xref: /linux/net/rds/send.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
42 
43 #include "rds.h"
44 
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46  * time to time and briefly release the CPU. Otherwise the softlock watchdog
47  * will kick our shin.
48  * Also, it seems fairer to not let one busy connection stall all the
49  * others.
50  *
51  * send_batch_count is the number of times we'll loop in send_xmit. Setting
52  * it to 0 will restore the old behavior (where we looped until we had
53  * drained the queue).
54  */
55 static int send_batch_count = SZ_1K;
56 module_param(send_batch_count, int, 0444);
57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58 
59 static void rds_send_remove_from_sock(struct list_head *messages, int status);
60 
61 /*
62  * Reset the send state.  Callers must ensure that this doesn't race with
63  * rds_send_xmit().
64  */
65 void rds_send_reset(struct rds_connection *conn)
66 {
67 	struct rds_message *rm, *tmp;
68 	unsigned long flags;
69 
70 	if (conn->c_xmit_rm) {
71 		rm = conn->c_xmit_rm;
72 		conn->c_xmit_rm = NULL;
73 		/* Tell the user the RDMA op is no longer mapped by the
74 		 * transport. This isn't entirely true (it's flushed out
75 		 * independently) but as the connection is down, there's
76 		 * no ongoing RDMA to/from that memory */
77 		rds_message_unmapped(rm);
78 		rds_message_put(rm);
79 	}
80 
81 	conn->c_xmit_sg = 0;
82 	conn->c_xmit_hdr_off = 0;
83 	conn->c_xmit_data_off = 0;
84 	conn->c_xmit_atomic_sent = 0;
85 	conn->c_xmit_rdma_sent = 0;
86 	conn->c_xmit_data_sent = 0;
87 
88 	conn->c_map_queued = 0;
89 
90 	conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
91 	conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
92 
93 	/* Mark messages as retransmissions, and move them to the send q */
94 	spin_lock_irqsave(&conn->c_lock, flags);
95 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
96 		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98 	}
99 	list_splice_init(&conn->c_retrans, &conn->c_send_queue);
100 	spin_unlock_irqrestore(&conn->c_lock, flags);
101 }
102 
103 static int acquire_in_xmit(struct rds_connection *conn)
104 {
105 	return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
106 }
107 
108 static void release_in_xmit(struct rds_connection *conn)
109 {
110 	clear_bit(RDS_IN_XMIT, &conn->c_flags);
111 	smp_mb__after_atomic();
112 	/*
113 	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
114 	 * hot path and finding waiters is very rare.  We don't want to walk
115 	 * the system-wide hashed waitqueue buckets in the fast path only to
116 	 * almost never find waiters.
117 	 */
118 	if (waitqueue_active(&conn->c_waitq))
119 		wake_up_all(&conn->c_waitq);
120 }
121 
122 /*
123  * We're making the conscious trade-off here to only send one message
124  * down the connection at a time.
125  *   Pro:
126  *      - tx queueing is a simple fifo list
127  *   	- reassembly is optional and easily done by transports per conn
128  *      - no per flow rx lookup at all, straight to the socket
129  *   	- less per-frag memory and wire overhead
130  *   Con:
131  *      - queued acks can be delayed behind large messages
132  *   Depends:
133  *      - small message latency is higher behind queued large messages
134  *      - large message latency isn't starved by intervening small sends
135  */
136 int rds_send_xmit(struct rds_connection *conn)
137 {
138 	struct rds_message *rm;
139 	unsigned long flags;
140 	unsigned int tmp;
141 	struct scatterlist *sg;
142 	int ret = 0;
143 	LIST_HEAD(to_be_dropped);
144 	int batch_count;
145 	unsigned long send_gen = 0;
146 
147 restart:
148 	batch_count = 0;
149 
150 	/*
151 	 * sendmsg calls here after having queued its message on the send
152 	 * queue.  We only have one task feeding the connection at a time.  If
153 	 * another thread is already feeding the queue then we back off.  This
154 	 * avoids blocking the caller and trading per-connection data between
155 	 * caches per message.
156 	 */
157 	if (!acquire_in_xmit(conn)) {
158 		rds_stats_inc(s_send_lock_contention);
159 		ret = -ENOMEM;
160 		goto out;
161 	}
162 
163 	/*
164 	 * we record the send generation after doing the xmit acquire.
165 	 * if someone else manages to jump in and do some work, we'll use
166 	 * this to avoid a goto restart farther down.
167 	 *
168 	 * The acquire_in_xmit() check above ensures that only one
169 	 * caller can increment c_send_gen at any time.
170 	 */
171 	conn->c_send_gen++;
172 	send_gen = conn->c_send_gen;
173 
174 	/*
175 	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
176 	 * we do the opposite to avoid races.
177 	 */
178 	if (!rds_conn_up(conn)) {
179 		release_in_xmit(conn);
180 		ret = 0;
181 		goto out;
182 	}
183 
184 	if (conn->c_trans->xmit_prepare)
185 		conn->c_trans->xmit_prepare(conn);
186 
187 	/*
188 	 * spin trying to push headers and data down the connection until
189 	 * the connection doesn't make forward progress.
190 	 */
191 	while (1) {
192 
193 		rm = conn->c_xmit_rm;
194 
195 		/*
196 		 * If between sending messages, we can send a pending congestion
197 		 * map update.
198 		 */
199 		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
200 			rm = rds_cong_update_alloc(conn);
201 			if (IS_ERR(rm)) {
202 				ret = PTR_ERR(rm);
203 				break;
204 			}
205 			rm->data.op_active = 1;
206 
207 			conn->c_xmit_rm = rm;
208 		}
209 
210 		/*
211 		 * If not already working on one, grab the next message.
212 		 *
213 		 * c_xmit_rm holds a ref while we're sending this message down
214 		 * the connction.  We can use this ref while holding the
215 		 * send_sem.. rds_send_reset() is serialized with it.
216 		 */
217 		if (!rm) {
218 			unsigned int len;
219 
220 			batch_count++;
221 
222 			/* we want to process as big a batch as we can, but
223 			 * we also want to avoid softlockups.  If we've been
224 			 * through a lot of messages, lets back off and see
225 			 * if anyone else jumps in
226 			 */
227 			if (batch_count >= send_batch_count)
228 				goto over_batch;
229 
230 			spin_lock_irqsave(&conn->c_lock, flags);
231 
232 			if (!list_empty(&conn->c_send_queue)) {
233 				rm = list_entry(conn->c_send_queue.next,
234 						struct rds_message,
235 						m_conn_item);
236 				rds_message_addref(rm);
237 
238 				/*
239 				 * Move the message from the send queue to the retransmit
240 				 * list right away.
241 				 */
242 				list_move_tail(&rm->m_conn_item, &conn->c_retrans);
243 			}
244 
245 			spin_unlock_irqrestore(&conn->c_lock, flags);
246 
247 			if (!rm)
248 				break;
249 
250 			/* Unfortunately, the way Infiniband deals with
251 			 * RDMA to a bad MR key is by moving the entire
252 			 * queue pair to error state. We cold possibly
253 			 * recover from that, but right now we drop the
254 			 * connection.
255 			 * Therefore, we never retransmit messages with RDMA ops.
256 			 */
257 			if (rm->rdma.op_active &&
258 			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
259 				spin_lock_irqsave(&conn->c_lock, flags);
260 				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
261 					list_move(&rm->m_conn_item, &to_be_dropped);
262 				spin_unlock_irqrestore(&conn->c_lock, flags);
263 				continue;
264 			}
265 
266 			/* Require an ACK every once in a while */
267 			len = ntohl(rm->m_inc.i_hdr.h_len);
268 			if (conn->c_unacked_packets == 0 ||
269 			    conn->c_unacked_bytes < len) {
270 				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
271 
272 				conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
273 				conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
274 				rds_stats_inc(s_send_ack_required);
275 			} else {
276 				conn->c_unacked_bytes -= len;
277 				conn->c_unacked_packets--;
278 			}
279 
280 			conn->c_xmit_rm = rm;
281 		}
282 
283 		/* The transport either sends the whole rdma or none of it */
284 		if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
285 			rm->m_final_op = &rm->rdma;
286 			/* The transport owns the mapped memory for now.
287 			 * You can't unmap it while it's on the send queue
288 			 */
289 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
290 			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
291 			if (ret) {
292 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
293 				wake_up_interruptible(&rm->m_flush_wait);
294 				break;
295 			}
296 			conn->c_xmit_rdma_sent = 1;
297 
298 		}
299 
300 		if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
301 			rm->m_final_op = &rm->atomic;
302 			/* The transport owns the mapped memory for now.
303 			 * You can't unmap it while it's on the send queue
304 			 */
305 			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
306 			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
307 			if (ret) {
308 				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
309 				wake_up_interruptible(&rm->m_flush_wait);
310 				break;
311 			}
312 			conn->c_xmit_atomic_sent = 1;
313 
314 		}
315 
316 		/*
317 		 * A number of cases require an RDS header to be sent
318 		 * even if there is no data.
319 		 * We permit 0-byte sends; rds-ping depends on this.
320 		 * However, if there are exclusively attached silent ops,
321 		 * we skip the hdr/data send, to enable silent operation.
322 		 */
323 		if (rm->data.op_nents == 0) {
324 			int ops_present;
325 			int all_ops_are_silent = 1;
326 
327 			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
328 			if (rm->atomic.op_active && !rm->atomic.op_silent)
329 				all_ops_are_silent = 0;
330 			if (rm->rdma.op_active && !rm->rdma.op_silent)
331 				all_ops_are_silent = 0;
332 
333 			if (ops_present && all_ops_are_silent
334 			    && !rm->m_rdma_cookie)
335 				rm->data.op_active = 0;
336 		}
337 
338 		if (rm->data.op_active && !conn->c_xmit_data_sent) {
339 			rm->m_final_op = &rm->data;
340 			ret = conn->c_trans->xmit(conn, rm,
341 						  conn->c_xmit_hdr_off,
342 						  conn->c_xmit_sg,
343 						  conn->c_xmit_data_off);
344 			if (ret <= 0)
345 				break;
346 
347 			if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
348 				tmp = min_t(int, ret,
349 					    sizeof(struct rds_header) -
350 					    conn->c_xmit_hdr_off);
351 				conn->c_xmit_hdr_off += tmp;
352 				ret -= tmp;
353 			}
354 
355 			sg = &rm->data.op_sg[conn->c_xmit_sg];
356 			while (ret) {
357 				tmp = min_t(int, ret, sg->length -
358 						      conn->c_xmit_data_off);
359 				conn->c_xmit_data_off += tmp;
360 				ret -= tmp;
361 				if (conn->c_xmit_data_off == sg->length) {
362 					conn->c_xmit_data_off = 0;
363 					sg++;
364 					conn->c_xmit_sg++;
365 					BUG_ON(ret != 0 &&
366 					       conn->c_xmit_sg == rm->data.op_nents);
367 				}
368 			}
369 
370 			if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
371 			    (conn->c_xmit_sg == rm->data.op_nents))
372 				conn->c_xmit_data_sent = 1;
373 		}
374 
375 		/*
376 		 * A rm will only take multiple times through this loop
377 		 * if there is a data op. Thus, if the data is sent (or there was
378 		 * none), then we're done with the rm.
379 		 */
380 		if (!rm->data.op_active || conn->c_xmit_data_sent) {
381 			conn->c_xmit_rm = NULL;
382 			conn->c_xmit_sg = 0;
383 			conn->c_xmit_hdr_off = 0;
384 			conn->c_xmit_data_off = 0;
385 			conn->c_xmit_rdma_sent = 0;
386 			conn->c_xmit_atomic_sent = 0;
387 			conn->c_xmit_data_sent = 0;
388 
389 			rds_message_put(rm);
390 		}
391 	}
392 
393 over_batch:
394 	if (conn->c_trans->xmit_complete)
395 		conn->c_trans->xmit_complete(conn);
396 	release_in_xmit(conn);
397 
398 	/* Nuke any messages we decided not to retransmit. */
399 	if (!list_empty(&to_be_dropped)) {
400 		/* irqs on here, so we can put(), unlike above */
401 		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
402 			rds_message_put(rm);
403 		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
404 	}
405 
406 	/*
407 	 * Other senders can queue a message after we last test the send queue
408 	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
409 	 * not try and send their newly queued message.  We need to check the
410 	 * send queue after having cleared RDS_IN_XMIT so that their message
411 	 * doesn't get stuck on the send queue.
412 	 *
413 	 * If the transport cannot continue (i.e ret != 0), then it must
414 	 * call us when more room is available, such as from the tx
415 	 * completion handler.
416 	 *
417 	 * We have an extra generation check here so that if someone manages
418 	 * to jump in after our release_in_xmit, we'll see that they have done
419 	 * some work and we will skip our goto
420 	 */
421 	if (ret == 0) {
422 		smp_mb();
423 		if ((test_bit(0, &conn->c_map_queued) ||
424 		     !list_empty(&conn->c_send_queue)) &&
425 		    send_gen == conn->c_send_gen) {
426 			rds_stats_inc(s_send_lock_queue_raced);
427 			if (batch_count < send_batch_count)
428 				goto restart;
429 			queue_delayed_work(rds_wq, &conn->c_send_w, 1);
430 		}
431 	}
432 out:
433 	return ret;
434 }
435 EXPORT_SYMBOL_GPL(rds_send_xmit);
436 
437 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
438 {
439 	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
440 
441 	assert_spin_locked(&rs->rs_lock);
442 
443 	BUG_ON(rs->rs_snd_bytes < len);
444 	rs->rs_snd_bytes -= len;
445 
446 	if (rs->rs_snd_bytes == 0)
447 		rds_stats_inc(s_send_queue_empty);
448 }
449 
450 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
451 				    is_acked_func is_acked)
452 {
453 	if (is_acked)
454 		return is_acked(rm, ack);
455 	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
456 }
457 
458 /*
459  * This is pretty similar to what happens below in the ACK
460  * handling code - except that we call here as soon as we get
461  * the IB send completion on the RDMA op and the accompanying
462  * message.
463  */
464 void rds_rdma_send_complete(struct rds_message *rm, int status)
465 {
466 	struct rds_sock *rs = NULL;
467 	struct rm_rdma_op *ro;
468 	struct rds_notifier *notifier;
469 	unsigned long flags;
470 
471 	spin_lock_irqsave(&rm->m_rs_lock, flags);
472 
473 	ro = &rm->rdma;
474 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
475 	    ro->op_active && ro->op_notify && ro->op_notifier) {
476 		notifier = ro->op_notifier;
477 		rs = rm->m_rs;
478 		sock_hold(rds_rs_to_sk(rs));
479 
480 		notifier->n_status = status;
481 		spin_lock(&rs->rs_lock);
482 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
483 		spin_unlock(&rs->rs_lock);
484 
485 		ro->op_notifier = NULL;
486 	}
487 
488 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
489 
490 	if (rs) {
491 		rds_wake_sk_sleep(rs);
492 		sock_put(rds_rs_to_sk(rs));
493 	}
494 }
495 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
496 
497 /*
498  * Just like above, except looks at atomic op
499  */
500 void rds_atomic_send_complete(struct rds_message *rm, int status)
501 {
502 	struct rds_sock *rs = NULL;
503 	struct rm_atomic_op *ao;
504 	struct rds_notifier *notifier;
505 	unsigned long flags;
506 
507 	spin_lock_irqsave(&rm->m_rs_lock, flags);
508 
509 	ao = &rm->atomic;
510 	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
511 	    && ao->op_active && ao->op_notify && ao->op_notifier) {
512 		notifier = ao->op_notifier;
513 		rs = rm->m_rs;
514 		sock_hold(rds_rs_to_sk(rs));
515 
516 		notifier->n_status = status;
517 		spin_lock(&rs->rs_lock);
518 		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
519 		spin_unlock(&rs->rs_lock);
520 
521 		ao->op_notifier = NULL;
522 	}
523 
524 	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
525 
526 	if (rs) {
527 		rds_wake_sk_sleep(rs);
528 		sock_put(rds_rs_to_sk(rs));
529 	}
530 }
531 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
532 
533 /*
534  * This is the same as rds_rdma_send_complete except we
535  * don't do any locking - we have all the ingredients (message,
536  * socket, socket lock) and can just move the notifier.
537  */
538 static inline void
539 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
540 {
541 	struct rm_rdma_op *ro;
542 	struct rm_atomic_op *ao;
543 
544 	ro = &rm->rdma;
545 	if (ro->op_active && ro->op_notify && ro->op_notifier) {
546 		ro->op_notifier->n_status = status;
547 		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
548 		ro->op_notifier = NULL;
549 	}
550 
551 	ao = &rm->atomic;
552 	if (ao->op_active && ao->op_notify && ao->op_notifier) {
553 		ao->op_notifier->n_status = status;
554 		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
555 		ao->op_notifier = NULL;
556 	}
557 
558 	/* No need to wake the app - caller does this */
559 }
560 
561 /*
562  * This is called from the IB send completion when we detect
563  * a RDMA operation that failed with remote access error.
564  * So speed is not an issue here.
565  */
566 struct rds_message *rds_send_get_message(struct rds_connection *conn,
567 					 struct rm_rdma_op *op)
568 {
569 	struct rds_message *rm, *tmp, *found = NULL;
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(&conn->c_lock, flags);
573 
574 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
575 		if (&rm->rdma == op) {
576 			atomic_inc(&rm->m_refcount);
577 			found = rm;
578 			goto out;
579 		}
580 	}
581 
582 	list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
583 		if (&rm->rdma == op) {
584 			atomic_inc(&rm->m_refcount);
585 			found = rm;
586 			break;
587 		}
588 	}
589 
590 out:
591 	spin_unlock_irqrestore(&conn->c_lock, flags);
592 
593 	return found;
594 }
595 EXPORT_SYMBOL_GPL(rds_send_get_message);
596 
597 /*
598  * This removes messages from the socket's list if they're on it.  The list
599  * argument must be private to the caller, we must be able to modify it
600  * without locks.  The messages must have a reference held for their
601  * position on the list.  This function will drop that reference after
602  * removing the messages from the 'messages' list regardless of if it found
603  * the messages on the socket list or not.
604  */
605 static void rds_send_remove_from_sock(struct list_head *messages, int status)
606 {
607 	unsigned long flags;
608 	struct rds_sock *rs = NULL;
609 	struct rds_message *rm;
610 
611 	while (!list_empty(messages)) {
612 		int was_on_sock = 0;
613 
614 		rm = list_entry(messages->next, struct rds_message,
615 				m_conn_item);
616 		list_del_init(&rm->m_conn_item);
617 
618 		/*
619 		 * If we see this flag cleared then we're *sure* that someone
620 		 * else beat us to removing it from the sock.  If we race
621 		 * with their flag update we'll get the lock and then really
622 		 * see that the flag has been cleared.
623 		 *
624 		 * The message spinlock makes sure nobody clears rm->m_rs
625 		 * while we're messing with it. It does not prevent the
626 		 * message from being removed from the socket, though.
627 		 */
628 		spin_lock_irqsave(&rm->m_rs_lock, flags);
629 		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
630 			goto unlock_and_drop;
631 
632 		if (rs != rm->m_rs) {
633 			if (rs) {
634 				rds_wake_sk_sleep(rs);
635 				sock_put(rds_rs_to_sk(rs));
636 			}
637 			rs = rm->m_rs;
638 			if (rs)
639 				sock_hold(rds_rs_to_sk(rs));
640 		}
641 		if (!rs)
642 			goto unlock_and_drop;
643 		spin_lock(&rs->rs_lock);
644 
645 		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
646 			struct rm_rdma_op *ro = &rm->rdma;
647 			struct rds_notifier *notifier;
648 
649 			list_del_init(&rm->m_sock_item);
650 			rds_send_sndbuf_remove(rs, rm);
651 
652 			if (ro->op_active && ro->op_notifier &&
653 			       (ro->op_notify || (ro->op_recverr && status))) {
654 				notifier = ro->op_notifier;
655 				list_add_tail(&notifier->n_list,
656 						&rs->rs_notify_queue);
657 				if (!notifier->n_status)
658 					notifier->n_status = status;
659 				rm->rdma.op_notifier = NULL;
660 			}
661 			was_on_sock = 1;
662 			rm->m_rs = NULL;
663 		}
664 		spin_unlock(&rs->rs_lock);
665 
666 unlock_and_drop:
667 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
668 		rds_message_put(rm);
669 		if (was_on_sock)
670 			rds_message_put(rm);
671 	}
672 
673 	if (rs) {
674 		rds_wake_sk_sleep(rs);
675 		sock_put(rds_rs_to_sk(rs));
676 	}
677 }
678 
679 /*
680  * Transports call here when they've determined that the receiver queued
681  * messages up to, and including, the given sequence number.  Messages are
682  * moved to the retrans queue when rds_send_xmit picks them off the send
683  * queue. This means that in the TCP case, the message may not have been
684  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
685  * checks the RDS_MSG_HAS_ACK_SEQ bit.
686  */
687 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
688 			 is_acked_func is_acked)
689 {
690 	struct rds_message *rm, *tmp;
691 	unsigned long flags;
692 	LIST_HEAD(list);
693 
694 	spin_lock_irqsave(&conn->c_lock, flags);
695 
696 	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
697 		if (!rds_send_is_acked(rm, ack, is_acked))
698 			break;
699 
700 		list_move(&rm->m_conn_item, &list);
701 		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
702 	}
703 
704 	/* order flag updates with spin locks */
705 	if (!list_empty(&list))
706 		smp_mb__after_atomic();
707 
708 	spin_unlock_irqrestore(&conn->c_lock, flags);
709 
710 	/* now remove the messages from the sock list as needed */
711 	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
712 }
713 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
714 
715 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
716 {
717 	struct rds_message *rm, *tmp;
718 	struct rds_connection *conn;
719 	unsigned long flags;
720 	LIST_HEAD(list);
721 
722 	/* get all the messages we're dropping under the rs lock */
723 	spin_lock_irqsave(&rs->rs_lock, flags);
724 
725 	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
726 		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
727 			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
728 			continue;
729 
730 		list_move(&rm->m_sock_item, &list);
731 		rds_send_sndbuf_remove(rs, rm);
732 		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
733 	}
734 
735 	/* order flag updates with the rs lock */
736 	smp_mb__after_atomic();
737 
738 	spin_unlock_irqrestore(&rs->rs_lock, flags);
739 
740 	if (list_empty(&list))
741 		return;
742 
743 	/* Remove the messages from the conn */
744 	list_for_each_entry(rm, &list, m_sock_item) {
745 
746 		conn = rm->m_inc.i_conn;
747 
748 		spin_lock_irqsave(&conn->c_lock, flags);
749 		/*
750 		 * Maybe someone else beat us to removing rm from the conn.
751 		 * If we race with their flag update we'll get the lock and
752 		 * then really see that the flag has been cleared.
753 		 */
754 		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
755 			spin_unlock_irqrestore(&conn->c_lock, flags);
756 			spin_lock_irqsave(&rm->m_rs_lock, flags);
757 			rm->m_rs = NULL;
758 			spin_unlock_irqrestore(&rm->m_rs_lock, flags);
759 			continue;
760 		}
761 		list_del_init(&rm->m_conn_item);
762 		spin_unlock_irqrestore(&conn->c_lock, flags);
763 
764 		/*
765 		 * Couldn't grab m_rs_lock in top loop (lock ordering),
766 		 * but we can now.
767 		 */
768 		spin_lock_irqsave(&rm->m_rs_lock, flags);
769 
770 		spin_lock(&rs->rs_lock);
771 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
772 		spin_unlock(&rs->rs_lock);
773 
774 		rm->m_rs = NULL;
775 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
776 
777 		rds_message_put(rm);
778 	}
779 
780 	rds_wake_sk_sleep(rs);
781 
782 	while (!list_empty(&list)) {
783 		rm = list_entry(list.next, struct rds_message, m_sock_item);
784 		list_del_init(&rm->m_sock_item);
785 		rds_message_wait(rm);
786 
787 		/* just in case the code above skipped this message
788 		 * because RDS_MSG_ON_CONN wasn't set, run it again here
789 		 * taking m_rs_lock is the only thing that keeps us
790 		 * from racing with ack processing.
791 		 */
792 		spin_lock_irqsave(&rm->m_rs_lock, flags);
793 
794 		spin_lock(&rs->rs_lock);
795 		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
796 		spin_unlock(&rs->rs_lock);
797 
798 		rm->m_rs = NULL;
799 		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
800 
801 		rds_message_put(rm);
802 	}
803 }
804 
805 /*
806  * we only want this to fire once so we use the callers 'queued'.  It's
807  * possible that another thread can race with us and remove the
808  * message from the flow with RDS_CANCEL_SENT_TO.
809  */
810 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
811 			     struct rds_message *rm, __be16 sport,
812 			     __be16 dport, int *queued)
813 {
814 	unsigned long flags;
815 	u32 len;
816 
817 	if (*queued)
818 		goto out;
819 
820 	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
821 
822 	/* this is the only place which holds both the socket's rs_lock
823 	 * and the connection's c_lock */
824 	spin_lock_irqsave(&rs->rs_lock, flags);
825 
826 	/*
827 	 * If there is a little space in sndbuf, we don't queue anything,
828 	 * and userspace gets -EAGAIN. But poll() indicates there's send
829 	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
830 	 * freed up by incoming acks. So we check the *old* value of
831 	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
832 	 * and poll() now knows no more data can be sent.
833 	 */
834 	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
835 		rs->rs_snd_bytes += len;
836 
837 		/* let recv side know we are close to send space exhaustion.
838 		 * This is probably not the optimal way to do it, as this
839 		 * means we set the flag on *all* messages as soon as our
840 		 * throughput hits a certain threshold.
841 		 */
842 		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
843 			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
844 
845 		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
846 		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
847 		rds_message_addref(rm);
848 		rm->m_rs = rs;
849 
850 		/* The code ordering is a little weird, but we're
851 		   trying to minimize the time we hold c_lock */
852 		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
853 		rm->m_inc.i_conn = conn;
854 		rds_message_addref(rm);
855 
856 		spin_lock(&conn->c_lock);
857 		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
858 		list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
859 		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
860 		spin_unlock(&conn->c_lock);
861 
862 		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
863 			 rm, len, rs, rs->rs_snd_bytes,
864 			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
865 
866 		*queued = 1;
867 	}
868 
869 	spin_unlock_irqrestore(&rs->rs_lock, flags);
870 out:
871 	return *queued;
872 }
873 
874 /*
875  * rds_message is getting to be quite complicated, and we'd like to allocate
876  * it all in one go. This figures out how big it needs to be up front.
877  */
878 static int rds_rm_size(struct msghdr *msg, int data_len)
879 {
880 	struct cmsghdr *cmsg;
881 	int size = 0;
882 	int cmsg_groups = 0;
883 	int retval;
884 
885 	for_each_cmsghdr(cmsg, msg) {
886 		if (!CMSG_OK(msg, cmsg))
887 			return -EINVAL;
888 
889 		if (cmsg->cmsg_level != SOL_RDS)
890 			continue;
891 
892 		switch (cmsg->cmsg_type) {
893 		case RDS_CMSG_RDMA_ARGS:
894 			cmsg_groups |= 1;
895 			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
896 			if (retval < 0)
897 				return retval;
898 			size += retval;
899 
900 			break;
901 
902 		case RDS_CMSG_RDMA_DEST:
903 		case RDS_CMSG_RDMA_MAP:
904 			cmsg_groups |= 2;
905 			/* these are valid but do no add any size */
906 			break;
907 
908 		case RDS_CMSG_ATOMIC_CSWP:
909 		case RDS_CMSG_ATOMIC_FADD:
910 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
911 		case RDS_CMSG_MASKED_ATOMIC_FADD:
912 			cmsg_groups |= 1;
913 			size += sizeof(struct scatterlist);
914 			break;
915 
916 		default:
917 			return -EINVAL;
918 		}
919 
920 	}
921 
922 	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
923 
924 	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
925 	if (cmsg_groups == 3)
926 		return -EINVAL;
927 
928 	return size;
929 }
930 
931 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
932 			 struct msghdr *msg, int *allocated_mr)
933 {
934 	struct cmsghdr *cmsg;
935 	int ret = 0;
936 
937 	for_each_cmsghdr(cmsg, msg) {
938 		if (!CMSG_OK(msg, cmsg))
939 			return -EINVAL;
940 
941 		if (cmsg->cmsg_level != SOL_RDS)
942 			continue;
943 
944 		/* As a side effect, RDMA_DEST and RDMA_MAP will set
945 		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
946 		 */
947 		switch (cmsg->cmsg_type) {
948 		case RDS_CMSG_RDMA_ARGS:
949 			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
950 			break;
951 
952 		case RDS_CMSG_RDMA_DEST:
953 			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
954 			break;
955 
956 		case RDS_CMSG_RDMA_MAP:
957 			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
958 			if (!ret)
959 				*allocated_mr = 1;
960 			break;
961 		case RDS_CMSG_ATOMIC_CSWP:
962 		case RDS_CMSG_ATOMIC_FADD:
963 		case RDS_CMSG_MASKED_ATOMIC_CSWP:
964 		case RDS_CMSG_MASKED_ATOMIC_FADD:
965 			ret = rds_cmsg_atomic(rs, rm, cmsg);
966 			break;
967 
968 		default:
969 			return -EINVAL;
970 		}
971 
972 		if (ret)
973 			break;
974 	}
975 
976 	return ret;
977 }
978 
979 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
980 {
981 	struct sock *sk = sock->sk;
982 	struct rds_sock *rs = rds_sk_to_rs(sk);
983 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
984 	__be32 daddr;
985 	__be16 dport;
986 	struct rds_message *rm = NULL;
987 	struct rds_connection *conn;
988 	int ret = 0;
989 	int queued = 0, allocated_mr = 0;
990 	int nonblock = msg->msg_flags & MSG_DONTWAIT;
991 	long timeo = sock_sndtimeo(sk, nonblock);
992 
993 	/* Mirror Linux UDP mirror of BSD error message compatibility */
994 	/* XXX: Perhaps MSG_MORE someday */
995 	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
996 		ret = -EOPNOTSUPP;
997 		goto out;
998 	}
999 
1000 	if (msg->msg_namelen) {
1001 		/* XXX fail non-unicast destination IPs? */
1002 		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
1003 			ret = -EINVAL;
1004 			goto out;
1005 		}
1006 		daddr = usin->sin_addr.s_addr;
1007 		dport = usin->sin_port;
1008 	} else {
1009 		/* We only care about consistency with ->connect() */
1010 		lock_sock(sk);
1011 		daddr = rs->rs_conn_addr;
1012 		dport = rs->rs_conn_port;
1013 		release_sock(sk);
1014 	}
1015 
1016 	lock_sock(sk);
1017 	if (daddr == 0 || rs->rs_bound_addr == 0) {
1018 		release_sock(sk);
1019 		ret = -ENOTCONN; /* XXX not a great errno */
1020 		goto out;
1021 	}
1022 	release_sock(sk);
1023 
1024 	if (payload_len > rds_sk_sndbuf(rs)) {
1025 		ret = -EMSGSIZE;
1026 		goto out;
1027 	}
1028 
1029 	/* size of rm including all sgs */
1030 	ret = rds_rm_size(msg, payload_len);
1031 	if (ret < 0)
1032 		goto out;
1033 
1034 	rm = rds_message_alloc(ret, GFP_KERNEL);
1035 	if (!rm) {
1036 		ret = -ENOMEM;
1037 		goto out;
1038 	}
1039 
1040 	/* Attach data to the rm */
1041 	if (payload_len) {
1042 		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
1043 		if (!rm->data.op_sg) {
1044 			ret = -ENOMEM;
1045 			goto out;
1046 		}
1047 		ret = rds_message_copy_from_user(rm, &msg->msg_iter);
1048 		if (ret)
1049 			goto out;
1050 	}
1051 	rm->data.op_active = 1;
1052 
1053 	rm->m_daddr = daddr;
1054 
1055 	/* rds_conn_create has a spinlock that runs with IRQ off.
1056 	 * Caching the conn in the socket helps a lot. */
1057 	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1058 		conn = rs->rs_conn;
1059 	else {
1060 		conn = rds_conn_create_outgoing(sock_net(sock->sk),
1061 						rs->rs_bound_addr, daddr,
1062 					rs->rs_transport,
1063 					sock->sk->sk_allocation);
1064 		if (IS_ERR(conn)) {
1065 			ret = PTR_ERR(conn);
1066 			goto out;
1067 		}
1068 		rs->rs_conn = conn;
1069 	}
1070 
1071 	/* Parse any control messages the user may have included. */
1072 	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1073 	if (ret)
1074 		goto out;
1075 
1076 	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1077 		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1078 			       &rm->rdma, conn->c_trans->xmit_rdma);
1079 		ret = -EOPNOTSUPP;
1080 		goto out;
1081 	}
1082 
1083 	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1084 		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1085 			       &rm->atomic, conn->c_trans->xmit_atomic);
1086 		ret = -EOPNOTSUPP;
1087 		goto out;
1088 	}
1089 
1090 	rds_conn_connect_if_down(conn);
1091 
1092 	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1093 	if (ret) {
1094 		rs->rs_seen_congestion = 1;
1095 		goto out;
1096 	}
1097 
1098 	while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1099 				  dport, &queued)) {
1100 		rds_stats_inc(s_send_queue_full);
1101 
1102 		if (nonblock) {
1103 			ret = -EAGAIN;
1104 			goto out;
1105 		}
1106 
1107 		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1108 					rds_send_queue_rm(rs, conn, rm,
1109 							  rs->rs_bound_port,
1110 							  dport,
1111 							  &queued),
1112 					timeo);
1113 		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1114 		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1115 			continue;
1116 
1117 		ret = timeo;
1118 		if (ret == 0)
1119 			ret = -ETIMEDOUT;
1120 		goto out;
1121 	}
1122 
1123 	/*
1124 	 * By now we've committed to the send.  We reuse rds_send_worker()
1125 	 * to retry sends in the rds thread if the transport asks us to.
1126 	 */
1127 	rds_stats_inc(s_send_queued);
1128 
1129 	ret = rds_send_xmit(conn);
1130 	if (ret == -ENOMEM || ret == -EAGAIN)
1131 		queue_delayed_work(rds_wq, &conn->c_send_w, 1);
1132 
1133 	rds_message_put(rm);
1134 	return payload_len;
1135 
1136 out:
1137 	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1138 	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1139 	 * or in any other way, we need to destroy the MR again */
1140 	if (allocated_mr)
1141 		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1142 
1143 	if (rm)
1144 		rds_message_put(rm);
1145 	return ret;
1146 }
1147 
1148 /*
1149  * Reply to a ping packet.
1150  */
1151 int
1152 rds_send_pong(struct rds_connection *conn, __be16 dport)
1153 {
1154 	struct rds_message *rm;
1155 	unsigned long flags;
1156 	int ret = 0;
1157 
1158 	rm = rds_message_alloc(0, GFP_ATOMIC);
1159 	if (!rm) {
1160 		ret = -ENOMEM;
1161 		goto out;
1162 	}
1163 
1164 	rm->m_daddr = conn->c_faddr;
1165 	rm->data.op_active = 1;
1166 
1167 	rds_conn_connect_if_down(conn);
1168 
1169 	ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1170 	if (ret)
1171 		goto out;
1172 
1173 	spin_lock_irqsave(&conn->c_lock, flags);
1174 	list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1175 	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1176 	rds_message_addref(rm);
1177 	rm->m_inc.i_conn = conn;
1178 
1179 	rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1180 				    conn->c_next_tx_seq);
1181 	conn->c_next_tx_seq++;
1182 	spin_unlock_irqrestore(&conn->c_lock, flags);
1183 
1184 	rds_stats_inc(s_send_queued);
1185 	rds_stats_inc(s_send_pong);
1186 
1187 	/* schedule the send work on rds_wq */
1188 	queue_delayed_work(rds_wq, &conn->c_send_w, 1);
1189 
1190 	rds_message_put(rm);
1191 	return 0;
1192 
1193 out:
1194 	if (rm)
1195 		rds_message_put(rm);
1196 	return ret;
1197 }
1198