1 /* 2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 35 #include <net/sock.h> 36 #include <linux/in.h> 37 #include <linux/export.h> 38 #include <linux/time.h> 39 #include <linux/rds.h> 40 41 #include "rds.h" 42 43 void rds_inc_init(struct rds_incoming *inc, struct rds_connection *conn, 44 struct in6_addr *saddr) 45 { 46 refcount_set(&inc->i_refcount, 1); 47 INIT_LIST_HEAD(&inc->i_item); 48 inc->i_conn = conn; 49 inc->i_saddr = *saddr; 50 inc->i_usercopy.rdma_cookie = 0; 51 inc->i_usercopy.rx_tstamp = ktime_set(0, 0); 52 53 memset(inc->i_rx_lat_trace, 0, sizeof(inc->i_rx_lat_trace)); 54 } 55 EXPORT_SYMBOL_GPL(rds_inc_init); 56 57 void rds_inc_path_init(struct rds_incoming *inc, struct rds_conn_path *cp, 58 struct in6_addr *saddr) 59 { 60 refcount_set(&inc->i_refcount, 1); 61 INIT_LIST_HEAD(&inc->i_item); 62 inc->i_conn = cp->cp_conn; 63 inc->i_conn_path = cp; 64 inc->i_saddr = *saddr; 65 inc->i_usercopy.rdma_cookie = 0; 66 inc->i_usercopy.rx_tstamp = ktime_set(0, 0); 67 } 68 EXPORT_SYMBOL_GPL(rds_inc_path_init); 69 70 static void rds_inc_addref(struct rds_incoming *inc) 71 { 72 rdsdebug("addref inc %p ref %d\n", inc, refcount_read(&inc->i_refcount)); 73 refcount_inc(&inc->i_refcount); 74 } 75 76 void rds_inc_put(struct rds_incoming *inc) 77 { 78 rdsdebug("put inc %p ref %d\n", inc, refcount_read(&inc->i_refcount)); 79 if (refcount_dec_and_test(&inc->i_refcount)) { 80 BUG_ON(!list_empty(&inc->i_item)); 81 82 inc->i_conn->c_trans->inc_free(inc); 83 } 84 } 85 EXPORT_SYMBOL_GPL(rds_inc_put); 86 87 static void rds_recv_rcvbuf_delta(struct rds_sock *rs, struct sock *sk, 88 struct rds_cong_map *map, 89 int delta, __be16 port) 90 { 91 int now_congested; 92 93 if (delta == 0) 94 return; 95 96 rs->rs_rcv_bytes += delta; 97 if (delta > 0) 98 rds_stats_add(s_recv_bytes_added_to_socket, delta); 99 else 100 rds_stats_add(s_recv_bytes_removed_from_socket, -delta); 101 102 /* loop transport doesn't send/recv congestion updates */ 103 if (rs->rs_transport->t_type == RDS_TRANS_LOOP) 104 return; 105 106 now_congested = rs->rs_rcv_bytes > rds_sk_rcvbuf(rs); 107 108 rdsdebug("rs %p (%pI6c:%u) recv bytes %d buf %d " 109 "now_cong %d delta %d\n", 110 rs, &rs->rs_bound_addr, 111 ntohs(rs->rs_bound_port), rs->rs_rcv_bytes, 112 rds_sk_rcvbuf(rs), now_congested, delta); 113 114 /* wasn't -> am congested */ 115 if (!rs->rs_congested && now_congested) { 116 rs->rs_congested = 1; 117 rds_cong_set_bit(map, port); 118 rds_cong_queue_updates(map); 119 } 120 /* was -> aren't congested */ 121 /* Require more free space before reporting uncongested to prevent 122 bouncing cong/uncong state too often */ 123 else if (rs->rs_congested && (rs->rs_rcv_bytes < (rds_sk_rcvbuf(rs)/2))) { 124 rs->rs_congested = 0; 125 rds_cong_clear_bit(map, port); 126 rds_cong_queue_updates(map); 127 } 128 129 /* do nothing if no change in cong state */ 130 } 131 132 static void rds_conn_peer_gen_update(struct rds_connection *conn, 133 u32 peer_gen_num) 134 { 135 int i; 136 struct rds_message *rm, *tmp; 137 unsigned long flags; 138 139 WARN_ON(conn->c_trans->t_type != RDS_TRANS_TCP); 140 if (peer_gen_num != 0) { 141 if (conn->c_peer_gen_num != 0 && 142 peer_gen_num != conn->c_peer_gen_num) { 143 for (i = 0; i < RDS_MPATH_WORKERS; i++) { 144 struct rds_conn_path *cp; 145 146 cp = &conn->c_path[i]; 147 spin_lock_irqsave(&cp->cp_lock, flags); 148 cp->cp_next_tx_seq = 1; 149 cp->cp_next_rx_seq = 0; 150 list_for_each_entry_safe(rm, tmp, 151 &cp->cp_retrans, 152 m_conn_item) { 153 set_bit(RDS_MSG_FLUSH, &rm->m_flags); 154 } 155 spin_unlock_irqrestore(&cp->cp_lock, flags); 156 } 157 } 158 conn->c_peer_gen_num = peer_gen_num; 159 } 160 } 161 162 /* 163 * Process all extension headers that come with this message. 164 */ 165 static void rds_recv_incoming_exthdrs(struct rds_incoming *inc, struct rds_sock *rs) 166 { 167 struct rds_header *hdr = &inc->i_hdr; 168 unsigned int pos = 0, type, len; 169 union { 170 struct rds_ext_header_version version; 171 struct rds_ext_header_rdma rdma; 172 struct rds_ext_header_rdma_dest rdma_dest; 173 } buffer; 174 175 while (1) { 176 len = sizeof(buffer); 177 type = rds_message_next_extension(hdr, &pos, &buffer, &len); 178 if (type == RDS_EXTHDR_NONE) 179 break; 180 /* Process extension header here */ 181 switch (type) { 182 case RDS_EXTHDR_RDMA: 183 rds_rdma_unuse(rs, be32_to_cpu(buffer.rdma.h_rdma_rkey), 0); 184 break; 185 186 case RDS_EXTHDR_RDMA_DEST: 187 /* We ignore the size for now. We could stash it 188 * somewhere and use it for error checking. */ 189 inc->i_usercopy.rdma_cookie = rds_rdma_make_cookie( 190 be32_to_cpu(buffer.rdma_dest.h_rdma_rkey), 191 be32_to_cpu(buffer.rdma_dest.h_rdma_offset)); 192 193 break; 194 } 195 } 196 } 197 198 static void rds_recv_hs_exthdrs(struct rds_header *hdr, 199 struct rds_connection *conn) 200 { 201 unsigned int pos = 0, type, len; 202 union { 203 struct rds_ext_header_version version; 204 u16 rds_npaths; 205 u32 rds_gen_num; 206 } buffer; 207 u32 new_peer_gen_num = 0; 208 209 while (1) { 210 len = sizeof(buffer); 211 type = rds_message_next_extension(hdr, &pos, &buffer, &len); 212 if (type == RDS_EXTHDR_NONE) 213 break; 214 /* Process extension header here */ 215 switch (type) { 216 case RDS_EXTHDR_NPATHS: 217 conn->c_npaths = min_t(int, RDS_MPATH_WORKERS, 218 be16_to_cpu(buffer.rds_npaths)); 219 break; 220 case RDS_EXTHDR_GEN_NUM: 221 new_peer_gen_num = be32_to_cpu(buffer.rds_gen_num); 222 break; 223 default: 224 pr_warn_ratelimited("ignoring unknown exthdr type " 225 "0x%x\n", type); 226 } 227 } 228 /* if RDS_EXTHDR_NPATHS was not found, default to a single-path */ 229 conn->c_npaths = max_t(int, conn->c_npaths, 1); 230 conn->c_ping_triggered = 0; 231 rds_conn_peer_gen_update(conn, new_peer_gen_num); 232 } 233 234 /* rds_start_mprds() will synchronously start multiple paths when appropriate. 235 * The scheme is based on the following rules: 236 * 237 * 1. rds_sendmsg on first connect attempt sends the probe ping, with the 238 * sender's npaths (s_npaths) 239 * 2. rcvr of probe-ping knows the mprds_paths = min(s_npaths, r_npaths). It 240 * sends back a probe-pong with r_npaths. After that, if rcvr is the 241 * smaller ip addr, it starts rds_conn_path_connect_if_down on all 242 * mprds_paths. 243 * 3. sender gets woken up, and can move to rds_conn_path_connect_if_down. 244 * If it is the smaller ipaddr, rds_conn_path_connect_if_down can be 245 * called after reception of the probe-pong on all mprds_paths. 246 * Otherwise (sender of probe-ping is not the smaller ip addr): just call 247 * rds_conn_path_connect_if_down on the hashed path. (see rule 4) 248 * 4. rds_connect_worker must only trigger a connection if laddr < faddr. 249 * 5. sender may end up queuing the packet on the cp. will get sent out later. 250 * when connection is completed. 251 */ 252 static void rds_start_mprds(struct rds_connection *conn) 253 { 254 int i; 255 struct rds_conn_path *cp; 256 257 if (conn->c_npaths > 1 && 258 rds_addr_cmp(&conn->c_laddr, &conn->c_faddr) < 0) { 259 for (i = 0; i < conn->c_npaths; i++) { 260 cp = &conn->c_path[i]; 261 rds_conn_path_connect_if_down(cp); 262 } 263 } 264 } 265 266 /* 267 * The transport must make sure that this is serialized against other 268 * rx and conn reset on this specific conn. 269 * 270 * We currently assert that only one fragmented message will be sent 271 * down a connection at a time. This lets us reassemble in the conn 272 * instead of per-flow which means that we don't have to go digging through 273 * flows to tear down partial reassembly progress on conn failure and 274 * we save flow lookup and locking for each frag arrival. It does mean 275 * that small messages will wait behind large ones. Fragmenting at all 276 * is only to reduce the memory consumption of pre-posted buffers. 277 * 278 * The caller passes in saddr and daddr instead of us getting it from the 279 * conn. This lets loopback, who only has one conn for both directions, 280 * tell us which roles the addrs in the conn are playing for this message. 281 */ 282 void rds_recv_incoming(struct rds_connection *conn, struct in6_addr *saddr, 283 struct in6_addr *daddr, 284 struct rds_incoming *inc, gfp_t gfp) 285 { 286 struct rds_sock *rs = NULL; 287 struct sock *sk; 288 unsigned long flags; 289 struct rds_conn_path *cp; 290 291 inc->i_conn = conn; 292 inc->i_rx_jiffies = jiffies; 293 if (conn->c_trans->t_mp_capable) 294 cp = inc->i_conn_path; 295 else 296 cp = &conn->c_path[0]; 297 298 rdsdebug("conn %p next %llu inc %p seq %llu len %u sport %u dport %u " 299 "flags 0x%x rx_jiffies %lu\n", conn, 300 (unsigned long long)cp->cp_next_rx_seq, 301 inc, 302 (unsigned long long)be64_to_cpu(inc->i_hdr.h_sequence), 303 be32_to_cpu(inc->i_hdr.h_len), 304 be16_to_cpu(inc->i_hdr.h_sport), 305 be16_to_cpu(inc->i_hdr.h_dport), 306 inc->i_hdr.h_flags, 307 inc->i_rx_jiffies); 308 309 /* 310 * Sequence numbers should only increase. Messages get their 311 * sequence number as they're queued in a sending conn. They 312 * can be dropped, though, if the sending socket is closed before 313 * they hit the wire. So sequence numbers can skip forward 314 * under normal operation. They can also drop back in the conn 315 * failover case as previously sent messages are resent down the 316 * new instance of a conn. We drop those, otherwise we have 317 * to assume that the next valid seq does not come after a 318 * hole in the fragment stream. 319 * 320 * The headers don't give us a way to realize if fragments of 321 * a message have been dropped. We assume that frags that arrive 322 * to a flow are part of the current message on the flow that is 323 * being reassembled. This means that senders can't drop messages 324 * from the sending conn until all their frags are sent. 325 * 326 * XXX we could spend more on the wire to get more robust failure 327 * detection, arguably worth it to avoid data corruption. 328 */ 329 if (be64_to_cpu(inc->i_hdr.h_sequence) < cp->cp_next_rx_seq && 330 (inc->i_hdr.h_flags & RDS_FLAG_RETRANSMITTED)) { 331 rds_stats_inc(s_recv_drop_old_seq); 332 goto out; 333 } 334 cp->cp_next_rx_seq = be64_to_cpu(inc->i_hdr.h_sequence) + 1; 335 336 if (rds_sysctl_ping_enable && inc->i_hdr.h_dport == 0) { 337 if (inc->i_hdr.h_sport == 0) { 338 rdsdebug("ignore ping with 0 sport from %pI6c\n", 339 saddr); 340 goto out; 341 } 342 rds_stats_inc(s_recv_ping); 343 rds_send_pong(cp, inc->i_hdr.h_sport); 344 /* if this is a handshake ping, start multipath if necessary */ 345 if (RDS_HS_PROBE(be16_to_cpu(inc->i_hdr.h_sport), 346 be16_to_cpu(inc->i_hdr.h_dport))) { 347 rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn); 348 rds_start_mprds(cp->cp_conn); 349 } 350 goto out; 351 } 352 353 if (be16_to_cpu(inc->i_hdr.h_dport) == RDS_FLAG_PROBE_PORT && 354 inc->i_hdr.h_sport == 0) { 355 rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn); 356 /* if this is a handshake pong, start multipath if necessary */ 357 rds_start_mprds(cp->cp_conn); 358 wake_up(&cp->cp_conn->c_hs_waitq); 359 goto out; 360 } 361 362 rs = rds_find_bound(daddr, inc->i_hdr.h_dport, conn->c_bound_if); 363 if (!rs) { 364 rds_stats_inc(s_recv_drop_no_sock); 365 goto out; 366 } 367 368 /* Process extension headers */ 369 rds_recv_incoming_exthdrs(inc, rs); 370 371 /* We can be racing with rds_release() which marks the socket dead. */ 372 sk = rds_rs_to_sk(rs); 373 374 /* serialize with rds_release -> sock_orphan */ 375 write_lock_irqsave(&rs->rs_recv_lock, flags); 376 if (!sock_flag(sk, SOCK_DEAD)) { 377 rdsdebug("adding inc %p to rs %p's recv queue\n", inc, rs); 378 rds_stats_inc(s_recv_queued); 379 rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong, 380 be32_to_cpu(inc->i_hdr.h_len), 381 inc->i_hdr.h_dport); 382 if (sock_flag(sk, SOCK_RCVTSTAMP)) 383 inc->i_usercopy.rx_tstamp = ktime_get_real(); 384 rds_inc_addref(inc); 385 inc->i_rx_lat_trace[RDS_MSG_RX_END] = local_clock(); 386 list_add_tail(&inc->i_item, &rs->rs_recv_queue); 387 __rds_wake_sk_sleep(sk); 388 } else { 389 rds_stats_inc(s_recv_drop_dead_sock); 390 } 391 write_unlock_irqrestore(&rs->rs_recv_lock, flags); 392 393 out: 394 if (rs) 395 rds_sock_put(rs); 396 } 397 EXPORT_SYMBOL_GPL(rds_recv_incoming); 398 399 /* 400 * be very careful here. This is being called as the condition in 401 * wait_event_*() needs to cope with being called many times. 402 */ 403 static int rds_next_incoming(struct rds_sock *rs, struct rds_incoming **inc) 404 { 405 unsigned long flags; 406 407 if (!*inc) { 408 read_lock_irqsave(&rs->rs_recv_lock, flags); 409 if (!list_empty(&rs->rs_recv_queue)) { 410 *inc = list_entry(rs->rs_recv_queue.next, 411 struct rds_incoming, 412 i_item); 413 rds_inc_addref(*inc); 414 } 415 read_unlock_irqrestore(&rs->rs_recv_lock, flags); 416 } 417 418 return *inc != NULL; 419 } 420 421 static int rds_still_queued(struct rds_sock *rs, struct rds_incoming *inc, 422 int drop) 423 { 424 struct sock *sk = rds_rs_to_sk(rs); 425 int ret = 0; 426 unsigned long flags; 427 428 write_lock_irqsave(&rs->rs_recv_lock, flags); 429 if (!list_empty(&inc->i_item)) { 430 ret = 1; 431 if (drop) { 432 /* XXX make sure this i_conn is reliable */ 433 rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong, 434 -be32_to_cpu(inc->i_hdr.h_len), 435 inc->i_hdr.h_dport); 436 list_del_init(&inc->i_item); 437 rds_inc_put(inc); 438 } 439 } 440 write_unlock_irqrestore(&rs->rs_recv_lock, flags); 441 442 rdsdebug("inc %p rs %p still %d dropped %d\n", inc, rs, ret, drop); 443 return ret; 444 } 445 446 /* 447 * Pull errors off the error queue. 448 * If msghdr is NULL, we will just purge the error queue. 449 */ 450 int rds_notify_queue_get(struct rds_sock *rs, struct msghdr *msghdr) 451 { 452 struct rds_notifier *notifier; 453 struct rds_rdma_notify cmsg; 454 unsigned int count = 0, max_messages = ~0U; 455 unsigned long flags; 456 LIST_HEAD(copy); 457 int err = 0; 458 459 memset(&cmsg, 0, sizeof(cmsg)); /* fill holes with zero */ 460 461 /* put_cmsg copies to user space and thus may sleep. We can't do this 462 * with rs_lock held, so first grab as many notifications as we can stuff 463 * in the user provided cmsg buffer. We don't try to copy more, to avoid 464 * losing notifications - except when the buffer is so small that it wouldn't 465 * even hold a single notification. Then we give him as much of this single 466 * msg as we can squeeze in, and set MSG_CTRUNC. 467 */ 468 if (msghdr) { 469 max_messages = msghdr->msg_controllen / CMSG_SPACE(sizeof(cmsg)); 470 if (!max_messages) 471 max_messages = 1; 472 } 473 474 spin_lock_irqsave(&rs->rs_lock, flags); 475 while (!list_empty(&rs->rs_notify_queue) && count < max_messages) { 476 notifier = list_entry(rs->rs_notify_queue.next, 477 struct rds_notifier, n_list); 478 list_move(¬ifier->n_list, ©); 479 count++; 480 } 481 spin_unlock_irqrestore(&rs->rs_lock, flags); 482 483 if (!count) 484 return 0; 485 486 while (!list_empty(©)) { 487 notifier = list_entry(copy.next, struct rds_notifier, n_list); 488 489 if (msghdr) { 490 cmsg.user_token = notifier->n_user_token; 491 cmsg.status = notifier->n_status; 492 493 err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_RDMA_STATUS, 494 sizeof(cmsg), &cmsg); 495 if (err) 496 break; 497 } 498 499 list_del_init(¬ifier->n_list); 500 kfree(notifier); 501 } 502 503 /* If we bailed out because of an error in put_cmsg, 504 * we may be left with one or more notifications that we 505 * didn't process. Return them to the head of the list. */ 506 if (!list_empty(©)) { 507 spin_lock_irqsave(&rs->rs_lock, flags); 508 list_splice(©, &rs->rs_notify_queue); 509 spin_unlock_irqrestore(&rs->rs_lock, flags); 510 } 511 512 return err; 513 } 514 515 /* 516 * Queue a congestion notification 517 */ 518 static int rds_notify_cong(struct rds_sock *rs, struct msghdr *msghdr) 519 { 520 uint64_t notify = rs->rs_cong_notify; 521 unsigned long flags; 522 int err; 523 524 err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_CONG_UPDATE, 525 sizeof(notify), ¬ify); 526 if (err) 527 return err; 528 529 spin_lock_irqsave(&rs->rs_lock, flags); 530 rs->rs_cong_notify &= ~notify; 531 spin_unlock_irqrestore(&rs->rs_lock, flags); 532 533 return 0; 534 } 535 536 /* 537 * Receive any control messages. 538 */ 539 static int rds_cmsg_recv(struct rds_incoming *inc, struct msghdr *msg, 540 struct rds_sock *rs) 541 { 542 int ret = 0; 543 544 if (inc->i_usercopy.rdma_cookie) { 545 ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RDMA_DEST, 546 sizeof(inc->i_usercopy.rdma_cookie), 547 &inc->i_usercopy.rdma_cookie); 548 if (ret) 549 goto out; 550 } 551 552 if ((inc->i_usercopy.rx_tstamp != 0) && 553 sock_flag(rds_rs_to_sk(rs), SOCK_RCVTSTAMP)) { 554 struct __kernel_old_timeval tv = 555 ns_to_kernel_old_timeval(inc->i_usercopy.rx_tstamp); 556 557 if (!sock_flag(rds_rs_to_sk(rs), SOCK_TSTAMP_NEW)) { 558 ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 559 sizeof(tv), &tv); 560 } else { 561 struct __kernel_sock_timeval sk_tv; 562 563 sk_tv.tv_sec = tv.tv_sec; 564 sk_tv.tv_usec = tv.tv_usec; 565 566 ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 567 sizeof(sk_tv), &sk_tv); 568 } 569 570 if (ret) 571 goto out; 572 } 573 574 if (rs->rs_rx_traces) { 575 struct rds_cmsg_rx_trace t; 576 int i, j; 577 578 memset(&t, 0, sizeof(t)); 579 inc->i_rx_lat_trace[RDS_MSG_RX_CMSG] = local_clock(); 580 t.rx_traces = rs->rs_rx_traces; 581 for (i = 0; i < rs->rs_rx_traces; i++) { 582 j = rs->rs_rx_trace[i]; 583 t.rx_trace_pos[i] = j; 584 t.rx_trace[i] = inc->i_rx_lat_trace[j + 1] - 585 inc->i_rx_lat_trace[j]; 586 } 587 588 ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RXPATH_LATENCY, 589 sizeof(t), &t); 590 if (ret) 591 goto out; 592 } 593 594 out: 595 return ret; 596 } 597 598 static bool rds_recvmsg_zcookie(struct rds_sock *rs, struct msghdr *msg) 599 { 600 struct rds_msg_zcopy_queue *q = &rs->rs_zcookie_queue; 601 struct rds_msg_zcopy_info *info = NULL; 602 struct rds_zcopy_cookies *done; 603 unsigned long flags; 604 605 if (!msg->msg_control) 606 return false; 607 608 if (!sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY) || 609 msg->msg_controllen < CMSG_SPACE(sizeof(*done))) 610 return false; 611 612 spin_lock_irqsave(&q->lock, flags); 613 if (!list_empty(&q->zcookie_head)) { 614 info = list_entry(q->zcookie_head.next, 615 struct rds_msg_zcopy_info, rs_zcookie_next); 616 list_del(&info->rs_zcookie_next); 617 } 618 spin_unlock_irqrestore(&q->lock, flags); 619 if (!info) 620 return false; 621 done = &info->zcookies; 622 if (put_cmsg(msg, SOL_RDS, RDS_CMSG_ZCOPY_COMPLETION, sizeof(*done), 623 done)) { 624 spin_lock_irqsave(&q->lock, flags); 625 list_add(&info->rs_zcookie_next, &q->zcookie_head); 626 spin_unlock_irqrestore(&q->lock, flags); 627 return false; 628 } 629 kfree(info); 630 return true; 631 } 632 633 int rds_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 634 int msg_flags) 635 { 636 struct sock *sk = sock->sk; 637 struct rds_sock *rs = rds_sk_to_rs(sk); 638 long timeo; 639 int ret = 0, nonblock = msg_flags & MSG_DONTWAIT; 640 DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); 641 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 642 struct rds_incoming *inc = NULL; 643 644 /* udp_recvmsg()->sock_recvtimeo() gets away without locking too.. */ 645 timeo = sock_rcvtimeo(sk, nonblock); 646 647 rdsdebug("size %zu flags 0x%x timeo %ld\n", size, msg_flags, timeo); 648 649 if (msg_flags & MSG_OOB) 650 goto out; 651 if (msg_flags & MSG_ERRQUEUE) 652 return sock_recv_errqueue(sk, msg, size, SOL_IP, IP_RECVERR); 653 654 while (1) { 655 /* If there are pending notifications, do those - and nothing else */ 656 if (!list_empty(&rs->rs_notify_queue)) { 657 ret = rds_notify_queue_get(rs, msg); 658 break; 659 } 660 661 if (rs->rs_cong_notify) { 662 ret = rds_notify_cong(rs, msg); 663 break; 664 } 665 666 if (!rds_next_incoming(rs, &inc)) { 667 if (nonblock) { 668 bool reaped = rds_recvmsg_zcookie(rs, msg); 669 670 ret = reaped ? 0 : -EAGAIN; 671 break; 672 } 673 674 timeo = wait_event_interruptible_timeout(*sk_sleep(sk), 675 (!list_empty(&rs->rs_notify_queue) || 676 rs->rs_cong_notify || 677 rds_next_incoming(rs, &inc)), timeo); 678 rdsdebug("recvmsg woke inc %p timeo %ld\n", inc, 679 timeo); 680 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) 681 continue; 682 683 ret = timeo; 684 if (ret == 0) 685 ret = -ETIMEDOUT; 686 break; 687 } 688 689 rdsdebug("copying inc %p from %pI6c:%u to user\n", inc, 690 &inc->i_conn->c_faddr, 691 ntohs(inc->i_hdr.h_sport)); 692 ret = inc->i_conn->c_trans->inc_copy_to_user(inc, &msg->msg_iter); 693 if (ret < 0) 694 break; 695 696 /* 697 * if the message we just copied isn't at the head of the 698 * recv queue then someone else raced us to return it, try 699 * to get the next message. 700 */ 701 if (!rds_still_queued(rs, inc, !(msg_flags & MSG_PEEK))) { 702 rds_inc_put(inc); 703 inc = NULL; 704 rds_stats_inc(s_recv_deliver_raced); 705 iov_iter_revert(&msg->msg_iter, ret); 706 continue; 707 } 708 709 if (ret < be32_to_cpu(inc->i_hdr.h_len)) { 710 if (msg_flags & MSG_TRUNC) 711 ret = be32_to_cpu(inc->i_hdr.h_len); 712 msg->msg_flags |= MSG_TRUNC; 713 } 714 715 if (rds_cmsg_recv(inc, msg, rs)) { 716 ret = -EFAULT; 717 goto out; 718 } 719 rds_recvmsg_zcookie(rs, msg); 720 721 rds_stats_inc(s_recv_delivered); 722 723 if (msg->msg_name) { 724 if (ipv6_addr_v4mapped(&inc->i_saddr)) { 725 sin = (struct sockaddr_in *)msg->msg_name; 726 727 sin->sin_family = AF_INET; 728 sin->sin_port = inc->i_hdr.h_sport; 729 sin->sin_addr.s_addr = 730 inc->i_saddr.s6_addr32[3]; 731 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 732 msg->msg_namelen = sizeof(*sin); 733 } else { 734 sin6 = (struct sockaddr_in6 *)msg->msg_name; 735 736 sin6->sin6_family = AF_INET6; 737 sin6->sin6_port = inc->i_hdr.h_sport; 738 sin6->sin6_addr = inc->i_saddr; 739 sin6->sin6_flowinfo = 0; 740 sin6->sin6_scope_id = rs->rs_bound_scope_id; 741 msg->msg_namelen = sizeof(*sin6); 742 } 743 } 744 break; 745 } 746 747 if (inc) 748 rds_inc_put(inc); 749 750 out: 751 return ret; 752 } 753 754 /* 755 * The socket is being shut down and we're asked to drop messages that were 756 * queued for recvmsg. The caller has unbound the socket so the receive path 757 * won't queue any more incoming fragments or messages on the socket. 758 */ 759 void rds_clear_recv_queue(struct rds_sock *rs) 760 { 761 struct sock *sk = rds_rs_to_sk(rs); 762 struct rds_incoming *inc, *tmp; 763 unsigned long flags; 764 765 write_lock_irqsave(&rs->rs_recv_lock, flags); 766 list_for_each_entry_safe(inc, tmp, &rs->rs_recv_queue, i_item) { 767 rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong, 768 -be32_to_cpu(inc->i_hdr.h_len), 769 inc->i_hdr.h_dport); 770 list_del_init(&inc->i_item); 771 rds_inc_put(inc); 772 } 773 write_unlock_irqrestore(&rs->rs_recv_lock, flags); 774 } 775 776 /* 777 * inc->i_saddr isn't used here because it is only set in the receive 778 * path. 779 */ 780 void rds_inc_info_copy(struct rds_incoming *inc, 781 struct rds_info_iterator *iter, 782 __be32 saddr, __be32 daddr, int flip) 783 { 784 struct rds_info_message minfo; 785 786 minfo.seq = be64_to_cpu(inc->i_hdr.h_sequence); 787 minfo.len = be32_to_cpu(inc->i_hdr.h_len); 788 minfo.tos = inc->i_conn->c_tos; 789 790 if (flip) { 791 minfo.laddr = daddr; 792 minfo.faddr = saddr; 793 minfo.lport = inc->i_hdr.h_dport; 794 minfo.fport = inc->i_hdr.h_sport; 795 } else { 796 minfo.laddr = saddr; 797 minfo.faddr = daddr; 798 minfo.lport = inc->i_hdr.h_sport; 799 minfo.fport = inc->i_hdr.h_dport; 800 } 801 802 minfo.flags = 0; 803 804 rds_info_copy(iter, &minfo, sizeof(minfo)); 805 } 806 807 #if IS_ENABLED(CONFIG_IPV6) 808 void rds6_inc_info_copy(struct rds_incoming *inc, 809 struct rds_info_iterator *iter, 810 struct in6_addr *saddr, struct in6_addr *daddr, 811 int flip) 812 { 813 struct rds6_info_message minfo6; 814 815 minfo6.seq = be64_to_cpu(inc->i_hdr.h_sequence); 816 minfo6.len = be32_to_cpu(inc->i_hdr.h_len); 817 minfo6.tos = inc->i_conn->c_tos; 818 819 if (flip) { 820 minfo6.laddr = *daddr; 821 minfo6.faddr = *saddr; 822 minfo6.lport = inc->i_hdr.h_dport; 823 minfo6.fport = inc->i_hdr.h_sport; 824 } else { 825 minfo6.laddr = *saddr; 826 minfo6.faddr = *daddr; 827 minfo6.lport = inc->i_hdr.h_sport; 828 minfo6.fport = inc->i_hdr.h_dport; 829 } 830 831 minfo6.flags = 0; 832 833 rds_info_copy(iter, &minfo6, sizeof(minfo6)); 834 } 835 #endif 836