 470 if (rs->rs_snd_bytes == 0) 471 rds_stats_inc(s_send_queue_empty); 472 } 473 474 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack, 475 is_acked_func is_acked) 476 { 477 if (is_acked) 478 return is_acked(rm, ack); 479 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack; 480 } 481 482 /* 483 * This is pretty similar to what happens below in the ACK 484 * handling code - except that we call here as soon as we get 485 * the IB send completion on the RDMA op and the accompanying 486 * message. 487 */ 488 void rds_rdma_send_complete(struct rds_message *rm, int status) 489 { 490 struct rds_sock *rs = NULL; 491 struct rm_rdma_op *ro; 492 struct rds_notifier *notifier; 493 unsigned long flags; 494 unsigned int notify = 0; 495 496 spin_lock_irqsave(&rm->m_rs_lock, flags); 497 498 notify = rm->rdma.op_notify | rm->data.op_notify; 499 ro = &rm->rdma; 500 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) && 501 ro->op_active && notify && ro->op_notifier) { 502 notifier = ro->op_notifier; 503 rs = rm->m_rs; 504 sock_hold(rds_rs_to_sk(rs)); 505 506 notifier->n_status = status; 507 spin_lock(&rs->rs_lock); 508 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); 509 spin_unlock(&rs->rs_lock); 510 511 ro->op_notifier = NULL; 512 } 513 514 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 515 516 if (rs) { 517 rds_wake_sk_sleep(rs); 518 sock_put(rds_rs_to_sk(rs)); 519 } 520 } 521 EXPORT_SYMBOL_GPL(rds_rdma_send_complete); 522 523 /* 524 * Just like above, except looks at atomic op 525 */ 526 void rds_atomic_send_complete(struct rds_message *rm, int status) 527 { 528 struct rds_sock *rs = NULL; 529 struct rm_atomic_op *ao; 530 struct rds_notifier *notifier; 531 unsigned long flags; 532 533 spin_lock_irqsave(&rm->m_rs_lock, flags); 534 535 ao = &rm->atomic; 536 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) 537 && ao->op_active && ao->op_notify && ao->op_notifier) { 538 notifier = ao->op_notifier; 539 rs = rm->m_rs; 540 sock_hold(rds_rs_to_sk(rs)); 541 542 notifier->n_status = status; 543 spin_lock(&rs->rs_lock); 544 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); 545 spin_unlock(&rs->rs_lock); 546 547 ao->op_notifier = NULL; 548 } 549 550 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 551 552 if (rs) { 553 rds_wake_sk_sleep(rs); 554 sock_put(rds_rs_to_sk(rs)); 555 } 556 } 557 EXPORT_SYMBOL_GPL(rds_atomic_send_complete); 558 559 /* 560 * This is the same as rds_rdma_send_complete except we 561 * don't do any locking - we have all the ingredients (message, 562 * socket, socket lock) and can just move the notifier. 563 */ 564 static inline void 565 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status) 566 { 567 struct rm_rdma_op *ro; 568 struct rm_atomic_op *ao; 569 570 ro = &rm->rdma; 571 if (ro->op_active && ro->op_notify && ro->op_notifier) { 572 ro->op_notifier->n_status = status; 573 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue); 574 ro->op_notifier = NULL; 575 } 576 577 ao = &rm->atomic; 578 if (ao->op_active && ao->op_notify && ao->op_notifier) { 579 ao->op_notifier->n_status = status; 580 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue); 581 ao->op_notifier = NULL; 582 } 583 584 /* No need to wake the app - caller does this */ 585 } 586 587 /* 588 * This removes messages from the socket's list if they're on it. The list 589 * argument must be private to the caller, we must be able to modify it 590 * without locks. The messages must have a reference held for their 591 * position on the list. This function will drop that reference after 592 * removing the messages from the 'messages' list regardless of if it found 593 * the messages on the socket list or not. 594 */ 595 static void rds_send_remove_from_sock(struct list_head *messages, int status) 596 { 597 unsigned long flags; 598 struct rds_sock *rs = NULL; 599 struct rds_message *rm; 600 601 while (!list_empty(messages)) { 602 int was_on_sock = 0; 603 604 rm = list_entry(messages->next, struct rds_message, 605 m_conn_item); 606 list_del_init(&rm->m_conn_item); 607 608 /* 609 * If we see this flag cleared then we're *sure* that someone 610 * else beat us to removing it from the sock. If we race 611 * with their flag update we'll get the lock and then really 612 * see that the flag has been cleared. 613 * 614 * The message spinlock makes sure nobody clears rm->m_rs 615 * while we're messing with it. It does not prevent the 616 * message from being removed from the socket, though. 617 */ 618 spin_lock_irqsave(&rm->m_rs_lock, flags); 619 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) 620 goto unlock_and_drop; 621 622 if (rs != rm->m_rs) { 623 if (rs) { 624 rds_wake_sk_sleep(rs); 625 sock_put(rds_rs_to_sk(rs)); 626 } 627 rs = rm->m_rs; 628 if (rs) 629 sock_hold(rds_rs_to_sk(rs)); 630 } 631 if (!rs) 632 goto unlock_and_drop; 633 spin_lock(&rs->rs_lock); 634 635 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) { 636 struct rm_rdma_op *ro = &rm->rdma; 637 struct rds_notifier *notifier; 638 639 list_del_init(&rm->m_sock_item); 640 rds_send_sndbuf_remove(rs, rm); 641 642 if (ro->op_active && ro->op_notifier && 643 (ro->op_notify || (ro->op_recverr && status))) { 644 notifier = ro->op_notifier; 645 list_add_tail(¬ifier->n_list, 646 &rs->rs_notify_queue); 647 if (!notifier->n_status) 648 notifier->n_status = status; 649 rm->rdma.op_notifier = NULL; 650 } 651 was_on_sock = 1; 652 } 653 spin_unlock(&rs->rs_lock); 654 655 unlock_and_drop: 656 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 657 rds_message_put(rm); 658 if (was_on_sock) 659 rds_message_put(rm); 660 } 661 662 if (rs) { 663 rds_wake_sk_sleep(rs); 664 sock_put(rds_rs_to_sk(rs)); 665 } 666 } 667 668 /* 669 * Transports call here when they've determined that the receiver queued 670 * messages up to, and including, the given sequence number. Messages are 671 * moved to the retrans queue when rds_send_xmit picks them off the send 672 * queue. This means that in the TCP case, the message may not have been 673 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked 674 * checks the RDS_MSG_HAS_ACK_SEQ bit. 675 */ 676 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack, 677 is_acked_func is_acked) 678 { 679 struct rds_message *rm, *tmp; 680 unsigned long flags; 681 LIST_HEAD(list); 682 683 spin_lock_irqsave(&cp->cp_lock, flags); 684 685 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { 686 if (!rds_send_is_acked(rm, ack, is_acked)) 687 break; 688 689 list_move(&rm->m_conn_item, &list); 690 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags); 691 } 692 693 /* order flag updates with spin locks */ 694 if (!list_empty(&list)) 695 smp_mb__after_atomic(); 696 697 spin_unlock_irqrestore(&cp->cp_lock, flags); 698 699 /* now remove the messages from the sock list as needed */ 700 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS); 701 } 702 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked); 703 704 void rds_send_drop_acked(struct rds_connection *conn, u64 ack, 705 is_acked_func is_acked) 706 { 707 WARN_ON(conn->c_trans->t_mp_capable); 708 rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked); 709 } 710 EXPORT_SYMBOL_GPL(rds_send_drop_acked); 711 712 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest) 713 { 714 struct rds_message *rm, *tmp; 715 struct rds_connection *conn; 716 struct rds_conn_path *cp; 717 unsigned long flags; 718 LIST_HEAD(list); 719 720 /* get all the messages we're dropping under the rs lock */ 721 spin_lock_irqsave(&rs->rs_lock, flags); 722 723 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) { 724 if (dest && 725 (!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) || 726 dest->sin6_port != rm->m_inc.i_hdr.h_dport)) 727 continue; 728 729 list_move(&rm->m_sock_item, &list); 730 rds_send_sndbuf_remove(rs, rm); 731 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags); 732 } 733 734 /* order flag updates with the rs lock */ 735 smp_mb__after_atomic(); 736 737 spin_unlock_irqrestore(&rs->rs_lock, flags); 738 739 if (list_empty(&list)) 740 return; 741 742 /* Remove the messages from the conn */ 743 list_for_each_entry(rm, &list, m_sock_item) { 744 745 conn = rm->m_inc.i_conn; 746 if (conn->c_trans->t_mp_capable) 747 cp = rm->m_inc.i_conn_path; 748 else 749 cp = &conn->c_path[0]; 750 751 spin_lock_irqsave(&cp->cp_lock, flags); 752 /* 753 * Maybe someone else beat us to removing rm from the conn. 754 * If we race with their flag update we'll get the lock and 755 * then really see that the flag has been cleared. 756 */ 757 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) { 758 spin_unlock_irqrestore(&cp->cp_lock, flags); 759 continue; 760 } 761 list_del_init(&rm->m_conn_item); 762 spin_unlock_irqrestore(&cp->cp_lock, flags); 763 764 /* 765 * Couldn't grab m_rs_lock in top loop (lock ordering), 766 * but we can now. 767 */ 768 spin_lock_irqsave(&rm->m_rs_lock, flags); 769 770 spin_lock(&rs->rs_lock); 771 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); 772 spin_unlock(&rs->rs_lock); 773 774 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 775 776 rds_message_put(rm); 777 } 778 779 rds_wake_sk_sleep(rs); 780 781 while (!list_empty(&list)) { 782 rm = list_entry(list.next, struct rds_message, m_sock_item); 783 list_del_init(&rm->m_sock_item); 784 rds_message_wait(rm); 785 786 /* just in case the code above skipped this message 787 * because RDS_MSG_ON_CONN wasn't set, run it again here 788 * taking m_rs_lock is the only thing that keeps us 789 * from racing with ack processing. 790 */ 791 spin_lock_irqsave(&rm->m_rs_lock, flags); 792 793 spin_lock(&rs->rs_lock); 794 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); 795 spin_unlock(&rs->rs_lock); 796 797 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 798 799 rds_message_put(rm); 800 } 801 } 802 803 /* 804 * we only want this to fire once so we use the callers 'queued'. It's 805 * possible that another thread can race with us and remove the 806 * message from the flow with RDS_CANCEL_SENT_TO. 807 */ 808 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn, 809 struct rds_conn_path *cp, 810 struct rds_message *rm, __be16 sport, 811 __be16 dport, int *queued) 812 { 813 unsigned long flags; 814 u32 len; 815 816 if (*queued) 817 goto out; 818 819 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); 820 821 /* this is the only place which holds both the socket's rs_lock 822 * and the connection's c_lock */ 823 spin_lock_irqsave(&rs->rs_lock, flags); 824 825 /* 826 * If there is a little space in sndbuf, we don't queue anything, 827 * and userspace gets -EAGAIN. But poll() indicates there's send 828 * room. This can lead to bad behavior (spinning) if snd_bytes isn't 829 * freed up by incoming acks. So we check the *old* value of 830 * rs_snd_bytes here to allow the last msg to exceed the buffer, 831 * and poll() now knows no more data can be sent. 832 */ 833 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) { 834 rs->rs_snd_bytes += len; 835 836 /* let recv side know we are close to send space exhaustion. 837 * This is probably not the optimal way to do it, as this 838 * means we set the flag on *all* messages as soon as our 839 * throughput hits a certain threshold. 840 */ 841 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2) 842 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 843 844 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue); 845 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags); 846 rds_message_addref(rm); 847 sock_hold(rds_rs_to_sk(rs)); 848 rm->m_rs = rs; 849 850 /* The code ordering is a little weird, but we're 851 trying to minimize the time we hold c_lock */ 852 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0); 853 rm->m_inc.i_conn = conn; 854 rm->m_inc.i_conn_path = cp; 855 rds_message_addref(rm); 856 857 spin_lock(&cp->cp_lock); 858 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++); 859 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue); 860 set_bit(RDS_MSG_ON_CONN, &rm->m_flags); 861 spin_unlock(&cp->cp_lock); 862 863 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n", 864 rm, len, rs, rs->rs_snd_bytes, 865 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence)); 866 867 *queued = 1; 868 } 869 870 spin_unlock_irqrestore(&rs->rs_lock, flags); 871 out: 872 return *queued; 873 } 874 875 /* 876 * rds_message is getting to be quite complicated, and we'd like to allocate 877 * it all in one go. This figures out how big it needs to be up front. 878 */ 879 static int rds_rm_size(struct msghdr *msg, int num_sgs) 880 { 881 struct cmsghdr *cmsg; 882 int size = 0; 883 int cmsg_groups = 0; 884 int retval; 885 bool zcopy_cookie = false; 886 887 for_each_cmsghdr(cmsg, msg) { 888 if (!CMSG_OK(msg, cmsg)) 889 return -EINVAL; 890 891 if (cmsg->cmsg_level != SOL_RDS) 892 continue; 893 894 switch (cmsg->cmsg_type) { 895 case RDS_CMSG_RDMA_ARGS: 896 cmsg_groups |= 1; 897 retval = rds_rdma_extra_size(CMSG_DATA(cmsg)); 898 if (retval < 0) 899 return retval; 900 size += retval; 901 902 break; 903 904 case RDS_CMSG_ZCOPY_COOKIE: 905 zcopy_cookie = true; 906 /* fall through */ 907 908 case RDS_CMSG_RDMA_DEST: 909 case RDS_CMSG_RDMA_MAP: 910 cmsg_groups |= 2; 911 /* these are valid but do no add any size */ 912 break; 913 914 case RDS_CMSG_ATOMIC_CSWP: 915 case RDS_CMSG_ATOMIC_FADD: 916 case RDS_CMSG_MASKED_ATOMIC_CSWP: 917 case RDS_CMSG_MASKED_ATOMIC_FADD: 918 cmsg_groups |= 1; 919 size += sizeof(struct scatterlist); 920 break; 921 922 default: 923 return -EINVAL; 924 } 925 926 } 927 928 if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie) 929 return -EINVAL; 930 931 size += num_sgs * sizeof(struct scatterlist); 932 933 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */ 934 if (cmsg_groups == 3) 935 return -EINVAL; 936 937 return size; 938 } 939 940 static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm, 941 struct cmsghdr *cmsg) 942 { 943 u32 *cookie; 944 945 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) || 946 !rm->data.op_mmp_znotifier) 947 return -EINVAL; 948 cookie = CMSG_DATA(cmsg); 949 rm->data.op_mmp_znotifier->z_cookie = *cookie; 950 return 0; 951 } 952 953 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm, 954 struct msghdr *msg, int *allocated_mr) 955 { 956 struct cmsghdr *cmsg; 957 int ret = 0; 958 959 for_each_cmsghdr(cmsg, msg) { 960 if (!CMSG_OK(msg, cmsg)) 961 return -EINVAL; 962 963 if (cmsg->cmsg_level != SOL_RDS) 964 continue; 965 966 /* As a side effect, RDMA_DEST and RDMA_MAP will set 967 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr. 968 */ 969 switch (cmsg->cmsg_type) { 970 case RDS_CMSG_RDMA_ARGS: 971 ret = rds_cmsg_rdma_args(rs, rm, cmsg); 972 break; 973 974 case RDS_CMSG_RDMA_DEST: 975 ret = rds_cmsg_rdma_dest(rs, rm, cmsg); 976 break; 977 978 case RDS_CMSG_RDMA_MAP: 979 ret = rds_cmsg_rdma_map(rs, rm, cmsg); 980 if (!ret) 981 *allocated_mr = 1; 982 else if (ret == -ENODEV) 983 /* Accommodate the get_mr() case which can fail 984 * if connection isn't established yet. 985 */ 986 ret = -EAGAIN; 987 break; 988 case RDS_CMSG_ATOMIC_CSWP: 989 case RDS_CMSG_ATOMIC_FADD: 990 case RDS_CMSG_MASKED_ATOMIC_CSWP: 991 case RDS_CMSG_MASKED_ATOMIC_FADD: 992 ret = rds_cmsg_atomic(rs, rm, cmsg); 993 break; 994 995 case RDS_CMSG_ZCOPY_COOKIE: 996 ret = rds_cmsg_zcopy(rs, rm, cmsg); 997 break; 998 999 default: 1000 return -EINVAL; 1001 } 1002 1003 if (ret) 1004 break; 1005 } 1006 1007 return ret; 1008 } 1009 1010 static int rds_send_mprds_hash(struct rds_sock *rs, struct rds_connection *conn) 1011 { 1012 int hash; 1013 1014 if (conn->c_npaths == 0) 1015 hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS); 1016 else 1017 hash = RDS_MPATH_HASH(rs, conn->c_npaths); 1018 if (conn->c_npaths == 0 && hash != 0) { 1019 rds_send_ping(conn, 0); 1020 1021 /* The underlying connection is not up yet. Need to wait 1022 * until it is up to be sure that the non-zero c_path can be 1023 * used. But if we are interrupted, we have to use the zero 1024 * c_path in case the connection ends up being non-MP capable. 1025 */ 1026 if (conn->c_npaths == 0) 1027 if (wait_event_interruptible(conn->c_hs_waitq, 1028 conn->c_npaths != 0)) 1029 hash = 0; 1030 if (conn->c_npaths == 1) 1031 hash = 0; 1032 } 1033 return hash; 1034 } 1035 1036 static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes) 1037 { 1038 struct rds_rdma_args *args; 1039 struct cmsghdr *cmsg; 1040 1041 for_each_cmsghdr(cmsg, msg) { 1042 if (!CMSG_OK(msg, cmsg)) 1043 return -EINVAL; 1044 1045 if (cmsg->cmsg_level != SOL_RDS) 1046 continue; 1047 1048 if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) { 1049 if (cmsg->cmsg_len < 1050 CMSG_LEN(sizeof(struct rds_rdma_args))) 1051 return -EINVAL; 1052 args = CMSG_DATA(cmsg); 1053 *rdma_bytes += args->remote_vec.bytes; 1054 } 1055 } 1056 return 0; 1057 } 1058 1059 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len) 1060 { 1061 struct sock *sk = sock->sk; 1062 struct rds_sock *rs = rds_sk_to_rs(sk); 1063 DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); 1064 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1065 __be16 dport; 1066 struct rds_message *rm = NULL; 1067 struct rds_connection *conn; 1068 int ret = 0; 1069 int queued = 0, allocated_mr = 0; 1070 int nonblock = msg->msg_flags & MSG_DONTWAIT; 1071 long timeo = sock_sndtimeo(sk, nonblock); 1072 struct rds_conn_path *cpath; 1073 struct in6_addr daddr; 1074 __u32 scope_id = 0; 1075 size_t total_payload_len = payload_len, rdma_payload_len = 0; 1076 bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) && 1077 sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY)); 1078 int num_sgs = ceil(payload_len, PAGE_SIZE); 1079 int namelen; 1080 1081 /* Mirror Linux UDP mirror of BSD error message compatibility */ 1082 /* XXX: Perhaps MSG_MORE someday */ 1083 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) { 1084 ret = -EOPNOTSUPP; 1085 goto out; 1086 } 1087 1088 namelen = msg->msg_namelen; 1089 if (namelen != 0) { 1090 if (namelen < sizeof(*usin)) { 1091 ret = -EINVAL; 1092 goto out; 1093 } 1094 switch (usin->sin_family) { 1095 case AF_INET: 1096 if (usin->sin_addr.s_addr == htonl(INADDR_ANY) || 1097 usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) || 1098 IN_MULTICAST(ntohl(usin->sin_addr.s_addr))) { 1099 ret = -EINVAL; 1100 goto out; 1101 } 1102 ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr); 1103 dport = usin->sin_port; 1104 break; 1105 1106 #if IS_ENABLED(CONFIG_IPV6) 1107 case AF_INET6: { 1108 int addr_type; 1109 1110 if (namelen < sizeof(*sin6)) { 1111 ret = -EINVAL; 1112 goto out; 1113 } 1114 addr_type = ipv6_addr_type(&sin6->sin6_addr); 1115 if (!(addr_type & IPV6_ADDR_UNICAST)) { 1116 __be32 addr4; 1117 1118 if (!(addr_type & IPV6_ADDR_MAPPED)) { 1119 ret = -EINVAL; 1120 goto out; 1121 } 1122 1123 /* It is a mapped address. Need to do some 1124 * sanity checks. 1125 */ 1126 addr4 = sin6->sin6_addr.s6_addr32[3]; 1127 if (addr4 == htonl(INADDR_ANY) || 1128 addr4 == htonl(INADDR_BROADCAST) || 1129 IN_MULTICAST(ntohl(addr4))) { 1130 ret = -EINVAL; 1131 goto out; 1132 } 1133 } 1134 if (addr_type & IPV6_ADDR_LINKLOCAL) { 1135 if (sin6->sin6_scope_id == 0) { 1136 ret = -EINVAL; 1137 goto out; 1138 } 1139 scope_id = sin6->sin6_scope_id; 1140 } 1141 1142 daddr = sin6->sin6_addr; 1143 dport = sin6->sin6_port; 1144 break; 1145 } 1146 #endif 1147 1148 default: 1149 ret = -EINVAL; 1150 goto out; 1151 } 1152 } else { 1153 /* We only care about consistency with ->connect() */ 1154 lock_sock(sk); 1155 daddr = rs->rs_conn_addr; 1156 dport = rs->rs_conn_port; 1157 scope_id = rs->rs_bound_scope_id; 1158 release_sock(sk); 1159 } 1160 1161 lock_sock(sk); 1162 if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) { 1163 release_sock(sk); 1164 ret = -ENOTCONN; 1165 goto out; 1166 } else if (namelen != 0) { 1167 /* Cannot send to an IPv4 address using an IPv6 source 1168 * address and cannot send to an IPv6 address using an 1169 * IPv4 source address. 1170 */ 1171 if (ipv6_addr_v4mapped(&daddr) ^ 1172 ipv6_addr_v4mapped(&rs->rs_bound_addr)) { 1173 release_sock(sk); 1174 ret = -EOPNOTSUPP; 1175 goto out; 1176 } 1177 /* If the socket is already bound to a link local address, 1178 * it can only send to peers on the same link. But allow 1179 * communicating beween link local and non-link local address. 1180 */ 1181 if (scope_id != rs->rs_bound_scope_id) { 1182 if (!scope_id) { 1183 scope_id = rs->rs_bound_scope_id; 1184 } else if (rs->rs_bound_scope_id) { 1185 release_sock(sk); 1186 ret = -EINVAL; 1187 goto out; 1188 } 1189 } 1190 } 1191 release_sock(sk); 1192 1193 ret = rds_rdma_bytes(msg, &rdma_payload_len); 1194 if (ret) 1195 goto out; 1196 1197 total_payload_len += rdma_payload_len; 1198 if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) { 1199 ret = -EMSGSIZE; 1200 goto out; 1201 } 1202 1203 if (payload_len > rds_sk_sndbuf(rs)) { 1204 ret = -EMSGSIZE; 1205 goto out; 1206 } 1207 1208 if (zcopy) { 1209 if (rs->rs_transport->t_type != RDS_TRANS_TCP) { 1210 ret = -EOPNOTSUPP; 1211 goto out; 1212 } 1213 num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX); 1214 } 1215 /* size of rm including all sgs */ 1216 ret = rds_rm_size(msg, num_sgs); 1217 if (ret < 0) 1218 goto out; 1219 1220 rm = rds_message_alloc(ret, GFP_KERNEL); 1221 if (!rm) { 1222 ret = -ENOMEM; 1223 goto out; 1224 } 1225 1226 /* Attach data to the rm */ 1227 if (payload_len) { 1228 rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs); 1229 if (!rm->data.op_sg) { 1230 ret = -ENOMEM; 1231 goto out; 1232 } 1233 ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy); 1234 if (ret) 1235 goto out; 1236 } 1237 rm->data.op_active = 1; 1238 1239 rm->m_daddr = daddr; 1240 1241 /* rds_conn_create has a spinlock that runs with IRQ off. 1242 * Caching the conn in the socket helps a lot. */ 1243 if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr)) 1244 conn = rs->rs_conn; 1245 else { 1246 conn = rds_conn_create_outgoing(sock_net(sock->sk), 1247 &rs->rs_bound_addr, &daddr, 1248 rs->rs_transport, 1249 sock->sk->sk_allocation, 1250 scope_id); 1251 if (IS_ERR(conn)) { 1252 ret = PTR_ERR(conn); 1253 goto out; 1254 } 1255 rs->rs_conn = conn; 1256 } 1257 1258 if (conn->c_trans->t_mp_capable) 1259 cpath = &conn->c_path[rds_send_mprds_hash(rs, conn)]; 1260 else 1261 cpath = &conn->c_path[0]; 1262 1263 rm->m_conn_path = cpath; 1264 1265 /* Parse any control messages the user may have included. */ 1266 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr); 1267 if (ret) { 1268 /* Trigger connection so that its ready for the next retry */ 1269 if (ret == -EAGAIN) 1270 rds_conn_connect_if_down(conn); 1271 goto out; 1272 } 1273 1274 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) { 1275 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n", 1276 &rm->rdma, conn->c_trans->xmit_rdma); 1277 ret = -EOPNOTSUPP; 1278 goto out; 1279 } 1280 1281 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) { 1282 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n", 1283 &rm->atomic, conn->c_trans->xmit_atomic); 1284 ret = -EOPNOTSUPP; 1285 goto out; 1286 } 1287 1288 if (rds_destroy_pending(conn)) { 1289 ret = -EAGAIN; 1290 goto out; 1291 } 1292 1293 rds_conn_path_connect_if_down(cpath); 1294 1295 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs); 1296 if (ret) { 1297 rs->rs_seen_congestion = 1; 1298 goto out; 1299 } 1300 while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port, 1301 dport, &queued)) { 1302 rds_stats_inc(s_send_queue_full); 1303 1304 if (nonblock) { 1305 ret = -EAGAIN; 1306 goto out; 1307 } 1308 1309 timeo = wait_event_interruptible_timeout(*sk_sleep(sk), 1310 rds_send_queue_rm(rs, conn, cpath, rm, 1311 rs->rs_bound_port, 1312 dport, 1313 &queued), 1314 timeo); 1315 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo); 1316 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) 1317 continue; 1318 1319 ret = timeo; 1320 if (ret == 0) 1321 ret = -ETIMEDOUT; 1322 goto out; 1323 } 1324 1325 /* 1326 * By now we've committed to the send. We reuse rds_send_worker() 1327 * to retry sends in the rds thread if the transport asks us to. 1328 */ 1329 rds_stats_inc(s_send_queued); 1330 1331 ret = rds_send_xmit(cpath); 1332 if (ret == -ENOMEM || ret == -EAGAIN) { 1333 ret = 0; 1334 rcu_read_lock(); 1335 if (rds_destroy_pending(cpath->cp_conn)) 1336 ret = -ENETUNREACH; 1337 else 1338 queue_delayed_work(rds_wq, &cpath->cp_send_w, 1); 1339 rcu_read_unlock(); 1340 } 1341 if (ret) 1342 goto out; 1343 rds_message_put(rm); 1344 return payload_len; 1345 1346 out: 1347 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly. 1348 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN 1349 * or in any other way, we need to destroy the MR again */ 1350 if (allocated_mr) 1351 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1); 1352 1353 if (rm) 1354 rds_message_put(rm); 1355 return ret; 1356 } 1357 1358 /* 1359 * send out a probe. Can be shared by rds_send_ping, 1360 * rds_send_pong, rds_send_hb. 1361 * rds_send_hb should use h_flags 1362 * RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED 1363 * or 1364 * RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED 1365 */ 1366 static int 1367 rds_send_probe(struct rds_conn_path *cp, __be16 sport, 1368 __be16 dport, u8 h_flags) 1369 { 1370 struct rds_message *rm; 1371 unsigned long flags; 1372 int ret = 0; 1373 1374 rm = rds_message_alloc(0, GFP_ATOMIC); 1375 if (!rm) { 1376 ret = -ENOMEM; 1377 goto out; 1378 } 1379 1380 rm->m_daddr = cp->cp_conn->c_faddr; 1381 rm->data.op_active = 1; 1382 1383 rds_conn_path_connect_if_down(cp); 1384 1385 ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL); 1386 if (ret) 1387 goto out; 1388 1389 spin_lock_irqsave(&cp->cp_lock, flags); 1390 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue); 1391 set_bit(RDS_MSG_ON_CONN, &rm->m_flags); 1392 rds_message_addref(rm); 1393 rm->m_inc.i_conn = cp->cp_conn; 1394 rm->m_inc.i_conn_path = cp; 1395 1396 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 1397 cp->cp_next_tx_seq); 1398 rm->m_inc.i_hdr.h_flags |= h_flags; 1399 cp->cp_next_tx_seq++; 1400 1401 if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) && 1402 cp->cp_conn->c_trans->t_mp_capable) { 1403 u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS); 1404 u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num); 1405 1406 rds_message_add_extension(&rm->m_inc.i_hdr, 1407 RDS_EXTHDR_NPATHS, &npaths, 1408 sizeof(npaths)); 1409 rds_message_add_extension(&rm->m_inc.i_hdr, 1410 RDS_EXTHDR_GEN_NUM, 1411 &my_gen_num, 1412 sizeof(u32)); 1413 } 1414 spin_unlock_irqrestore(&cp->cp_lock, flags); 1415 1416 rds_stats_inc(s_send_queued); 1417 rds_stats_inc(s_send_pong); 1418 1419 /* schedule the send work on rds_wq */ 1420 rcu_read_lock(); 1421 if (!rds_destroy_pending(cp->cp_conn)) 1422 queue_delayed_work(rds_wq, &cp->cp_send_w, 1); 1423 rcu_read_unlock(); 1424 1425 rds_message_put(rm); 1426 return 0; 1427 1428 out: 1429 if (rm) 1430 rds_message_put(rm); 1431 return ret; 1432 } 1433 1434 int 1435 rds_send_pong(struct rds_conn_path *cp, __be16 dport) 1436 { 1437 return rds_send_probe(cp, 0, dport, 0); 1438 } 1439 1440 void 1441 rds_send_ping(struct rds_connection *conn, int cp_index) 1442 { 1443 unsigned long flags; 1444 struct rds_conn_path *cp = &conn->c_path[cp_index]; 1445 1446 spin_lock_irqsave(&cp->cp_lock, flags); 1447 if (conn->c_ping_triggered) { 1448 spin_unlock_irqrestore(&cp->cp_lock, flags); 1449 return; 1450 } 1451 conn->c_ping_triggered = 1; 1452 spin_unlock_irqrestore(&cp->cp_lock, flags); 1453 rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0); 1454 } 1455 EXPORT_SYMBOL_GPL(rds_send_ping); 1456