1 /* 2 * Copyright (c) 2006 Oracle. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/gfp.h> 35 #include <net/sock.h> 36 #include <linux/in.h> 37 #include <linux/list.h> 38 #include <linux/ratelimit.h> 39 40 #include "rds.h" 41 42 /* When transmitting messages in rds_send_xmit, we need to emerge from 43 * time to time and briefly release the CPU. Otherwise the softlock watchdog 44 * will kick our shin. 45 * Also, it seems fairer to not let one busy connection stall all the 46 * others. 47 * 48 * send_batch_count is the number of times we'll loop in send_xmit. Setting 49 * it to 0 will restore the old behavior (where we looped until we had 50 * drained the queue). 51 */ 52 static int send_batch_count = 64; 53 module_param(send_batch_count, int, 0444); 54 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue"); 55 56 static void rds_send_remove_from_sock(struct list_head *messages, int status); 57 58 /* 59 * Reset the send state. Callers must ensure that this doesn't race with 60 * rds_send_xmit(). 61 */ 62 void rds_send_reset(struct rds_connection *conn) 63 { 64 struct rds_message *rm, *tmp; 65 unsigned long flags; 66 67 if (conn->c_xmit_rm) { 68 rm = conn->c_xmit_rm; 69 conn->c_xmit_rm = NULL; 70 /* Tell the user the RDMA op is no longer mapped by the 71 * transport. This isn't entirely true (it's flushed out 72 * independently) but as the connection is down, there's 73 * no ongoing RDMA to/from that memory */ 74 rds_message_unmapped(rm); 75 rds_message_put(rm); 76 } 77 78 conn->c_xmit_sg = 0; 79 conn->c_xmit_hdr_off = 0; 80 conn->c_xmit_data_off = 0; 81 conn->c_xmit_atomic_sent = 0; 82 conn->c_xmit_rdma_sent = 0; 83 conn->c_xmit_data_sent = 0; 84 85 conn->c_map_queued = 0; 86 87 conn->c_unacked_packets = rds_sysctl_max_unacked_packets; 88 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes; 89 90 /* Mark messages as retransmissions, and move them to the send q */ 91 spin_lock_irqsave(&conn->c_lock, flags); 92 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { 93 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 94 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags); 95 } 96 list_splice_init(&conn->c_retrans, &conn->c_send_queue); 97 spin_unlock_irqrestore(&conn->c_lock, flags); 98 } 99 100 static int acquire_in_xmit(struct rds_connection *conn) 101 { 102 return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0; 103 } 104 105 static void release_in_xmit(struct rds_connection *conn) 106 { 107 clear_bit(RDS_IN_XMIT, &conn->c_flags); 108 smp_mb__after_clear_bit(); 109 /* 110 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a 111 * hot path and finding waiters is very rare. We don't want to walk 112 * the system-wide hashed waitqueue buckets in the fast path only to 113 * almost never find waiters. 114 */ 115 if (waitqueue_active(&conn->c_waitq)) 116 wake_up_all(&conn->c_waitq); 117 } 118 119 /* 120 * We're making the conscious trade-off here to only send one message 121 * down the connection at a time. 122 * Pro: 123 * - tx queueing is a simple fifo list 124 * - reassembly is optional and easily done by transports per conn 125 * - no per flow rx lookup at all, straight to the socket 126 * - less per-frag memory and wire overhead 127 * Con: 128 * - queued acks can be delayed behind large messages 129 * Depends: 130 * - small message latency is higher behind queued large messages 131 * - large message latency isn't starved by intervening small sends 132 */ 133 int rds_send_xmit(struct rds_connection *conn) 134 { 135 struct rds_message *rm; 136 unsigned long flags; 137 unsigned int tmp; 138 struct scatterlist *sg; 139 int ret = 0; 140 LIST_HEAD(to_be_dropped); 141 142 restart: 143 144 /* 145 * sendmsg calls here after having queued its message on the send 146 * queue. We only have one task feeding the connection at a time. If 147 * another thread is already feeding the queue then we back off. This 148 * avoids blocking the caller and trading per-connection data between 149 * caches per message. 150 */ 151 if (!acquire_in_xmit(conn)) { 152 rds_stats_inc(s_send_lock_contention); 153 ret = -ENOMEM; 154 goto out; 155 } 156 157 /* 158 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT, 159 * we do the opposite to avoid races. 160 */ 161 if (!rds_conn_up(conn)) { 162 release_in_xmit(conn); 163 ret = 0; 164 goto out; 165 } 166 167 if (conn->c_trans->xmit_prepare) 168 conn->c_trans->xmit_prepare(conn); 169 170 /* 171 * spin trying to push headers and data down the connection until 172 * the connection doesn't make forward progress. 173 */ 174 while (1) { 175 176 rm = conn->c_xmit_rm; 177 178 /* 179 * If between sending messages, we can send a pending congestion 180 * map update. 181 */ 182 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) { 183 rm = rds_cong_update_alloc(conn); 184 if (IS_ERR(rm)) { 185 ret = PTR_ERR(rm); 186 break; 187 } 188 rm->data.op_active = 1; 189 190 conn->c_xmit_rm = rm; 191 } 192 193 /* 194 * If not already working on one, grab the next message. 195 * 196 * c_xmit_rm holds a ref while we're sending this message down 197 * the connction. We can use this ref while holding the 198 * send_sem.. rds_send_reset() is serialized with it. 199 */ 200 if (!rm) { 201 unsigned int len; 202 203 spin_lock_irqsave(&conn->c_lock, flags); 204 205 if (!list_empty(&conn->c_send_queue)) { 206 rm = list_entry(conn->c_send_queue.next, 207 struct rds_message, 208 m_conn_item); 209 rds_message_addref(rm); 210 211 /* 212 * Move the message from the send queue to the retransmit 213 * list right away. 214 */ 215 list_move_tail(&rm->m_conn_item, &conn->c_retrans); 216 } 217 218 spin_unlock_irqrestore(&conn->c_lock, flags); 219 220 if (!rm) 221 break; 222 223 /* Unfortunately, the way Infiniband deals with 224 * RDMA to a bad MR key is by moving the entire 225 * queue pair to error state. We cold possibly 226 * recover from that, but right now we drop the 227 * connection. 228 * Therefore, we never retransmit messages with RDMA ops. 229 */ 230 if (rm->rdma.op_active && 231 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) { 232 spin_lock_irqsave(&conn->c_lock, flags); 233 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) 234 list_move(&rm->m_conn_item, &to_be_dropped); 235 spin_unlock_irqrestore(&conn->c_lock, flags); 236 continue; 237 } 238 239 /* Require an ACK every once in a while */ 240 len = ntohl(rm->m_inc.i_hdr.h_len); 241 if (conn->c_unacked_packets == 0 || 242 conn->c_unacked_bytes < len) { 243 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 244 245 conn->c_unacked_packets = rds_sysctl_max_unacked_packets; 246 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes; 247 rds_stats_inc(s_send_ack_required); 248 } else { 249 conn->c_unacked_bytes -= len; 250 conn->c_unacked_packets--; 251 } 252 253 conn->c_xmit_rm = rm; 254 } 255 256 /* The transport either sends the whole rdma or none of it */ 257 if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) { 258 rm->m_final_op = &rm->rdma; 259 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma); 260 if (ret) 261 break; 262 conn->c_xmit_rdma_sent = 1; 263 264 /* The transport owns the mapped memory for now. 265 * You can't unmap it while it's on the send queue */ 266 set_bit(RDS_MSG_MAPPED, &rm->m_flags); 267 } 268 269 if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) { 270 rm->m_final_op = &rm->atomic; 271 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic); 272 if (ret) 273 break; 274 conn->c_xmit_atomic_sent = 1; 275 276 /* The transport owns the mapped memory for now. 277 * You can't unmap it while it's on the send queue */ 278 set_bit(RDS_MSG_MAPPED, &rm->m_flags); 279 } 280 281 /* 282 * A number of cases require an RDS header to be sent 283 * even if there is no data. 284 * We permit 0-byte sends; rds-ping depends on this. 285 * However, if there are exclusively attached silent ops, 286 * we skip the hdr/data send, to enable silent operation. 287 */ 288 if (rm->data.op_nents == 0) { 289 int ops_present; 290 int all_ops_are_silent = 1; 291 292 ops_present = (rm->atomic.op_active || rm->rdma.op_active); 293 if (rm->atomic.op_active && !rm->atomic.op_silent) 294 all_ops_are_silent = 0; 295 if (rm->rdma.op_active && !rm->rdma.op_silent) 296 all_ops_are_silent = 0; 297 298 if (ops_present && all_ops_are_silent 299 && !rm->m_rdma_cookie) 300 rm->data.op_active = 0; 301 } 302 303 if (rm->data.op_active && !conn->c_xmit_data_sent) { 304 rm->m_final_op = &rm->data; 305 ret = conn->c_trans->xmit(conn, rm, 306 conn->c_xmit_hdr_off, 307 conn->c_xmit_sg, 308 conn->c_xmit_data_off); 309 if (ret <= 0) 310 break; 311 312 if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) { 313 tmp = min_t(int, ret, 314 sizeof(struct rds_header) - 315 conn->c_xmit_hdr_off); 316 conn->c_xmit_hdr_off += tmp; 317 ret -= tmp; 318 } 319 320 sg = &rm->data.op_sg[conn->c_xmit_sg]; 321 while (ret) { 322 tmp = min_t(int, ret, sg->length - 323 conn->c_xmit_data_off); 324 conn->c_xmit_data_off += tmp; 325 ret -= tmp; 326 if (conn->c_xmit_data_off == sg->length) { 327 conn->c_xmit_data_off = 0; 328 sg++; 329 conn->c_xmit_sg++; 330 BUG_ON(ret != 0 && 331 conn->c_xmit_sg == rm->data.op_nents); 332 } 333 } 334 335 if (conn->c_xmit_hdr_off == sizeof(struct rds_header) && 336 (conn->c_xmit_sg == rm->data.op_nents)) 337 conn->c_xmit_data_sent = 1; 338 } 339 340 /* 341 * A rm will only take multiple times through this loop 342 * if there is a data op. Thus, if the data is sent (or there was 343 * none), then we're done with the rm. 344 */ 345 if (!rm->data.op_active || conn->c_xmit_data_sent) { 346 conn->c_xmit_rm = NULL; 347 conn->c_xmit_sg = 0; 348 conn->c_xmit_hdr_off = 0; 349 conn->c_xmit_data_off = 0; 350 conn->c_xmit_rdma_sent = 0; 351 conn->c_xmit_atomic_sent = 0; 352 conn->c_xmit_data_sent = 0; 353 354 rds_message_put(rm); 355 } 356 } 357 358 if (conn->c_trans->xmit_complete) 359 conn->c_trans->xmit_complete(conn); 360 361 release_in_xmit(conn); 362 363 /* Nuke any messages we decided not to retransmit. */ 364 if (!list_empty(&to_be_dropped)) { 365 /* irqs on here, so we can put(), unlike above */ 366 list_for_each_entry(rm, &to_be_dropped, m_conn_item) 367 rds_message_put(rm); 368 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED); 369 } 370 371 /* 372 * Other senders can queue a message after we last test the send queue 373 * but before we clear RDS_IN_XMIT. In that case they'd back off and 374 * not try and send their newly queued message. We need to check the 375 * send queue after having cleared RDS_IN_XMIT so that their message 376 * doesn't get stuck on the send queue. 377 * 378 * If the transport cannot continue (i.e ret != 0), then it must 379 * call us when more room is available, such as from the tx 380 * completion handler. 381 */ 382 if (ret == 0) { 383 smp_mb(); 384 if (!list_empty(&conn->c_send_queue)) { 385 rds_stats_inc(s_send_lock_queue_raced); 386 goto restart; 387 } 388 } 389 out: 390 return ret; 391 } 392 393 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm) 394 { 395 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); 396 397 assert_spin_locked(&rs->rs_lock); 398 399 BUG_ON(rs->rs_snd_bytes < len); 400 rs->rs_snd_bytes -= len; 401 402 if (rs->rs_snd_bytes == 0) 403 rds_stats_inc(s_send_queue_empty); 404 } 405 406 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack, 407 is_acked_func is_acked) 408 { 409 if (is_acked) 410 return is_acked(rm, ack); 411 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack; 412 } 413 414 /* 415 * This is pretty similar to what happens below in the ACK 416 * handling code - except that we call here as soon as we get 417 * the IB send completion on the RDMA op and the accompanying 418 * message. 419 */ 420 void rds_rdma_send_complete(struct rds_message *rm, int status) 421 { 422 struct rds_sock *rs = NULL; 423 struct rm_rdma_op *ro; 424 struct rds_notifier *notifier; 425 unsigned long flags; 426 427 spin_lock_irqsave(&rm->m_rs_lock, flags); 428 429 ro = &rm->rdma; 430 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) && 431 ro->op_active && ro->op_notify && ro->op_notifier) { 432 notifier = ro->op_notifier; 433 rs = rm->m_rs; 434 sock_hold(rds_rs_to_sk(rs)); 435 436 notifier->n_status = status; 437 spin_lock(&rs->rs_lock); 438 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); 439 spin_unlock(&rs->rs_lock); 440 441 ro->op_notifier = NULL; 442 } 443 444 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 445 446 if (rs) { 447 rds_wake_sk_sleep(rs); 448 sock_put(rds_rs_to_sk(rs)); 449 } 450 } 451 EXPORT_SYMBOL_GPL(rds_rdma_send_complete); 452 453 /* 454 * Just like above, except looks at atomic op 455 */ 456 void rds_atomic_send_complete(struct rds_message *rm, int status) 457 { 458 struct rds_sock *rs = NULL; 459 struct rm_atomic_op *ao; 460 struct rds_notifier *notifier; 461 unsigned long flags; 462 463 spin_lock_irqsave(&rm->m_rs_lock, flags); 464 465 ao = &rm->atomic; 466 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) 467 && ao->op_active && ao->op_notify && ao->op_notifier) { 468 notifier = ao->op_notifier; 469 rs = rm->m_rs; 470 sock_hold(rds_rs_to_sk(rs)); 471 472 notifier->n_status = status; 473 spin_lock(&rs->rs_lock); 474 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); 475 spin_unlock(&rs->rs_lock); 476 477 ao->op_notifier = NULL; 478 } 479 480 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 481 482 if (rs) { 483 rds_wake_sk_sleep(rs); 484 sock_put(rds_rs_to_sk(rs)); 485 } 486 } 487 EXPORT_SYMBOL_GPL(rds_atomic_send_complete); 488 489 /* 490 * This is the same as rds_rdma_send_complete except we 491 * don't do any locking - we have all the ingredients (message, 492 * socket, socket lock) and can just move the notifier. 493 */ 494 static inline void 495 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status) 496 { 497 struct rm_rdma_op *ro; 498 struct rm_atomic_op *ao; 499 500 ro = &rm->rdma; 501 if (ro->op_active && ro->op_notify && ro->op_notifier) { 502 ro->op_notifier->n_status = status; 503 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue); 504 ro->op_notifier = NULL; 505 } 506 507 ao = &rm->atomic; 508 if (ao->op_active && ao->op_notify && ao->op_notifier) { 509 ao->op_notifier->n_status = status; 510 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue); 511 ao->op_notifier = NULL; 512 } 513 514 /* No need to wake the app - caller does this */ 515 } 516 517 /* 518 * This is called from the IB send completion when we detect 519 * a RDMA operation that failed with remote access error. 520 * So speed is not an issue here. 521 */ 522 struct rds_message *rds_send_get_message(struct rds_connection *conn, 523 struct rm_rdma_op *op) 524 { 525 struct rds_message *rm, *tmp, *found = NULL; 526 unsigned long flags; 527 528 spin_lock_irqsave(&conn->c_lock, flags); 529 530 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { 531 if (&rm->rdma == op) { 532 atomic_inc(&rm->m_refcount); 533 found = rm; 534 goto out; 535 } 536 } 537 538 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) { 539 if (&rm->rdma == op) { 540 atomic_inc(&rm->m_refcount); 541 found = rm; 542 break; 543 } 544 } 545 546 out: 547 spin_unlock_irqrestore(&conn->c_lock, flags); 548 549 return found; 550 } 551 EXPORT_SYMBOL_GPL(rds_send_get_message); 552 553 /* 554 * This removes messages from the socket's list if they're on it. The list 555 * argument must be private to the caller, we must be able to modify it 556 * without locks. The messages must have a reference held for their 557 * position on the list. This function will drop that reference after 558 * removing the messages from the 'messages' list regardless of if it found 559 * the messages on the socket list or not. 560 */ 561 static void rds_send_remove_from_sock(struct list_head *messages, int status) 562 { 563 unsigned long flags; 564 struct rds_sock *rs = NULL; 565 struct rds_message *rm; 566 567 while (!list_empty(messages)) { 568 int was_on_sock = 0; 569 570 rm = list_entry(messages->next, struct rds_message, 571 m_conn_item); 572 list_del_init(&rm->m_conn_item); 573 574 /* 575 * If we see this flag cleared then we're *sure* that someone 576 * else beat us to removing it from the sock. If we race 577 * with their flag update we'll get the lock and then really 578 * see that the flag has been cleared. 579 * 580 * The message spinlock makes sure nobody clears rm->m_rs 581 * while we're messing with it. It does not prevent the 582 * message from being removed from the socket, though. 583 */ 584 spin_lock_irqsave(&rm->m_rs_lock, flags); 585 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) 586 goto unlock_and_drop; 587 588 if (rs != rm->m_rs) { 589 if (rs) { 590 rds_wake_sk_sleep(rs); 591 sock_put(rds_rs_to_sk(rs)); 592 } 593 rs = rm->m_rs; 594 sock_hold(rds_rs_to_sk(rs)); 595 } 596 spin_lock(&rs->rs_lock); 597 598 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) { 599 struct rm_rdma_op *ro = &rm->rdma; 600 struct rds_notifier *notifier; 601 602 list_del_init(&rm->m_sock_item); 603 rds_send_sndbuf_remove(rs, rm); 604 605 if (ro->op_active && ro->op_notifier && 606 (ro->op_notify || (ro->op_recverr && status))) { 607 notifier = ro->op_notifier; 608 list_add_tail(¬ifier->n_list, 609 &rs->rs_notify_queue); 610 if (!notifier->n_status) 611 notifier->n_status = status; 612 rm->rdma.op_notifier = NULL; 613 } 614 was_on_sock = 1; 615 rm->m_rs = NULL; 616 } 617 spin_unlock(&rs->rs_lock); 618 619 unlock_and_drop: 620 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 621 rds_message_put(rm); 622 if (was_on_sock) 623 rds_message_put(rm); 624 } 625 626 if (rs) { 627 rds_wake_sk_sleep(rs); 628 sock_put(rds_rs_to_sk(rs)); 629 } 630 } 631 632 /* 633 * Transports call here when they've determined that the receiver queued 634 * messages up to, and including, the given sequence number. Messages are 635 * moved to the retrans queue when rds_send_xmit picks them off the send 636 * queue. This means that in the TCP case, the message may not have been 637 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked 638 * checks the RDS_MSG_HAS_ACK_SEQ bit. 639 * 640 * XXX It's not clear to me how this is safely serialized with socket 641 * destruction. Maybe it should bail if it sees SOCK_DEAD. 642 */ 643 void rds_send_drop_acked(struct rds_connection *conn, u64 ack, 644 is_acked_func is_acked) 645 { 646 struct rds_message *rm, *tmp; 647 unsigned long flags; 648 LIST_HEAD(list); 649 650 spin_lock_irqsave(&conn->c_lock, flags); 651 652 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { 653 if (!rds_send_is_acked(rm, ack, is_acked)) 654 break; 655 656 list_move(&rm->m_conn_item, &list); 657 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags); 658 } 659 660 /* order flag updates with spin locks */ 661 if (!list_empty(&list)) 662 smp_mb__after_clear_bit(); 663 664 spin_unlock_irqrestore(&conn->c_lock, flags); 665 666 /* now remove the messages from the sock list as needed */ 667 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS); 668 } 669 EXPORT_SYMBOL_GPL(rds_send_drop_acked); 670 671 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest) 672 { 673 struct rds_message *rm, *tmp; 674 struct rds_connection *conn; 675 unsigned long flags; 676 LIST_HEAD(list); 677 678 /* get all the messages we're dropping under the rs lock */ 679 spin_lock_irqsave(&rs->rs_lock, flags); 680 681 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) { 682 if (dest && (dest->sin_addr.s_addr != rm->m_daddr || 683 dest->sin_port != rm->m_inc.i_hdr.h_dport)) 684 continue; 685 686 list_move(&rm->m_sock_item, &list); 687 rds_send_sndbuf_remove(rs, rm); 688 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags); 689 } 690 691 /* order flag updates with the rs lock */ 692 smp_mb__after_clear_bit(); 693 694 spin_unlock_irqrestore(&rs->rs_lock, flags); 695 696 if (list_empty(&list)) 697 return; 698 699 /* Remove the messages from the conn */ 700 list_for_each_entry(rm, &list, m_sock_item) { 701 702 conn = rm->m_inc.i_conn; 703 704 spin_lock_irqsave(&conn->c_lock, flags); 705 /* 706 * Maybe someone else beat us to removing rm from the conn. 707 * If we race with their flag update we'll get the lock and 708 * then really see that the flag has been cleared. 709 */ 710 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) { 711 spin_unlock_irqrestore(&conn->c_lock, flags); 712 continue; 713 } 714 list_del_init(&rm->m_conn_item); 715 spin_unlock_irqrestore(&conn->c_lock, flags); 716 717 /* 718 * Couldn't grab m_rs_lock in top loop (lock ordering), 719 * but we can now. 720 */ 721 spin_lock_irqsave(&rm->m_rs_lock, flags); 722 723 spin_lock(&rs->rs_lock); 724 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); 725 spin_unlock(&rs->rs_lock); 726 727 rm->m_rs = NULL; 728 spin_unlock_irqrestore(&rm->m_rs_lock, flags); 729 730 rds_message_put(rm); 731 } 732 733 rds_wake_sk_sleep(rs); 734 735 while (!list_empty(&list)) { 736 rm = list_entry(list.next, struct rds_message, m_sock_item); 737 list_del_init(&rm->m_sock_item); 738 739 rds_message_wait(rm); 740 rds_message_put(rm); 741 } 742 } 743 744 /* 745 * we only want this to fire once so we use the callers 'queued'. It's 746 * possible that another thread can race with us and remove the 747 * message from the flow with RDS_CANCEL_SENT_TO. 748 */ 749 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn, 750 struct rds_message *rm, __be16 sport, 751 __be16 dport, int *queued) 752 { 753 unsigned long flags; 754 u32 len; 755 756 if (*queued) 757 goto out; 758 759 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); 760 761 /* this is the only place which holds both the socket's rs_lock 762 * and the connection's c_lock */ 763 spin_lock_irqsave(&rs->rs_lock, flags); 764 765 /* 766 * If there is a little space in sndbuf, we don't queue anything, 767 * and userspace gets -EAGAIN. But poll() indicates there's send 768 * room. This can lead to bad behavior (spinning) if snd_bytes isn't 769 * freed up by incoming acks. So we check the *old* value of 770 * rs_snd_bytes here to allow the last msg to exceed the buffer, 771 * and poll() now knows no more data can be sent. 772 */ 773 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) { 774 rs->rs_snd_bytes += len; 775 776 /* let recv side know we are close to send space exhaustion. 777 * This is probably not the optimal way to do it, as this 778 * means we set the flag on *all* messages as soon as our 779 * throughput hits a certain threshold. 780 */ 781 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2) 782 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); 783 784 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue); 785 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags); 786 rds_message_addref(rm); 787 rm->m_rs = rs; 788 789 /* The code ordering is a little weird, but we're 790 trying to minimize the time we hold c_lock */ 791 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0); 792 rm->m_inc.i_conn = conn; 793 rds_message_addref(rm); 794 795 spin_lock(&conn->c_lock); 796 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++); 797 list_add_tail(&rm->m_conn_item, &conn->c_send_queue); 798 set_bit(RDS_MSG_ON_CONN, &rm->m_flags); 799 spin_unlock(&conn->c_lock); 800 801 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n", 802 rm, len, rs, rs->rs_snd_bytes, 803 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence)); 804 805 *queued = 1; 806 } 807 808 spin_unlock_irqrestore(&rs->rs_lock, flags); 809 out: 810 return *queued; 811 } 812 813 /* 814 * rds_message is getting to be quite complicated, and we'd like to allocate 815 * it all in one go. This figures out how big it needs to be up front. 816 */ 817 static int rds_rm_size(struct msghdr *msg, int data_len) 818 { 819 struct cmsghdr *cmsg; 820 int size = 0; 821 int cmsg_groups = 0; 822 int retval; 823 824 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { 825 if (!CMSG_OK(msg, cmsg)) 826 return -EINVAL; 827 828 if (cmsg->cmsg_level != SOL_RDS) 829 continue; 830 831 switch (cmsg->cmsg_type) { 832 case RDS_CMSG_RDMA_ARGS: 833 cmsg_groups |= 1; 834 retval = rds_rdma_extra_size(CMSG_DATA(cmsg)); 835 if (retval < 0) 836 return retval; 837 size += retval; 838 839 break; 840 841 case RDS_CMSG_RDMA_DEST: 842 case RDS_CMSG_RDMA_MAP: 843 cmsg_groups |= 2; 844 /* these are valid but do no add any size */ 845 break; 846 847 case RDS_CMSG_ATOMIC_CSWP: 848 case RDS_CMSG_ATOMIC_FADD: 849 case RDS_CMSG_MASKED_ATOMIC_CSWP: 850 case RDS_CMSG_MASKED_ATOMIC_FADD: 851 cmsg_groups |= 1; 852 size += sizeof(struct scatterlist); 853 break; 854 855 default: 856 return -EINVAL; 857 } 858 859 } 860 861 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist); 862 863 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */ 864 if (cmsg_groups == 3) 865 return -EINVAL; 866 867 return size; 868 } 869 870 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm, 871 struct msghdr *msg, int *allocated_mr) 872 { 873 struct cmsghdr *cmsg; 874 int ret = 0; 875 876 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { 877 if (!CMSG_OK(msg, cmsg)) 878 return -EINVAL; 879 880 if (cmsg->cmsg_level != SOL_RDS) 881 continue; 882 883 /* As a side effect, RDMA_DEST and RDMA_MAP will set 884 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr. 885 */ 886 switch (cmsg->cmsg_type) { 887 case RDS_CMSG_RDMA_ARGS: 888 ret = rds_cmsg_rdma_args(rs, rm, cmsg); 889 break; 890 891 case RDS_CMSG_RDMA_DEST: 892 ret = rds_cmsg_rdma_dest(rs, rm, cmsg); 893 break; 894 895 case RDS_CMSG_RDMA_MAP: 896 ret = rds_cmsg_rdma_map(rs, rm, cmsg); 897 if (!ret) 898 *allocated_mr = 1; 899 break; 900 case RDS_CMSG_ATOMIC_CSWP: 901 case RDS_CMSG_ATOMIC_FADD: 902 case RDS_CMSG_MASKED_ATOMIC_CSWP: 903 case RDS_CMSG_MASKED_ATOMIC_FADD: 904 ret = rds_cmsg_atomic(rs, rm, cmsg); 905 break; 906 907 default: 908 return -EINVAL; 909 } 910 911 if (ret) 912 break; 913 } 914 915 return ret; 916 } 917 918 int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, 919 size_t payload_len) 920 { 921 struct sock *sk = sock->sk; 922 struct rds_sock *rs = rds_sk_to_rs(sk); 923 struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name; 924 __be32 daddr; 925 __be16 dport; 926 struct rds_message *rm = NULL; 927 struct rds_connection *conn; 928 int ret = 0; 929 int queued = 0, allocated_mr = 0; 930 int nonblock = msg->msg_flags & MSG_DONTWAIT; 931 long timeo = sock_sndtimeo(sk, nonblock); 932 933 /* Mirror Linux UDP mirror of BSD error message compatibility */ 934 /* XXX: Perhaps MSG_MORE someday */ 935 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) { 936 printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags); 937 ret = -EOPNOTSUPP; 938 goto out; 939 } 940 941 if (msg->msg_namelen) { 942 /* XXX fail non-unicast destination IPs? */ 943 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) { 944 ret = -EINVAL; 945 goto out; 946 } 947 daddr = usin->sin_addr.s_addr; 948 dport = usin->sin_port; 949 } else { 950 /* We only care about consistency with ->connect() */ 951 lock_sock(sk); 952 daddr = rs->rs_conn_addr; 953 dport = rs->rs_conn_port; 954 release_sock(sk); 955 } 956 957 /* racing with another thread binding seems ok here */ 958 if (daddr == 0 || rs->rs_bound_addr == 0) { 959 ret = -ENOTCONN; /* XXX not a great errno */ 960 goto out; 961 } 962 963 /* size of rm including all sgs */ 964 ret = rds_rm_size(msg, payload_len); 965 if (ret < 0) 966 goto out; 967 968 rm = rds_message_alloc(ret, GFP_KERNEL); 969 if (!rm) { 970 ret = -ENOMEM; 971 goto out; 972 } 973 974 /* Attach data to the rm */ 975 if (payload_len) { 976 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE)); 977 if (!rm->data.op_sg) { 978 ret = -ENOMEM; 979 goto out; 980 } 981 ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len); 982 if (ret) 983 goto out; 984 } 985 rm->data.op_active = 1; 986 987 rm->m_daddr = daddr; 988 989 /* rds_conn_create has a spinlock that runs with IRQ off. 990 * Caching the conn in the socket helps a lot. */ 991 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr) 992 conn = rs->rs_conn; 993 else { 994 conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr, 995 rs->rs_transport, 996 sock->sk->sk_allocation); 997 if (IS_ERR(conn)) { 998 ret = PTR_ERR(conn); 999 goto out; 1000 } 1001 rs->rs_conn = conn; 1002 } 1003 1004 /* Parse any control messages the user may have included. */ 1005 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr); 1006 if (ret) 1007 goto out; 1008 1009 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) { 1010 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n", 1011 &rm->rdma, conn->c_trans->xmit_rdma); 1012 ret = -EOPNOTSUPP; 1013 goto out; 1014 } 1015 1016 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) { 1017 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n", 1018 &rm->atomic, conn->c_trans->xmit_atomic); 1019 ret = -EOPNOTSUPP; 1020 goto out; 1021 } 1022 1023 rds_conn_connect_if_down(conn); 1024 1025 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs); 1026 if (ret) { 1027 rs->rs_seen_congestion = 1; 1028 goto out; 1029 } 1030 1031 while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port, 1032 dport, &queued)) { 1033 rds_stats_inc(s_send_queue_full); 1034 /* XXX make sure this is reasonable */ 1035 if (payload_len > rds_sk_sndbuf(rs)) { 1036 ret = -EMSGSIZE; 1037 goto out; 1038 } 1039 if (nonblock) { 1040 ret = -EAGAIN; 1041 goto out; 1042 } 1043 1044 timeo = wait_event_interruptible_timeout(*sk_sleep(sk), 1045 rds_send_queue_rm(rs, conn, rm, 1046 rs->rs_bound_port, 1047 dport, 1048 &queued), 1049 timeo); 1050 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo); 1051 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) 1052 continue; 1053 1054 ret = timeo; 1055 if (ret == 0) 1056 ret = -ETIMEDOUT; 1057 goto out; 1058 } 1059 1060 /* 1061 * By now we've committed to the send. We reuse rds_send_worker() 1062 * to retry sends in the rds thread if the transport asks us to. 1063 */ 1064 rds_stats_inc(s_send_queued); 1065 1066 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags)) 1067 rds_send_xmit(conn); 1068 1069 rds_message_put(rm); 1070 return payload_len; 1071 1072 out: 1073 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly. 1074 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN 1075 * or in any other way, we need to destroy the MR again */ 1076 if (allocated_mr) 1077 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1); 1078 1079 if (rm) 1080 rds_message_put(rm); 1081 return ret; 1082 } 1083 1084 /* 1085 * Reply to a ping packet. 1086 */ 1087 int 1088 rds_send_pong(struct rds_connection *conn, __be16 dport) 1089 { 1090 struct rds_message *rm; 1091 unsigned long flags; 1092 int ret = 0; 1093 1094 rm = rds_message_alloc(0, GFP_ATOMIC); 1095 if (!rm) { 1096 ret = -ENOMEM; 1097 goto out; 1098 } 1099 1100 rm->m_daddr = conn->c_faddr; 1101 rm->data.op_active = 1; 1102 1103 rds_conn_connect_if_down(conn); 1104 1105 ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL); 1106 if (ret) 1107 goto out; 1108 1109 spin_lock_irqsave(&conn->c_lock, flags); 1110 list_add_tail(&rm->m_conn_item, &conn->c_send_queue); 1111 set_bit(RDS_MSG_ON_CONN, &rm->m_flags); 1112 rds_message_addref(rm); 1113 rm->m_inc.i_conn = conn; 1114 1115 rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport, 1116 conn->c_next_tx_seq); 1117 conn->c_next_tx_seq++; 1118 spin_unlock_irqrestore(&conn->c_lock, flags); 1119 1120 rds_stats_inc(s_send_queued); 1121 rds_stats_inc(s_send_pong); 1122 1123 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags)) 1124 rds_send_xmit(conn); 1125 1126 rds_message_put(rm); 1127 return 0; 1128 1129 out: 1130 if (rm) 1131 rds_message_put(rm); 1132 return ret; 1133 } 1134