xref: /linux/net/rds/recv.c (revision 55f1b540d893da740a81200450014c45a8103f54)
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <net/sock.h>
36 #include <linux/in.h>
37 #include <linux/export.h>
38 #include <linux/sched/clock.h>
39 #include <linux/time.h>
40 #include <linux/rds.h>
41 
42 #include "rds.h"
43 
44 void rds_inc_init(struct rds_incoming *inc, struct rds_connection *conn,
45 		 struct in6_addr *saddr)
46 {
47 	refcount_set(&inc->i_refcount, 1);
48 	INIT_LIST_HEAD(&inc->i_item);
49 	inc->i_conn = conn;
50 	inc->i_saddr = *saddr;
51 	inc->i_usercopy.rdma_cookie = 0;
52 	inc->i_usercopy.rx_tstamp = ktime_set(0, 0);
53 
54 	memset(inc->i_rx_lat_trace, 0, sizeof(inc->i_rx_lat_trace));
55 }
56 EXPORT_SYMBOL_GPL(rds_inc_init);
57 
58 void rds_inc_path_init(struct rds_incoming *inc, struct rds_conn_path *cp,
59 		       struct in6_addr  *saddr)
60 {
61 	refcount_set(&inc->i_refcount, 1);
62 	INIT_LIST_HEAD(&inc->i_item);
63 	inc->i_conn = cp->cp_conn;
64 	inc->i_conn_path = cp;
65 	inc->i_saddr = *saddr;
66 	inc->i_usercopy.rdma_cookie = 0;
67 	inc->i_usercopy.rx_tstamp = ktime_set(0, 0);
68 }
69 EXPORT_SYMBOL_GPL(rds_inc_path_init);
70 
71 static void rds_inc_addref(struct rds_incoming *inc)
72 {
73 	rdsdebug("addref inc %p ref %d\n", inc, refcount_read(&inc->i_refcount));
74 	refcount_inc(&inc->i_refcount);
75 }
76 
77 void rds_inc_put(struct rds_incoming *inc)
78 {
79 	rdsdebug("put inc %p ref %d\n", inc, refcount_read(&inc->i_refcount));
80 	if (refcount_dec_and_test(&inc->i_refcount)) {
81 		BUG_ON(!list_empty(&inc->i_item));
82 
83 		inc->i_conn->c_trans->inc_free(inc);
84 	}
85 }
86 EXPORT_SYMBOL_GPL(rds_inc_put);
87 
88 static void rds_recv_rcvbuf_delta(struct rds_sock *rs, struct sock *sk,
89 				  struct rds_cong_map *map,
90 				  int delta, __be16 port)
91 {
92 	int now_congested;
93 
94 	if (delta == 0)
95 		return;
96 
97 	rs->rs_rcv_bytes += delta;
98 	if (delta > 0)
99 		rds_stats_add(s_recv_bytes_added_to_socket, delta);
100 	else
101 		rds_stats_add(s_recv_bytes_removed_from_socket, -delta);
102 
103 	/* loop transport doesn't send/recv congestion updates */
104 	if (rs->rs_transport->t_type == RDS_TRANS_LOOP)
105 		return;
106 
107 	now_congested = rs->rs_rcv_bytes > rds_sk_rcvbuf(rs);
108 
109 	rdsdebug("rs %p (%pI6c:%u) recv bytes %d buf %d "
110 	  "now_cong %d delta %d\n",
111 	  rs, &rs->rs_bound_addr,
112 	  ntohs(rs->rs_bound_port), rs->rs_rcv_bytes,
113 	  rds_sk_rcvbuf(rs), now_congested, delta);
114 
115 	/* wasn't -> am congested */
116 	if (!rs->rs_congested && now_congested) {
117 		rs->rs_congested = 1;
118 		rds_cong_set_bit(map, port);
119 		rds_cong_queue_updates(map);
120 	}
121 	/* was -> aren't congested */
122 	/* Require more free space before reporting uncongested to prevent
123 	   bouncing cong/uncong state too often */
124 	else if (rs->rs_congested && (rs->rs_rcv_bytes < (rds_sk_rcvbuf(rs)/2))) {
125 		rs->rs_congested = 0;
126 		rds_cong_clear_bit(map, port);
127 		rds_cong_queue_updates(map);
128 	}
129 
130 	/* do nothing if no change in cong state */
131 }
132 
133 static void rds_conn_peer_gen_update(struct rds_connection *conn,
134 				     u32 peer_gen_num)
135 {
136 	int i;
137 	struct rds_message *rm, *tmp;
138 	unsigned long flags;
139 
140 	WARN_ON(conn->c_trans->t_type != RDS_TRANS_TCP);
141 	if (peer_gen_num != 0) {
142 		if (conn->c_peer_gen_num != 0 &&
143 		    peer_gen_num != conn->c_peer_gen_num) {
144 			for (i = 0; i < RDS_MPATH_WORKERS; i++) {
145 				struct rds_conn_path *cp;
146 
147 				cp = &conn->c_path[i];
148 				spin_lock_irqsave(&cp->cp_lock, flags);
149 				cp->cp_next_tx_seq = 1;
150 				cp->cp_next_rx_seq = 0;
151 				list_for_each_entry_safe(rm, tmp,
152 							 &cp->cp_retrans,
153 							 m_conn_item) {
154 					set_bit(RDS_MSG_FLUSH, &rm->m_flags);
155 				}
156 				spin_unlock_irqrestore(&cp->cp_lock, flags);
157 			}
158 		}
159 		conn->c_peer_gen_num = peer_gen_num;
160 	}
161 }
162 
163 /*
164  * Process all extension headers that come with this message.
165  */
166 static void rds_recv_incoming_exthdrs(struct rds_incoming *inc, struct rds_sock *rs)
167 {
168 	struct rds_header *hdr = &inc->i_hdr;
169 	unsigned int pos = 0, type, len;
170 	union {
171 		struct rds_ext_header_version version;
172 		struct rds_ext_header_rdma rdma;
173 		struct rds_ext_header_rdma_dest rdma_dest;
174 	} buffer;
175 
176 	while (1) {
177 		len = sizeof(buffer);
178 		type = rds_message_next_extension(hdr, &pos, &buffer, &len);
179 		if (type == RDS_EXTHDR_NONE)
180 			break;
181 		/* Process extension header here */
182 		switch (type) {
183 		case RDS_EXTHDR_RDMA:
184 			rds_rdma_unuse(rs, be32_to_cpu(buffer.rdma.h_rdma_rkey), 0);
185 			break;
186 
187 		case RDS_EXTHDR_RDMA_DEST:
188 			/* We ignore the size for now. We could stash it
189 			 * somewhere and use it for error checking. */
190 			inc->i_usercopy.rdma_cookie = rds_rdma_make_cookie(
191 					be32_to_cpu(buffer.rdma_dest.h_rdma_rkey),
192 					be32_to_cpu(buffer.rdma_dest.h_rdma_offset));
193 
194 			break;
195 		}
196 	}
197 }
198 
199 static void rds_recv_hs_exthdrs(struct rds_header *hdr,
200 				struct rds_connection *conn)
201 {
202 	unsigned int pos = 0, type, len;
203 	union {
204 		struct rds_ext_header_version version;
205 		u16 rds_npaths;
206 		u32 rds_gen_num;
207 	} buffer;
208 	u32 new_peer_gen_num = 0;
209 
210 	while (1) {
211 		len = sizeof(buffer);
212 		type = rds_message_next_extension(hdr, &pos, &buffer, &len);
213 		if (type == RDS_EXTHDR_NONE)
214 			break;
215 		/* Process extension header here */
216 		switch (type) {
217 		case RDS_EXTHDR_NPATHS:
218 			conn->c_npaths = min_t(int, RDS_MPATH_WORKERS,
219 					       be16_to_cpu(buffer.rds_npaths));
220 			break;
221 		case RDS_EXTHDR_GEN_NUM:
222 			new_peer_gen_num = be32_to_cpu(buffer.rds_gen_num);
223 			break;
224 		default:
225 			pr_warn_ratelimited("ignoring unknown exthdr type "
226 					     "0x%x\n", type);
227 		}
228 	}
229 	/* if RDS_EXTHDR_NPATHS was not found, default to a single-path */
230 	conn->c_npaths = max_t(int, conn->c_npaths, 1);
231 	conn->c_ping_triggered = 0;
232 	rds_conn_peer_gen_update(conn, new_peer_gen_num);
233 }
234 
235 /* rds_start_mprds() will synchronously start multiple paths when appropriate.
236  * The scheme is based on the following rules:
237  *
238  * 1. rds_sendmsg on first connect attempt sends the probe ping, with the
239  *    sender's npaths (s_npaths)
240  * 2. rcvr of probe-ping knows the mprds_paths = min(s_npaths, r_npaths). It
241  *    sends back a probe-pong with r_npaths. After that, if rcvr is the
242  *    smaller ip addr, it starts rds_conn_path_connect_if_down on all
243  *    mprds_paths.
244  * 3. sender gets woken up, and can move to rds_conn_path_connect_if_down.
245  *    If it is the smaller ipaddr, rds_conn_path_connect_if_down can be
246  *    called after reception of the probe-pong on all mprds_paths.
247  *    Otherwise (sender of probe-ping is not the smaller ip addr): just call
248  *    rds_conn_path_connect_if_down on the hashed path. (see rule 4)
249  * 4. rds_connect_worker must only trigger a connection if laddr < faddr.
250  * 5. sender may end up queuing the packet on the cp. will get sent out later.
251  *    when connection is completed.
252  */
253 static void rds_start_mprds(struct rds_connection *conn)
254 {
255 	int i;
256 	struct rds_conn_path *cp;
257 
258 	if (conn->c_npaths > 1 &&
259 	    rds_addr_cmp(&conn->c_laddr, &conn->c_faddr) < 0) {
260 		for (i = 0; i < conn->c_npaths; i++) {
261 			cp = &conn->c_path[i];
262 			rds_conn_path_connect_if_down(cp);
263 		}
264 	}
265 }
266 
267 /*
268  * The transport must make sure that this is serialized against other
269  * rx and conn reset on this specific conn.
270  *
271  * We currently assert that only one fragmented message will be sent
272  * down a connection at a time.  This lets us reassemble in the conn
273  * instead of per-flow which means that we don't have to go digging through
274  * flows to tear down partial reassembly progress on conn failure and
275  * we save flow lookup and locking for each frag arrival.  It does mean
276  * that small messages will wait behind large ones.  Fragmenting at all
277  * is only to reduce the memory consumption of pre-posted buffers.
278  *
279  * The caller passes in saddr and daddr instead of us getting it from the
280  * conn.  This lets loopback, who only has one conn for both directions,
281  * tell us which roles the addrs in the conn are playing for this message.
282  */
283 void rds_recv_incoming(struct rds_connection *conn, struct in6_addr *saddr,
284 		       struct in6_addr *daddr,
285 		       struct rds_incoming *inc, gfp_t gfp)
286 {
287 	struct rds_sock *rs = NULL;
288 	struct sock *sk;
289 	unsigned long flags;
290 	struct rds_conn_path *cp;
291 
292 	inc->i_conn = conn;
293 	inc->i_rx_jiffies = jiffies;
294 	if (conn->c_trans->t_mp_capable)
295 		cp = inc->i_conn_path;
296 	else
297 		cp = &conn->c_path[0];
298 
299 	rdsdebug("conn %p next %llu inc %p seq %llu len %u sport %u dport %u "
300 		 "flags 0x%x rx_jiffies %lu\n", conn,
301 		 (unsigned long long)cp->cp_next_rx_seq,
302 		 inc,
303 		 (unsigned long long)be64_to_cpu(inc->i_hdr.h_sequence),
304 		 be32_to_cpu(inc->i_hdr.h_len),
305 		 be16_to_cpu(inc->i_hdr.h_sport),
306 		 be16_to_cpu(inc->i_hdr.h_dport),
307 		 inc->i_hdr.h_flags,
308 		 inc->i_rx_jiffies);
309 
310 	/*
311 	 * Sequence numbers should only increase.  Messages get their
312 	 * sequence number as they're queued in a sending conn.  They
313 	 * can be dropped, though, if the sending socket is closed before
314 	 * they hit the wire.  So sequence numbers can skip forward
315 	 * under normal operation.  They can also drop back in the conn
316 	 * failover case as previously sent messages are resent down the
317 	 * new instance of a conn.  We drop those, otherwise we have
318 	 * to assume that the next valid seq does not come after a
319 	 * hole in the fragment stream.
320 	 *
321 	 * The headers don't give us a way to realize if fragments of
322 	 * a message have been dropped.  We assume that frags that arrive
323 	 * to a flow are part of the current message on the flow that is
324 	 * being reassembled.  This means that senders can't drop messages
325 	 * from the sending conn until all their frags are sent.
326 	 *
327 	 * XXX we could spend more on the wire to get more robust failure
328 	 * detection, arguably worth it to avoid data corruption.
329 	 */
330 	if (be64_to_cpu(inc->i_hdr.h_sequence) < cp->cp_next_rx_seq &&
331 	    (inc->i_hdr.h_flags & RDS_FLAG_RETRANSMITTED)) {
332 		rds_stats_inc(s_recv_drop_old_seq);
333 		goto out;
334 	}
335 	cp->cp_next_rx_seq = be64_to_cpu(inc->i_hdr.h_sequence) + 1;
336 
337 	if (rds_sysctl_ping_enable && inc->i_hdr.h_dport == 0) {
338 		if (inc->i_hdr.h_sport == 0) {
339 			rdsdebug("ignore ping with 0 sport from %pI6c\n",
340 				 saddr);
341 			goto out;
342 		}
343 		rds_stats_inc(s_recv_ping);
344 		rds_send_pong(cp, inc->i_hdr.h_sport);
345 		/* if this is a handshake ping, start multipath if necessary */
346 		if (RDS_HS_PROBE(be16_to_cpu(inc->i_hdr.h_sport),
347 				 be16_to_cpu(inc->i_hdr.h_dport))) {
348 			rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn);
349 			rds_start_mprds(cp->cp_conn);
350 		}
351 		goto out;
352 	}
353 
354 	if (be16_to_cpu(inc->i_hdr.h_dport) ==  RDS_FLAG_PROBE_PORT &&
355 	    inc->i_hdr.h_sport == 0) {
356 		rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn);
357 		/* if this is a handshake pong, start multipath if necessary */
358 		rds_start_mprds(cp->cp_conn);
359 		wake_up(&cp->cp_conn->c_hs_waitq);
360 		goto out;
361 	}
362 
363 	rs = rds_find_bound(daddr, inc->i_hdr.h_dport, conn->c_bound_if);
364 	if (!rs) {
365 		rds_stats_inc(s_recv_drop_no_sock);
366 		goto out;
367 	}
368 
369 	/* Process extension headers */
370 	rds_recv_incoming_exthdrs(inc, rs);
371 
372 	/* We can be racing with rds_release() which marks the socket dead. */
373 	sk = rds_rs_to_sk(rs);
374 
375 	/* serialize with rds_release -> sock_orphan */
376 	write_lock_irqsave(&rs->rs_recv_lock, flags);
377 	if (!sock_flag(sk, SOCK_DEAD)) {
378 		rdsdebug("adding inc %p to rs %p's recv queue\n", inc, rs);
379 		rds_stats_inc(s_recv_queued);
380 		rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
381 				      be32_to_cpu(inc->i_hdr.h_len),
382 				      inc->i_hdr.h_dport);
383 		if (sock_flag(sk, SOCK_RCVTSTAMP))
384 			inc->i_usercopy.rx_tstamp = ktime_get_real();
385 		rds_inc_addref(inc);
386 		inc->i_rx_lat_trace[RDS_MSG_RX_END] = local_clock();
387 		list_add_tail(&inc->i_item, &rs->rs_recv_queue);
388 		__rds_wake_sk_sleep(sk);
389 	} else {
390 		rds_stats_inc(s_recv_drop_dead_sock);
391 	}
392 	write_unlock_irqrestore(&rs->rs_recv_lock, flags);
393 
394 out:
395 	if (rs)
396 		rds_sock_put(rs);
397 }
398 EXPORT_SYMBOL_GPL(rds_recv_incoming);
399 
400 /*
401  * be very careful here.  This is being called as the condition in
402  * wait_event_*() needs to cope with being called many times.
403  */
404 static int rds_next_incoming(struct rds_sock *rs, struct rds_incoming **inc)
405 {
406 	unsigned long flags;
407 
408 	if (!*inc) {
409 		read_lock_irqsave(&rs->rs_recv_lock, flags);
410 		if (!list_empty(&rs->rs_recv_queue)) {
411 			*inc = list_entry(rs->rs_recv_queue.next,
412 					  struct rds_incoming,
413 					  i_item);
414 			rds_inc_addref(*inc);
415 		}
416 		read_unlock_irqrestore(&rs->rs_recv_lock, flags);
417 	}
418 
419 	return *inc != NULL;
420 }
421 
422 static int rds_still_queued(struct rds_sock *rs, struct rds_incoming *inc,
423 			    int drop)
424 {
425 	struct sock *sk = rds_rs_to_sk(rs);
426 	int ret = 0;
427 	unsigned long flags;
428 	struct rds_incoming *to_drop = NULL;
429 
430 	write_lock_irqsave(&rs->rs_recv_lock, flags);
431 	if (!list_empty(&inc->i_item)) {
432 		ret = 1;
433 		if (drop) {
434 			/* XXX make sure this i_conn is reliable */
435 			rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
436 					      -be32_to_cpu(inc->i_hdr.h_len),
437 					      inc->i_hdr.h_dport);
438 			list_del_init(&inc->i_item);
439 			to_drop = inc;
440 		}
441 	}
442 	write_unlock_irqrestore(&rs->rs_recv_lock, flags);
443 
444 	if (to_drop)
445 		rds_inc_put(to_drop);
446 
447 	rdsdebug("inc %p rs %p still %d dropped %d\n", inc, rs, ret, drop);
448 	return ret;
449 }
450 
451 /*
452  * Pull errors off the error queue.
453  * If msghdr is NULL, we will just purge the error queue.
454  */
455 int rds_notify_queue_get(struct rds_sock *rs, struct msghdr *msghdr)
456 {
457 	struct rds_notifier *notifier;
458 	struct rds_rdma_notify cmsg;
459 	unsigned int count = 0, max_messages = ~0U;
460 	unsigned long flags;
461 	LIST_HEAD(copy);
462 	int err = 0;
463 
464 	memset(&cmsg, 0, sizeof(cmsg));	/* fill holes with zero */
465 
466 	/* put_cmsg copies to user space and thus may sleep. We can't do this
467 	 * with rs_lock held, so first grab as many notifications as we can stuff
468 	 * in the user provided cmsg buffer. We don't try to copy more, to avoid
469 	 * losing notifications - except when the buffer is so small that it wouldn't
470 	 * even hold a single notification. Then we give him as much of this single
471 	 * msg as we can squeeze in, and set MSG_CTRUNC.
472 	 */
473 	if (msghdr) {
474 		max_messages = msghdr->msg_controllen / CMSG_SPACE(sizeof(cmsg));
475 		if (!max_messages)
476 			max_messages = 1;
477 	}
478 
479 	spin_lock_irqsave(&rs->rs_lock, flags);
480 	while (!list_empty(&rs->rs_notify_queue) && count < max_messages) {
481 		notifier = list_entry(rs->rs_notify_queue.next,
482 				struct rds_notifier, n_list);
483 		list_move(&notifier->n_list, &copy);
484 		count++;
485 	}
486 	spin_unlock_irqrestore(&rs->rs_lock, flags);
487 
488 	if (!count)
489 		return 0;
490 
491 	while (!list_empty(&copy)) {
492 		notifier = list_entry(copy.next, struct rds_notifier, n_list);
493 
494 		if (msghdr) {
495 			cmsg.user_token = notifier->n_user_token;
496 			cmsg.status = notifier->n_status;
497 
498 			err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_RDMA_STATUS,
499 				       sizeof(cmsg), &cmsg);
500 			if (err)
501 				break;
502 		}
503 
504 		list_del_init(&notifier->n_list);
505 		kfree(notifier);
506 	}
507 
508 	/* If we bailed out because of an error in put_cmsg,
509 	 * we may be left with one or more notifications that we
510 	 * didn't process. Return them to the head of the list. */
511 	if (!list_empty(&copy)) {
512 		spin_lock_irqsave(&rs->rs_lock, flags);
513 		list_splice(&copy, &rs->rs_notify_queue);
514 		spin_unlock_irqrestore(&rs->rs_lock, flags);
515 	}
516 
517 	return err;
518 }
519 
520 /*
521  * Queue a congestion notification
522  */
523 static int rds_notify_cong(struct rds_sock *rs, struct msghdr *msghdr)
524 {
525 	uint64_t notify = rs->rs_cong_notify;
526 	unsigned long flags;
527 	int err;
528 
529 	err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_CONG_UPDATE,
530 			sizeof(notify), &notify);
531 	if (err)
532 		return err;
533 
534 	spin_lock_irqsave(&rs->rs_lock, flags);
535 	rs->rs_cong_notify &= ~notify;
536 	spin_unlock_irqrestore(&rs->rs_lock, flags);
537 
538 	return 0;
539 }
540 
541 /*
542  * Receive any control messages.
543  */
544 static int rds_cmsg_recv(struct rds_incoming *inc, struct msghdr *msg,
545 			 struct rds_sock *rs)
546 {
547 	int ret = 0;
548 
549 	if (inc->i_usercopy.rdma_cookie) {
550 		ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RDMA_DEST,
551 				sizeof(inc->i_usercopy.rdma_cookie),
552 				&inc->i_usercopy.rdma_cookie);
553 		if (ret)
554 			goto out;
555 	}
556 
557 	if ((inc->i_usercopy.rx_tstamp != 0) &&
558 	    sock_flag(rds_rs_to_sk(rs), SOCK_RCVTSTAMP)) {
559 		struct __kernel_old_timeval tv =
560 			ns_to_kernel_old_timeval(inc->i_usercopy.rx_tstamp);
561 
562 		if (!sock_flag(rds_rs_to_sk(rs), SOCK_TSTAMP_NEW)) {
563 			ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
564 				       sizeof(tv), &tv);
565 		} else {
566 			struct __kernel_sock_timeval sk_tv;
567 
568 			sk_tv.tv_sec = tv.tv_sec;
569 			sk_tv.tv_usec = tv.tv_usec;
570 
571 			ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
572 				       sizeof(sk_tv), &sk_tv);
573 		}
574 
575 		if (ret)
576 			goto out;
577 	}
578 
579 	if (rs->rs_rx_traces) {
580 		struct rds_cmsg_rx_trace t;
581 		int i, j;
582 
583 		memset(&t, 0, sizeof(t));
584 		inc->i_rx_lat_trace[RDS_MSG_RX_CMSG] = local_clock();
585 		t.rx_traces =  rs->rs_rx_traces;
586 		for (i = 0; i < rs->rs_rx_traces; i++) {
587 			j = rs->rs_rx_trace[i];
588 			t.rx_trace_pos[i] = j;
589 			t.rx_trace[i] = inc->i_rx_lat_trace[j + 1] -
590 					  inc->i_rx_lat_trace[j];
591 		}
592 
593 		ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RXPATH_LATENCY,
594 			       sizeof(t), &t);
595 		if (ret)
596 			goto out;
597 	}
598 
599 out:
600 	return ret;
601 }
602 
603 static bool rds_recvmsg_zcookie(struct rds_sock *rs, struct msghdr *msg)
604 {
605 	struct rds_msg_zcopy_queue *q = &rs->rs_zcookie_queue;
606 	struct rds_msg_zcopy_info *info = NULL;
607 	struct rds_zcopy_cookies *done;
608 	unsigned long flags;
609 
610 	if (!msg->msg_control)
611 		return false;
612 
613 	if (!sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY) ||
614 	    msg->msg_controllen < CMSG_SPACE(sizeof(*done)))
615 		return false;
616 
617 	spin_lock_irqsave(&q->lock, flags);
618 	if (!list_empty(&q->zcookie_head)) {
619 		info = list_entry(q->zcookie_head.next,
620 				  struct rds_msg_zcopy_info, rs_zcookie_next);
621 		list_del(&info->rs_zcookie_next);
622 	}
623 	spin_unlock_irqrestore(&q->lock, flags);
624 	if (!info)
625 		return false;
626 	done = &info->zcookies;
627 	if (put_cmsg(msg, SOL_RDS, RDS_CMSG_ZCOPY_COMPLETION, sizeof(*done),
628 		     done)) {
629 		spin_lock_irqsave(&q->lock, flags);
630 		list_add(&info->rs_zcookie_next, &q->zcookie_head);
631 		spin_unlock_irqrestore(&q->lock, flags);
632 		return false;
633 	}
634 	kfree(info);
635 	return true;
636 }
637 
638 int rds_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
639 		int msg_flags)
640 {
641 	struct sock *sk = sock->sk;
642 	struct rds_sock *rs = rds_sk_to_rs(sk);
643 	long timeo;
644 	int ret = 0, nonblock = msg_flags & MSG_DONTWAIT;
645 	DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
646 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
647 	struct rds_incoming *inc = NULL;
648 
649 	/* udp_recvmsg()->sock_recvtimeo() gets away without locking too.. */
650 	timeo = sock_rcvtimeo(sk, nonblock);
651 
652 	rdsdebug("size %zu flags 0x%x timeo %ld\n", size, msg_flags, timeo);
653 
654 	if (msg_flags & MSG_OOB)
655 		goto out;
656 	if (msg_flags & MSG_ERRQUEUE)
657 		return sock_recv_errqueue(sk, msg, size, SOL_IP, IP_RECVERR);
658 
659 	while (1) {
660 		/* If there are pending notifications, do those - and nothing else */
661 		if (!list_empty(&rs->rs_notify_queue)) {
662 			ret = rds_notify_queue_get(rs, msg);
663 			break;
664 		}
665 
666 		if (rs->rs_cong_notify) {
667 			ret = rds_notify_cong(rs, msg);
668 			break;
669 		}
670 
671 		if (!rds_next_incoming(rs, &inc)) {
672 			if (nonblock) {
673 				bool reaped = rds_recvmsg_zcookie(rs, msg);
674 
675 				ret = reaped ?  0 : -EAGAIN;
676 				break;
677 			}
678 
679 			timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
680 					(!list_empty(&rs->rs_notify_queue) ||
681 					 rs->rs_cong_notify ||
682 					 rds_next_incoming(rs, &inc)), timeo);
683 			rdsdebug("recvmsg woke inc %p timeo %ld\n", inc,
684 				 timeo);
685 			if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
686 				continue;
687 
688 			ret = timeo;
689 			if (ret == 0)
690 				ret = -ETIMEDOUT;
691 			break;
692 		}
693 
694 		rdsdebug("copying inc %p from %pI6c:%u to user\n", inc,
695 			 &inc->i_conn->c_faddr,
696 			 ntohs(inc->i_hdr.h_sport));
697 		ret = inc->i_conn->c_trans->inc_copy_to_user(inc, &msg->msg_iter);
698 		if (ret < 0)
699 			break;
700 
701 		/*
702 		 * if the message we just copied isn't at the head of the
703 		 * recv queue then someone else raced us to return it, try
704 		 * to get the next message.
705 		 */
706 		if (!rds_still_queued(rs, inc, !(msg_flags & MSG_PEEK))) {
707 			rds_inc_put(inc);
708 			inc = NULL;
709 			rds_stats_inc(s_recv_deliver_raced);
710 			iov_iter_revert(&msg->msg_iter, ret);
711 			continue;
712 		}
713 
714 		if (ret < be32_to_cpu(inc->i_hdr.h_len)) {
715 			if (msg_flags & MSG_TRUNC)
716 				ret = be32_to_cpu(inc->i_hdr.h_len);
717 			msg->msg_flags |= MSG_TRUNC;
718 		}
719 
720 		if (rds_cmsg_recv(inc, msg, rs)) {
721 			ret = -EFAULT;
722 			break;
723 		}
724 		rds_recvmsg_zcookie(rs, msg);
725 
726 		rds_stats_inc(s_recv_delivered);
727 
728 		if (msg->msg_name) {
729 			if (ipv6_addr_v4mapped(&inc->i_saddr)) {
730 				sin->sin_family = AF_INET;
731 				sin->sin_port = inc->i_hdr.h_sport;
732 				sin->sin_addr.s_addr =
733 				    inc->i_saddr.s6_addr32[3];
734 				memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
735 				msg->msg_namelen = sizeof(*sin);
736 			} else {
737 				sin6->sin6_family = AF_INET6;
738 				sin6->sin6_port = inc->i_hdr.h_sport;
739 				sin6->sin6_addr = inc->i_saddr;
740 				sin6->sin6_flowinfo = 0;
741 				sin6->sin6_scope_id = rs->rs_bound_scope_id;
742 				msg->msg_namelen = sizeof(*sin6);
743 			}
744 		}
745 		break;
746 	}
747 
748 	if (inc)
749 		rds_inc_put(inc);
750 
751 out:
752 	return ret;
753 }
754 
755 /*
756  * The socket is being shut down and we're asked to drop messages that were
757  * queued for recvmsg.  The caller has unbound the socket so the receive path
758  * won't queue any more incoming fragments or messages on the socket.
759  */
760 void rds_clear_recv_queue(struct rds_sock *rs)
761 {
762 	struct sock *sk = rds_rs_to_sk(rs);
763 	struct rds_incoming *inc, *tmp;
764 	unsigned long flags;
765 	LIST_HEAD(to_drop);
766 
767 	write_lock_irqsave(&rs->rs_recv_lock, flags);
768 	list_for_each_entry_safe(inc, tmp, &rs->rs_recv_queue, i_item) {
769 		rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
770 				      -be32_to_cpu(inc->i_hdr.h_len),
771 				      inc->i_hdr.h_dport);
772 		list_move(&inc->i_item, &to_drop);
773 	}
774 	write_unlock_irqrestore(&rs->rs_recv_lock, flags);
775 
776 	list_for_each_entry_safe(inc, tmp, &to_drop, i_item) {
777 		list_del_init(&inc->i_item);
778 		rds_inc_put(inc);
779 	}
780 }
781 
782 /*
783  * inc->i_saddr isn't used here because it is only set in the receive
784  * path.
785  */
786 void rds_inc_info_copy(struct rds_incoming *inc,
787 		       struct rds_info_iterator *iter,
788 		       __be32 saddr, __be32 daddr, int flip)
789 {
790 	struct rds_info_message minfo;
791 
792 	minfo.seq = be64_to_cpu(inc->i_hdr.h_sequence);
793 	minfo.len = be32_to_cpu(inc->i_hdr.h_len);
794 	minfo.tos = inc->i_conn->c_tos;
795 
796 	if (flip) {
797 		minfo.laddr = daddr;
798 		minfo.faddr = saddr;
799 		minfo.lport = inc->i_hdr.h_dport;
800 		minfo.fport = inc->i_hdr.h_sport;
801 	} else {
802 		minfo.laddr = saddr;
803 		minfo.faddr = daddr;
804 		minfo.lport = inc->i_hdr.h_sport;
805 		minfo.fport = inc->i_hdr.h_dport;
806 	}
807 
808 	minfo.flags = 0;
809 
810 	rds_info_copy(iter, &minfo, sizeof(minfo));
811 }
812 
813 #if IS_ENABLED(CONFIG_IPV6)
814 void rds6_inc_info_copy(struct rds_incoming *inc,
815 			struct rds_info_iterator *iter,
816 			struct in6_addr *saddr, struct in6_addr *daddr,
817 			int flip)
818 {
819 	struct rds6_info_message minfo6;
820 
821 	minfo6.seq = be64_to_cpu(inc->i_hdr.h_sequence);
822 	minfo6.len = be32_to_cpu(inc->i_hdr.h_len);
823 	minfo6.tos = inc->i_conn->c_tos;
824 
825 	if (flip) {
826 		minfo6.laddr = *daddr;
827 		minfo6.faddr = *saddr;
828 		minfo6.lport = inc->i_hdr.h_dport;
829 		minfo6.fport = inc->i_hdr.h_sport;
830 	} else {
831 		minfo6.laddr = *saddr;
832 		minfo6.faddr = *daddr;
833 		minfo6.lport = inc->i_hdr.h_sport;
834 		minfo6.fport = inc->i_hdr.h_dport;
835 	}
836 
837 	minfo6.flags = 0;
838 
839 	rds_info_copy(iter, &minfo6, sizeof(minfo6));
840 }
841 #endif
842